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Adjustable screws to raise or 
lower upper (cold) plate

Loading (pressure) platform

Cold plate

Specimen

Hot plate

Adjustable screws to raise or 
lower upper (cold) plate

Loading (pressure) platform

Cold plate

Specimen

Hot plate



3

Heat transfer coefficient calculation
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Heat transfer coefficient (h) across an interface is the heat flux per unit area 
(q) across an interface from one material of temperature T1 to another 
material of temperature T2:

h = heat transfer coefficient (Wm-2K-1)
q = heat flux at ‘hot’ surface (W.m-2)
T1 = temperature on ‘hot’ side of interface (K)
T2 = temperature on ‘cold’ side of interface (K)
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Heat transfer coefficient

• Heat transfer coefficient is boundary condition for process simulation

• In injection moulding & compression moulding
– Polymer to metal
– Polymer-air-metal (GASM, shrinkage)

• In extrusion & film blowing
– Polymer to fluid (eg air or water)

• Apparatus built to measure heat transfer coefficient at mould/polymer 
interface and mould polymer/air interface in order to investigate the 
significance of different interfaces to commercial processing
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Thermal conductivity calculation
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The thermal conductivity (λ) of a layer can be calculated from the thickness of 
the layer (x) multiplied by the heat flux per unit area (q) across the layer 
divided by the temperature difference between the hotter surface of the layer 
TB and the colder surface of the layer TT :

λ = thermal conductivity of a layer (W/(m.K))
x = thickness of layer (m)
q = heat flux at ‘hot’ surface (W.m-2)
TB = temperature on ‘hot’ side of interface (K)
TT = temperature on ‘cold’ side of interface (K)
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Thermal resistance across interface
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Thermal resistance across interface:
λ = thermal conductivity of a layer (W/(m.K))
x = thickness of layer (m)
h   =      heat transfer coefficient (Wm-2K-1)
R = thermal resistance (m2.K.W-1)
T1 = temperature on ‘hot’ side of interface (K)
T2 = temperature on ‘cold’ side of interface (K)
q = heat flux at ‘hot’ surface (W.m-2)
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Thermal resistance of layer
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Thermal resistance:
λ = thermal conductivity of a layer (W/(m.K))
x = thickness of layer (m)
h   =      heat transfer coefficient (Wm-2K-1)
R = thermal resistance (m2.K.W-1)
TB = temperature on ‘hot’ side of interface (K)
TT = temperature on ‘cold’ side of interface (K)
q = heat flux at ‘hot’ surface (W.m-2)
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Thermal resistance calculation
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For a multi-layer system with heat flow in the through-thickness direction:

Total thermal resistance R (m².K.W-1) = sum of thermal resistances of 
the individual layers rl

Where: hi is heat transfer coefficient at interfaces
xl is thickness of layer
λl is thermal conductivity of layer
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Thermal conductivity of PMMA by HTC
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Thermal conductivity of PS:  
HTC c.f. extrapolated line source data
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Thermal conductivity benchmarking 
of HTC instrument

• Repeatability of heat transfer coefficient apparatus 
calculated as 1.5%

• Line source probe and heat transfer coefficient tests for PS 
show increase in thermal conductivity with temperature and 
consistent values of thermal conductivity within repeatability 
limits



12

Thermal resistance of PMMA 
specimen (2 mm) without and with 
air gaps of varying thickness
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Equivalent thickness of polymer vs. 
thickness of air gap

y = 6.6x + 1.7
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Thermal resistance of air gap vs. 
thickness of air gap
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Comparison of measured HTC 
coefficient across air gap with HTC 
predicted by λ air model
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Comparison of measured HTC 
coefficient across air gap with HTC 
predicted by λ air model
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Thermal resistance of PMMA 
specimen (2 mm) without and with 
air gaps of varying thickness
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Effect of an air gap on HTC 
measurements and repeatability of 
HTC measurement across a
steel/air Interface

• Effect of air gap on thermal resistance quantified:  air gap equivalent to 
polymer of 6.6 x thickness

• Experimental data shows a rapid decrease in heat transfer coefficient 
across the air gap is observed as thickness of the air gap increases.

• Good correlation with heat transfer coefficient values obtained from 
calculations based on the thermal conductivity of air.

• Heat transfer coefficient data could be used to provide more accurate 
modelling data for polymer processing and product design
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Finite element analysis of 80 mm 
diameter HDPE disc

Model used to simulate effect of 0.4 mm air gap on 
‘time to freeze’ of part using HTC value of 100 W/(m2.K) 
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Effect of heat transfer coefficient on tf
of 80 mm disc of 5mm thickness
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Effect of HTC on tf for moulded discs 
of different thicknesses
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Effect of variations in polymer-mould 
HTC on Tf for HDPE discs of different 
thickness

• For all disc thicknesses of 2 mm and greater, the effect of varying the 
heat transfer coefficient on the time to freeze was similar to that observed 
for the 5 mm thick moulded disc.

• For these thicknesses, the simulation of a 0.4 mm air gap, modelled by 
reducing the heat transfer coefficient to 100 W/(m2 K), increased the time to 
freeze by 2.5%.

• For mouldings of 0.5 mm thickness variations in heat transfer coefficient 
had a more significant effect. The introduction of the simulated 0.4 mm air 
gap, modelled by reducing the heat transfer coefficient to 100 W/(m2K), 
resulted in a 11% increase in time to freeze of the HDPE moulded disc.
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Summary

• The need for reliable data for heat transfer coefficients, between the 
mould surface and the polymer or an air gap, is greatest for thin mouldings 
– an area in which there is growing interest.

• Reliable heat transfer data are also likely to result in improved 
predictions of distortion and warpage of mouldings with consequent 
benefits in product performance.

• Significant differences in predictions can be achieved depending on the 
heat transfer coefficient values used.

• Simulation of the injection moulding of thinner plastic parts could be 
improved by reducing the uncertainties in the measurement of heat 
transfer coefficients, leading to improvements in cycle time predictions and 
consequently to productivity.



Thermal Intercomparison in Support of 
Development of ISO 22007 Parts 1 to 4  
Plastics - Determination of thermal conductivity and 
thermal diffusivity 
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Thermal Intercomparison Outline

• Thermal diffusivity and thermal conductivity
• Initial study involved project leaders
• Two grades of PMMA studied: one from Sumitomo 

Chemical (Sumiplex) and the other supplied through 
NPL

• Various measurement techniques used in round robin 
study including hot disk, line source, heat flow meter, 
laser flash, and temperature wave analysis techniques



Standards for
Thermal Properties 

Measurement of Plastics 
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Plastics thermal conductivity 
standards

ISO TC61 SC5 WG8 Thermal Properties

ISO 22007 Plastics –
Determination of thermal conductivity and thermal diffusivity 

ISO/CD 22007-1 Part 1: General principles

ISO/DIS 22007-2 Part 2: Transient plane source hot-disc method
(Gustafsson method) 

ISO/DIS 22007-3 Part 3: Temperature wave analysis method  

ISO/DIS 22007-4 Part 4: Laser flash method 
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Plastics thermal conductivity 
standards

Possible proposal to develop 
Line Source Method for Thermal Conductivity 

as part of ISO 22007 series

Method currently standardized as:
• ASTM D 5930-01, Test Method for Thermal Conductivity of Plastics by Means of

a Transient Line-Source Technique

However this does not make provision for:
• effect of applying pressure to minimize measurement scatter, and
• effect of pressure on thermal conductivity
• inadequate calibration procedure
• over-simple analysis of data

Your support?.   Other methods?
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Plastics thermal conductivity 
standards - intercomparison

Intercomparison of thermal conductivity methods 

Being carried out in support of standardisation activity
Repeatability / reproducibility of methods is suspect
To cover transient methods

- but not excluding steady state methods
Results to help prepare precision statement for 

ISO 22007 series

Led by NPL/Japan

Initial restricted intercomparison results received, 
possibly to be followed by larger participation intercomparison
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Plastics thermal conductivity 
standards - intercomparison

Intercomparison of thermal conductivity methods 

Methods included:

Transient plane source hot-disc method (Hot Disk AB)
Temperature wave analysis method (Tokyo Inst. Tech.)
Laser flash method (NMIJ, DataPoint Labs, NPL, LNE, OMTRI)
Line source probe (DataPoint Labs, NPL, Moldflow, CEAST)
Guarded Hot plate / heat flow meter (OMTRI, DataPoint Labs, )
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Thermal Diffusivity of 
Sumiplex_PMMA

TWA – Temperature wave analysis
HD – Gustaffson Hot Disc probe

LF – Laser flash
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Thermal Conductivity Measurements 
of Sumiplex PMMA

HD – Gustaffson Hot Disc probe
LF – Laser flash (calculated from diffusivity)

HF – Guarded heat flow meter 
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Thermal Conductivity Measurements 
of NPL PMMA (Both Sheet and Pellet)
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Differential scanning 
calorimetry standards

ISO TC61 SC5 WG8 Thermal Properties

ISO 11357 Plastics - Differential scanning calorimetry (DSC)

ISO 11357-1: 1997 Part 1: General principles (being revised)

ISO 11357-2: 1999 Part 2: Determination of glass transition temperature

ISO 11357-3: 1999 Part 3: Determination of temperature and enthalpy of melting 
and crystallization

ISO 11357-4: 2005 Part 4: Determination of specific heat capacity

ISO 11357-5: 1999 Part 5: Determination of characteristic reaction-curve 
temperatures and times, enthalpy of reaction and degree of conversion

ISO 11357-6: 2002 Part 6: Determination of oxidation induction time

ISO 11357-7: 2002 Part 7: Determination of crystallization kinetics
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