Angular Response Measurements of a Bentham DMc150 Spectroradiometer

Ewan Eadie¹, Hannah Oliver¹, Julie Smyth², Harry Moseley¹

¹Photobiology Unit, Ninewells Hospital and Medical School, Dundee ² Medical Physics, Ninewells Hospital and Medical School, Dundee

Spectroradiometers & Radiometers

Calibration

- Correct for errors
 - Human: Poor calibration procedures, improper maintenance, stray light from poor technique, inaccurate lamp orientation
 - Equipment: Non-linearity, aging, directional response, temperature
- Evaluate remaining uncertainty

Spectroradiometer Response

- Depends on:
 - Direction of incident radiation
 - Temperature of Photomultiplier Tube
 - Uniformity of irradiation
- Spectroradiometer used for a range of different source geometries
- Ideal Cosine response

Angular Response

f₂ error: quantifies the quality of the spectroradiometers directional evaluation of the incident radiation

Pye, S.D. and Martin, C.J.: A study of the directional response of ultraviolet radiometers.

 f_2

$$f_{2}\left(\varepsilon,\varphi\right) = \frac{R_{reading}\left(\varepsilon,\varphi\right)}{R_{reading}\left(\varepsilon=0\right)\cos\varepsilon} - 1$$

$$f_{2}(\%) = \int_{\varepsilon=0}^{1.309} |f_{2}(\varepsilon)| \sin 2\varepsilon d\varepsilon$$

Background

- Yearly calibration of our Bentham DMc150 spectroradiometer
- Two calibrated lamps
 - Bentham CL3 30W deuterium lamp
 - Bentham CL2 100W quartz halogen lamp
- Two diffusers
 - PTFE diffuser
 - Quartz diffuser

UV Radiometer Calibration

Diffu	ıser	
Lamp	PTFE	Quartz
Deuterium Lamp	$200 < \lambda < 32$	5 -
Quartz Halog Lamp	en 325 < λ < 600	0 600 < λ < 800

Angular Response of PTFE and Quartz Diffusers

Angular Response Measurements

- Bentham DMc150 Spectroradiometer
- PTFE/Quartz diffuser
- Quartz Halogen Lamp
- Angular "Jig"

- Distance = 50cm
- Vertical Alignment
- Horizontal
 - ±0° 75°
- Vertical
 - ±0° 70°

Angular Response Measurements

- Spectroradiometer
- PTFE/Quartz diffuser
- Quartz Halogen Lamp
- Angular "Jig"

- Distance = 50cm
- Vertical Alignment
- Horizontal
 - ±0° 75°
- Vertical
 - ±0° 70°

Horizontal Measurements

Vertical Measurements

Results

- 4 readings for each angle
 - Horizontal ±ε
 - Vertical ±ε
- \diamond Average $R(\varepsilon)$
- Relative Response:

$$\frac{R(\varepsilon)}{R(\varepsilon=0)}$$

Angular Response of PTFE and Quartz Diffusers

UV Radiometer Calibration

Diffuser		
Lamp	PTFE	Quartz
Deuterium Lamp	200 < λ < 325	-
Quartz Halogen Lamp	325 < λ < 600	600 < λ < 800

Angular Response of PTFE and Quartz Diffusers

PTFE f₂

Quartz f₂

Angular Correction Factor CF(ε)

- True irradiance underestimated
- Apply a correction factor
- Depends on
 - Wavelength (PTFE)
 - Average between 250nm and 500nm
 - Range of angles
 - Source geometry

Angular Correction Factor $CF(\varepsilon)$

Source	Range of Angles
Bank of 6 x 180cm lamps	± 0° to 70°
Single 180cm lamp	± 0° to 70°
Ninewells UVA1 Bank 8 x 60cm	± 0° to 35°
Dr Honle Column	± 0° to 60°
Single 60cm lamp	± 0° to 35°
Dr Honle Dermalight Ultra 1	± 0° to 20°
Deuterium Lamp	n/a
QHT lamp	n/a
Dr Honle lamp	n/a

Angular Correction Factor CF(ε)

Source	CF(θ)
Bank of 6 x 180cm lamps	1.07
Single 180cm lamp	1.04
Ninewells UVA1 Bank 8 x 60cm	1.03
Dr Honle Column	1.03
Single 60cm lamp	1.02
Dr Honle Dermalight Ultra 1	1.01
Deuterium Lamp	n/a
QHT lamp	n/a
Dr Honle lamp	n/a

- 250nm to 750nm: PTFE diffuser better represents a cosine response
- Response with PTFE is wavelength dependent
- Angular correction factor, CF(ε),
 included in UV radiometer calibrations
- \Diamond Uncertainty in CF(ϵ) = 0.4%

- 250nm to 750nm: PTFE diffuser better represents a cosine response
- Response with PTFE is wavelength dependent
- Angular correction factor, CF(ε),
 included in UV radiometer calibrations
- \Diamond Uncertainty in CF(ϵ) = 0.4%

- 250nm to 750nm: PTFE diffuser better represents a cosine response
- Response with PTFE is wavelength dependent
- Angular correction factor, CF(ε),
 included in UV radiometer calibrations
- \Diamond Uncertainty in CF(ϵ) = 0.4%

- 250nm to 750nm: PTFE diffuser better represents a cosine response
- Response with PTFE is wavelength dependent
- Angular correction factor, CF(ε),
 included in UV radiometer calibrations
- \diamond Uncertainty in CF(ϵ) = 0.4%

References

- 1. Methods of characterizing the performance of radiometers and photometers. CIE Nº 53. 1982
- 2. Methods of characterizing illuminance meters and luminance meters. Performance, characteristics and specifications. CIE No 69. 1987
- 3. Pye, S. D. and Martin, C. J. A study of the directional response of ultraviolet radiometers: I. Practical evaluation and implications for ultraviolet measurement standards. Phys. Med. Biol. 2000
- 4. Martin, C. J. and Pye, S. D. A study of the directional response of ultraviolet radiometers: II. Implications for ultraviolet phototherapy derived from computer simulations. Phys. Med. Biol. 2000

Acknowledgements

Dr Harry Moseley

Professor James Ferguson

Photobiology Unit, Ninewells Hospital and Medical School, Dundee

National Physical Laboratory

Christine Wall, Teresa Goodman, Laura Crane and Paul Miller