High power light sources used in medicine

Stephen G Bown MD, FRCP Prof. of Laser Medicine & Surgery Director, National Medical Laser Centre University College London

Clinical and Lab Lasers

CE marked medical lasers

Lab lasers

Designed to be safe
Interlocks etc.
Aiming beam
Almost always diverging beam

Not designed for safety
Designed for "expert" users
Parallel, pencil beam
Much more dangerous 2

Photo hazards

- Skin
- Fire In particular down endoscope
- Eye Retinal or corneal burns
- Internal organs
- Medical lasers just need wavelength, power, power density, total energy, easy delivery

Time and Power

Some lasers in medical use

CO₂ Er:YAG Ho:YAG Nd:YAG Cu vapour Dye Diode Excimer 10.6 micron 2.94 miron 2.1 micron 1064 nm 511/578 nm eg 630/675 nm eg 532 / 905 nm < 350 nm

Impact of pulsed lasers on biological tissue

Shattering a kidney stone

Splitting a membrane in the eye

Tissue absorption

Carbon Dioxide Laser Surgery

Wavelength 10,600nm Strong absorption by water Non-contact laser knife No suitable fibre for clinical use Collimated beam Typical power 15-60W

Effects of heat on tissue

Photothermal - high power density. Ablation

Endoscopic use of lasers

Lasers and Cancer Therapy

- High power thermal blasting a passage through advanced cancers. *Typically 30-70W*
- Low power thermal gentle cooking of tumours in solid organs. *Typically 1-5W*
- Photodynamic therapy photosensitising drugs activated by laser light. *Typically 0.2-3W*

<u>SIMPLIFIED CROSS SECTION OF THE EYE WITH LASER BEAM</u>

True stories - Eye Injury

Nd:YAG (1064 nm) - permanent damage. Victim saw white flash, heard a click, then immediately a dark spot in visual field

Sample calculation

9°

Safe distance for intrabeam viewing 60W, 1064 nm, CW Nd:YAG laser.

Using the aiming beam, we find the angle of light from a fibre = 18°

No blink response Taking t = 1 s, MPE = 90 J m⁻² Max energy per unit area = (60 x t)/ATherefore A = $60/90 \text{ m}^2$ L = 5.7 m For t = 10s, L = 7.7 m Room windows will need screening.

Interstitial laser therapy

- Needles inserted through the skin under image guidance
- Laser fibres passed through the needles to deliver light into the diseased tissue

• No effect on overlying tissues

ILP for a breast fibroadenoma

True stories - Fire Blouse Set Alight

- A radiologist was using a NIR diode laser applied through 4 light fibres for ILP (heating a tumour to kill it).
- She was holding one fibre and inadvertently pointed it at her blouse.
- Others present enjoyed extinguishing her!
- Fortunately no burn to the Doctor.

Photodynamic therapy (PDT)

Bowen's disease on a finger

(photos courtesy of Dr Sally Ibbotson)

before PDT

Non-laser light sources for PDT

Paterson lamp

Semiconductor Laser (power up to 5W)

Recurrent basal cell carcinoma

(photo courtesy of Prof Stradnako, Moscow)

Before PDT

Day 5

After healing

Light delivery devices

Diffuser fibre

Microlens

TYPICAL LIGHT INTENSITY PROFILE

36

Photodynamic Therapy Barrett's Oesophagus

Prior to Therapy

One day after treatment: Necrosis of Oesophageal Mucosa A month after treatment: Squamous Regeneration and Dysplasia Eradicated

Interstitial PDT for cancer of the pancreas

Laser Therapies - summary

- Photothermal
 - High power density, thermal ablation
 - Low power density, photocoagulation
- Photochemical, PDT
- Photomechanical eg stone breaking
- Photoablation
- Biostimulation

Five Steps to risk assessment

- 1. Look for hazards
- 2. Decide who might be harmed and how
- 3. Evaluate risk factor
- 4. Record your findings
- 5. Review and revise

http://www.hse-databases.co.uk/pubns/indg163.pdf

