SM10: Characterising Micro- and Nano-Scale Interfaces in Advanced Composites

Polymers: Multiscale Properties

28 June 2007

Aims and Rationale

The project aims to develop quantitative methods for characterising interfacial properties dispersed and continuous filled polymeric materials, such as continuous and discontinuous fibre-reinforced polymers and nanocomposites.

Nanocomposites are a new emerging class of materials, with a predicted market of \$1 billion by 2010, with claimed significant performance advantages over traditional materials

Specific Objectives

- ◆ Develop methods to enable micro-scale strain mapping, stress transfer, adhesion strength and fracture toughness measurements at the interface between filler and matrix for continuous, discontinuous and nano-filled systems.
- ◆ Development of methodologies for using new physical/chemical measurement techniques (i.e. nanoindentation, nano-mechanical tester, scanning probe measurements (AFM, SECM), Raman) to measure the above properties.

3

Specific Objectives

- ◆ Develop capability to measure the properties of interphases in fibre-reinforced polymeric systems including surface coatings (i.e. fibre sizing) for optimising adhesion between the reinforcement and matrix.
- ◆ Evaluate predictive models for use with FEA to determine accuracy and applicability to continuous and dispersed filled systems.
- ◆ Demonstrate the use of the techniques developed within the project through the use of case studies on commercial materials.

National Physical Laboratory

Deliverables

- ◆ Critique of test methods and predictive analysis for characterising interfacial properties in filled systems (NPL Report) completed.
- ◆ Case studies (micro- to nano-scale) on the application of interfacial characterisation methods to filled systems (scientific paper).
- ◆ Evaluation of predictive model(s) for characterising interfacial and interphase properties in filled systems (scientific paper).

5

Work Programme

D2: Interfacial Characterisation Methods

- Develop and evaluate new measurement techniques identified in D1 (review) for characterising interfacial properties
- ◆ Case studies based on different reinforced systems ranging from micro- to nano-scale to assess techniques in terms of data generated, sensitivity and degree of resolution

D3: Predictive Models

- ◆ Evaluate model(s) for predicting interfacial properties in dispersed and continuous filled polymeric materials
- ◆ Predictive analysis will be compared with the results from the case studies to be carried out in D2 - models to include filler/matrix adhesion and dispersion for nanocomposites, stress transfer and interfacial failure criteria

6

Case Study 1: GRP Pultruded Rods

- **♦** Fibre products: E-glass and ECR glass
- ◆ Resin: Vinylester
- Surface treatments: Organosilane
- Properties:
 - Flexure strength/stiffness
 - Glass transition temperature
 - Environmental durability/permeation
 - Alkaline solution/elevated temperature
 - > Combinatorial analysis
- Suppliers:
 - Fibreforce Composites Ltd
 - Saint-Gobain Vetrotex

GRP Pultruded Rods

- **♦** Fibre Volume Fraction (V_f)
 - **❖** Well bonded: 56.2 ± 0.7
 - **❖** Poorly bonded: 55.8 ± 0.8
- **♦** Glass Transition Temperature (T_q)
 - ❖ Well bonded: 118.2 °C
 - **❖** Poorly bonded: 122.2 °C

GRP Pultruded Rods – Flexure Properties

Iviateriai	Moisture Content	Flexural Modulus	Flexural Strength
	(%)	(GPa)	(MPa)
Dried at 50 °C			
Well Bonded	0.00	33.8 ± 0.8	853 ± 39
Poorly Bonded	0.00	30.1 ± 1.1	371 ± 56
1 Month			
Well Bonded	0.16 ± 0.07	36.0 ± 1.1	871 ± 61
Poorly Bonded	0.27 ± 0.15	29.2 ± 0.8	281 ± 6
3 Months			
Well Bonded	0.27 ± 0.04	36.1 ± 1.4	866 ± 52
Poorly Bonded	0.83 ± 0.22	28.3 ± 1.9	298 ± 31

Maistura Contant | Flavural Modulus | Flavural Strongth

- ♦ Flexural stiffness and strength reduced due to poor fibre/matrix interfacial strength
- Poorly bonded systems tend to absorb higher levels of moisture

Case Study 2: Glass Flakes

- ◆ Flake products: REFG302, REFG101 and REF600 or REF160N
- **♦** Resin: Polypropylene
- **♦** Surface treatments: None, aminosilane and titanate
- **♦** Mechanical properties:
 - Hardness
 - Impact (fracture toughness)
 - Flexure strength/stiffness
 - Thermal conductivity/thermal expansion
 - Permeation
- **♦** Supplier: NGF Europe

Glass-Flake/Polypropylene – Physical Properties

Material	Density	Volume Fraction	Shore Hardness
	(kg/m^3)	(%)	D
Polypropylene	905 ± 1	N/A	21.9 ± 0.1
Untreated Flake	$1,126 \pm 1$	13.3 ± 0.1	22.0 ± 0.1
<u>Titanate</u>			
0.09%	$1,115 \pm 1$	12.7 ± 0.1	21.9 ± 0.1
0.42%	$1,121 \pm 2$	13.1 ± 0.1	22.0 ± 0.1
Aminosilane			
0.05%	$1,129 \pm 1$	13.5 ± 0.1	22.0 ± 0.1
0.28%	$1,117 \pm 1$	12.7 ± 0.1	22.0 ± 0.1

- ♦ Fibre volume fraction and density almost identical for the five composite materials
- ♦ Surface hardness independent of surface treatment and presence of glass flakes

Blass-Flake/PP (Titanate 0.09%) – Plan View

Blass-Flake/PP (Titanate 0.42%) – Plan View

Blass-Flake/PP (Untreated) – Side View

Glass-Flake/PP – Various Surface Treatments

Untreated flakes

0.09% Titanate

0.05% Aminosilane

0.42% Titanate

0.28% Aminosilane

200X magnification cross sectional photographs - normal to the thickness of the glass flakes

Glass Flake/Polypropylene

Dimensions taken from photographs at 100X taken normal to the thickness of the flakes

Known issues

- Exact orientation of flakes difficult to ascertain
- Difficult to attain high contrast plan view photographs due to reflective nature of glass

		95% Certainty		95% Certainty
	Average Min	in average min	Average Max	in average max
	Thickness (µm)	thickness	Length (µm)	length
Untreated flakes	7.9	1.0	84	15.0
0.05% Aminosilane	8.0	0.8	70	10.3
0.28% Aminosilane	6.3	0.9	63	12.0
0.09% Titanate	6.8	0.8	76	14.9
0.42% Titanate	8.1	1.9	76	20.5

Glass-Flake/Polypropylene – Thermal Properties

Material	$\mathbf{T_g}$	T_{melt}	Crystallinity
	(°C)	(°C)	(J/g)
Polypropylene	11.0	153.2	116.7
Untreated Flake	11.7	157.2	82.07
<u>Titanate</u>			
0.09%	12.3	152.7	80.20
0.42%	12.1	152.9	77.83
Aminosilane			
0.05%	11.3	153.5	69.94
0.28%	12.1	153.5	75.59

- \blacklozenge T_{g} and T_{melt} independent of surface treatment and presence of fibres
- **◆** Crystallinity reduced with introduction of glass flakes
- ◆ Crystallinity decreases slightly with increasing filler/matrix interfacial strength

Glass-Flake/Polypropylene – Storage Modulus

Glass-Flake/Polypropylene – Loss Modulus

19

Glass-Flake/Polypropylene - Flexure Modulus (GPa)

Material	Longitudinal	Transverse
Polypropylene	1.91 ± 0.05	1.94 ± 0.07
Untreated Flake	3.39 ± 0.09	3.21 ± 0.06
<u>Titanate</u>		
0.09%	3.28 ± 0.09	3.27 ± 0.16
0.42%	3.04 ± 0.22	3.05 ± 0.11
Aminosilane		
0.05%	4.34 ± 0.17	4.13 ± 0.09
0.28%	4.30 ± 0.03	4.05 ± 0.16

- **♦** Flexural stiffness increases with increasing filler/matrix interfacial strength
- ◆ Poorly bonded systems tend to exhibit lower flexure stiffness

Glass-Flake/Polypropylene - Flexure Strength (MPa)

Longitudinal	Transverse
42.36 ± 0.28	44.84 ± 0.13
44.11 ± 0.20	43.32 ± 0.45
44.47 ± 3.73	43.46 ± 0.59
41.57 ± 0.62	40.51 ± 0.62
55.31 ± 3.02	53.50 ± 0.31
56.12 ± 1.03	53.91 ± 0.57
	42.36 ± 0.28 44.11 ± 0.20 44.47 ± 3.73 41.57 ± 0.62 55.31 ± 3.02

interfacial strength ◆ Poorly bonded systems tend to exhibit lower flexure

◆ Flexural strength increases with increasing filler/matrix

strength

Glass-Flake/Polypropylene - Flexure Strain (%)

Material	Longitudinal	Transverse
Polypropylene	5.16 ± 0.04	5.16 ± 0.14
Untreated Flake	3.68 ± 0.02	3.82 ± 0.08
<u>Titanate</u>		
0.09%	3.73 ± 0.07	3.91 ± 0.13
0.42%	3.87 ± 0.08	4.03 ± 0.15
Aminosilane		
0.05%	3.02 ± 0.03	3.27 ± 0.08
0.28%	3.17 ± 0.07	3.43 ± 0.14

- **♦** Strain-to-failure decreases with increasing filler/matrix interfacial strength
- Well bonded systems tend to be less ductile

Glass-Flake/Polypropylene – Elastic Properties Calculated

Material	Tension Test	Plate Twist Test	Predicted
Elastic Modulus (GPa)			
Polypropylene	1.89 ± 0.04	-	-
Glass Flake/PP (untreated)	4.20 ± 0.09	-	5.33
Glass Flake/PP (0.05% aminosilane)	4.77 ± 0.28	-	5.39
Poisson's Ratio			
Polypropylene	0.39 ± 0.02	-	-
Glass Flake/PP (untreated)	0.32 ± 0.02	-	0.45
Glass Flake/PP (0.05% aminosilane)	0.28 ± 0.01	-	0.45
Shear Modulus (GPa)			
Polypropylene	0.68*	0.57	-
Glass Flake/PP (untreated)	1.59*	1.66	1.84

1.86*

1.90

Glass Flake/PP (0.05% aminosilane)

1.86

Blass-Flake/Polypropylene

Modulus (0.05-0.15%) - Temperature

Blass-Flake/Polypropylene - CTE

Glass-Flake/Polypropylene – Residual Strain

Material	Residual Strain (%)
Polypropylene	0.31
Untreated	0.35
<u>Titanate</u>	
0.09%	0.32
0.42%	0.25
Aminosilane	
0.05%	0.11
0.28%	0.14

Glass-Flake/Polypropylene - Impact Resistance

- **◆ Total weight (g): 2069.1**
 - ❖ Carrier weight (1721.1 g) + 20 mm diameter indenter (348 g) - calibrated with 12.49 kg weight
- **◆** Drop height (m): 0.25
- **♦** Impact velocity (m/s): 2.22
- **◆** Drop energy (J): 5.11
- ◆ Load cell: 2 kN

Glass-Flake/Polypropylene - Impact Resistance

Material	Peak Energy	End Energy	Peak Force (N)
	(Joules)	(Joules)	
Untreated Flake	0.73 ± 0.15	3.08 ± 0.29	265 ± 35
<u>Titanate</u>			
0.09%	0.81 ± 0.11	3.06 ± 0.31	304 ± 11
0.42%	0.75 ± 0.10	2.86 ± 0.44	257 ± 58
Aminosilane			
0.05%	0.74 ± 0.15	2.52 ± 0.53	296 ± 24
0.28%	0.60 ± 0.07	2.51 ± 0.13	263 ± 22

- ◆ Absorbed energy decreases with increasing filler/matrix interfacial strength
- ♦ Poorly bonded systems exhibit higher impact resistance

Glass-Flake/Polypropylene - Impact Resistance

Polypropylene

0.28% Aminosilane

Untreated flakes

0.09% Titanate

0.05% Aminosilane

0.42% Titanate

Case Study 3: Nanocomposite

- **◆ PNCs: Nanoparticle reinforced PMMA composites**
- **◆** Weight additional levels (wt %)
- **♦** Mechanical properties:
 - Fracture toughness (impact resistance)
 - Tensile properties
 - Creep rupture (environmental effects)
 - > Solvent craze resistance
 - Permeation
- **♦** Supplier: Lucite International UK Ltd

Any Questions?

Nebsite

http://www.npl.co.uk/materials/programmes/characterisation

Jser Name: multiscale

Password: iagmember

Force Modulation AFM (FM-AFM)

The contact force on sample is modulated

The cantilever deflects as the surface resists oscillation

High elastic modulus samples cause greater deflection of cantilever

Independence to Topography

Large amplitude = High surface elastic modulus

Small amplitude = Low surface elastic modulus

2µm Scan in FM-AFM of Glass flake reinforced PP with 0.09% Titanate coating

2μm FM-AFM scan of GFRP with poor and good interfacial

Clear band of different tip-surface interaction for the poor interface sample

Phase Image of interface region for poorly bonded sample

5,2 and 1µm Phase Images of a portion of a unidirectional GFRP specimen with poor interfacial bonding

Analysis of phase diagram in locating the interphase

- •Region of 50 to 300nm found with different phase & FM response
- Key issues need to be addressed including
 - Calibration methods
 - Tip validation
 - Reproducibility
 - Creep behaviour
 - Surface preparation
 - •Relating FM and Phase to elastic modulus values

Summary

- Clear differences between fibre and matrix shown by
- Currently unable to find an interphase for glass flake samples
- Differences between good and poor bonding visualised

Future work

With specific attention taken to the GFRP with good and poor bonding

- Calibration methods
- Depth of tip penetration (to find creep within the matrix)
- Non contact phase imaging
- Intermittent contact methods
- Nano indentation using diamond AFM tip

6