Uncertainty in the measurement of LED luminous intensity: an example of the treatment of integral quantities

Bill Hartree,
National Physical Laboratory
ORM Club AGM, 2006
• Traditional method: Calibrate with a photometer – a broad band detector with a λ filter

$$I_v = \frac{S_{phot}}{R_{phot}} \times CCF$$

Does not work for narrow band sources like LEDs
Luminant intensity of a LED source from spectral intensity data:

\[I_v = \int I(\lambda)V(\lambda) d\lambda \]

• Approximate to:

\[I_v = \sum I(\lambda_i)V(\lambda_i) \Delta\lambda \]

• Calibration of the LED against a tungsten reference lamp of known spectral intensity

NPL
Denote each term in the summation by x_i
Then: $C = \sum x_i$

“First Approximation” uncertainty calculation (chain rule):

$$(U_c)^2 = \sum_{i=1}^{N} u(x_i)^2$$

i.e.

$$(U_c)^2 = \sum_{i=1}^{N} (V_i)^2 (u(I_i))^2$$

(since $u(bx) = b.u(x)$)

- a model with N inputs: $C = f(x_1, x_2, \ldots, x_N)$
Problems with this approximation

- Uncertainty due to series approximation:
 - assess by taking larger wavelength interval?

- Correlation!
Example of uncorrelated uncertainty

- Errors in individual data points uncorrelated
BUT: Problem of correlation: x_i and x_j not independent

Correlation due to instrument offset uncertainty: data points affected in "concerted fashion"
For $C = f(x_1, x_2, \ldots, x_N)$: (N input terms)

$$(U_c)^2 = \sum_{i=1}^{N} \sum_{j=1}^{N} c_i u(x_i) c_j u(x_j) r(x_i, x_j)$$

$r(x, x_j)$ is the correlation coefficient. $0 \leq r(x_i, x_j) \leq 1$

$r(x_i, x_i) = 1$, always. (All uncertainty terms correlated with themselves!)

If $r(x_i, x_j) = 0$ for $i \neq j$ (no correlation), gives the familiar:

$$(U_c)^2 = \sum_{i=1}^{N} (c_i)^2 u(x_i)^2$$
• This gives the overall uncertainty for the LED luminous intensity:

\[(U_c)^2 = \sum_i \sum_j u(I_i)u(I_j)V_i V_j r(I_i, I_j)\]
Dealing with partial correlation

• In optical radiation measurements the \(u(A_i) \) typically include correlated (e.g. offset) and uncorrelated (e.g. noise) contributions. Correlation coefficients cannot readily be calculated.

• Therefore break down each \(u(x_i) \) into “sub-components”, \(u(x_i^k) \) where \(r(x_i^k, x_j^l) \) is either one or zero:

\[
(U_c)^2 = \sum_{i=1}^{N} \sum_{k=1}^{n} \sum_{j=1}^{N} \sum_{l=1}^{n} u(x_i^k)u(x_j^l)C_i^k C_j^l r(x_i^k, x_j^l)
\]

• The output is now a function of \(N \times n \) inputs
GUM definition of correlation

- “If inputs x_i and x_j are correlated, and a change δ_i in x_i is associated with a change δ_j in x_j “:
- $r(x_i, x_j) \approx u(x_i) \delta_j / u(x_j) \delta_i$
- Thus:
 - for noise in signal, $r = 0$ for all i,j
 - for constant wavelength offset $r = 1$ for all i,j

- $U(x_i)$ constant for all i
- δ_i constant for all i
• Most commonly occurring uncertainty components in optical radiation measurement meet this assumption

• Exception: quantities determined by interpolation. These can be treated separately.
\[
(U_c)^2 = \sum_{i=1}^{N} \sum_{k=1}^{n} \sum_{j=1}^{N} \sum_{l=1}^{n} u(I^k_i)u(I^l_j)C^k_i C^l_j r(I^k_i, I^l_j)
\]

Using \(r(I^k_i, I^l_j) = 0 \) for \(k \neq l \):

\[
= \sum_{k \ (corr)} \left(\sum_{i=1}^{N} u(I^k_i)^2 C^k_i \right)^2 + \sum_{k \ (uncorr)} \left(\sum_{i=1}^{N} u(I^k_i)C^k_i \right)^2
\]

(+ partially correlated terms)
Refined measurement model:

\[C \equiv \sum_{i=1}^{N} V_i \{I_i\}_{(meas)} = \sum_{i=1}^{N} V_i \{I_i\}_{(true)} + f_1(x_1^i) + f_2(x_2^i) + \ldots + f_n(x_n^i) \]

- \(x_k^i \) denote the input quantities, e.g. wavelength offset, noise, stray light at \(\lambda_i \). The model now has \(N \times n \) inputs.

- Sensitivity coefficients for our refined model are \(\partial C/\partial x_k^i \)

- In view of the number of inputs it’s advisable to write down the model!
Uncertainty budget for each spectral point

<table>
<thead>
<tr>
<th>symbol</th>
<th>Source</th>
<th>Standard Value</th>
<th>Sensitivity coefficient</th>
<th>Correlated?</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>Calibration of reference</td>
<td>0.0018(rel.)</td>
<td>?</td>
<td>Yes</td>
</tr>
<tr>
<td>x_2</td>
<td>Test lamp repeatability</td>
<td>0.0006(rel.)</td>
<td>?</td>
<td>Yes</td>
</tr>
<tr>
<td>x_3</td>
<td>Reference lamp current setting</td>
<td>.0001(rel.)</td>
<td>?</td>
<td>Yes</td>
</tr>
<tr>
<td>x_4</td>
<td>radius of notional sphere</td>
<td>.0006(rel.)</td>
<td>?</td>
<td>Yes</td>
</tr>
<tr>
<td>x_5</td>
<td>Cap correction</td>
<td>0.0006(rel.)</td>
<td>?</td>
<td>Yes</td>
</tr>
<tr>
<td>x_6</td>
<td>Reference lamp current stability</td>
<td>.00001(rel.)</td>
<td>?</td>
<td>No</td>
</tr>
<tr>
<td>x_7</td>
<td>Ageing of reference</td>
<td>0.0035(rel.)</td>
<td>?</td>
<td>No</td>
</tr>
<tr>
<td>x_8</td>
<td>ratio of reference lamps</td>
<td>0.0035(rel.)</td>
<td>?</td>
<td>No</td>
</tr>
<tr>
<td>x_9</td>
<td>Internal stray light</td>
<td>k = 0.0001</td>
<td>?</td>
<td>Yes</td>
</tr>
<tr>
<td>x_{10}</td>
<td>Wavelength</td>
<td>0.3 nm</td>
<td>?</td>
<td>No</td>
</tr>
</tbody>
</table>

\[
I_{\text{true}}(\lambda_i) = I_{\text{meas}}(\lambda_i) + I(\lambda_i)x_1 + I(\lambda_i)x_2 + 8I(\lambda_i)x_3 + 2I(\lambda_i)x_4 + I(\lambda_i)x_5 + 8I(\lambda_i)x_6 + I(\lambda_i)x_7 + I(\lambda_i)x_8 + \ldots?
\]
Stray light evaluation

\[k = \frac{S_{\text{out}}}{S_{\text{in}}} \]
Uncertainty budget with sensitivity coefficients: Differentiate the measurement equation

symbol	Source	Standard Value, \(u_i(x_i) \)	Sensitivity coefficient, \(C_i \)	Correlated?
\(x_1 \)	Calibration of reference	0.0018 (rel.)	\(I(\lambda) \)	Yes
\(x_2 \)	Test lamp repeatability	0.0006 (rel.)	\(I(\lambda) \)	Yes
\(x_3 \)	Reference lamp current setting	.0001 (rel.)	\(8I(\lambda) \)	Yes
\(x_4 \)	radius of notional sphere	0.006 (rel.)	\(I(\lambda) \)	Yes
\(x_5 \)	Cap correction	0.0006 (rel.)	\(I(\lambda) \)	Yes
\(x_6 \)	Reference lamp current stability	.00001 (rel.)	\(8I(\lambda) \)	No
\(x_7 \)	Ageing of reference	0.0035 (rel.)	\(I(\lambda) \)	No
\(x_8 \)	ratio of reference lamps	0.0035 (rel.)	\(I(\lambda) \)	No
\(x_9 \)	Internal stray light	\(k = 0.0001 \)	*	Yes
\(x_{10} \)	Wavelength	0.3 nm	*	No

Problem comes with \(x_9 \) and \(x_{10} \). A refined model is required.
Wavelength offset and stray light

\[F(x_1, x_2, \ldots, x_{10}) = \frac{S_{LED} + \delta S_{LED, wave} + \delta S_{LED, stray}}{S_R + \delta S_{R, wave} + \delta S_{R, stray}} (I_R + I_R \sum_{i=1}^{8} c_i x_i) \]

(where \(c_k = C_k/I_{LED} \). The \(c_k \) are independent of wavelength!)

Using first order approximations \(1/(1-x) = 1+x \) and \(1+x_1 + x_2 = (1+x_1)(1+x_1) \) gives:

\[
= \frac{I_R S_{LED}}{S_R} \left(1 + \delta \frac{S_{LED, stray}}{S_{LED}} - \delta \frac{S_{R, stray}}{S_R} \right) \times \\
\left(1 + \delta \frac{S_{LED, wave}}{S_{LED}} - \delta \frac{S_{R, wave}}{S_R} \right) \times \sum_{i=1}^{8} (1 + c_i x_i)
\]

This has the form:

\[F = f_9(x_9) f_{10}(x_{10}) \sum_{i=1}^{8} (1 + c_i x_i) \]
Wavelength offset and stray light

- Now F has the form:

\[
F = f_9(x_9) f_{10}(x_{10}) \sum_{i=1}^{8} (1 + c_i x_i)
\]

Making differentiation straightforward, e.g.

\[
\frac{\partial F}{\partial x_9} = \frac{F}{f_9(x_9)} \frac{\partial f_9(x_9)}{\partial x_9}
\]

- Similarly for \(x_{10}\)
What is \(f_{10}(x_{10}) \)?

Now:
\[
\delta S = \frac{\partial S(\lambda)}{\partial \lambda} \cdot x_{10}
\]

Thus:
\[
f_{10}(x_{10}) = \frac{\partial S_{\text{LED}}(\lambda)}{\partial \lambda} \cdot \frac{x_{10}}{S_{\text{LED}}} - \frac{\partial S_R(\lambda)}{\partial \lambda} \cdot \frac{x_{10}}{S_R}
\]

Differentiate:
\[
\frac{\partial f_{10}}{\partial x_{10}} = I_{\text{LED}} \left\{ \frac{1}{S_{\text{LED}}} \frac{\partial S_{\text{LED}}}{\partial \lambda} - \frac{1}{S_R} \frac{\partial S_R}{\partial \lambda} \right\}
\]
\[
= I_{\text{LED}} \frac{S_R}{S_{\text{LED}}} \frac{\partial}{\partial \lambda} \left\{ \frac{S_{\text{LED}}}{S_R} \right\}
\]

Difference Approx’n:
\[
\approx I_{\text{LED}} \frac{S_R}{S_{\text{LED}}} \frac{1}{\lambda_i - \lambda_{i-1}} \left\{ \left[\frac{S_{\text{LED}}}{S_R} \right]_i - \left[\frac{S_{\text{LED}}}{S_R} \right]_{i-1} \right\}
\]
Similarly for stray light, \(f_9(x_9) \):

\[
\frac{\partial F}{\partial x_9} = I_{LED}(\lambda_0) \left\{ \frac{\int_{\text{total range of spectrograph}} S_{LED}(\lambda)d\lambda}{S_{LED}(\lambda_0).\Delta\lambda} - \frac{\int_{\text{total range of spectrograph}} S_{R}(\lambda)d\lambda}{S_{R}(\lambda_0).\Delta\lambda} \right\}
\]

(See, e.g. Kostkowski, "Reliable Spectroradiometry")

To calculate this, we can approximate integrals to summations: then use a spreadsheet to calculate!

These examples show that it is necessary to write down the relevant measurement equation to determine the sensitivity coefficients
The expression for uncertainty in I_v

\[
(U_c)^2 = \sum_{k=1}^{5} (u(x_k)c_k)^2 \left(\sum_{i=1}^{N} (I_{LED})_i V_i \right)^2 + \left(\sum_{i=1}^{N} (u(x_9^i))(C_i^9 V_i) \right)^2 \\
+ \sum_{k=6}^{8} (u(x_k)c_k)^2 \left(\sum_{i=1}^{N} (I_{LED})_i^2 (V_i) \right)^2 + \sum_{i=1}^{N} (u(x_{10}^i))^2 (C_i^{10} V_i)^2
\]

- Use a spreadsheet to perform summations.
Uncertainty Budget with Sensitivity Coefficients: Differentiate the Measurement Equation

<table>
<thead>
<tr>
<th>symbol</th>
<th>Source</th>
<th>Standard Value, $u_i(x_i)$</th>
<th>$c_k = C_k/I_{LED}$</th>
<th>Correlated?</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>Calibration of reference</td>
<td>0.0018 (rel.)</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>x_2</td>
<td>Test lamp repeatability</td>
<td>0.0006 (rel.)</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>x_3</td>
<td>Reference lamp current setting</td>
<td>0.0001 (rel.)</td>
<td>8</td>
<td>Yes</td>
</tr>
<tr>
<td>x_4</td>
<td>radius of notional sphere</td>
<td>0.0006 (rel.)</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>x_5</td>
<td>Cap correction</td>
<td>0.0006 (rel.)</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>x_6</td>
<td>Reference lamp current stability</td>
<td>0.00001 (rel.)</td>
<td>8</td>
<td>No</td>
</tr>
<tr>
<td>x_7</td>
<td>Ageing of reference</td>
<td>0.0035 (rel.)</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>x_8</td>
<td>ratio of reference lamps</td>
<td>0.0035 (rel.)</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>x_9</td>
<td>Internal stray light</td>
<td>k = 0.0001</td>
<td>*</td>
<td>Yes</td>
</tr>
<tr>
<td>x_{10}</td>
<td>Wavelength</td>
<td>0.3 nm</td>
<td>*</td>
<td>No</td>
</tr>
</tbody>
</table>
Implementation of spreadsheet calculation

Assume green LED, reference tungsten lamp at 2800K, responsivity of spectrometer maximum at 500 nm, falling off slowly to longer and shorter wavelengths.
Table 2.2(b): Illustration of calculation of sensitivity coefficients for wavelength uncertainty term in the determination of LED illuminance

<table>
<thead>
<tr>
<th>SA</th>
<th>SB</th>
<th>SC</th>
<th>SD</th>
<th>SE</th>
<th>SF</th>
<th>SG</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>I(LED)</td>
<td>S(LED)</td>
<td>S(LED) * δλ</td>
<td>S(standard)</td>
<td>S(standard) * δλ</td>
<td>Sensitivity Coefficient</td>
</tr>
<tr>
<td>390</td>
<td>0.1516256</td>
<td>1.516256292</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>0.1869307</td>
<td>1.869306794</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>490</td>
<td>0.7393461</td>
<td>7.393461111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>1.64E-07</td>
<td>1.63738E-07</td>
<td>0.8245162</td>
<td>8.245162003</td>
<td>11.18827</td>
<td></td>
</tr>
<tr>
<td>501</td>
<td>5.57E-07</td>
<td>5.57389E-07</td>
<td>0.8332367</td>
<td>0.833236695</td>
<td>11.1876</td>
<td></td>
</tr>
<tr>
<td>502</td>
<td>1.8E-06</td>
<td>1.80489E-06</td>
<td>0.8419923</td>
<td>0.841992338</td>
<td>11.18609</td>
<td></td>
</tr>
<tr>
<td>503</td>
<td>5.56E-06</td>
<td>5.55936E-06</td>
<td>0.8507827</td>
<td>0.850782653</td>
<td>11.18147</td>
<td></td>
</tr>
<tr>
<td>504</td>
<td>1.63E-05</td>
<td>1.62886E-05</td>
<td>0.8596072</td>
<td>0.859607158</td>
<td>11.18147</td>
<td></td>
</tr>
<tr>
<td>505</td>
<td>4.54E-05</td>
<td>4.53965E-05</td>
<td>0.8684654</td>
<td>0.868465368</td>
<td>11.13215</td>
<td></td>
</tr>
</tbody>
</table>

Intervening wavelengths omitted for conciseness

λ	I(LED)	S(LED)	S(LED) * δλ	S(standard)	S(standard) * δλ	Sensitivity Coefficient
520	0.535261	0.534619	0.534619115	1.0050413	1.005041298	-569.273
521	0.67032	0.669433	0.669433213	1.0143697	1.014369688	-709.053
522	0.798516	0.797357	0.797356773	1.023723	1.023722969	-838.959
523	0.904837	0.903401	0.903401441	1.0331006	1.033100595	-943.411
524	0.97531	0.973625	0.973624577	1.042502	1.042502014	-1008.48

Intervening wavelengths omitted for conciseness

λ	I(LED)	S(LED)	S(LED) * δλ	S(standard)	S(standard) * δλ	Sensitivity Coefficient
549	5.57E-07	5.53E-07	5.5375E-07	1.2836148	1.283614841	11.26899
550	1.64E-07	1.63E-07	1.6251E-07	1.2934347	1.293434705	11.2727
560	1.3919851	13.91985126				
570	1.4907562	14.90756204				
580	1.5891501	15.89150073				

Intervening wavelengths omitted for conciseness

λ	I(LED)	S(LED)	S(LED) * δλ	S(standard)	S(standard) * δλ	Sensitivity Coefficient
980	1.3582387	13.58238745				
990	1.2333534	12.33353381				
1000	1.1045429	11.04542919				

sum 11.20998 11.18829099 1089.936768
Table 2.2(a): Edited version of the main spreadsheet for the calculation of uncertainty in luminous intensity

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>λ</td>
<td>I(LED)</td>
<td>I(standard)</td>
<td>R(spectrometer)</td>
<td>S(LED)</td>
<td>S(standard)</td>
<td>v(λ)</td>
<td>v(λ) x (LED)</td>
<td>stray light sensitivity coefficient</td>
<td>stray light sensitivity coefficient</td>
<td>x k x v(λ)</td>
<td>previous col. uncert.</td>
<td>previous stray light sensitivity coefficient</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>500</td>
<td>1.6374E-07</td>
<td>1.000000</td>
<td>1.6374E-07</td>
<td>0.8245162</td>
<td>0.8245162</td>
<td>0.323</td>
<td>5.2887E-08</td>
<td>2.7971E-15</td>
<td>11.1862</td>
<td>5.9172E-11</td>
<td>3.502E-21</td>
<td>0.8245162</td>
<td>1.6374E-07</td>
</tr>
<tr>
<td>501</td>
<td>5.5739E-07</td>
<td>1.000000</td>
<td>5.5739E-07</td>
<td>0.8332367</td>
<td>0.3384021</td>
<td>1.8862E-07</td>
<td>3.5578E-14</td>
<td>11.1875</td>
<td>2.1102E-10</td>
<td>4.453E-20</td>
<td>0.8332367</td>
<td>5.5739E-07</td>
<td></td>
</tr>
<tr>
<td>502</td>
<td>1.8049E-06</td>
<td>0.84200244</td>
<td>1.8049E-06</td>
<td>0.84199234</td>
<td>0.3546858</td>
<td>6.4018E-07</td>
<td>4.0983E-13</td>
<td>11.1860</td>
<td>7.1611E-10</td>
<td>5.128E-19</td>
<td>0.84199234</td>
<td>1.8049E-06</td>
<td></td>
</tr>
</tbody>
</table>

Intervening wavelengths omitted for conciseness

523	0.90483742	1.03474273	0.99841	0.90340144	1.03310059	0.7619694	0.68945842	0.47535292	-943.41	-0.0650443	0.0042307	0.022607	0.000511
524	0.97530991	1.04430658	0.99827	0.97362459	1.04250201	0.7778368	0.75863194	0.57552242	-1008.4	-0.0769065	0.0058532	0.014493	0.000210
525	1.000000	1.05390274	0.99813	0.998125	1.05192667	0.7932	0.7932	0.62916624	-1024.9	-0.081297	0.0066092	0.003742	1.4007E-05
526	0.97530991	1.06353066	0.99797	0.97333198	1.06134702	0.8081104	0.78815808	0.62119316	-990.34	-0.0780549	0.0060925	-0.008200	6.724E-05
527	0.90483742	1.07319056	0.99781	0.90283654	1.0708435	0.8224962	0.74422534	0.55387136	-909.75	-0.0677065	0.0045841	-0.019574	0.000383

Intervening wavelengths omitted for conciseness

548	1.8049E-06	1.28266957	0.99309	1.7924E-06	1.27380376	0.9903128	1.7874E-06	3.1949E-12	11.264	2.0135E-09	4.054E-18	-1.129E-06	1.2740E-12
550	1.6374E-07	1.30320877	0.9925	1.6251E-07	1.2934347	0.9949501	1.6291E-07	2.654E-14	11.272	1.8364E-10	3.372E-20	-1.188E-07	1.411E-14

sum 8.82492848 | 4.97004622 | -0.6385635 | 0.0367782 | -0.0748374 | 0.011501 |

sum of squares 4.97004622 | 0.0367782 | 0.011501 |

square of sum 77.8793627 | 0.4077633 | 0.005600 |

"correlated spectrally invariant" terms: 0.00039

"uncorrelated spectrally invariant" terms: 0.00012

For integrated quantity:

Total absolute uncertainty squared: 0.4197

Total absolute uncertainty: 0.6479

Relative uncertainty: 0.07342 %
The expression for uncertainty in I_v

\[
(U_c)^2 = \sum_{k=1}^{5} (u(x_k)c_k)^2 \left(\sum_{i=1}^{N} (I_{LED})_i V_i \right)^2 + \left(\sum_{i=1}^{N} (u(x_9))(C_i^9 V_i) \right)^2 \\
+ \sum_{k=6}^{8} (u(x_k)c_k)^2 \left(\sum_{i=1}^{N} (I_{LED})_i^2 (V_i) \right)^2 + \sum_{i=1}^{N} (u(x_{10}))^2 (C_i^{10} V_i)^2
\]

- Use a spreadsheet to perform summations.
Prediction of uncertainty as a function of stray light parameter

Variation of overall relative uncertainty with value of stray light parameter, k

![Graph showing the variation of overall relative uncertainty with value of stray light parameter, k. The x-axis represents k values ranging from 1.0×10^{-8} to 1.0×10^{-4}, and the y-axis represents uncertainty percentage ranging from 0% to 8%. The graph shows an increasing trend in uncertainty as k increases.](image-url)