

Heat Transfer in Polymers

Martin Rides, Angela Dawson 27 April 2005

Heat Transfer in Polymers - summary

- Introduction
- Heat Transfer Coefficient
- Thermal Conductivity
- Thermal Imaging
- Industrial Demonstrations
- Standards for Thermal Properties
- Summary of current heat transfer project
- Outline of heat transfer project 2005-08
- Future Needs

Aim of the project

- To help companies measure and model heat transfer in polymer processing
- This should lead to:
 - Right first time design
 - Higher productivity (faster processing)
 - Energy saving
 - Fewer failures in service

Resulting in reduced costs and improved quality

Tasks in the DTI Project

• Heat Transfer Coefficient

- New facility
- Thermal Conductivity
 - Uncertainty analysis
 - Extension of method to new materials

Simulation

- To identify the important data
- To help design equipment
- Moldflow & NPL's own software
- Industrial Demonstrations
 - Zotefoams
 - Corus
- Dissemination
 - Web site, IAGs, PAA Newsletter articles, trade press articles, measurement notes, scientific paper

Related Eureka Project: AIMTECH

- An associated Eureka project (AIMTECH) is progressing
- Its aim is to improve productivity of injection moulding
 - Main focus is on the moulds reduce cycle times by using copper alloy moulds in injection moulding
- NPL Role
 - Measurement of the thermal conductivity of polymer melts (T,P)
 - Understanding the role of the mould/melt interface:
 Modelling heat transfer and the effect of uncertainties
- Six UK companies involved
- £25k co-funding contribution
- Close fit with the DTI project

Heat transfer coefficient

Heat Transfer Coefficient

 It is the heat flux per unit area (q) across an interface from one material of temperature T₁ to another material of temperature T₂:

$$h = q/(T_1 - T_2)$$
 units: $Wm^{-2}K^{-1}$

- Boundary condition for process simulation
- In injection moulding & compression moulding
 - Polymer to metal
 - Polymer-air-metal (GASM, ...)
- In extrusion & film blowing
 - Polymer to fluid (eg air or water)
- This project has built apparatus to measure heat transfer coefficient and will investigate the significance of different interfaces to commercial processing

Heat Transfer Coefficient (heat transfer across an interface)

Features of apparatus

- Room temperature to 275 °C, pressure to at least 500 bar
- Polymer samples 2 mm to 25 mm thick
- Interchangeable top plate to investigate
 - Different surface finishes
 - Effect of mould release agents
- Option to introduce a gap between polymer & top plate
 - Shrinkage, sink marks
- Instrumented with temperature measurement devices and heat flux sensors

Heat transfer apparatus

Side view

Heat transfer apparatus

Heat transfer coefficient

- Effect of an air gap
- Effect of vertical thermocouple on distort the temperature field

Mould at 50 °C with air gap of 0, 0.5 & 1 mm

Effect of a thermocouple

Simulation of Heat Transfer with Fibre Optic (left) & Thermocouple (right)

Comparison of thermocouple & fibre optic

TherMOL prediction of the temperature difference between the sensor (centre) and the edge (PP) for PP & a thermocouple and PP & a optical fibre after 400s

Heat transfer coefficient effect of uncertainties

Pipe 'T' piece and 80 mm diameter disc models

Scale (100 mm)

Effect of uncertainties in HTC

The Change in Temperature Over Time For A Given Location (T1149) on the T-Pipe For Analyses With Different Heat Transfer Coefficient

Effect of uncertainties in HTC

The Effect Of Mould-Melt Heat Transfer Coefficient Upon Time To Freeze Part For Discs Of Different Thickness

NPL Report DEPC-MPR 001

The Effect of Uncertainty in Heat Transfer Data on The Simulation of Polymer Processing

J. M. Urquhart and C. S. Brown

http://libsvr.npl.co.uk/npl_web/search.htm

Heat Transfer Coefficient Summary

- Initial testing commenced using HTC equipment
- To investigate effect of:
 - Different surface finishes/mould materials
 - Mould release agents
 - Air gap between polymer & top plate (simulating shrinkage and sink marks)

Thermal conductivity measurements

Thermal Conductivity Measurements Under Industrial Processing Conditions:

- More accurate data for modelling software
- Reduce warpage and hot spots during injection moulding process – reduce waste
- Reduce cycle times and improve processing efficiency

Plan of Action:

- Measured thermal conductivity of amorphous and semicrystalline polymers at injection moulding pressures
- Used experimental techniques to attribute uncertainty to thermal conductivity measurements
- Compared thermal conductivity measurements with known pvT technique

Line source probe apparatus

Measures thermal conductivity at industrial processing pressures

Thermal conductivity repeatability measurements and uncertainty

Thermal Conductivity of HDPE (Atmospheric and 1000 bar Pressures)

Uncertainty Budget For NPL Line-Source Thermal Conductivity Probe (Atmospheric Pressure)

	Value ± %	Probability Distribution	Divisor	Ci	Uncertainty Contribution ± %	Uncertainty S qu are d ±%	V _i or V _{eff}
Туре А							
R e pe at a bility	15.6@ 2 std de vs	Nor m al	2	1	7.815 @ 1 std dev	61.07	89
Reproducibility	13.6@ 2 std de vs	Nor m al	2	1	6.801 @ 1 std dev	46.25	89
Туре В							
Non-uniformity of heat input	0.002	Rectangular	1.73	1	0.00116	1.34E-06	œ
Non-uniformity of temperature	0.0	Rectangular	1.73	1	0.000	0.000	œ
Sample height	0.0	Rectangular	1.73	1	0.000	0.000	œ
Time	0.0	Nor m al	1	1	0.000	0.000	œ
					Calculation of Uncertainty		
					Sum of squares Square root of	107.3 % 10.4 %	
					sum of squares Multiplication by k = 2 for 95%	±20.7% Final	
					confidence le vel	Uncertainty Value	

Thermal conductivity measurements under pressure

Materials tested:

Amorphous:

Semi-crystalline:

- Acrylonitrile-butadienestyrene
- Polystyrene
- Polycarbonate

- Polypropylene
- Polystyrene
- Polyethylene(terephthalate)
- Glass filled nylon

Thermal Conductivity Behaviour of Typical Amorphous Material (PS) Under Pressure

Thermal Conductivity Behaviour of Typical Semi-crystalline Material (PP) Under Pressure

pvT measurements under pressure

Schematic of pvT Instrument

pvT Behaviour of a Typical Amorphous Polymer (PS)

pvT Behaviour of a Typical Semi-crystalline Polymer (PP)

Models for specific volume and thermal conductivity

Pressure term with temperature dependence

Temperature term

$$v = v_0 \left[\exp(k(\theta - \theta_o)) \right] \left[\exp(\ell(p - p_o)(\theta + 273.15)) \right]$$

$$\lambda = \lambda_0 \left[\exp(k'(\theta - \theta_o)) \right] \left[\exp(\ell'(p - p_o)(\theta + 273.15)) \right]$$

PS										
Thermal conductivity, λ	λ_o Wm ⁻¹ K ⁻¹	k'	ℓ '	$egin{array}{c} heta_o \ ^\circ \mathrm{C} \end{array}$	p_o MPa					
Wm ⁻¹ K ⁻¹	0.274	0.00165	3.43E-06	250	80					
Specific volume, v	V_o cm ³ g ⁻¹	k	ℓ	$egin{array}{c} heta_o \ ^\circ \mathrm{C} \end{array}$	p_o MPa					
cm ³ g ⁻¹	1.047	0.000427	-1.54E-06	251.1	80					

$$\lambda = v \frac{\lambda_o}{\nu_0} \left[\exp((k - k')(\theta - \theta_o)) \right]^{-1} \left[\exp((\ell - \ell')(p - p_o)(\theta + 273.15)) \right]^{-1}$$

Thermal conductivity data for polystyrene

Specific volume data for polystyrene

National Physical Laboratory

Correlation of thermal conductivity with specific volume data for PS

Implications of Results

- Increase in pressure gives increase in thermal conductivity reduction in cycle times possible cost benefits
- Increase in crystallisation temperature for semi-crystalline polymers with increase in pressure – may reduce time to freeze parts - possible cost benefits
- More accurate data based on industrial processing conditions improvements in commercial modelling packages - cut scrap rates by improving warpage and hot-spot prediction – possible cost benefits
- Crystallisation temperature for PP occurred over a similar temperature range for thermal conductivity and specific volume results confirming validity of TC tests
- Correlation of specific volume and thermal conductivity values

Thermal Imaging

DEPC IR Camera

Schematic Diagram of IR Camera Operation

Cooling of Hot Melt Adhesive Study Using IR Camera

Time after extrusion

152 seconds

Heating of Hot Melt Adhesive Study Using IR Camera

Time after start of heating

130 seconds

Infra Red Camera

- Non contact method
- Produces visual record of thermal changes during heating and cooling of sample
- Visual record can be analysed in quantitative way to produce a time vs. temperature plot of thermal changes
- Can be customised to an individual system
- Easy to operate once it has been set up correctly
- Samples to be tested have to be of similar weight and geometry for comparisons to be made

INDUSTRIAL TRIALS Corus & Zotefoams

Industrial Demonstrations

• Aim is to demonstrate practical benefits of heat transfer measurements and modelling

• Corus

- Thermal conductivity of plastisol coated steel before and after solidification
- Zotefoams
 - Heat transfer during cooling of polyolefin foam

- Use DSC method to measure thermal conductivity of bilayer Plastisol/steel
- Measure before and after solidification
- Data useful in predicting optimum line speeds

 Earlier work had shown that the polymer layer was significant in terms of heat transfer

DSC method for thermal conductivity

DSC method for thermal conductivity

Zotefoams

Problem: waviness in foams - thermal issue

- Model heat transfer
- Measure (T, heat flux) over time
- Model/measure shrinkage
- Calculate internal stresses
- Use bending theory to predict curvature

Standards in Thermal Properties Measurement

Differential scanning calorimetry standards

ISO TC61 SC5 WG8 Thermal Properties

ISO 11357 Plastics - Differential scanning calorimetry (DSC)

ISO 11357-1: 1997 Part 1: General principles (now due for revision)

ISO 11357-2: 1999 Part 2: Determination of glass transition temperature

ISO 11357-3: 1999 Part 3: Determination of temperature and enthalpy of melting and crystallization

ISO/FDIS 11357-4 Part 4: Determination of specific heat capacity

ISO 11357-5: 1999 Part 5: Determination of characteristic reaction-curve temperatures and times, enthalpy of reaction and degree of conversion

ISO 11357-6: 2002 Part 6: Determination of oxidation induction time

ISO 11357-7: 2002 Part 7: Determination of crystallization kinetics

Potential proposal for thermal conductivity measurement by temperature modulated DSC

Thermal conductivity standards

ISO TC61 SC5 WG8 Thermal Properties

ISO/AWI 22007 Plastics - Determination of thermal conductivity and thermal diffusivity

ISO/AWI 22007-1 Part 1: General principles

ISO/AWI 22007-2 Part 2: Gustafsson hot-disc method

ISO/AWI 22007-3 Part 3: Temperature wave analysis method

ISO/CD 22007-4 Part 4: Laser flash method

Thermal conductivity standards

ISO TC61 SC5 WG8 Thermal Properties

Hot Wire

- ISO 8894-1:1987 Refractory materials Determination of thermal conductivity Part 1: Hot-wire method (cross-array)
- ISO 8894-2:1990 Refractory materials Determination of thermal conductivity Part 2: Hot-wire method (parallel)

Line Source

• ASTM D 5930-01, Test Method for Thermal Conductivity of Plastics by Means of a Transient Line-Source Technique

Laser Flash

• ISO 18755: 2005 Fine ceramics (advanced ceramics, advanced technical ceramics) - Determination of thermal diffusivity of monolithic ceramics by laser flash method

Guarded Hot Plate

• ISO 8302:1991 Thermal insulation - Determination of steady-state thermal resistance and related properties - Guarded hot plate apparatus

Guarded Heat Flux

- ISO 8301:1991 Thermal insulation Determination of steady-state thermal resistance and related properties Heat flow meter apparatus
- ASTM E1530-04 Standard Test Method for Evaluating the Resistance to Thermal Transmission of Materials by the Guarded Heat Flow Meter Technique

Heat transfer project concluding summary

Summary – Heat Transfer

- Heat transfer coefficient apparatus now being used
 - Design assisted by numerical modelling studies
 - Effect of uncertainties investigated (report available)
- Melt thermal conductivity
 - Nano-filled materials
 - Powders/granules
 - Effect of pressure
 - Effect of uncertainties investigated (report available)
- ISO Standards being developed
- New IAG members facility on website

http://www.npl.co.uk/npl/cmmt/polyproc

The next 6 months

- Complete commissioning and trials on heat transfer coefficient equipment
- Industrial demonstrations (Corus / Zotefoams) to be completed
- Dissemination of thermal conductivity measurement work
 - scientific and conference paper, articles

Heat Transfer Project 2005-08

Heat transfer project H1 2005-08

H1: Measurement methods for heat transfer properties data for application to polymers

Objectives:

- Development of the method for the measurement of heat transfer properties across surfaces (particular interest has been expressed in the effect of the solid/air interface)
- Industrial case study to demonstrate the value of reliable heat transfer data
- Support development of standards for measurement of thermal properties of plastics, including an intercomparison of thermal conductivity methods that are being proposed for standardisation
- Assessment of uncertainties in heat transfer data and effect on modelling predictions
- Development of a new user-friendly web-enabled modelling facility, to facilitate industrial adoption of the above

Your: Ideas, comments, suggestions, participation, contributions, ...

to steer the project to maximise the benefits to you.

Heat Transfer Future Needs

Heat transfer is:

- key to polymer processing
- still inadequately understood
- key to increasing throughput process times dominated by the cooling phase
- significant in affecting product properties, e.g. warpage, inadequate melting, thermal degradation

Improved heat transfer could:

- Contribute significantly to reduction in UK energy bill
- Bring indirect benefit to quality of life
- Save money for UK industry

Areas where future work to increase understanding of heat transfer required:

- Water assisted injection moulding (WAIM)
- Gas assisted injection moulding (GAIM)
- Effect of air gaps, mould materials, supercritical CO₂, helium
- Micro-moulding
- Additives, fillers effect on decreasing thermal conductivity of insulators
- Developing techniques for measuring heat transfer properties of foam
- Curing of fibre/matrix composites and cross-linking of rubbers

Further areas where future work to increase understanding of heat transfer required:

- Effect of nanoparticles on heating and cooling of polymer nanocomposites during processing
- Effect of dispersion of nanoparticles on thermal conductivity and heat transfer coefficient of nanofluids
- Measurement of heat transfer within microfluidic systems to improve data available for modelling
- Investigation of heat transfer during processing of foods for packagers and processors
- Development of techniques for increasing heating/cooling rates for food
- Measurement of surface heat transfer coefficient and external heat transfer medium (water, air) for range of foods

Your suggestions/comments?

AOB: