

SM06: Knowledge based design of plastics

Louise Crocker and Greg Dean

Polymer: Multiscale Properties IAG Meeting September 2006

Aims

- Develop and code a validated model for predicting the long term performance of plastics used in load bearing applications
- Provide guidance / measurement protocols on the use of the model
 - ◆ Predictive modelling is an underpinning technology for materials design
 - ◆ Significant technical improvement to industry current models are inaccurate for polymers
 - ◆ Enables users to shorten design cycles, reduce over-engineered products and increase reliability

Deliverables

- ◆ D1: Develop a model for long term deformation behaviour of plastics under multi-axial stress states, coded into an FE package to be described in an NPL open report
- ◆ D2: Evaluation of the model and coding for arbitrary stress/strain histories and a case study demonstrating the model in use, to be presented as a scientific paper submitted to a journal

Gantt Chart – Project Plan

Plan

- Stage 1: Agree Materials and Case Studies
- Stage 2: Multi-axial creep data
- Stage 3: Multi-axial model
- Stage 4: Software coded and tested
- Stage 5: Validation via case study
- Stage 1: planned at start of project, and reviewed in following slides
- Stage 1 review will be held this month
- Stage 2 will be planned this month

Objectives of Stage 1 (April – August 2006)

- □ Define and agree modelling approach to be developed
 - Greg to discuss next
 - Discussion note is available on request
- ☐ Agree materials to be used in the remainder of the project
 - POM and PBT
 - Currently testing Dupont materials Delrin and Crastin
 - Initial tests on Delrin will be discussed by Greg
 - Planning to test Ticona materials as well

Objectives of Stage 1 (April – August 2006)

- ☐ Agree format of the case study
 - Evaluation of modelling and implementation
 - Step loading
 - Constant deformation rate (putting strain on in small steps)
 - Tensile stress relaxation
 - For all above tests we can obtain accurate data from uniaxial tensile creep tests
 - Case study
 - Predict creep of a bend specimen
 - Stresses vary with position
 - Stresses and strains redistribute with time
 - We can measure specimen deformation and compare to predictions

Objectives of Stage 1 (April – August 2006)

- □ Agree data acquisition requirements
 - Model has to handle non-linear behaviour and multiaxial stress states
 - Minimum data requirements are
 - Tensile creep tests at different stresses
 - Compressive creep tests at one stress
 - Test procedure is being written
 - Shear creep tests will be used to evaluate the model
- ☐ Stage 1 has been completed

Modelling time-dependent behaviour

- Design for long-term performance
- Develop a model for deformation under a simple load history – constant stress
 - Non-linear behaviour
 - Multiaxial stress states
- Use a finite element analysis to calculate stresses and strains under an arbitrary load history

Dynamic mechanical properties of Du Pont Acetal copolymer - DELRIN

Linear viscoelastic behaviour

Time-varying strain under constant stress

$$\varepsilon(t) = \frac{\sigma_0}{E_0} + \frac{\sigma_0}{E_1} \left(1 - \exp(-\frac{t}{\tau_1}) \right) + \frac{\sigma_0}{E_2} \left(1 - \exp(-\frac{t}{\tau_2}) \right) + \dots$$

$$\tau_i = \frac{\eta_i}{E_i}$$

- τ_1 is the retardation time for the ith process
- Definition of a creep compliance function

$$D(t) = \frac{\varepsilon(t)}{\sigma_0} = D_0 + D_1 \left(1 - \exp{-\frac{t}{\tau_1}} \right) + \dots$$

Modelling creep under tension in plastics

A creep compliance function

$$D(t) = \frac{\varepsilon(t)}{\sigma_0} = D_0 + \Delta D \left(1 - \exp{-\left(\frac{t}{\tau}\right)^n} \right)$$

• τ is a mean retardation time

Modelling non-linear creep in tension

• The retardation time parameter τ decreases with increasing stress

Variation of retardation time with stress

Extrapolation to long times

• D_0 , ΔD and n are assumed to be independent of stress

Creep under other stress states - compression

Extension of the model to multiaxial stresses

Retardation times are related to an effective stress

$$\tau = A \exp - \alpha \bar{\sigma}$$

and

$$\bar{\sigma} = \mu \sigma_e + (1 - \mu) \sigma_k$$

where

 σ_{e} is the effective shear component of stress

 σ_k is the hydrostatic component of stress

 μ is a material parameter

Comparison of measured and calculated creep under shear

From compression and tension data, $\mu = 0.87$

Next steps

- Further tests on POM to confirm model
- Creep tests on PBT
 - explore suitability of creep model
- Tensile creep tests on injection moulded POM
 - explore influence of processing method
- Establish how to implement model in a finite element system
 - solve problems where stress is changing with time

