

SE02: Improved Design and Manufacture of Polymeric Coatings Through the Provision of Dynamic Nano-indentation Measurement Methods

Lead Scientist: Nigel Jennett

Project Manager: Lesley Henderson

Characterisation Programme (2006-2009)

Presentation outline

- Introductions to:
 - SE02 science team
 - The project motivations
 - Instrumented indentation
- SE02 Project outline
- Industrial involvement

SE02 Science Team

Surfaces, Coatings and Nano-Mechanics Group

- Nigel Jennett (Lead Scientist)
- Miguel Monclus
- John Nunn
- Tony Maxwell (now in Polymers group)

Modelling / Finite Element Analysis

- Louise Crocker

Motivation

- Requirement for local polymer properties in part design:-
 - bearings, gears, cams, press-fit parts, composites (matrix and interfaces)
- Requirement for properties of small volumes
 - e.g. mico-mouldings, packaging, coatings.
- Production control and QA via sensitivity of surface to production parameters.
 - Thermal history affects surface properties and can be detected by indentation.

Nanoindentation has the resolution but polymers have time/rate dependent properties.

⇒ Dynamic measurement methods are required!

Scientific Objectives

- Validate indentatin protocols for measuring loss and storage modulus and time constants of visco-elastic materials and feed into:
 - ISO standardisation (new work item)
 - Development of 1GPa certified reference material
- Compare methods to measure polymer properties as a function of frequency and temperature.
- Develop ultra-rapid indentation and creep-relaxation measurement methods for characterisation of viscoelastic materials.

Typical material responses

Data courtesy of VAMAS TWA22

Indentation Contact Mechanics

For near perfectly plastic materials e.g. metals

 $A_c \approx residual area$

 \Rightarrow H_{IT} α HV

Contact mechanics after Hertz and Sned

- As with traditional Hardness, pile-up / sink-in is not accounted for
- †See I.N.Sneddon, Int. J. Engng. Sci., 3 (1965) pp. 47-57

Nano-indentation applications

Ideal for measuring elastic and plastic properties of small volumes of materials, e.g. thin films and micro/nano-structures.

- Coatings and Surface Engineering sectors / users, e.g. Electronics, optics, automotive, aerospace, biomedical, pharmaceutical sectors...
- Local/surface properties of biological or polymeric materials (very soft, low force indentations)
- Micro-mouldings, nano-composites and ultra hard coatings where indentation depths are very small.
- Nano-mechanical testing of nano-engineered structures and materials
- Designers needing input data for models

Scanning Indentation Mechanical Microprobe SIMM: Human Tooth

Typical scan, 200 by 100, takes ~30 hours (20,000 indents!)

Maximum load 5 N, load resolution 2 mN, depth resolution 20 nm

Creep affects H and E

[Chudoba and Richter Surf. Coat. & Tech. <u>148/2-3</u> (2001) 191-198]

Wait until Creep rate drops (or unload quickly)

Diagram from: Chudoba and Richter. Surf. Coat & Tech. 148/2-3 (2001) 191-198

Schematic Indentation cycle

Polymers: Dynamic Indentation "Continuous Stiffness"

Displacement, h

- Hardness and modulus of visco-elastic materials
- Superimpose a.c. signal on d.c. force ramp
- Phase shift and amplitude related to contact stiffness

Spring and dashpot model

$$\sigma = (E' + iE'')\varepsilon$$

$$\tan \delta(\omega) = \frac{E''(\omega)}{E'(\omega)}$$

E'= Storage modulus

E"= Loss modulus

 δ = Phase shift

Tan δ = Damping coefficient

Adhesive cure control – Car Timing Belts

Nanoindentation modulus measurement of Interface properties used to improve cure cycle and reduce adhesion failure.

High-temperature Testing: 0.1 mN to 20 N

MicroMaterials NanoTest Hot stage – sample temp ≤500°C

Dynamic indentation

NanoTest (Micro Materials Ltd, Wrexham)

- Dynamic nanoindentation
- Repetitive impacts at low force (mN)
- Displacement monitored with time
- Observe fracture & delamination

Test Variables

- Impact energy
- Impact Frequency
- Test probe geometry

Dynamic indentation

NanoTest (Micro Materials Ltd, Wrexham)

- Dynamic nanoindentation
- Repetitive impacts at low force (mN)
- Displacement monitored with time
- Observe fracture & delamination

Test Variables

- Impact energy
- Impact Frequency
- Test probe geometry

Supplementary **Data Acquisition** NanoTest Control Box Interface Supplementary DAQ System © Crown Copyright

Practical Impact Parameters

Standard Set-up

Force 0.1 mN to 16 mN

Distance 5 μm to 20 μm

(I.e. Energy 0.5 nJ to 320 nJ)

Modified Set-up

If larger solenoid used

Force >500 mN

If Capacitor plate separation adjusted

Distance >1mm

(I.e. Energy > 0.5 mJ)

Impact test

5µm conical indenter
Single crystal aluminium

Individual data points...

Position 20k samples.s-1 (up to 500K/s possible)

35 nJ impact energy

Automated determination of contact points

- Initial acceleration
- Velocity In
- Initial contact
- Max penetration
- Velocity Out
- Loss of contact
- Max rebound height
- Secondary contact

FEA of nano-impact testing (ABAQUS Explicit mode)

Indentation of Aluminium single crystal Indenter given mass and initial velocity

FEA of nano-impact testing

Indentation of different materials

- aluminium, nickel and polycarbonate

FEA of nano-impact testing

Indentation of Aluminium single crystal

Force predictions depend on yield stress used

Stage Plans

- Stage 1 (1/4/06 31/3/07)
 - Selection/procurement of materials
 - Calibration and algorithm sensitivity studies
 - Development of dynamic calibration method (NPL Report)
- Stage 2 (1/4/07 31/3/08)
 - Design and test temperature stage
 - Development of ultra-rapid indentation method
 - Frequency, sweep and chirp
 - High rate indentation method (scientific paper)
- Stage 3 (1/4/08 31/3/09)
 - Visco-elastic models
 - Evaluation of temperature stage
 - **❖** High Rate indentation method at elevated temperatures (scientific paper)
 - **❖** Validated protocols/Input to ISO standards

Industrial involvement

- Materials supply
 - Highly reproducible "standard" polymers
 - Industrial components / materials
- Collaboration for characterisation comparisons
 - Property data from other test methods as function of frequency and temperature
- Case studies / feasibility of adoption of method

Deliverables Project Description

- ◆ D1: Validated protocols for room temperature measurement of mechanical properties of polymer surfaces or coatings (NPL Report).
- ◆ D2: Refinement of current methods into intelligent miniaturised tests (scientific paper).
- ◆ D3: Mechanical properties of polymer surfaces or coatings as a function of temperature (scientific paper).

SE02 GANNT chart

