

Heat Transfer in Polymers

Angela Dawson, Martin Rides, Crispin Allen

18 April 2007

Heat Transfer in Polymers -Summary

- Introduction
- Heat Transfer Coefficients
- Standards for Thermal Properties Measurement
- Future Work

Why is a better understanding of heat transfer in polymers important?

- polymer processing times are dominated by the cooling phase, particularly in injection moulding
- heat transfer processes are still inadequately understood / measured
- improved heat transfer measurements would lead to more accurate modelling of polymer processing
- could lead to significant improvements in product properties, e.g. reductions in warpage, shrinkage, inadequate melting and thermal degradation, and reduced cycle times

Aims of the work

- To help companies measure and model heat transfer in polymer processing
- To enable measurement of more accurate data and encourage the use of improved models for numerical simulation software
- Leading to:
 - Faster processing due to reduced cycle times
 - Less scrap due to reduced warpage, shrinkage, fewer 'hot spots' and energy savings
 - Right first time design and fewer failures in service

COST REDUCTIONS AND IMPROVED QUALITY

Heat transfer project H1 2005-08

H1: Measurement methods for heat transfer properties data for application to polymers

Objectives:

- Development of the method for the measurement of heat transfer properties across surfaces (particular interest has been expressed in the effect of the solid/air interface)
- Industrial case study to demonstrate the value of reliable heat transfer data
- Support development of **standards** for measurement of thermal properties of plastics, including an intercomparison of thermal conductivity methods that are being proposed for standardisation
- Assessment of uncertainties in heat transfer data and effect on modelling predictions
- Development of a new user-friendly **web-enabled modelling** facility, to facilitate industrial adoption of the above

Measurement of Heat Transfer Coefficients

Standards for Thermal Properties Measurement of Plastics

Plastics thermal conductivity standards

ISO TC61 SC5 WG8 Thermal Properties

ISO 22007 Plastics – Determination of thermal conductivity and thermal diffusivity

ISO/CD 22007-1 Part 1: General principles

ISO/DIS 22007-2 Part 2: Transient plane source hot-disc method (Gustafsson method)

ISO/DIS 22007-3 Part 3: Temperature wave analysis method

ISO/DIS 22007-4 Part 4: Laser flash method

Plastics thermal conductivity standards

Possible proposal to develop Line Source Method for Thermal Conductivity as part of ISO 22007 series

Method currently standardized as:

• ASTM D 5930-01, Test Method for Thermal Conductivity of Plastics by Means of a Transient Line-Source Technique

However this does not make provision for:

- effect of applying pressure to minimize measurement scatter, and
- effect of pressure on thermal conductivity
- inadequate calibration procedure
- over-simple analysis of data

Your support, or otherwise?

Plastics thermal conductivity standards - intercomparison

Intercomparison of thermal conductivity methods

- Being carried out in support of standardisation activity
- Repeatability / reproducibility of methods is suspect
- To cover transient methods
 - but not excluding steady state methods
- Results to help prepare precision statement for ISO 22007 series

Led by NPL/Japan

Initial restricted intercomparison has commenced, to be followed by larger participation intercomparison

Plastics thermal conductivity standards - intercomparison

Intercomparison of thermal conductivity methods

Methods to include at least:

- Transient plane source hot-disc method (Hot Disk AB)
- Temperature wave analysis method (Tokyo Inst. Tech.)
- Laser flash method (NMIJ, DataPoint Labs, NPL, LNE, OMTRI)
- Line source probe (DataPoint Labs, NPL, Moldflow, CEAST)
- Guarded Hot plate / heat flow meter (OMTRI, DataPoint Labs,)
- Other (DSC?)

Your participation in the intercomparison is welcomed

Differential scanning calorimetry standards

ISO TC61 SC5 WG8 Thermal Properties

ISO 11357 Plastics - Differential scanning calorimetry (DSC)

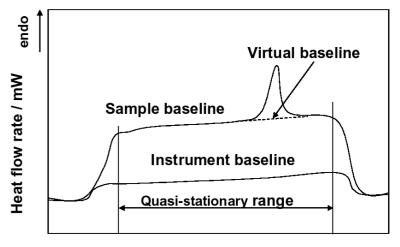
- ◆ ISO 11357-1: 1997 Part 1: General principles (being revised)
- ♦ ISO 11357-2: 1999 Part 2: Determination of glass transition temperature
- ISO 11357-3: 1999 Part 3: Determination of temperature and enthalpy of melting and crystallization
- ♦ ISO 11357-4: 2005 Part 4: Determination of specific heat capacity
- ISO 11357-5: 1999 Part 5: Determination of characteristic reaction-curve temperatures and times, enthalpy of reaction and degree of conversion
- ♦ ISO 11357-6: 2002 Part 6: Determination of oxidation induction time
- ISO 11357-7: 2002 Part 7: Determination of crystallization kinetics

Differential scanning calorimetry standards

ISO 11357 Plastics - Differential scanning calorimetry (DSC)

• ISO 11357-1: 1997 Part 1: General principles (being revised)

Significant dispute over direction of exotherm / endotherm in plots


Currently:

exothermic direction is up

Proposed revision:

The endothermic and /or exothermic direction shall be indicated on the DSC curve. According to the requirements of thermodynamics energy absorbed by a system is counted positive while energy released has a negative sign. Thus the endothermic direction shall preferably point upwards the ordinate and the exothermic direction downwards.

Your views?

Temperature / °C

Further details on standards for measurement of thermal properties of plastics in:

Report on the annual working group meeting ISO TC 61 Plastics / SC5 Physical-chemical properties / WG8 Thermal Analysis Yokohama, Tuesday 19 - Wednesday 20 September 2006

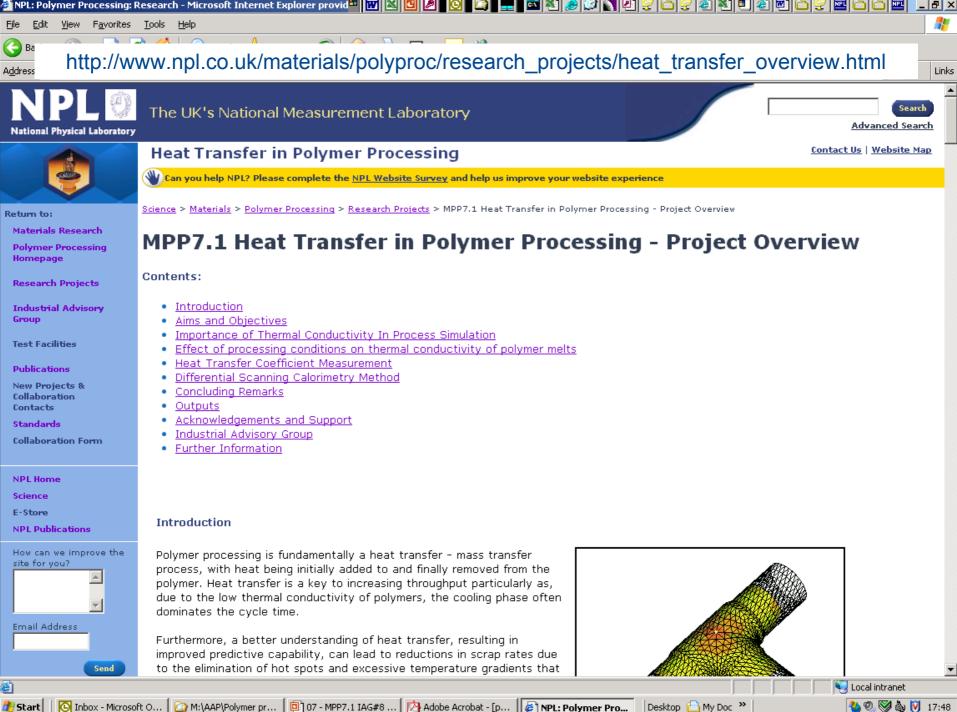
http://www.npl.co.uk/materials/polyproc/iag/october2006/ thermal_properties_polymers_isomeeting2006.pdf

Next meeting: September 2008

Heat transfer project H1 2005-08

H1: Measurement methods for heat transfer properties data for application to polymers

Objectives:


- Development of the method for the **measurement of heat transfer properties** across surfaces (particular interest has been expressed in the effect of the solid/air interface)
- Industrial **case study** to demonstrate the value of reliable heat transfer data
- Support development of **standards** for measurement of thermal properties of plastics, including an intercomparison of thermal conductivity methods that are being proposed for standardisation
- Assessment of uncertainties in heat transfer data and effect on modelling predictions
- Development of a new user-friendly **web-enabled modelling** facility, to facilitate industrial adoption of the above

The next 12 months

- Initiate thermal conductivity intercomparison
- Carry out industrial case study/studies on heat transfer
- Consider initiation of NWIP for standard for line source method (based on outcome of intercomparison)
- Continued contributions to development of standards (DSC and thermal conductivity)
- Disseminate thermal conductivity and heat transfer coefficient measurement work

Acknowledgements

DTI Chris Brown