sr!com.femlab.server.ModelFileHeaderD%LtagstLcom/femlab/util/FlStringList;Ltypesq~LvrsntLcom/femlab/util/FlVersion;xpwsrcom.femlab.util.FlVersion%/B = IbuildImajorLdatetLjava/lang/String;Lextq~Lnameq~Lrcsq~L reactionExtq~L reactionNameq~L scriptExtq~L scriptNameq~xpwtCOMSOL Script 1.1tat#COMSOL Reaction Engineering Lab 1.3tt COMSOL 3.3q~wt $Name: $t$Date: 2007/02/02 19:05:58 $xur[Ljava.lang.String;V{Gxpt modelinfotxfemtguitfem0tg6tg5tfem6tfem6.0q~q~tfem7tfem7.0q~q~tg2tg1tg6tg5t mfileinfouq~q~t femstructt guistructq~ tdrawq~"tgeomtmeshtsolutiontxmeshq~#q~$q~%q~&tdrawq~'q~'q~'q~xsrcom.femlab.api.client.ModelInfo^%Ldescrq~LdocURLq~[imaget[Bxpwur[BTxp*WPNG  IHDRp IDATx|e?3&=QbDwlz衧 *(*R@!!!=l3E9ݏϐ2;2̼[}AEkK/BIEPRQ((TJ*cIGo۶^߫U#Fh{P(Б޿Q_?2o޼g)$WhLIE** %BIEEPRQQ((TTJ* %կI]**j)(TTm}SQZ 62W內;*SRQ((TJ** %BIEPRQQ((TTJ* %BIEEPK@EPRQ(KI%b";OP(OX ?9rx(+"sS'"˲HP/\Dd쥰qQQF0P i٨>PlqqD?W* b4ȣ,Bugr&xFQ4k*Dڂ@H|"(4qIPgEE"|3&aMxLa`d]^4bA! DEM$EByyFX8jx,St V .^|vd|v=&%Bp6ߦG>@Pvb'ճNް0^&H<;wpP #O5UL ^lh$~: ]x[V%FG-vބL2NdA%I=솯/a3 /h8IVF-A$mc"gMh_aq&GexhhM}ZMF 8" Y3^"j$X4j֠wC26;y?% :Fl,0-A2u3IET{-X[Alj299瀃EeG3*}-9<%QSsOVL\6HȪ㼗}@.G { ͖Gb|-lq^WnSNQ &>.ʸ eB,Eʦ9q8-d@Z7 >鵸8{߅l?b+owPnNcg" B"DŸ:$:֡9̽Q$*'˟\5;cZf<:q~%Ikϵtwro+3*AC}H!H=c*0@.^|x>1ĥY9OZ%$H()sm9RgHdJ[Z=ntbM!Gx_撾=x~#?!U}_d$Ͼۼ:0>8P jԿ [U2+1N֌|ѕ#Kj)BE7LJ~'xXI*> B bnv^[L1o>Avu=s睉=?75+- εҔVZCסX(Y@H-7?^ WAlrݏ_Pn I-7)ēgѤ$ָ} wP/I0ġkגcQQ+.oKlMɽ6(7}o-@vOu챑my)h ȅY8Uy IOD/#?@vǯʑ`嚁ֆGsq HD\ۀ7SQ5`c$L|T9FY;M|d`rqw:0 UryRH#*#B.7 {i6FWsgjEOuwŔF]MfOW;_rn~KQ.{NwmYtáF!h+wsJQ0A̽d! 쥃ڗ$ .߉wi[/JKoñJjǂTgMЌ\{iA&eKL\`g%%}kмYAq4=iuNſ Uog}SG}l)854y_uJQ8™Z@3rsQ[ 0(:)*m0shsTy[ˍ7 @-/!r*ėbL9,0&wB`7݃X4\ÍlE؞OMCMM~GQԀlva1RW{Gp>4_HtUo\,q>ԀPtE;[@Cz0d?Io'btl_r50rD^2|e3^Ҏ-W ^ӥ8oVE38bͧ:Gs2Ob,7mǁ<Jt=i>Ħ.яּ<;ʮœ>nnC*S*6KDbBಟ mi71t0{R& N\=Q0"6U1f.քsjMHv^ᶿaݯ 6 ?=ulW۞|J_(;D3sкAij"QBْy>ka@Yqta@'sIj6 p82GMN!hf[vBPKTNצnu _47i5_x 2&S܋vdV}7GS:w#SZ0=!dؽHwd&$\7LDzLTRF"/<nF.J̤#Zt"~y*e?PYPY)$q}pNq UU({2bʗ5[&Yܹ(_:|,=3/0Pd׳V 'a?G<*oP>#aT2p 22Aq(";P8MHPtp_ |=/! 68Z̮nvZl_-5Mg}Gŏku3+V]/o˳JTlơRt N oX:8DщG2vVu(Y[" GwiZDIʛEegN0znlm"ҩpiًO K$h٩my;I[?QaY#֘` Y7{pkkǔx_-^=򞻻O`FUS-{npuTm7>~pV3D̤6UmLv/$R_`;y:P1rC;Fve83oE:]ym^8؅Z^o.}|L 8ײ_z]JJ$*]1M mLP L= 49 >9>cI*H!ApFl9̎ zkOCJ_ -xmEo6"v*Nތ{)ޫ !{<=(?>Eyvv+`؀"3KOԬs꾯3D hΐ8W¨ɿ*3l$*15fE !Bdxz2̅UbB ^?.ѥ=>;xСZZqdp珣gמBw -Loν'|Ed!rdPqCH, "Z0&90Q]pyF Y,BR]9-p}><9F?IhJFy=~TrRYDp|mTV:S2!e,$IBpR#= D2@ s0}Gz>tn;f肮Ǔ߬ܡEBtE2ҩ0zš#~dU>t] |M-bCj+qx+ (X!>[;g Pգ>77]|Óg%vwF jV3cQ"|ʵkv# J>{}m5RenW=}lZq\Mn١D&-f1¨lF2n}1]Zjx2[*H~nEHR늳e0M_;LN ~B3*ɓZGHd>*Zhv`?atqF]b34K+{Gcyɨydo4!&Tv8+tėܞibiLyqDW3HUcD5D ƢKj[ ̤`7lj 8ሏ#zD";a~LmQpVbN.#Ι*u=r=SvZJz, w$(w@;m&^;61`:RH<毀$%ޙrIϳX[0Di$uu pqs yƀ%Uz#ňѹdƚ%NDSa'^?|Sw3HĈlYknۥl;֞,e^,6f$؁Bo!FB9R?NA)9fhr9NL 'f9jDMUxE4psp. )یPT`ͰL\晁gGkx,!Q@SO_k㡐@~'uJE(#S%7}rxg@dm8 Q{ax+22ZqU'#ڶg3yyyu8_<9CУsA+W3ZtW-|s&:E]d9ѭ6}O!!n8/y꽓z}lk53 dq>tcXHQJ+JLazBjN ?sV^c>l k"0S`"+՗GMU񴇲-1J|T!} /˟y^8$$/68=+겥?t>J1 *b(?p Tc_>ջq&UrnmVh^jS*SU{H#}/}VO,EH8)d"u57#[KyYP! xhuU7$*o-ސ(·9JM" V l'1e$򢃔`Hb#i!4`㈍HLz(VXb~ʧ96)l7V/v KO>P0 Y9'PKI%v*F8#mh`)֊afS Dtd#ڤJbFlT@?Zִ<)nO2LI[T,? KMtVaWYx?^s\nOM*+YkHf^h1Rr1jRlV g Աb{7ɮ1$$eɤG=[LYPx?GJk8[%R׿SNk_uM/ٱb7kv烁Cm P,TG6L ?m/]n^rCFO8p~91B.L-#2tIikA#8'ǽ|->uטld{* #R)]"m&Ls%dKKvS ;.?H=ڏlO}<fֻ9'bI2}I#Dfΐ2 o RhŻ#bQۤ!KNzZ-}ŁSt 1ͺr +R֮HP2W7 w^X&@Jȁ cl+c1 6Rb :"J3V9\!W?h*"RI¬d)#62 {0]`^%O;)b~Џ$b$Ҹ# ^6 0 Z2$0JK隳Xi9 +(YOv'(5bu#G/Y\zmo_HZMXVa)uM3' jXO+#.]/:kfF`1c<9;ce]';qocK4DžKCOE.7 dxf~/|xqcEتʵھXFM#P8 ``!HkWo_HN$NO#4$;5bG*Tг0Жh|"_ 28к>̄lcug=%36[Gu" 6"S`|4Mn!!Hɵuz=b/RK31אf$Pw񾆽7!VO:`.{?.om$1dt)gT\ք~$O†35vѲ#&2vgOsyˆQ٬QȾpb7-)@V\ & gn'L>MF/Gw1PFZon|O=ʃ_A=r%;Cp;xޱrG8za"ɣ;RLLakSrAֱ]]W^LЊUO[னU>KMg6(S}X%-BkdJE tZ[$n/qx;Z (Ispb[ Jj#7B:n]˫lke$ M?҅W8FGLgzC5H舖+o˸PyUޖ%fmbEK-tLi\K u?lwM%qv){a {y&톻g}#!51@t!5/}eCX I_>7q=TdZ;!#e8#ؓ3-Yyl9o}og}Ph-FmJ3l;2a/v͢MANnY:,Zb^{@{ǣ-? v _w-TbÎo(tYʰ!;$rTNd&%i&E|jmjĀTL]_z$X v:{8{M~C7D_(+Wqd6\AG^.Y/'og(^p [1+ $꺆x{ݦOZOgZw.M'}'~-%9yr_e!J´=X8B?omʰƊnq8V̙Pz7^4Ef^:do3noϛ70b tK8XG&;ĵʬXH교A?\;ljPBp 0T":VS4-Fcz_?):5{$ܺ~:?۸菦Oz?4hjIѠ-IaF ?c2B54NVSܣG&x,vM$S-!A#>P. v9ֱT-S^WRC^uEy#?e[$W,̱`C8D#'E n 8wא8p`EC 4H,R7q)ʰr֢p{V„H#޵Jb9=.v+]yCLwX`H 9AtH6恷 7;26 ?kcy|z2R75V,s(/$8+ɒ `lw[ $q*@vKxFb "HhrX se0b̋d{TCf ,baJM~tTSS|Uuy3PT!מP(~9Ŭo[n,&g#Q"ݎ8O@~DR(#4/L d#~×mdYaԻ.,F?RHy4CLԲC:.\|4őBߢKEb~h "[͟}_@qP?rܔ}oR* %BIEPRQQ((TTJ* %BIEEPRQ((TJ** %BIEPRQQ((TTJ* %BIEEPRQ((TJ** %BIEPRQ ]%K,@9Wl@eWGժ;SMZ+zT4PRQ((TTJ* %BIEEj?%:IENDB`tpxuq~t@>clear xfem clear vrsn vrsn.name = 'COMSOL 3.3'; vrsn.ext = 'a'; vrsn.major = 0; vrsn.build = 511; vrsn.rcs = '$Name: $'; vrsn.date = '$Date: 2007/02/02 19:05:58 $'; xfem.version = vrsn; xfem.id = 1; xfem.geomdata = 'geom'; xfem.eqvars = 'on'; xfem.cplbndeq = 'on'; xfem.cplbndsh = 'off'; xfem.drawvalid = 'on'; xfem.geomvalid = 'on'; xfem.solvalid = 'on'; xfem.linshape = 'off'; xfem.linshapetol = 0.1; xfem.meshtime = 't'; clear appl appl.mode.class = 'FlPDEW'; appl.mode.type = 'cartesian'; appl.dim = {'Hrad','Hazi','Haxi','Hrad_t','Hazi_t','Haxi_t'}; appl.sdim = {'r','z','z2'}; appl.name = 'Axisymmetric'; appl.shape = {'shlag(2,''Hrad'')','shlag(2,''Hazi'')','shlag(2,''Haxi'')'}; appl.gporder = 4; appl.cporder = 2; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_Axisymmetric'; clear prop prop.elemdefault='Lag2'; prop.wave='off'; prop.frame='rz'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm1','lm2','lm3','lm4','lm5','lm6'}; prop.weakconstr = weakconstr; appl.prop = prop; clear pnt pnt.weak = {{'0';'0';'0'}}; pnt.dweak = {{'0';'0';'0'}}; pnt.constr = {{'0';'0';'0'}}; pnt.style = {{{'0'},{'0','0','0'}}}; pnt.ind = [1,1,1,1,1,1,1,1,1,1,1]; appl.pnt = pnt; clear bnd bnd.name = {'electric_wall','normal_D','tangential_H','magnetic_wall','normal_H', ... 'tangential_D','radiation_match','null'}; bnd.weak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.dweak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.constr = {{'Hrad*nr+Haxi*nz';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'0';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'Hrad*nr+Haxi*nz';'0';'0'},{'Haxi*nr-Hrad*nz';'Hazi';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'Haxi*nr-Hrad*nz';'Hazi';'0'},{'0';'0';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'-i*cMW*Hazi*k*mf+(cEW*(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r))/r'; ... '-i*cEW*(-Haxir+Hradz)+cMW*k*mf*(Haxi*nr-Hrad*nz)';'0'},{'0';'0';'0'}}; bnd.style = {{{'0'},{'0','0','0'},{'solid'}},{{'0'},{'0','255','255'},{'solid'}}, ... {{'0'},{'255','0','255'},{'dashed'}},{{'0'},{'0','255','255'},{'solid'}}, ... {{'0'},{'255','0','255'},{'dashed'}},{{'0'},{'0','0','255'},{'solid'}}, ... {{'0'},{'0','0','255'},{'solid'}},{{'0'},{'0','255','0'},{'dashed'}}}; bnd.ind = [3,3,3,8,3,8,3,3,8,8,8,8]; appl.bnd = bnd; clear equ equ.shape = {[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3]}; equ.gporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.cporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.init = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.usage = {1,1,1,1,1}; equ.name = {'dielectric_0:vacuum','isotrop_diel_1','uniaxial_diel_1','isotrop_diel_2', ... 'uniaxial_diel_2'}; equ.dinit = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.weak = {{'-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz))'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara1*Haziz*M*test(Haxi))+eperp1*Hazir*test(Hazi)+eperp1*Hazi*test(Hazir)-eperp1*Hrad*M*test(Hazir)-epara1*Haxi*M*test(Haziz)-eperp1*Hazir*M*test(Hrad))/(epara1*eperp1)+(epara1*Haxi*M^2*test(Haxi)+eperp1*Hazi*test(Hazi)-eperp1*Hrad*M*test(Hazi)-eperp1*Hazi*M*test(Hrad)+eperp1*Hrad*M^2*test(Hrad))/(epara1*eperp1*r)+(r*(epara1*(Haxir-Hradz)*test(Haxir)+eperp1*Hazir*test(Hazir)+epara1*Haziz*test(Haziz)-epara1*Haxir*test(Hradz)+epara1*Hradz*test(Hradz)))/(epara1*eperp1)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e2'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara2*Haziz*M*test(Haxi))+eperp2*Hazir*test(Hazi)+eperp2*Hazi*test(Hazir)-eperp2*Hrad*M*test(Hazir)-epara2*Haxi*M*test(Haziz)-eperp2*Hazir*M*test(Hrad))/(epara2*eperp2)+(epara2*Haxi*M^2*test(Haxi)+eperp2*Hazi*test(Hazi)-eperp2*Hrad*M*test(Hazi)-eperp2*Hazi*M*test(Hrad)+eperp2*Hrad*M^2*test(Hrad))/(epara2*eperp2*r)+(r*(epara2*(Haxir-Hradz)*test(Haxir)+eperp2*Hazir*test(Hazir)+epara2*Haziz*test(Haziz)-epara2*Haxir*test(Hradz)+epara2*Hradz*test(Hradz)))/(epara2*eperp2)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'}}; equ.dweak = {{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'}}; equ.constr = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'}}; equ.bndweak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'}}; equ.bndgporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.style = {{{'0'},{'0','0','255'}},{{'0'},{'0','255','0'}},{{'0'},{'0','255', ... '0'}},{{'0'},{'0','255','255'}},{{'0'},{'0','255','255'}}}; equ.ind = [1,2]; appl.equ = equ; xfem.appl{1} = appl; xfem.geom = flbinary('fem6','geom','toroidal_silica_microcavity_c33a_v5.mph'); xfem.mesh = flbinary('fem6.0','mesh','toroidal_silica_microcavity_c33a_v5.mph'); xfem.sdim = {'r','z'}; xfem.frame = {'rz'}; xfem.shape = {'shlag(2,''Hrad'')','shlag(2,''Hazi'')','shlag(2,''Haxi'')'}; xfem.gporder = 4; xfem.cporder = 2; xfem.sshape = 2; xfem.simplify = 'on'; xfem.border = 1; xfem.form = 'coefficient'; clear units; units.basesystem = 'SI'; xfem.units = units; clear equ equ.shape = {[1;2;3],[1;2;3]}; equ.gporder = {{1;1;1},{1;1;1}}; equ.cporder = {{1;1;1},{1;1;1}}; equ.init = {{'0';'0';'0'},{'0';'0';'0'}}; equ.dinit = {{'0';'0';'0'},{'0';'0';'0'}}; equ.weak = {{'-Haziz*M*test(Haxi)+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz))'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-Hrad*M*test(Hazi)+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-Haziz*M*test(Haxi)+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-Hrad*M*test(Hazi)+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'}}; equ.dweak = {{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'}}; equ.constr = {{'0';'0';'0'},{'0';'0';'0'}}; equ.c = {{{'0'},{'0'},{'0'};{'0'},{'0'},{'0'};{'0'},{'0'},{'0'}},{{'0'}, ... {'0'},{'0'};{'0'},{'0'},{'0'};{'0'},{'0'},{'0'}}}; equ.a = {{'0','0','0';'0','0','0';'0','0','0'},{'0','0','0';'0','0','0'; ... '0','0','0'}}; equ.f = {{'0';'0';'0'},{'0';'0';'0'}}; equ.ea = {{'0','0','0';'0','0','0';'0','0','0'},{'0','0','0';'0','0','0'; ... '0','0','0'}}; equ.da = {{'0','0','0';'0','0','0';'0','0','0'},{'0','0','0';'0','0','0'; ... '0','0','0'}}; equ.al = {{{'0';'0'},{'0';'0'},{'0';'0'};{'0';'0'},{'0';'0'},{'0';'0'}; ... {'0';'0'},{'0';'0'},{'0';'0'}},{{'0';'0'},{'0';'0'},{'0';'0'};{'0';'0'}, ... {'0';'0'},{'0';'0'};{'0';'0'},{'0';'0'},{'0';'0'}}}; equ.be = {{{'0';'0'},{'0';'0'},{'0';'0'};{'0';'0'},{'0';'0'},{'0';'0'}; ... {'0';'0'},{'0';'0'},{'0';'0'}},{{'0';'0'},{'0';'0'},{'0';'0'};{'0';'0'}, ... {'0';'0'},{'0';'0'};{'0';'0'},{'0';'0'},{'0';'0'}}}; equ.ga = {{{'0';'0'};{'0';'0'};{'0';'0'}},{{'0';'0'};{'0';'0'};{'0';'0'}}}; equ.sshape = {[1],[1]}; equ.sshapedim = {{1;1;1},{1;1;1}}; equ.ind = [1,2]; equ.dim = {'Hrad','Hazi','Haxi'}; equ.var = {'absHradx_Axisymmetric',{'sqrt(Hradr^2+Hradz^2)','sqrt(Hradr^2+Hradz^2)'}, ... 'abscu1x_Axisymmetric',{'sqrt(cu1r^2+cu1z^2)','sqrt(cu1r^2+cu1z^2)'}, ... 'absHazix_Axisymmetric',{'sqrt(Hazir^2+Haziz^2)','sqrt(Hazir^2+Haziz^2)'}, ... 'abscu2x_Axisymmetric',{'sqrt(cu2r^2+cu2z^2)','sqrt(cu2r^2+cu2z^2)'}, ... 'absHaxix_Axisymmetric',{'sqrt(Haxir^2+Haxiz^2)','sqrt(Haxir^2+Haxiz^2)'}, ... 'abscu3x_Axisymmetric',{'sqrt(cu3r^2+cu3z^2)','sqrt(cu3r^2+cu3z^2)'}}; equ.expr = {'erel',{'1','e1'}}; equ.bnd.weak = {{'0';'0';'0'}}; equ.bnd.gporder = {{1;1;1}}; equ.bnd.ind = [1,1]; equ.bnd.expr = {}; equ.lock = [0,0]; equ.mlock = {[0,0]}; xfem.equ = equ; clear bnd bnd.weak = {{'0';'0';'0'},{'0';'0';'0'}}; bnd.dweak = {{'0';'0';'0'},{'0';'0';'0'}}; bnd.constr = {{'Hrad*nr+Haxi*nz';'0';'0'},{'0';'0';'0'}}; bnd.q = {{'0','0','0';'0','0','0';'0','0','0'},{'0','0','0';'0','0','0'; ... '0','0','0'}}; bnd.h = {{'0','0','0';'0','0','0';'0','0','0'},{'0','0','0';'0','0','0'; ... '0','0','0'}}; bnd.g = {{'0';'0';'0'},{'0';'0';'0'}}; bnd.r = {{'0';'0';'0'},{'0';'0';'0'}}; bnd.shape = {[1;2;3],[1;2;3]}; bnd.sshape = {[1],[1]}; bnd.sshapedim = {{1;1;1},{1;1;1}}; bnd.gporder = {{1;1;1},{1;1;1}}; bnd.cporder = {{1;1;1},{1;1;1}}; bnd.init = {{'';'';''},{'';'';''}}; bnd.dinit = {{'';'';''},{'';'';''}}; bnd.ind = [1,1,1,2,1,2,1,1,2,2,2,2]; bnd.dim = {'Hrad','Hazi','Haxi'}; bnd.var = {'nr_Axisymmetric',{'nr','nr'}, ... 'nz_Axisymmetric',{'nz','nz'}}; bnd.expr = {}; bnd.lock = [0,0,0,0,0,0,0,0,0,0,0,0]; bnd.mlock = {[0,0,0,0,0,0,0,0,0,0,0,0]}; xfem.bnd = bnd; clear pnt pnt.weak = {{'0';'0';'0'}}; pnt.dweak = {{'0';'0';'0'}}; pnt.constr = {{'0';'0';'0'}}; pnt.shape = {[1;2;3]}; pnt.sshape = {[1]}; pnt.sshapedim = {{1;1;1}}; pnt.init = {{'';'';''}}; pnt.dinit = {{'';'';''}}; pnt.ind = [1,1,1,1,1,1,1,1,1,1,1]; pnt.dim = {'Hrad','Hazi','Haxi'}; pnt.var = {}; pnt.expr = {}; pnt.lock = [0,0,0,0,0,0,0,0,0,0,0]; pnt.mlock = {[0,0,0,0,0,0,0,0,0,0,0]}; xfem.pnt = pnt; xfem.var = {}; xfem.expr = {'DivH','(Hrad-Hazi*M+(Haxiz+Hradr)*r)/r', ... 'Drad','(Haxi*M-Haziz*r)/r', ... 'Dazi','-Haxir+Hradz', ... 'Daxi','(Hazi-Hrad*M+Hazir*r)/r', ... 'Erad','Drad/erel', ... 'Eazi','Dazi/erel', ... 'Eaxi','Daxi/erel', ... 'comment','1', ... 'MagAziSqrd','imag(Hazi)^2', ... 'MagTransSqrd','real(Haxi)^2+real(Hrad)^2', ... 'ElecAziSqrd','real(Eazi)^2', ... 'ElecTransSqrd','imag(Eaxi)^2+imag(Erad)^2'}; clear descr descr.expr= {'MagTransSqrd','transverse component of magnetic field squared','ElecAziSqrd','azimuthal component of electric field squared','ElecTransSqrd','transverse component of electric field squared','Daxi','axial component of electric displacement','MagAziSqrd','azimuthal component of magnetic field squared','DivH','divergence of magnetic field (should be zero!)','Erad','radial component of electric field strength','Drad','radial component of electric displacement','comment','elemental volume = 2 pi r d_r d_phi','Dazi','azimuthal component of electric displacement','Eaxi','axial component of electric field strength','Eazi','azimuthal component of electric field strength'}; xfem.descr = descr; clear draw draw.p.objs = {}; draw.p.name = {}; draw.c.objs = {}; draw.c.name = {}; draw.s.objs = {flbinary('g6','draw','toroidal_silica_microcavity_c33a_v5.mph'),flbinary('g5','draw','toroidal_silica_microcavity_c33a_v5.mph')}; draw.s.name = {'R1','CO1'}; xfem.draw = draw; xfem.const = {'c','299792458','k','2*pi/c','fc','k^2','alpha','1.0','M','93','delta_e','0.0','e1','n_silica^2*(1+delta_e)','e2','1.0','delta_eperp1','0*1e-3','eperp1','9.2725*(1+delta_eperp1)','delta_epara1','0*1e-3','epara1','11.3486*(1+delta_epara1)','eperp2','1.0','epara2','1.0','e_293K_alumina','9.8','eperp_4K_sapph_UWA','9.2725','epara_4K_sapph_UWA','11.3486','eperp_293K_sapph','9.407','epara_293K_sapph','11.62','eperp_4K_sapph_NPL','9.2848','epara_4K_sapph_NPL','11.3660','n_silica','1.4457','n_AlGaAs','3.36','mf','2.374616e14','ttgH','1','ttgE','0','rectangle_mf','2.376629e14','circle_mf','2.374616e14','mixing_angle','45','cMW','sin(mixing_angle * pi /180)','cEW','cos(mixing_angle * pi /180)','tngM','1','tngE','0'}; xfem.globalexpr = {}; clear fcns xfem.functions = {}; descr = xfem.descr; descr.const= {'n_silica','refractive index of thermally grown silica (Fig B.2, p. 172 of Kippenberg''s thesis)','eperp1','relative permittivity of uniaxial_dielectric_1 perpendicular to cylindrical axis','e_293K_alumina','relative permittivity of alumina at room temperature','c','speed of light (exact!)','delta_epara1','fractional increment (for determining filling factors)','delta_eperp1','fractional increment (for determining filling factors)','eperp2','relative permittivity of uniaxial_dielectric_2 perpendicular to cylindrical axis','M','azimuthal mode order','fc','constant used internally --do not modify','eperp_4K_sapph_UWA','UWA values for cryogenic HEMEX sapphire','delta_e','fractional increment (for determining filling factors)','e1','relative permittivity of isotropic_dielectric_1','epara1','relative permittivity of uniaxial_dielectric_1 parallel to cylindrical axis','epara2','ditto but parallel to cylindrical axis','e2','ditto for isotropic_dielectric_2','cMW','Magnetic-Wall-ness','eperp_293K_sapph','nominal room temperature values for same','alpha','penalty coefficient on Div H','mf','match frequency','eperp_4K_sapph_NPL','NPL values','n_AlGaAs','average refractive index of GaAs and AlGaAs layers (p. 172 of Srinivasan)','mixing_angle','Electric-Magnetic Mixing Angle (in degrees)','cEW','Electric-Wall-ness'}; xfem.descr = descr; xfem.sol = flbinary('xfem','solution','toroidal_silica_microcavity_c33a_v5.mph'); xfem.xmcases = [0]; xfem.mcases = [0]; flbinary clear; xfem.rulingmode = 'Axisymmetric'; xfem.solform = 'weak'; uq~tgui.solvemodel.toutcomp='off'; gui.solvemodel.currsolver='eig'; gui.solvemodel.solveroption=''; gui.solvemodel.postsolver='eig'; gui.solvemodel.nonlin='auto'; gui.solvemodel.ntol='1.0E-6'; gui.solvemodel.maxiter='25'; gui.solvemodel.manualdamp='off'; gui.solvemodel.hnlin='off'; gui.solvemodel.initstep='1.0'; gui.solvemodel.minstep='1.0E-4'; gui.solvemodel.rstep='10.0'; gui.solvemodel.useaugsolver='off'; gui.solvemodel.autoaugcomp='on'; gui.solvemodel.augcomp=''; gui.solvemodel.augtol='1.0E-6'; gui.solvemodel.augmaxiter='25'; gui.solvemodel.augsolver='lumped'; gui.solvemodel.atol='0.0010'; gui.solvemodel.rtol='0.01'; gui.solvemodel.tlist='0:0.1:1'; gui.solvemodel.tout='tlist'; gui.solvemodel.tsteps='free'; gui.solvemodel.manualreassem='off'; gui.solvemodel.emassconst='on'; gui.solvemodel.massconst='on'; gui.solvemodel.loadconst='on'; gui.solvemodel.constrconst='on'; gui.solvemodel.jacobianconst='on'; gui.solvemodel.constrjacobianconst='on'; gui.solvemodel.manualstep='off'; gui.solvemodel.initialstep='0.0010'; gui.solvemodel.maxorder='5'; gui.solvemodel.maxstep='1.0'; gui.solvemodel.timeusestopcond='off'; gui.solvemodel.paramusestopcond='off'; gui.solvemodel.masssingular='maybe'; gui.solvemodel.consistent='bweuler'; gui.solvemodel.estrat='0'; gui.solvemodel.complex='off'; gui.solvemodel.neigs='4'; gui.solvemodel.shift='0'; gui.solvemodel.maxeigit='300'; gui.solvemodel.etol='0.0'; gui.solvemodel.krylovdim='0'; gui.solvemodel.eigname='lambda'; gui.solvemodel.eigref='0'; gui.solvemodel.pname=''; gui.solvemodel.plist=''; gui.solvemodel.porder='1'; gui.solvemodel.manualparam='off'; gui.solvemodel.pinitstep='0.0'; gui.solvemodel.pminstep='0.0'; gui.solvemodel.pmaxstep='0.0'; gui.solvemodel.autooldcomp='on'; gui.solvemodel.oldcomp=''; gui.solvemodel.outform='auto'; gui.solvemodel.symmetric='on'; gui.solvemodel.symmhermit='hermitian'; gui.solvemodel.method='eliminate'; gui.solvemodel.nullfun='auto'; gui.solvemodel.blocksize='5000'; gui.solvemodel.uscale='auto'; gui.solvemodel.manscale=''; gui.solvemodel.rowscale='on'; gui.solvemodel.conjugate='on'; gui.solvemodel.complexfun='off'; gui.solvemodel.matherr='on'; gui.solvemodel.solfile='off'; gui.solvemodel.adaptgeom='currgeom'; gui.solvemodel.maxt='10000000'; gui.solvemodel.rmethod='longest'; gui.solvemodel.resmethod='coefficient'; gui.solvemodel.resorder='0'; gui.solvemodel.l2scale='1'; gui.solvemodel.l2staborder='2'; gui.solvemodel.eigselect='1'; gui.solvemodel.tpfun='fltpft'; gui.solvemodel.ngen='2'; gui.solvemodel.tpmult='1.7'; gui.solvemodel.tpworst='0.5'; gui.solvemodel.tpfract='0.5'; gui.solvemodel.autosolver='on'; gui.solvemodel.solcomp='Hazi,Hrad,Haxi'; gui.solvemodel.outcomp='Hazi,Hrad,Haxi'; gui.solvemodel.inittype='init_expr_currsol_radio'; gui.solvemodel.initsolnum='Automatic'; gui.solvemodel.inittime='0'; gui.solvemodel.utype='u_init_radio'; gui.solvemodel.usolnum='Automatic'; gui.solvemodel.utime='0'; gui.solvemodel.scriptcommands=''; gui.solvemodel.usescript='off'; gui.solvemodel.autoscript='off'; gui.solvemodel.sameaxis='off'; gui.solvemodel.linsolvernode.currlinsolver='spooles'; gui.solvemodel.linsolvernode.type='linsolver'; gui.solvemodel.linsolvernode.droptol='0.0'; gui.solvemodel.linsolvernode.thresh='0.1'; gui.solvemodel.linsolvernode.umfalloc='0.7'; gui.solvemodel.linsolvernode.preorder='mmd'; gui.solvemodel.linsolvernode.preroworder='on'; gui.solvemodel.linsolvernode.pardreorder='nd'; gui.solvemodel.linsolvernode.pardrreorder='on'; gui.solvemodel.linsolvernode.pivotperturb='1.0E-8'; gui.solvemodel.linsolvernode.errorchk='on'; gui.solvemodel.linsolvernode.iter='2'; gui.solvemodel.linsolvernode.prefuntype='left'; gui.solvemodel.linsolvernode.iluiter='1'; gui.solvemodel.linsolvernode.itol='1.0E-6'; gui.solvemodel.linsolvernode.rhob='400.0'; gui.solvemodel.linsolvernode.maxlinit='10000'; gui.solvemodel.linsolvernode.itrestart='50'; gui.solvemodel.linsolvernode.seconditer='1'; gui.solvemodel.linsolvernode.relax='1.0'; gui.solvemodel.linsolvernode.amgauto='3'; gui.solvemodel.linsolvernode.mglevels='6'; gui.solvemodel.linsolvernode.mgcycle='v'; gui.solvemodel.linsolvernode.maxcoarsedof='5000'; gui.solvemodel.linsolvernode.oocmemory='128.0'; gui.solvemodel.linsolvernode.oocfilename=''; gui.solvemodel.linsolvernode.modified='off'; gui.solvemodel.linsolvernode.fillratio='2.0'; gui.solvemodel.linsolvernode.respectpattern='on'; gui.solvemodel.linsolvernode.droptype='droptol'; gui.solvemodel.linsolvernode.vankavars=''; gui.solvemodel.linsolvernode.vankasolv='gmres'; gui.solvemodel.linsolvernode.vankatol='0.02'; gui.solvemodel.linsolvernode.vankarestart='100'; gui.solvemodel.linsolvernode.vankarelax='0.8'; gui.solvemodel.linsolvernode.mgauto='shape'; gui.solvemodel.linsolvernode.rmethod='regular'; gui.solvemodel.linsolvernode.coarseassem='on'; gui.solvemodel.linsolvernode.meshscale='2'; gui.solvemodel.linsolvernode.mgautolevels='2'; gui.solvemodel.linsolvernode.mgkeep='off'; gui.solvemodel.linsolvernode.mggeom='Geom1'; gui.solvemodel.linsolvernode.mcase0='on'; gui.solvemodel.linsolvernode.mgassem0='on'; gui.registry.general_currentmodel='Geom1'; gui.registry.general_currmeshcase='0'; gui.registry.general_savedonserver='off'; gui.registry.general_savedchanges='off'; gui.registry.general_rulingmode=''; gui.registry.general_incompletemfilehistory='off'; gui.registry.saved_license='1012177'; gui.registry.saved_version='COMSOL 3.3.0.511'; gui.registry.info_modelname=''; gui.registry.info_author=''; gui.registry.info_company=''; gui.registry.info_department=''; gui.registry.info_reference=''; gui.registry.info_url=''; gui.registry.info_saveddate='1187649031143'; gui.registry.info_creationdate='1173799849869'; gui.registry.info_modelresult=''; gui.reportregistry.report_contents=''; gui.reportregistry.report_outputformat='html'; gui.reportregistry.report_filename=''; gui.reportregistry.report_autoopen='on'; gui.reportregistry.report_paperformat='a4'; gui.reportregistry.report_includedefaults='off'; gui.reportregistry.report_template='full'; gui.reportregistry.report_showemptysections='off'; gui.flmodel{1}.modelname='Geom1'; gui.flmodel{1}.currmode='post'; gui.flmodel{1}.currappl='0'; gui.flmodel{1}.axis.xmin='4.181241379310344'; gui.flmodel{1}.axis.xmax='13.818758620689657'; gui.flmodel{1}.axis.ymin='-4.4'; gui.flmodel{1}.axis.ymax='4.4'; gui.flmodel{1}.axis.zmin='-1.0'; gui.flmodel{1}.axis.zmax='1.0'; gui.flmodel{1}.axis.xspacing='1.0'; gui.flmodel{1}.axis.yspacing='1.0'; gui.flmodel{1}.axis.zspacing='1.0'; gui.flmodel{1}.axis.extrax=''; gui.flmodel{1}.axis.extray=''; gui.flmodel{1}.axis.extraz=''; gui.flmodel{1}.camera.xmin='-0.48187586206896565'; gui.flmodel{1}.camera.xmax='0.48187586206896565'; gui.flmodel{1}.camera.ymin='-0.44000000000000017'; gui.flmodel{1}.camera.ymax='0.44000000000000017'; gui.flmodel{1}.camera.camposx='0.9000000000000001'; gui.flmodel{1}.camera.camposy='0.0'; gui.flmodel{1}.camera.camposz='4.818758620689657'; gui.flmodel{1}.camera.camtargetx='0.9000000000000001'; gui.flmodel{1}.camera.camtargety='0.0'; gui.flmodel{1}.camera.camtargetz='0.0'; gui.flmodel{1}.camera.camupx='0.0'; gui.flmodel{1}.camera.camupy='1.0'; gui.flmodel{1}.camera.camupz='0.0'; gui.flmodel{1}.lightmodel.headlight.type='point'; gui.flmodel{1}.lightmodel.headlight.name='headlight'; gui.flmodel{1}.lightmodel.headlight.enable='on'; gui.flmodel{1}.lightmodel.headlight.colorr='255'; gui.flmodel{1}.lightmodel.headlight.colorg='255'; gui.flmodel{1}.lightmodel.headlight.colorb='255'; gui.flmodel{1}.lightmodel.headlight.xpos='0.9'; gui.flmodel{1}.lightmodel.headlight.ypos='0.0'; gui.flmodel{1}.lightmodel.headlight.zpos='4.8187585'; gui.flmodel{1}.lightmodel.scenelight{1}.type='directional'; gui.flmodel{1}.lightmodel.scenelight{1}.name='light 1'; gui.flmodel{1}.lightmodel.scenelight{1}.enable='on'; gui.flmodel{1}.lightmodel.scenelight{1}.colorr='255'; gui.flmodel{1}.lightmodel.scenelight{1}.colorg='255'; gui.flmodel{1}.lightmodel.scenelight{1}.colorb='255'; gui.flmodel{1}.lightmodel.scenelight{1}.xdir='1.0'; gui.flmodel{1}.lightmodel.scenelight{1}.ydir='-1.0'; gui.flmodel{1}.lightmodel.scenelight{1}.zdir='1.0'; gui.flmodel{1}.lightmodel.scenelight{2}.type='directional'; gui.flmodel{1}.lightmodel.scenelight{2}.name='light 2'; gui.flmodel{1}.lightmodel.scenelight{2}.enable='on'; gui.flmodel{1}.lightmodel.scenelight{2}.colorr='255'; gui.flmodel{1}.lightmodel.scenelight{2}.colorg='255'; gui.flmodel{1}.lightmodel.scenelight{2}.colorb='255'; gui.flmodel{1}.lightmodel.scenelight{2}.xdir='-1.0'; gui.flmodel{1}.lightmodel.scenelight{2}.ydir='1.0'; gui.flmodel{1}.lightmodel.scenelight{2}.zdir='-1.0'; gui.flmodel{1}.lightmodel.scenelight{3}.type='directional'; gui.flmodel{1}.lightmodel.scenelight{3}.name='light 3'; gui.flmodel{1}.lightmodel.scenelight{3}.enable='on'; gui.flmodel{1}.lightmodel.scenelight{3}.colorr='255'; gui.flmodel{1}.lightmodel.scenelight{3}.colorg='255'; gui.flmodel{1}.lightmodel.scenelight{3}.colorb='255'; gui.flmodel{1}.lightmodel.scenelight{3}.xdir='-1.0'; gui.flmodel{1}.lightmodel.scenelight{3}.ydir='-1.0'; gui.flmodel{1}.lightmodel.scenelight{3}.zdir='1.0'; gui.flmodel{1}.lightmodel.scenelight{4}.type='directional'; gui.flmodel{1}.lightmodel.scenelight{4}.name='light 4'; gui.flmodel{1}.lightmodel.scenelight{4}.enable='on'; gui.flmodel{1}.lightmodel.scenelight{4}.colorr='255'; gui.flmodel{1}.lightmodel.scenelight{4}.colorg='255'; gui.flmodel{1}.lightmodel.scenelight{4}.colorb='255'; gui.flmodel{1}.lightmodel.scenelight{4}.xdir='1.0'; gui.flmodel{1}.lightmodel.scenelight{4}.ydir='-1.0'; gui.flmodel{1}.lightmodel.scenelight{4}.zdir='-1.0'; gui.flmodel{1}.registry.axis_visible='on'; gui.flmodel{1}.registry.axis_auto='on'; gui.flmodel{1}.registry.axis_autoy='on'; gui.flmodel{1}.registry.axis_autoz='on'; gui.flmodel{1}.registry.axis_box='off'; gui.flmodel{1}.registry.axis_equal='on'; gui.flmodel{1}.registry.axis_csys='on'; gui.flmodel{1}.registry.grid_visible='on'; gui.flmodel{1}.registry.grid_auto='on'; gui.flmodel{1}.registry.grid_autoz='on'; gui.flmodel{1}.registry.grid_labels='on'; gui.flmodel{1}.registry.labels_object='on'; gui.flmodel{1}.registry.labels_vertex='off'; gui.flmodel{1}.registry.labels_edge='off'; gui.flmodel{1}.registry.labels_face='off'; gui.flmodel{1}.registry.labels_subdomain='off'; gui.flmodel{1}.registry.symbols_vertexscale='1.0'; gui.flmodel{1}.registry.symbols_edgescale='1.0'; gui.flmodel{1}.registry.symbols_facescale='1.0'; gui.flmodel{1}.registry.select_draw2d='size'; gui.flmodel{1}.registry.select_adj='cycle'; gui.flmodel{1}.registry.light_headlight='off'; gui.flmodel{1}.registry.light_scenelight='off'; gui.flmodel{1}.registry.light_shininess='0.5'; gui.flmodel{1}.registry.camera_mouse='orbit'; gui.flmodel{1}.registry.camera_camconstr='none'; gui.flmodel{1}.registry.camera_mouseconstr='none'; gui.flmodel{1}.registry.camera_perspective='off'; gui.flmodel{1}.registry.camera_moveasbox='off'; gui.flmodel{1}.registry.draw_assembly='off'; gui.flmodel{1}.registry.draw_dialog='off'; gui.flmodel{1}.registry.draw_keepborders='on'; gui.flmodel{1}.registry.draw_keepedges='off'; gui.flmodel{1}.registry.draw_multi='off'; gui.flmodel{1}.registry.draw_snap2grid='on'; gui.flmodel{1}.registry.draw_snap2vtx='on'; gui.flmodel{1}.registry.draw_solid='on'; gui.flmodel{1}.registry.draw_workplane_coordsys='on'; gui.flmodel{1}.registry.draw_workplane_showgeom='on'; gui.flmodel{1}.registry.draw_repair='off'; gui.flmodel{1}.registry.draw_repairtol=''; gui.flmodel{1}.registry.draw_projection='intersection'; gui.flmodel{1}.registry.transparency_value='1.0'; gui.flmodel{1}.registry.mesh_geomdetail='normal'; gui.flmodel{1}.registry.mesh_showquality='off'; gui.flmodel{1}.registry.post_cameraview='2'; gui.flmodel{1}.registry.graphics_scale='0.1'; gui.flmodel{1}.registry.render_mesh='off'; gui.flmodel{1}.registry.render_bndarrow='on'; gui.flmodel{1}.registry.render_vertex='off'; gui.flmodel{1}.registry.render_edge='on'; gui.flmodel{1}.registry.render_face='off'; gui.flmodel{1}.registry.highlight_vertex='off'; gui.flmodel{1}.registry.highlight_edge='on'; gui.flmodel{1}.registry.highlight_face='on'; gui.flmodel{1}.meshparam.hauto='5'; gui.flmodel{1}.meshparam.usehauto='on'; gui.flmodel{1}.meshparam.hmax=''; gui.flmodel{1}.meshparam.hmaxfact='0.55'; gui.flmodel{1}.meshparam.hcurve='0.25'; gui.flmodel{1}.meshparam.hgrad='1.25'; gui.flmodel{1}.meshparam.hcutoff='0.0005'; gui.flmodel{1}.meshparam.hnarrow='1'; gui.flmodel{1}.meshparam.hpnt='10'; gui.flmodel{1}.meshparam.xscale='1.0'; gui.flmodel{1}.meshparam.yscale='1.0'; gui.flmodel{1}.meshparam.jiggle='on'; gui.flmodel{1}.meshparam.mcase='0'; gui.flmodel{1}.meshparam.boxcoord='6.977844311377245 10.165868263473055 -1.9365269461077839 1.976047904191617'; gui.flmodel{1}.meshparam.rmethod='regular'; gui.flmodel{1}.meshparam.hmaxvtx={'','','','','','','','','','',''}; gui.flmodel{1}.meshparam.hgradvtx={'','','','','','','','','','',''}; gui.flmodel{1}.meshparam.hmaxedg={'','','','','','','','','','','',''}; gui.flmodel{1}.meshparam.hcutoffedg={'','','','','','','','','','','',''}; gui.flmodel{1}.meshparam.hcurveedg={'','','','','','','','','','','',''}; gui.flmodel{1}.meshparam.hgradedg={'','','','','','','','','','','',''}; gui.flmodel{1}.meshparam.hgradsub={'',''}; gui.flmodel{1}.meshparam.hmaxsub={'',''}; gui.flmodel{1}.postmodel.postplot.triplot='on'; gui.flmodel{1}.postmodel.postplot.tridata={'log10(ElecTransSqrd+1e-2)'}; gui.flmodel{1}.postmodel.postplot.trirangeauto='on'; gui.flmodel{1}.postmodel.postplot.trirangemin='-2.0'; gui.flmodel{1}.postmodel.postplot.trirangemax='3.5751709358693065'; gui.flmodel{1}.postmodel.postplot.tricont='on'; gui.flmodel{1}.postmodel.postplot.triheightdata={'Hrad'}; gui.flmodel{1}.postmodel.postplot.triheightdatacheck='off'; gui.flmodel{1}.postmodel.postplot.trimap='jet'; gui.flmodel{1}.postmodel.postplot.trimapdepth='1024'; gui.flmodel{1}.postmodel.postplot.tribar='on'; gui.flmodel{1}.postmodel.postplot.triusemap='on'; gui.flmodel{1}.postmodel.postplot.tricolor='255,0,0'; gui.flmodel{1}.postmodel.postplot.tricoloring='interp'; gui.flmodel{1}.postmodel.postplot.trifill='fill'; gui.flmodel{1}.postmodel.postplot.contplot='on'; gui.flmodel{1}.postmodel.postplot.contdata={'log10(ElecTransSqrd+1e-2)'}; gui.flmodel{1}.postmodel.postplot.contcont='on'; gui.flmodel{1}.postmodel.postplot.contheightdata={'Hrad'}; gui.flmodel{1}.postmodel.postplot.contheightdatacheck='off'; gui.flmodel{1}.postmodel.postplot.contcolordata={'Hrad'}; gui.flmodel{1}.postmodel.postplot.contcolorrangeauto='on'; gui.flmodel{1}.postmodel.postplot.contcolorrangemin=''; gui.flmodel{1}.postmodel.postplot.contcolorrangemax=''; gui.flmodel{1}.postmodel.postplot.contcolordatacheck='off'; gui.flmodel{1}.postmodel.postplot.contmap='cool'; gui.flmodel{1}.postmodel.postplot.contmapdepth='1024'; gui.flmodel{1}.postmodel.postplot.contbar='on'; gui.flmodel{1}.postmodel.postplot.contusemap='on'; gui.flmodel{1}.postmodel.postplot.contcolor='255,0,0'; gui.flmodel{1}.postmodel.postplot.contlevels='10'; gui.flmodel{1}.postmodel.postplot.contvectorlevels=''; gui.flmodel{1}.postmodel.postplot.contisvector='off'; gui.flmodel{1}.postmodel.postplot.contlabel='off'; gui.flmodel{1}.postmodel.postplot.contfill='off'; gui.flmodel{1}.postmodel.postplot.linplot='off'; gui.flmodel{1}.postmodel.postplot.lindata={'Hrad'}; gui.flmodel{1}.postmodel.postplot.linrangeauto='on'; gui.flmodel{1}.postmodel.postplot.linrangemin=''; gui.flmodel{1}.postmodel.postplot.linrangemax=''; gui.flmodel{1}.postmodel.postplot.lincont='on'; gui.flmodel{1}.postmodel.postplot.linheightdata={'Hrad'}; gui.flmodel{1}.postmodel.postplot.linheightdatacheck='off'; gui.flmodel{1}.postmodel.postplot.linmap='jet'; gui.flmodel{1}.postmodel.postplot.linmapdepth='1024'; gui.flmodel{1}.postmodel.postplot.linbar='on'; gui.flmodel{1}.postmodel.postplot.linusemap='on'; gui.flmodel{1}.postmodel.postplot.lincolor='255,0,0'; gui.flmodel{1}.postmodel.postplot.lincoloring='interp'; gui.flmodel{1}.postmodel.postplot.arrowplot='on'; gui.flmodel{1}.postmodel.postplot.arrowploton='sub'; gui.flmodel{1}.postmodel.postplot.arrowdata={'Hrad','Haxi'}; gui.flmodel{1}.postmodel.postplot.arrowbnddata={'Hrad','Hazi'}; gui.flmodel{1}.postmodel.postplot.arrowheightdata={'Hrad'}; gui.flmodel{1}.postmodel.postplot.arrowheightdatacheck='off'; gui.flmodel{1}.postmodel.postplot.arrowxspacing='15'; gui.flmodel{1}.postmodel.postplot.arrowxvectorspacing=''; gui.flmodel{1}.postmodel.postplot.arrowxisvector='off'; gui.flmodel{1}.postmodel.postplot.arrowyspacing='13'; gui.flmodel{1}.postmodel.postplot.arrowyvectorspacing=''; gui.flmodel{1}.postmodel.postplot.arrowyisvector='off'; gui.flmodel{1}.postmodel.postplot.arrowtype='arrow'; gui.flmodel{1}.postmodel.postplot.arrowlength='proportional'; gui.flmodel{1}.postmodel.postplot.arrowcolor='255,255,255'; gui.flmodel{1}.postmodel.postplot.arrowautoscale='off'; gui.flmodel{1}.postmodel.postplot.arrowscale='1.2'; gui.flmodel{1}.postmodel.postplot.princplot='off'; gui.flmodel{1}.postmodel.postplot.princdata={'','','','','','','','','','','',''}; gui.flmodel{1}.postmodel.postplot.princheightdata={'Hrad'}; gui.flmodel{1}.postmodel.postplot.princheightdatacheck='off'; gui.flmodel{1}.postmodel.postplot.princxspacing='8'; gui.flmodel{1}.postmodel.postplot.princxvectorspacing=''; gui.flmodel{1}.postmodel.postplot.princxisvector='off'; gui.flmodel{1}.postmodel.postplot.princyspacing='8'; gui.flmodel{1}.postmodel.postplot.princyvectorspacing=''; gui.flmodel{1}.postmodel.postplot.princyisvector='off'; gui.flmodel{1}.postmodel.postplot.princtype='arrow'; gui.flmodel{1}.postmodel.postplot.princlength='proportional'; gui.flmodel{1}.postmodel.postplot.princcolor='0,153,0'; gui.flmodel{1}.postmodel.postplot.princautoscale='on'; gui.flmodel{1}.postmodel.postplot.princscale='1'; gui.flmodel{1}.postmodel.postplot.flowplot='off'; gui.flmodel{1}.postmodel.postplot.flowdata={'Hrad','Hazi'}; gui.flmodel{1}.postmodel.postplot.flowuseexpression='off'; gui.flmodel{1}.postmodel.postplot.flowcolor='255,0,0'; gui.flmodel{1}.postmodel.postplot.flowcolordata={'Hrad'}; gui.flmodel{1}.postmodel.postplot.flowmap='jet'; gui.flmodel{1}.postmodel.postplot.flowmapdepth='1024'; gui.flmodel{1}.postmodel.postplot.flowbar='on'; gui.flmodel{1}.postmodel.postplot.flowheightdata={'Hrad'}; gui.flmodel{1}.postmodel.postplot.flowheightdatacheck='off'; gui.flmodel{1}.postmodel.postplot.flowlines='20'; gui.flmodel{1}.postmodel.postplot.flowstart='sub'; gui.flmodel{1}.postmodel.postplot.flowstartx=''; gui.flmodel{1}.postmodel.postplot.flowstarty=''; gui.flmodel{1}.postmodel.postplot.flowisstartvector='off'; gui.flmodel{1}.postmodel.postplot.flowtol='0.01'; gui.flmodel{1}.postmodel.postplot.flowstattol='0.01'; gui.flmodel{1}.postmodel.postplot.flowlooptol='0.01'; gui.flmodel{1}.postmodel.postplot.flowmaxtime='Inf'; gui.flmodel{1}.postmodel.postplot.flowmaxsteps='5000'; gui.flmodel{1}.postmodel.postplot.flowback='on'; gui.flmodel{1}.postmodel.postplot.flownormal='off'; gui.flmodel{1}.postmodel.postplot.flowdistuniform='0.05'; gui.flmodel{1}.postmodel.postplot.flowlinesvel='20'; gui.flmodel{1}.postmodel.postplot.flowseedmanual='off'; gui.flmodel{1}.postmodel.postplot.flowseed1=''; gui.flmodel{1}.postmodel.postplot.flowseed2=''; gui.flmodel{1}.postmodel.postplot.flowinitref='1'; gui.flmodel{1}.postmodel.postplot.flowignoredist='0.5'; gui.flmodel{1}.postmodel.postplot.flowsat='1.3'; gui.flmodel{1}.postmodel.postplot.flowdistend='0.5'; gui.flmodel{1}.postmodel.postplot.flowdens='none'; gui.flmodel{1}.postmodel.postplot.partplot='off'; gui.flmodel{1}.postmodel.postplot.partmasstype='mass'; gui.flmodel{1}.postmodel.postplot.partplotas='lines'; gui.flmodel{1}.postmodel.postplot.predefforces=''; gui.flmodel{1}.postmodel.postplot.partmass='1'; gui.flmodel{1}.postmodel.postplot.partforce={'','',''}; gui.flmodel{1}.postmodel.postplot.part_massless_flowdata={'Hrad','Hazi'}; gui.flmodel{1}.postmodel.postplot.parttstartauto='on'; gui.flmodel{1}.postmodel.postplot.parttstart=''; gui.flmodel{1}.postmodel.postplot.partvelstart={'0','0','0'}; gui.flmodel{1}.postmodel.postplot.partstartptssel='partstart_explicit'; gui.flmodel{1}.postmodel.postplot.partstartdl=''; gui.flmodel{1}.postmodel.postplot.partstartedim1levels='10'; gui.flmodel{1}.postmodel.postplot.partstartedim1vectorlevels=''; gui.flmodel{1}.postmodel.postplot.partstartedim1isvector='off'; gui.flmodel{1}.postmodel.postplot.explicitcoord={'0','0'}; gui.flmodel{1}.postmodel.postplot.partuseexpression='off'; gui.flmodel{1}.postmodel.postplot.partcolor='255,0,0'; gui.flmodel{1}.postmodel.postplot.partcolordata={'Hrad'}; gui.flmodel{1}.postmodel.postplot.partmap='jet'; gui.flmodel{1}.postmodel.postplot.partmapdepth='1024'; gui.flmodel{1}.postmodel.postplot.partbar='on'; gui.flmodel{1}.postmodel.postplot.partpointcolor='255,0,0'; gui.flmodel{1}.postmodel.postplot.partpointautoscale='on'; gui.flmodel{1}.postmodel.postplot.partpointscale='1'; gui.flmodel{1}.postmodel.postplot.partdroptype='once'; gui.flmodel{1}.postmodel.postplot.partdroptimes=''; gui.flmodel{1}.postmodel.postplot.partdropfreq=''; gui.flmodel{1}.postmodel.postplot.partbnd='stick'; gui.flmodel{1}.postmodel.postplot.partmasslessrtol='0.001'; gui.flmodel{1}.postmodel.postplot.partmasslessatolmanual='off'; gui.flmodel{1}.postmodel.postplot.partmasslessatol={''}; gui.flmodel{1}.postmodel.postplot.partmasslessstepsizemanual='off'; gui.flmodel{1}.postmodel.postplot.partmasslesstendauto='on'; gui.flmodel{1}.postmodel.postplot.partmasslessmaxstepsauto='on'; gui.flmodel{1}.postmodel.postplot.partmasslessedgetol='0.001'; gui.flmodel{1}.postmodel.postplot.partmasslesstvar='partt'; gui.flmodel{1}.postmodel.postplot.partmasslessstatic='off'; gui.flmodel{1}.postmodel.postplot.partmasslessres='5'; gui.flmodel{1}.postmodel.postplot.partrtol='0.001'; gui.flmodel{1}.postmodel.postplot.partatolmanual='off'; gui.flmodel{1}.postmodel.postplot.partatol={'',''}; gui.flmodel{1}.postmodel.postplot.partstepsizemanual='off'; gui.flmodel{1}.postmodel.postplot.parttendauto='on'; gui.flmodel{1}.postmodel.postplot.partmaxstepsauto='on'; gui.flmodel{1}.postmodel.postplot.partedgetol='0.001'; gui.flmodel{1}.postmodel.postplot.partvelvar={'partu','partv','partw'}; gui.flmodel{1}.postmodel.postplot.parttvar='partt'; gui.flmodel{1}.postmodel.postplot.partstatic='off'; gui.flmodel{1}.postmodel.postplot.partres='5'; gui.flmodel{1}.postmodel.postplot.maxminplot='on'; gui.flmodel{1}.postmodel.postplot.maxminsubdata={'ElecTransSqrd'}; gui.flmodel{1}.postmodel.postplot.maxminsubdatacheck='on'; gui.flmodel{1}.postmodel.postplot.maxminbnddata={'Hrad'}; gui.flmodel{1}.postmodel.postplot.maxminbnddatacheck='off'; gui.flmodel{1}.postmodel.postplot.geom='on'; gui.flmodel{1}.postmodel.postplot.roughplot='off'; gui.flmodel{1}.postmodel.postplot.autorefine='on'; gui.flmodel{1}.postmodel.postplot.refine='3'; gui.flmodel{1}.postmodel.postplot.geomnum={'Geom1'}; gui.flmodel{1}.postmodel.postplot.phase='90'; gui.flmodel{1}.postmodel.postplot.solnum='0'; gui.flmodel{1}.postmodel.postplot.selectvia='stored'; gui.flmodel{1}.postmodel.postplot.autotitle='on'; gui.flmodel{1}.postmodel.postplot.customtitle=''; gui.flmodel{1}.postmodel.postplot.smoothinternal='on'; gui.flmodel{1}.postmodel.postplot.useellogic='off'; gui.flmodel{1}.postmodel.postplot.ellogic=''; gui.flmodel{1}.postmodel.postplot.ellogictype='all'; gui.flmodel{1}.postmodel.postplot.deformplot='off'; gui.flmodel{1}.postmodel.postplot.deformsub='on'; gui.flmodel{1}.postmodel.postplot.deformbnd='on'; gui.flmodel{1}.postmodel.postplot.deformsubdata={'Hrad','Hazi'}; gui.flmodel{1}.postmodel.postplot.deformbnddata={'Hrad','Hazi'}; gui.flmodel{1}.postmodel.postplot.deformautoscale='on'; gui.flmodel{1}.postmodel.postplot.deformscale='1'; gui.flmodel{1}.postmodel.postplot.animate_solnum='0'; gui.flmodel{1}.postmodel.postplot.animate_selectvia='stored'; gui.flmodel{1}.postmodel.postplot.filetype='AVI'; gui.flmodel{1}.postmodel.postplot.width='640'; gui.flmodel{1}.postmodel.postplot.height='480'; gui.flmodel{1}.postmodel.postplot.fps='10'; gui.flmodel{1}.postmodel.postplot.statfunctype='full'; gui.flmodel{1}.postmodel.postplot.statnframes='11'; gui.flmodel{1}.postmodel.postplot.reverse='off'; gui.flmodel{1}.postmodel.postplot.movieinmatlab='off'; gui.flmodel{1}.postmodel.postplot.copyaxis='off'; gui.flmodel{1}.postmodel.intdata{1}.intdata={'Hrad'}; gui.flmodel{1}.postmodel.intdata{1}.phase='0'; gui.flmodel{1}.postmodel.intdata{1}.solnum='0'; gui.flmodel{1}.postmodel.intdata{1}.selectvia='stored'; gui.flmodel{1}.postmodel.intdata{2}.autoorder='on'; gui.flmodel{1}.postmodel.intdata{2}.multiplyexpr='off'; gui.flmodel{1}.postmodel.intdata{2}.intdata={'Hrad'}; gui.flmodel{1}.postmodel.intdata{2}.phase='0'; gui.flmodel{1}.postmodel.intdata{2}.solnum='0'; gui.flmodel{1}.postmodel.intdata{2}.selectvia='stored'; gui.flmodel{1}.postmodel.intdata{3}.order='4'; gui.flmodel{1}.postmodel.intdata{3}.autoorder='on'; gui.flmodel{1}.postmodel.intdata{3}.multiplyexpr='off'; gui.flmodel{1}.postmodel.intdata{3}.intdata={'MagTransSqrd*2*pi*r'}; gui.flmodel{1}.postmodel.intdata{3}.phase='0'; gui.flmodel{1}.postmodel.intdata{3}.solnum='0'; gui.flmodel{1}.postmodel.intdata{3}.selectvia='stored'; gui.flmodel{1}.postmodel.domainplot.colordata={'Hrad'}; gui.flmodel{1}.postmodel.domainplot.colorrangeauto='on'; gui.flmodel{1}.postmodel.domainplot.colorrangemin=''; gui.flmodel{1}.postmodel.domainplot.colorrangemax=''; gui.flmodel{1}.postmodel.domainplot.colorcont='on'; gui.flmodel{1}.postmodel.domainplot.surfacesurfacemap='jet'; gui.flmodel{1}.postmodel.domainplot.surfacesurfacemapdepth='1024'; gui.flmodel{1}.postmodel.domainplot.surfacesurfacebar='on'; gui.flmodel{1}.postmodel.domainplot.surfacesurfaceusemap='on'; gui.flmodel{1}.postmodel.domainplot.surfacesurfacecolor='255,0,0'; gui.flmodel{1}.postmodel.domainplot.surfacesurfacecoloring='interp'; gui.flmodel{1}.postmodel.domainplot.surfacesurfacefill='fill'; gui.flmodel{1}.postmodel.domainplot.extrusion='off'; gui.flmodel{1}.postmodel.domainplot.lineyaxisdata={'Hrad'}; gui.flmodel{1}.postmodel.domainplot.lineyaxiscont='on'; gui.flmodel{1}.postmodel.domainplot.linexaxisxaxistype='arc'; gui.flmodel{1}.postmodel.domainplot.linexaxisuseexpr='off'; gui.flmodel{1}.postmodel.domainplot.linexaxisdata={'Hrad'}; gui.flmodel{1}.postmodel.domainplot.linelinestyle='solid'; gui.flmodel{1}.postmodel.domainplot.linelinecolor='cyclecolor'; gui.flmodel{1}.postmodel.domainplot.linelinemarker='none'; gui.flmodel{1}.postmodel.domainplot.linelegend='off'; gui.flmodel{1}.postmodel.domainplot.linelinelabels='off'; gui.flmodel{1}.postmodel.domainplot.linecolor='255,0,0'; gui.flmodel{1}.postmodel.domainplot.linesurfacemap='jet'; gui.flmodel{1}.postmodel.domainplot.linesurfacemapdepth='1024'; gui.flmodel{1}.postmodel.domainplot.linesurfacebar='on'; gui.flmodel{1}.postmodel.domainplot.linesurfaceusemap='on'; gui.flmodel{1}.postmodel.domainplot.linesurfacecolor='255,0,0'; gui.flmodel{1}.postmodel.domainplot.linesurfacecoloring='interp'; gui.flmodel{1}.postmodel.domainplot.linesurfacefill='fill'; gui.flmodel{1}.postmodel.domainplot.pointyaxisdata={'Hrad'}; gui.flmodel{1}.postmodel.domainplot.pointxxaxistype=''; gui.flmodel{1}.postmodel.domainplot.pointxuseexpr='off'; gui.flmodel{1}.postmodel.domainplot.pointxdata={'Hrad'}; gui.flmodel{1}.postmodel.domainplot.pointlinestyle='solid'; gui.flmodel{1}.postmodel.domainplot.pointlinecolor='cyclecolor'; gui.flmodel{1}.postmodel.domainplot.pointlinemarker='none'; gui.flmodel{1}.postmodel.domainplot.pointlegend='off'; gui.flmodel{1}.postmodel.domainplot.pointlinelabels='off'; gui.flmodel{1}.postmodel.domainplot.pointcolor='255,0,0'; gui.flmodel{1}.postmodel.domainplot.crossdispcolor='255,0,0'; gui.flmodel{1}.postmodel.domainplot.phase='0'; gui.flmodel{1}.postmodel.domainplot.solnum='0'; gui.flmodel{1}.postmodel.domainplot.selectvia='stored'; gui.flmodel{1}.postmodel.domainplot.autotitle='on'; gui.flmodel{1}.postmodel.domainplot.customtitle=''; gui.flmodel{1}.postmodel.domainplot.autolabelx='on'; gui.flmodel{1}.postmodel.domainplot.customlabelx=''; gui.flmodel{1}.postmodel.domainplot.autolabely='on'; gui.flmodel{1}.postmodel.domainplot.customlabely=''; gui.flmodel{1}.postmodel.domainplot.axistype={'lin','lin'}; gui.flmodel{1}.postmodel.domainplot.smoothinternal='on'; gui.flmodel{1}.postmodel.domainplot.autorefine='on'; gui.flmodel{1}.postmodel.domainplot.refine='3'; gui.flmodel{1}.postmodel.domainplot.plottypeind='0'; gui.flmodel{1}.postmodel.crossplot.extrusion='off'; gui.flmodel{1}.postmodel.crossplot.lineyaxisdata={'Hrad'}; gui.flmodel{1}.postmodel.crossplot.linexaxisxaxistype='arc'; gui.flmodel{1}.postmodel.crossplot.linexaxisuseexpr='off'; gui.flmodel{1}.postmodel.crossplot.linexaxisdata={'Hrad'}; gui.flmodel{1}.postmodel.crossplot.linelinestyle='solid'; gui.flmodel{1}.postmodel.crossplot.linelinecolor='cyclecolor'; gui.flmodel{1}.postmodel.crossplot.linelinemarker='none'; gui.flmodel{1}.postmodel.crossplot.linelegend='off'; gui.flmodel{1}.postmodel.crossplot.linelinelabels='off'; gui.flmodel{1}.postmodel.crossplot.linecolor='255,0,0'; gui.flmodel{1}.postmodel.crossplot.linesurfacemap='jet'; gui.flmodel{1}.postmodel.crossplot.linesurfacemapdepth='1024'; gui.flmodel{1}.postmodel.crossplot.linesurfacebar='on'; gui.flmodel{1}.postmodel.crossplot.linesurfaceusemap='on'; gui.flmodel{1}.postmodel.crossplot.linesurfacecolor='255,0,0'; gui.flmodel{1}.postmodel.crossplot.linesurfacecoloring='interp'; gui.flmodel{1}.postmodel.crossplot.linesurfacefill='fill'; gui.flmodel{1}.postmodel.crossplot.lineresolution='200'; gui.flmodel{1}.postmodel.crossplot.linecoord={'0','1','0','0'}; gui.flmodel{1}.postmodel.crossplot.linelevels='5'; gui.flmodel{1}.postmodel.crossplot.linevectorlevels=''; gui.flmodel{1}.postmodel.crossplot.lineisvector='off'; gui.flmodel{1}.postmodel.crossplot.lineactive='off'; gui.flmodel{1}.postmodel.crossplot.pointyaxisdata={'Hrad'}; gui.flmodel{1}.postmodel.crossplot.pointxxaxistype=''; gui.flmodel{1}.postmodel.crossplot.pointxuseexpr='off'; gui.flmodel{1}.postmodel.crossplot.pointxdata={'Hrad'}; gui.flmodel{1}.postmodel.crossplot.pointlinestyle='solid'; gui.flmodel{1}.postmodel.crossplot.pointlinecolor='cyclecolor'; gui.flmodel{1}.postmodel.crossplot.pointlinemarker='none'; gui.flmodel{1}.postmodel.crossplot.pointlegend='off'; gui.flmodel{1}.postmodel.crossplot.pointlinelabels='off'; gui.flmodel{1}.postmodel.crossplot.pointcolor='255,0,0'; gui.flmodel{1}.postmodel.crossplot.pointcoord={'0','0'}; gui.flmodel{1}.postmodel.crossplot.crossdispcolor='255,0,0'; gui.flmodel{1}.postmodel.crossplot.phase='0'; gui.flmodel{1}.postmodel.crossplot.solnum='0'; gui.flmodel{1}.postmodel.crossplot.selectvia='stored'; gui.flmodel{1}.postmodel.crossplot.autotitle='on'; gui.flmodel{1}.postmodel.crossplot.customtitle=''; gui.flmodel{1}.postmodel.crossplot.autolabelx='on'; gui.flmodel{1}.postmodel.crossplot.customlabelx=''; gui.flmodel{1}.postmodel.crossplot.autolabely='on'; gui.flmodel{1}.postmodel.crossplot.customlabely=''; gui.flmodel{1}.postmodel.crossplot.axistype={'lin','lin'}; gui.flmodel{1}.postmodel.crossplot.plottypeind='0'; gui.flmodel{1}.postmodel.dataexport.pntdata={'Hrad'}; gui.flmodel{1}.postmodel.dataexport.pntlocation='element'; gui.flmodel{1}.postmodel.dataexport.pntlagorder='2'; gui.flmodel{1}.postmodel.dataexport.bnddata={'Hrad'}; gui.flmodel{1}.postmodel.dataexport.bndcont='on'; gui.flmodel{1}.postmodel.dataexport.bndlocation='element'; gui.flmodel{1}.postmodel.dataexport.bndlagorder='2'; gui.flmodel{1}.postmodel.dataexport.subdata={'Hrad'}; gui.flmodel{1}.postmodel.dataexport.subcont='on'; gui.flmodel{1}.postmodel.dataexport.subxspacing='10'; gui.flmodel{1}.postmodel.dataexport.subxvectorspacing=''; gui.flmodel{1}.postmodel.dataexport.subxisvector='off'; gui.flmodel{1}.postmodel.dataexport.subyspacing='10'; gui.flmodel{1}.postmodel.dataexport.subyvectorspacing=''; gui.flmodel{1}.postmodel.dataexport.subyisvector='off'; gui.flmodel{1}.postmodel.dataexport.sublocation='element'; gui.flmodel{1}.postmodel.dataexport.sublagorder='2'; gui.flmodel{1}.postmodel.dataexport.phase='0'; gui.flmodel{1}.postmodel.dataexport.solnum='0'; gui.flmodel{1}.postmodel.dataexport.selectvia='stored'; gui.flmodel{1}.postmodel.dataexport.exportformat='ptd'; gui.flmodel{1}.postmodel.dataexport.exportedim='2'; gui.flmodel{1}.postmodel.dataexport.struct='off'; gui.flmodel{1}.postmodel.datadisplay.fullprecision='off'; gui.flmodel{1}.postmodel.datadisplay.phase='0'; gui.flmodel{1}.postmodel.datadisplay.solnum='0'; gui.flmodel{1}.postmodel.datadisplay.selectvia='stored'; gui.flmodel{1}.postmodel.datadisplay.interpdata={'Hrad'}; gui.flmodel{1}.postmodel.datadisplay.coord={'0','0'}; gui.flmodel{1}.postmodel.globalplot.globalyaxisexprs={}; gui.flmodel{1}.postmodel.globalplot.globalyaxisexprsdisp={}; gui.flmodel{1}.postmodel.globalplot.linexaxisxaxistype=''; gui.flmodel{1}.postmodel.globalplot.linexaxisuseexpr='off'; gui.flmodel{1}.postmodel.globalplot.globallinestyle='solid'; gui.flmodel{1}.postmodel.globalplot.globallinecolor='cyclecolor'; gui.flmodel{1}.postmodel.globalplot.globallinemarker='none'; gui.flmodel{1}.postmodel.globalplot.globallegend='off'; gui.flmodel{1}.postmodel.globalplot.globallinelabels='off'; gui.flmodel{1}.postmodel.globalplot.globalcolor='255,0,0'; gui.flmodel{1}.postmodel.globalplot.autotitle='on'; gui.flmodel{1}.postmodel.globalplot.customtitle=''; gui.flmodel{1}.postmodel.globalplot.autolabelx='on'; gui.flmodel{1}.postmodel.globalplot.customlabelx=''; gui.flmodel{1}.postmodel.globalplot.autolabely='on'; gui.flmodel{1}.postmodel.globalplot.customlabely=''; gui.flmodel{1}.postmodel.globalplot.axistype={'lin','lin'}; gui.flmodel{1}.postmodel.globalplot.phase='0'; gui.flmodel{1}.postmodel.globalplot.solnum='0'; gui.flmodel{1}.postmodel.globalplot.selectvia='stored'; gui.flmodel{1}.postmodel.globalplot.plotimported='off'; gui.flmodel{1}.geommodel.suppressed{1}=[]; gui.flmodel{1}.geommodel.suppressed{2}=[]; gui.flmodel{1}.geommodel.suppressed{3}=[]; gui.flmodel{1}.workplane.type='0'; gui.flmodel{1}.workplane.wrkpln='0,1,0,0,0,1,0,0,0'; gui.flmodel{1}.workplane.localsys='0,1,0,0,0,0,1,0,0,0,0,1'; gui.flmodel{1}.workplane.model2d='Geom1'; gui.flmodel{1}.workplane.quicktype='10'; gui.flmodel{1}.workplane.parameter='0'; gui.flmodel{1}.workplane.zdir='up'; gui.flmodel{1}.meshmodel.meshplot.subplot='on'; gui.flmodel{1}.meshmodel.meshplot.meshsubuseexpression='off'; gui.flmodel{1}.meshmodel.meshplot.meshsubcolor='128,128,128'; gui.flmodel{1}.meshmodel.meshplot.meshsubbordercheck='off'; gui.flmodel{1}.meshmodel.meshplot.meshwiresubplot='on'; gui.flmodel{1}.meshmodel.meshplot.meshwiresubcolor='192,192,192'; gui.flmodel{1}.meshmodel.meshplot.bndplot='on'; gui.flmodel{1}.meshmodel.meshplot.meshbndcolor='0,0,0'; gui.flmodel{1}.meshmodel.meshplot.useellogic='off'; gui.flmodel{1}.meshmodel.meshplot.ellogic=''; gui.flmodel{1}.meshmodel.meshplot.ellogictype='all'; gui.flmodel{1}.meshmodel.meshplot.meshkeepfraction='1'; gui.flmodel{1}.meshmodel.meshplot.meshkeeptype='random'; gui.flmodel{1}.meshmodel.meshplot.meshmap='jet'; gui.flmodel{1}.meshmodel.meshplot.meshmapdepth='1024'; gui.flmodel{1}.meshmodel.meshplot.meshbar='on'; uq~q~srcom.femlab.geom.Rectȉ,E6DlxDlyLlxExprt!Lcom/femlab/geom/Geom$Expression;LlyExprq~4xrcom.femlab.geom.Prim2Z~DrotLbaseq~Lconstrq~[post[D[posExprt"[Lcom/femlab/geom/Geom$Expression;LrotExprq~4xrcom.femlab.geom.Geom2Vc/Oxrcom.femlab.geom.Geom͹6{L geomAssoctLcom/femlab/geom/GeomAssoc;Lversionq~xpwq~wuq~+Geom2|=-C6?@*@*@@@@???? BezierCurve@?*@? BezierCurve*@?*@@? BezierCurve*@@?@@? BezierCurve@@?@? AssocAttrib VectorInt1   AssocAttrib VectorInt1  xwxwtcenterur[D>cZxp@"ur"[Lcom.femlab.geom.Geom$Expression;\2YUxpsrcom.femlab.geom.Geom$Expression OpI_hDnumScaleLexprStrq~Lthis$0tLcom/femlab/geom/Geom;xpwt9w?xsq~Bwt0w?xwsq~Bwt0w?FR9xxw @ sq~Bwt8w?xw@ sq~Bwt8w?xxsq~8wq~w[uq~+[Geom2|=-C6?@@? 1`fW@ 1`fW@? @ @?#@??????? BezierCurve@?@?? BezierCurve@? 1`fW@? BezierCurve@?? 1`fW@?? BezierCurve 1`fW@ .)?$L@5A-? @? BezierCurve 1`fW@? .)?$L@?5A-? @?? BezierCurve @?#@;f?#@? BezierCurve @??#@?;f?#@? AssocAttrib VectorInt5  xwxsq~8wq~w 4uq~+ 4Geom2|=-C6? @@@?@@ 1`fW@ 1`fW@? @ @?#@*@*@@ ? ????? ? ?? ?  ?  ?  BezierCurve@?@߿? BezierCurve@?*@? BezierCurve@?@?? BezierCurve@? 1`fW@? BezierCurve@??@@? BezierCurve@??1`fW@?? BezierCurve@@?*@@? BezierCurve*@?*@@? BezierCurve1`fW@ .)?$L@5A-? @? BezierCurve 1`fW@? .)?$L@?5A-? @?? BezierCurve @?#@;f?#@? BezierCurve @??#@?;f?#@? AssocAttrib VectorInt7     xwxsrcom.femlab.mesh.Mesh_q Lversionq~xpwq~w4uq~+Mesh @@@?@@ 1`fW@ 1`fW@? @ @?#@*@*@@@ @XUUUUU @ @@\UUUUU@@dUUUUU@@@gUUUUU@zUUUUUI$I$@$I$I@۶m۶m@$I$I@m۶m۶@m۶m@@H$I$@$I$I@ڶm۶m@$I$I @m۶m @ڶm۶m!@!@#I$I"@H$I$#@m۶m۶#@$I$I$@m۶m$@ڶm۶m%@%@#I$I&@G$I$'@l۶m۶'@$I$I(@m۶m(@ٶm۶m)@@п@@?-@Z "H@࿇03+@࿴ @D:@(PU4I@@QUUUUU?@SUUUUU?@?@?@PUUUUU?@@@RUUUUU@@@@@@PUUUUU @@ @,@?X "H@?03+@? @D:@?(PU4I@?I$I$@@$I$I@@۶m۶m@@$I$I@@m۶m۶@@m۶m@@@@H$I$@@$I$I@@ڶm۶m@@$I$I @@m۶m @@ڶm۶m!@@!@@#I$I"@@H$I$#@@m۶m۶#@@$I$I$@@m۶m$@@ڶm۶m%@@%@@#I$I&@@G$I$'@@l۶m۶'@@$I$I(@@m۶m(@@ٶm۶m)@@*@p۶m۶ *@޶m۶m *@L$I$ *@m۶m*@,I$I*@$I$I)@*@m۶m*@m۶m*@$I$I*@m۶m*@$I$I*@%I$Iҿ*@*@$I$I?*@H$I$I?*@m۶m?*@l$I$I?*@m۶m?*@m۶m?*@?*@~$I$I@*@I$I@*@m۶m@*@4$I$ @*@ƶm۶m @*@X۶m۶ @Id]@+A`@_Zh}|@@JbMb;@`V0R@3YgH@VC?Gd]@+?A`@jZ?d}|@;JbM?b;@`?V0R@3?YgH@UC??u8i_Օ @n]S.Ä%!@MOKI,xk!@SL̚)"@tkKlܛ_~"@LPŪ O"@Z^_V>"@L (yҿu8i_Օ @n]S.?Ä%!@MOKI,?xk!@SL?̚)"@tkKl?ܛ_~"@LPŪ? O"@Z^?_V>"@L (y?J/I?&@\5qJ/I?&@?5q?DlŰ"@4Ө @DlŰ"@4Ө +%@McTX@%+/@McTX@%+/H@y&@P u\@H@y&@W u\I$I$ @I$I$ @@͕~^'@$I$Iҿv$@TWZ3w?q> $@ ͢$1f@"@ iT~ $>"@ iT~ @l۶m۶@ l۶m۶@ @=RJ&@?a@iںi%@حZ2?{K&@:.V @R(@t$](}Ԋ*@[.t@}Ԋ*@[.tGR$@ (y?l%@$ @1f@ 1f@ @$8I#@` m?+&@A/ =?L @(@-L8S @l!@aᄅS@ It!@EOoA-5#@cAU\(@W?2"@А]QVs"@u_n@5ľ'@gfϳ @tM'@18&@'5'@H.c}s>(@!PN@-Tr(@ޣUu\VuZ(@NVeP?~@,M ~@,M @)#@92YtY %@l-?@8V:{@@>V:{'JvN'@LIb(@UjBÐ @{V%@=UȽ%(@gfϳ J?/(@Dm۶mۿ.|wa!%@^S@藾8@IP0d?q] {@-t~1@@<V: @8V: @e)Ls#@+OK9B%@,O{g4@ت1#'@ @(bn@@hTc #@pl @q@~ puq@r pu?4w,)@Z[J jA"@j@  @>j@  $]@aI?qsh'@t=x@ 3,#@2KEa X@)?Po{,)@i;@Po{,)@~;ڍfI'@c忨c.[' $@ǫϜ?2 @yi'?2!a`#@zL8 @c<@^-@KL(@EeYOk))@sm¦yi$@͞c?:|o-)@1W_?u.'@-oz _&@-oz @JtX>%@zl`?A@8Ơ`P@|dN@u"߬$@F+r`-O'@`6濾&@WF3@D@Aj6@Bh@/-A@AjE@\.tXfn%@yC)u ?H;'@ Zdh!@٤M[t@+Z't@+Z'@VL#@)e!֢K@ @!֢K@ C]y!@wkFFX @B?>^M!@ڪf >^M!@ڪf @ib!@ (w&?>:YpF"@2zR@;r-Q (@U ?ib!@ (w&~ .h&@*HzTUR@@HzTUR@`a!@U0( @Yw'@JT?W @t ?W @t =L%@[9'@j;Vy|h@_K @y|h@_K V}<@p{4A@"&@-y@u pu6 @)`cu@:K zG@~L@Cfi;"@#[@Y?"@/?{%'j%@*T,?kǟ@O@DK@LR!@d.@](@n&) @l?<@3b#̢?<@3b#̢@m۶m @ @m۶m @ 8$@L7 @wXo&@mt@YJP"@4*H? YJP"@4*H? @R& s$@#V<鿮2ĺ@-"@|@}3H?Dġ/ &@!H:k^:(@&<āo%@~^0RW $@J=? d"@lT6ľ%@TCj @dzX_@+Xy) @dzX_@+Xy) b=B(@#o (@"l¥@Hfb/)@Bf+z@P%@ 5r(8L2N%@ )-K#@Z0<?#@{E羿!F$@ )@Uf+z3XGZ!&@s>ӿ-mC'@$8c%@5J f3($@U1z9@,h#@Z* T__9 @TUۿ@. ҫ@w˨QaVy'@z(}sv)@YI$Iml'@T ??'b(@KǿH>%@-~F@OiO!@^VI1 @j}=+} ۶m۶ @ ooq @CH#@+ݠ\'@Za_?dy@6Hp)4$"@qvlB?$@@99I+#@eS?*qu@ԥh;K @曳ѝZjvl@H?HQ}]@RF HQ}]@QF @MV.9&@@ Æ)@͎A\h!)@s@q(@M35??Y+ @kC@zu$@%GK%@[%R.@7qt#@Öɽ%)@*b1ɽ%)@a1?c$@Ќ>I(@Xl[@? l)@{))?#;@/̭ @0?@%@/N? ow@+\ ow@+\?$@@ɽ%)@<ð?YZL@KyE@0 (@ʱ?p"A(@vй{g=<'@1*hFl %#@?nC(@5a @w.-@N?M&$o)@WuXϣ @RK,"@4ffL&@v]k @rDYGW@M/"@0U:"8'U%@I!$ :?,(@C {/(@Y|Ɏ @jnq'@3 @'@څY @:@0F @|_VFR"@aKiK xg$z'@ׂ%?hk~@WÔ/5(!@vGV?wfY(@F ,?:%@¤ ?Y>&@h?  +(@Z2@Wx@I ̫~@+\~@+\@I["@$7?"@`H@ AJ#@E4ʼ@Y) @mk%@6&W:&])@޺ϴ,@?V:,@9V:?xJ9Q$@-)cg(@ijUY?$@?V:翦$@9V:?Q$@21t&@o)@RY"R?l>'@EhhGA ފ%@/ @,q!܆((@3 ,*7 &@*^x޿^C (@K@ ՜]!@mUf @՜]!@mUf Iݨ#@]XdOC;V@XVtoW@3!!4a(@:\ua K6%@X"T @FtS)@vg>d\!@` @d\!@` @!׀Zrb"@%0GA '@[O;}~#@'R&Zy -N#@T TMi]$@ϝۿʺϱ!@I&@I nA[@Ў"@f@0Ϛ#@pnC.$@în@>X1p>#@1'pHD&@`) [s@n؅"@@`@h>@`mœ@=zsP@Φ~@+\} @~@+\} (Dg@֠ @bE@L ۢ Lƈ'@7[u.@ުP)@:DH׿_\@m=b:T;!@K4?l &@\ܖ7=@_@DN5?4 $@v䣮rm"@3U?n~"@o'i֌ @ Æ)@EUYP$@=Y̓?wt'@ @`r%@*-FԦ'@&\? ;G3@m-A ukP%@rq (^'@6swۿ߰ia@g ߰ia@g @!P@GH(@!P@IH(eV#@LH!@:X@| #@~,z@ 1:$@*{¹O/5T'@ \;?JfS3r@ 4A+"@-)kYt(@|?Az^(@]' ˰ @̐O@`$@OYo7d^^v'@[,8@0Z˿^@yʘ%@X ɽ%)@_wdR(@0Ɨ7K(@#]i?:s&@v?eS@ޚɃf @RBO@ C tN'@4P@Bȣ(@,c^;ǿ_6c'@΋o]Ro&@굡7 ߩf„ՠ @k& Yߏ%@rbz_(@x2)%8r&@a?̱%@q~%NdpR#@,攭A'L8$@:B?5`^(@B:hc$]J{&@|ݢ,#@C hv0w%@R*QY?>K@rm @2 #@bh @m8z^!@ˢw$@;`$@A@)d @k6[$@ܸcVF@ĤIz@[ȝB@'@+~B Z,p&@<_ @{۽(@z@=y~@:?Lt'@i?#@P&/H!@g]( `31Η)@r @8$%@{oVF@oOy%@u$@ ){@zy @@^lC@eMvy@!V cMvy@V ??8!@SNx@Dz!@ٗXs]R_b &&@5@*B%@XH?oPA@ ĜH@BH?H@eHQ/֧@GJXl@ ܹ)AU%@arP ?Lfq#@#p2ٲ&@r;aY_$@ƻ?Zə(@xs:@HCS@,$\?HCS@,$\Cڅ 2@HH/ @" 8A *7i/&@jg~Ec@gSe}ξޅk@ٚi3@f #@;z3)@$$)@[/%*٧ @ 5C@a#@:ȃP&+/#@L%$1W*%@HlhLʿ5<@v-uAo&@ƅ?y(@4>1$@tLot?@gy[~a$@ǩ2sp@-~ PR&@ ϐ? on@4ҐFl)@ 槟[F$@șK:`t$@dQ?>m'"@)Mkg?+@u`?Q @{\ra (=)@ G@ (=)@ Gc$@;a:Of7&@G] @nR3n@]J 2!?$@԰'aC%@(PD@ܗ-`#@,ԿWc @pfj$忦 .@T $@w %?{)@^=j?ʭ@ '!@7Eu#@ z@j9v@ y٘2>q5@fu% @yRRIe @Phq"@6x "@]'$ :'@h>>lg}#@=F[@4|r#@{]$?A)@91-p&@bL@>oD@̵+>[j&"@nM@#@j%0?Lwr'@ ?~6a @ޤ[@gt@5ϩru@) @77N@VY\@J@on Q@j\AE88a@T_>@\L Ŏ3Ukm'@C=@jR'@0 @Uz&@8F?֞1@.NؽN0%@0i?|lݩ @* 7O?W1(@^y迣#@84@ fHd%@ZMoo@%b7@L6F @|`@r_kP^@1’'@k*@ u(@ζ -j@? }@s)?ǒ)@ߌa@|Te%@7w5?&> @Bf@h(@q=-9@R zC@841?Aq("@y?sKJ!@II[/&@^yJ]念Z!@ 2v'@t6M<@;9T_'@WQ@*;˪$@1\|&@{Gۿd\D=#@$_4I@ϗE{'@Si9) w@6?j8R$@&S )@+UfX?P[5i@b3?8 )F&@֢ c)@_fF@F&j!@˶ü @LX@ @J@VtO #@ ަGr?:)@QV@pWC@as@ %@i?Yu^8!@5@,0%@rnEƔ?r:[*d"@*|/ ܷ(@ZJJ Y;Ǐ%@K:KXą@>P&@fŬ ΒP%@Թz.ٿ ]@PL2?ݴ2@AV bAe$@&Ѓ@& #@C0T@ @.L/@J@jvXe4'@ L/@>wvd$@X1\?h(@foٿs2w@. @b\@v @z_@񾑽ʛ @%!#@:_/$( @~`@u> p @`܍8& +y"j&@C "h<ɳ&#@4 @Us%@4{b'&@!Pf 0xn@=F 5^@1d%@4W?Yl#@/[i@N'@ =~?iHD%@$&@) @9/@&~!4@N~@&~!4@O~~}@:BJ :A@&֩@`9}*"@$zd}Z6@VWw`-@eT(@?mF&@ n4 lo@wī5˶@ə\] i@4 @&m@qIQ@~Z.&@S=EP%@+1ϛl @gQ@*f@ؕ:ce@ϒx?^I6#@#GBԿZ)=(@3Wx?m۶m۶)@m۶maGF%@f#@%@HZ3ajP @5[X"^'@6g @a)!@@bkgk%@zD.X鎾"@er{ GD)@Jepv% @fe@v P#@X4Q @%L18u#@k搜{%?M*@=#FkkU]@r&NS* @\#E@g2#@t@T"@ D@H"@[dtgZY&@L;?3Ѵ!@Z3yzk֨!@x*'U>Z@CNNI @i҆@ɭ`@2$@#},N@BuB@,N@DuBW@:_@gb @Eoh%@ᜦhxk1$@"`'ҿ&@y<@ Q @<@ Q !4@BuB@ N@;@Q:&@U7Z8#@ܯp? 8O#@Vo?E#@@p#-?I·*@FS)QtI·*@9S)Qt?R."@dQaSw6b)@`Ĭ qK(@c?e)#@Ñ{?ݢK8(@= {1[&0@ۓ^cp[z2&@:9?@ O R@R@?c% XD#@6?޸#@8 4"&@:l 'Xj"@\~@r ^#@#7@8}@q:)¨u@Zm @)¨u@Zm ՜ !@ª@ @$爘@AgV@,)%@le??I%@|ל?j @ @98U\h"@BCb1f @ a3 @žR a3 @žR?M6PM!@ W}N?v5u&@Cet(@e,t(@d,?[a$@;0:@A @9@ȱ ?z5 "@7 ]j@w@Ib[&@ ƀ@#@G ;q'@x&* @y*@@:_s@pfj$oD @>@}@P31 @35e}?B@)C] ?9;@qg@* @R@E{٥@rd@TJގ@%.>²MK"@(E?Ȉ$0)@RcDӿ%3"w$@1(jb"@'X ?#@6.R%Q#@Z0<?S'@I["@/nK?sga@csga@c@W 6@{{ @vڥ%@M33z'@Hse #@dU2$yH+G)@,D1$@$x?մ!@/+]/@W`n=&@ԧ7  (@N?Gs@J%uW@ZGI<@k1BWkZGI<@_1BWk?gW""@;$6@jQ"+@~l@zjM$@ɋ?B~ևZQ@4?w&@VZy#f@Z@dm *@AgV@J?c @x%YF !@>xc@RD&@Bn翬8n\"@Uǫ^CfO!@HaHPv#@ a!@""%@J*ue@z1i:x'@*&tpV?%@#PNC?=(@V |#'@, 6EC$@Q$P59@E%a("@f@E%a("@fOz(@$ H @*e @qw!@t ?Kʉ@%"[Kԫ(@M@0t%&@K>?ng@&@p0ab%@,?Ԓ'@%hǵ'\@ y@tv %ڛ(@y}]+I @KS@ =y@m _h(@{ @Dsu$@طF0#@,Ŀ%@ :Ia@.  b%@̺Dl|*O@{#@n`&@*Yq?݁9 @qYс|Ip'@8]U˃q'@TbN4c%=!!@<&)Eة!@u@Eة!@u/ʠ"@t٘3uÚ!@]1&@ZN!Ɇ@MɆ@M@g5#'@&n ?"I$I@@"I$I@۶m۶] @VUUUUu m۶m{ @m۶m{ @@ڶm۶@&$@C^:)à@Ӱ$F?{ {@okYMT|@P|?[=J@B$T?}5$@^#@Fʛ@Rr@@ܢcl@TTbZ'@+T^FwpCNq @\{k @i]N)@? 5_.@.Z?*@2uF%@&s~VT-`#@; V?Te?&@` z?Te?&@` z q{"@6,(@O7 @E@JW@3$@O7A?n:(@ h8h @uA@!|Pz=%@b QE@r @(@';q1CǤ/!@"@($=C(@c~pu@!3B@v@*J?)@E#SA|@ gW(@A P)@4? @nawn@_+ @2&'@X9{߄?!{R@>[3‹?'@/&@4@cg0%@so Du(@sŞ.(@vV?E<$@7YNNx&@|ѿV6&@xL?@L '@%@e }?DpsT @nNR Y!@PMj@NI= ?eo(@#G @)¨u@(@)¨u@+2K(@7d&3O@n?]&@!mS(@4Śα?_!$@5Q]@\e#@*ѧRj#@]EF¿nf$@u&@b|3&@}I' @~Xu#@:`@&TN&C((@[:ݼ@7<{#@L* 꿓 %@դNζ?P][%@ {Ch?0U7%@?R$끸$@_jlkKor\$@/-s͢s"@7EF`?s+ j(@:ѩ?`MX!@'!Tb?E@}B @@Gst @iPD>)@R..2_@[ d-z@=?y$@umP@:ɼ,?d*$@/>A{ @->R&@.@J@V ѐX@vFR#@z^@J&_%@4H)Gh'@L:Mpw@?'@~>w@vA4N'@s{sV?T^'@}@7 e!'@ 5m 9/ޭa$@<*?/|'@dݩf $N@-@Ŏnm|@e'Wf׵Z!@ލo˃@-Ա@IsV -Ա@IsV @}@6|rgTx"@C)1?6n9'@l @g]ү@I4 ?Oxf"@S| b5@k2 @3*@+\@'@a?oLy^(@[s?4M4]@rq7 54a>@,#w @W#@ʀBhH?Ȯۤ#@=ft^@s @8|p@v 49'@ևC˥15)@i$Ӽ"@ Ŗn a3N"@}{R?|icq{@A|G|_M,:(@ᱠ  @:#a![`%@Ar?3@!wik/{9(@κx J\! )@ڃ0&vw(@ڃ0Rz̯'@I? @RKE (|@#>c@i<23!!@ n @cN%(@U\㕤 @jn|=@Їg@p$%nǁC@kBr\ \J!@ҾX 9$@"JMl^@NB\@8$@`[LKE$@8= T'%X"@vS2(P%@qZ@h^ӑAӎ%'@rkZ?$ݬ)@xc)@o0@vq#@ޞ4@6X0(@4%mcţ]D@dI!-(@ ?hé(@_?dz(@"#o?O?gdnnJ@#9 Ff{܆(@FX|`V&@\a @*x @DC+r?(Oe$@6Z@d,"@2Α?.'@gM?]dx%@Vsa"]̂!@#(xƭ!@LH?@&@ҳqAav+&@=RG-?_ W"@XwR쯾 8#@]@PX@}Դ\ X+`@j/> [m#@>= @ߔ#@zJ?fGl %@P @f '@WZGtW)@ݦ?fX!@R?4B"@v,?bpi>@@:@N&@f&S_h<@>q[@32@۰%@((*?hSnr)@Ìp@9)@W$%> /Tn)@{H\2֛@E"?+y)@ X @r{&@Oo&݄9)@<#Sz ՚"@,w>翿> &@ @{no~@DH?zno~@VHaC)@f paC)@^E.)@;9Tn@.)@ x@\F(@.A&vط)@ @)@gfϳ)@F?)@FMqfuN!@!5_?Zh|!@l)?F3 #@ChڿK#@kDH?D @g @<, 9?xx:@&<]?_[!@ av? @UO࿩<!@&<]ɿZ? @D (,]@p*@jdb T @1?>,@uaQÿ߰:&Y@΋WW %q3@bɽ?A"@?|!@y$I@3Es{*O]@B7?` @p??M @Q>MB @,;| ?AIƽ-@y? @D:@UUUUUU?ޡ|@{\=?p!@J?PN+W @{?T?"@&<]bC@?QK4*4@7>Ŀ;9@w"!@FR#TvC @TNĒ7@27?b3{-!@>q߿ɯu3!@/?7 TMR@?]f% @6LN?,@@ ҿ$L@ʿD ˅ @ؐܿI ʷ@ȿf2@+^4# B?$P|@`/Y ^z+w@X5t?_# @u@:^Kc@xa1_^YV['"@M$Տٿo'+ @0o8`?妒؎ @B]3nw?@ !@z[:)%@?翸>E7@_=?= *@Ŋm?l@pڿوȞ"@8SƸ?*Y݌@?/b/@п|.C@пcd&`@?%@` ?¤=@)i?Bc!@[Z{?pe @㖔k?:OsMA"@O⠀?gϪ@}]nXԿ9 @PVAd4Z!@߂&~翈>u!@KTI/"@wV4?èm@!@UP˴?Bݝ!@ ?;>@?%o7@)1?^z~ |!@ ?ua2@IL9孿j[(J@n-?uzE @gsl?nz"@x[?C@ȾBڿM@ !@IHѿwhR"@؆8s^/ @Z? @j<0=ֿ*@dL$/A8$#!@[#Sڿj "@peYnGXn@7 #$Rx? ֩@:_ Sd骨@2?8 @UہeVgs@@\?T g@>9 "@M 凥? A@bgǿ)9p@:]O?Tt.@UUUUUUҿHA>@_x\Gǡȯ!@ei>_?+^K@3VE/?.޲ @ q= @]F@aAD4@ G@?6Z@ @e,{ҿVŏ& @]E3So@\ص?,"@88?ZNB@mᓙ_o>H"@8R"ѿوȞ"@U$m=ɿO !@8Nj?!@e G @98?oVC@q9?² | @ˣ?n7@.oX v!@6 "!@!4vކ0$!@d| (J@x Pӿ)k!@]V.?FY[Y@R̀r1!@u#SV}@ !Y?ۚ8@J~ Y`sЛ@< 1Ԕ9v@0??>S4@"fM4+@mUi?3C@:jO@sc[]G`l@$#7ѿå @2\ѿ;Dc @ӟǻ"?Vצ_?@a4Eؿ) s@Oȱ%?/˳@9 9KhF@ٿ] @?&@?I<@?a\@G? @O?T @P?慡 b@}?J3}!@fs P.@錦]Dqg!@8/ֿk) /_ @yj_4JY]@( i?@88?A&v@pǿuI8 !@CD?W!@D\f? Gk@ozuV?)rk@qqb)aZ@qqԿ PmW@88ڿ$L@UUUUUU?>1f @%X@+c~@? @ ѳ߿,j@Kh?Ev*@BR@u?jh@UUUUUU^@ֿ2GjP-@LU3?c;~!@!+?-Z@?lł@ؿKP @63?CWz@ٿ6`~@88ڿ r@\`?@5o@"7s@l" q@ߕD%-79F{@0&?@5o?@"7s@l?" q@ܕD%-?79F{@0&?WqI @{q༓t @iޓ`vHi!@Hя,W!@asBQ"@pOq1"@ձuȰ73"@SaҀۿ{Kn"@=~G/}¿WqI @{q?༓t @iޓ?`vHi!@Hя,?W!@asB?Q"@pOq?1"@ձ?uȰ73"@SaҀ?{Kn"@=~G/}?4,T=@/j?VB1#@POrj.Z"@v\W gB"@q ^?qG /j7[%?qŀK~@\Z6?J:#@l̝u_"@2T?XOk"@}?.#7#@bxi"@ĨvM"@q h}D3L#@yb(?6J"@c7h e!@nڅ(~|ŵ"@8: ?@aO@4ޡ?YC#@jXhۿiѷi#@ !@?Q=Q!@[ +?:7ꠓ!@I)?- c!@QZ&* #Q"@2Ѡ?ى.~#@88!Y̿S,v@i?zs#@ ? ڮa#@-?x,d]#@0%3 Y^-;-"@wd\Lf}#@1= c?!#@)rrNv?|\A#@Nݿ↓Zu7@*V' ?
"@dvo^#@!D?`/%#@nT5NŷR@vb?}bV+$@h堘ѿ @G|ѯץ"@+?&S"@@t\?8Ou"@cKCe[l7@m;nZ? >@\x ?"5n@F2#<` @@XI$ @ !nsH!@;N~㿼8#XP"@i@o?]Јu"@YG;GU!@!j*cb@*.?܌Z#@1zl?j4 @|0om"@?@u39w𿦙+ɗ@qO?5P ?#@?>?s:`hu@Lkl?LF!@"{^忕2@KfOU)M@\\ë["@yъ$,@W!S? ;@*H<?@ Ca !@26=ftD]@,Ƃ?A !@p)D}R%C@P}B,[? @Xc#?Ģ!@ eJ2$@ZEſKP!@Tc{{?|E@l '?V] @RGY7濄%\W#@^aۿR#@27-_g!@cC*é!@f5'Ęa!@D1tc_fFy!@ՋP@xX(?qZ<@#@zr G?R@$IV$.?DV⎦ @ 6쿪^2C!@ܙd Y!@KlM;@4z?O@ϕ? @|,3*!@Z`߂Ryk|Y"@ e& ׿Cy@w?5< @X@Y9p0q!@*ӿ_ tJa@Lyh?є!@G9N@eՄt?;!@:y7:"@,dZ?c&E!@ӎdο\@#`ɗ?*.o"@_I޿Db@pX/D\@J2e?tqs1 @ ض>@Iq @`x ̾@w3n?&OJ8N!@` +^?ȗUXF@lJr?Rj' @XjIǿ y!@j]ؿa @rdH+!@,x|ٿP"2!@4V"@:NAE?Pc!@g2 @7o0?G60nN"@vm?.3V"@,Rx#xD"@^꿰I $@驫?Jh"@?!P1翶D$@"@ըp et #@,ȴΒB-@[>L4Mf˛@=Tm#@u,>տ pGr@[EQ?U!@p13dfr`#@=9Q? ~"@!7?*r @&O@0t=]r?:TH3` @6Gag?'I @$;?^n@ȑD?g$@(f'@R @'M#@ꊪ(e?m$@ظcc?L*F@\p#?wͼc@PRLz?z|@AM?S8!@EvyI?sf#@+L¿|)"@>mT*t*e @ Ih @<?@z?t^.l@;)o()οu@ ]d)cO @Yۃ?~ O @ONƿs@Lm?w%B N!@f]?@ =s @IO?SBGl"@4A3¿o9 @| wG<Ԙ@r_R׿ՅD #@:~igp@9y?*4@b]?Ԭ @jB>?{($@`F @b)JϺ?ֳ\$@Df?gw @F5ſӶn} @j<\?#@: @R@?C2 @P2??وȞ"@%<]sIO5@_~‚.)@xI<0׿ G@1o}_򿡧Gک!@*DY?T# s @Ie(Gu#@:&T);q<@}~p[Y! @SH/?Tೢ @'FN?4&m4@(H6 @s?B p @Y՗xr"@4QG7?UT!@ "?[> @-4=?ii@?iľýߓ@hIܿ{A-ae@?õ>ƿRn@_]Ϗ5+ҿo@ @҃? /@*[mٿ^,nI!@f?Z\s"@{.K4Vѿ0&?Y}@pԿEW%x!@'"?aCE @w ٿYs@(K5%@R^ !@:X̞?(d'"@c?{N"@b߅gο9,:6/$@DU"?w}!@N0?ޕ&ۅ "@bQ?˞@#Ϻ)?I=#@Raw+@9g ?h)""@{? |'"@0K~?CUw@@2*lڿjMS@_o޿%dNd#@;?s@l*t8?B\!@I?PrG!@l4CB?s}#@lB2?Z9 gS"@v?F8#_ @4.? Ӏ!@̖D'?!/@KPb2#@|lڿ\C^ @1 k.FQ#@ L-@ @"ˈ4Tx_"@ܦU?4v$@j^KSϗP @S?^\O$@PB?P uM1@P+?+ $@ *?lDdL"@8Sƨ?0 ^/#@4D?#ɱr"@`PaY?Uk3#@L)J?Sff$@fZ;? 7#@] "$@3=ƿ1]"H#@B',Ͽ[:@zm$U \@Jy0T q@b` ?jG$@LUpH?*k#@T~b`?܎Š#@r1?ÖQ53!@Ѡ0 ?Jsu!@T/?08i'!@&B@ >"@65ER:%&#@|_@xpS@ 3? {l@Z}͍?ŜӦ"@'o!v\~@ 3?"@m?Fiyw}#@`Lvۿr\bs@`? <#@.9103Y @T?߰ J"@?O*@j 3o"@c߿Xoz#@HHYEֿT+A$@].>vL#x @]I q@{S-$@??X-@#@\QY򚿵B@Ti$x?a5!@=?f@$@p/?Zu7@*V' ֹ5\"@Rx} *?A"@7J?~G9#@ c6?-zP@SgZw@{?1]B)$@v3&*@:[{k¿;;3;@n.J?{ȁ@EK@?2{#@&违\#@6ûԿ7K64@nf$?;{F@$ vSU?0@݋$@6VgS?\21@M'Z?2#<` @@?XI$ @ !?[~pA#@%Uu}ўY@ƋNIͿ| [1@dbFE@U15?иa!@|f@2|@h{yٿ91@@g: _1~ @^ۘ?Ԋ @-~?pe"@nsJ i@c?ڤv*@Sӟǿ/N>EP@&Bc̿X` @1V%?qh"@FrƐ @TplQ ?WVG!@C¿7o@zпbN@@Ռ ?`UX#@?).Hf(\@G_>і+)@Deܛoֿ L @ٍb?P#@DC{-@?d @̴nPZH~y#@K;GC?6_:[!!@/5~?] @zb3Ϳ/6]K@ME?,HG@c5[6 $@D2?x @y<`݀R/3k@ 7b?!}J' @p^Ptf#@&?1@m5Jl?>å_!@6QWpd^@ tsQ@&r$RvWdJ#@O?DA}H@Ⱦs5w"@bOqZ5Dx@Jb%?B8P@NYͿRa@$dqq@36ER?©GĠ2 @+1?-?@ؤ?Pvfb @zB?Ixk @t~l4{x@/WL5a?~ޞ !@Kǿ7"@aωDYX @9LJ@D7?0Dx"@1G3J=|?"@#@l5n?7@ڹҿW#@gPB㿖4[l@|*B?[a @aJ./>D:@~$}?0 @Nd0*r:$@=7<43!@4nrD#@uz|iKY @`.,?*b :"@9ZMĠH' @m z?sM @8G !?a @rd?)R#@RPͿnX'ZY@PW"f?F! @K!"޿qL @y=ݭ޿ v!@RbU?t]iI@jLvlT?"@ʐ/]n?y"@!&@hu}$@xSHƸ?鸀յ(#@ކ?`8&@#@dAL׿Ps"@*Ť"@m0078?"@=7?zS#@ihX,!!@uD\["@j:rg @(s߭? @Dm?̺w$@A?%@ao2A?O@0t=]rE`h$@Ȱ%@U%?|Ġ#@߭?t(#@rzP ?_#@p_= ?$朎9"@=? ;.#@ű9Vfi0^$@`Ckd޴= @h#!`(#@Z0<?;M&"@, ?6n #@?:#@t#Ϣ5=v @xez?.iA'/:!@7RE?mB#@?ŦW @(pT?&N #@¼Ǟ?R"@M,"@WJLP%#@T7?=Vf#@$X] ?Ah&!#@b,f?-S@R[ 1($@"%?nY@Ċ߁8 @4#뿀49p"@9u,X4?Y @rL֐!3#@` H0?8S^#@O9v?e[l7@m;nZ >@^x =@uWh?]C$@" DZ?PJ!@rr?1n@fS?9D @z {pLyFif@.p}B?zVBg @~y?ok2@xݿk%@3Q4vD`]@4t?S@PV ?$dU#@ш ?ܲq!@xJ?>${@£I!@ʞ[?x{@|Qb+տnPb@:I4l@0.>,?d5!@imVB?، im@ x݃߉?s#@] ?fͥ"@ϒ?rM @'H @ Ce?ヌV#@$˼!?4VɈ@,0J'+ @= ~?kP!@.Eil?(*Dnd"@Hb?OZQ@K),])B@Df-A俴.P*@R򈣳PR!@^H];?.[!@O6?P) @2RͦXc#@D0+@?= @^6GB9b@6w!@ ]n? Z@ ?Ëw"@ܑrrj`/@J?b7!@Q`?5pK@a2/t@kRPܿY!@6E?DrH!@ޕY F ?勚@? ui#@<ҿ8oq @9W?H*y@7q?_JQ @c1|@ 'ZW#@PUw?fE@z%:a?jZ #@<ߥ?6m!@?p9#@[C0?SbP @LoΘ0h?ZL~ @$w@&\mԈmX<@%t?DW~;b $@6N"V8y#@D$m=?&Uew#@|vȗUXF@lJrC>@B-zߔ!@t?hj !@Vͯ?a0;!@G̝Z?l$@ zN"޿ېH@oȳT̞e@HiڷB$@mD`@+Ջ?:$#@F!#6i?6"@0JCȶ8͉#@H$'W6@-"@s%Dy.@^::W#`!@*ļkSBGl"@ Ri8K @-?k7J3#@Kdg9@Ɨ^Z~7!@r}8]iq!@( ?0 #@zg?j !@tEI$@? $j@&2BP9@e.`#@m҃?Vd!@fc? oݡ#@xǛnE$@2'{"@D2ܧu#@Y=Rܘ\#@^?nhtC"@DtՒ]m@JM?U0/R$@v ԿڝB"@6:.6O@{d.W"@m&Mv-!@aN* ^!@t@QU @vP"?fv@?} ԑr"@`rh "@&pݿž"@WnԿ(0!@G ;@{w?&;^{"@IHY]M?+n8!@Xb>W?|Z$YR@p{{f@[v ^#@ہ !σ.#@2of꿆:(m#@JVl2T@ykJ?sSR4@en2?Lh#@` ?̬ @Y~ Z>ݐ @Σ(#W @5Z?>*X#@G \?n>}#@Rk :^n@ȑDS[ #@?l\#!@E<#@(ks !@Du\2F?e#@k\&"@>Ez?BJ#@mxpH"@IO?|oCѕ#@\11?]=?!@L>M2 (b!@Ξ?-c!@88D?4^#@<\1f:e #@( mhOy!@ 210*%@r`C?Oo#@ڹ??P@J!Eqs W@ƣsO? 2i @j:㿬X @Q3?2b!@ 䪅x?d!@"qpI:ӝ!@/߿+y/ @HZOݿ|ֿٽ @؈?gy{!@l-M~^#3>#@D"KN+"@cI.?(t9!@: $TԿ#@;EU!@H|u?A~J\!@lUؿ` g @"6-?j!@ŚJ?ȿ"Z @c>:^ѿ>)M @^$jؿFے""@BVg5ȿ&ߣM@N?Bƣ$@o P*K @LM(*?[' @Z?ThWL^@D%R"@§#˘տ@g @(ѿOD"@E?w @c?7Fp @d%?sپ@V?0vB@1a|wlf#@)LhԀ~ﺯh @y?7UR!@:<9ʛX@:s]~?RZ @<^?lDdL"@U$m=9_!@S ?G @ԮO}"@js>0R#@1wEe#@g\9N(?F)#@PRlB\?Oq"@_ l)n?S"@C:j6zZ@ʫSM՝{@p"󿻚n"@dU?\#@?F o@Vj( @ԉ3?xN!@H?"@v8]CϿ uy#@$U?挄2^ @]GB#"@6]Z@?vtx   edg  !!""##$$%%&&''(())**++,,--..//00 112233445566778899::;;<<==>>??@@AABBCCDDEEFFGGHHIIJJKKLLMMNNOOPPQQRRSSTTUUVVWWXXYYZZ[[\\]]^^__``aabbcc ddeeffgghhiijjkkllmmnnooppqqrrssttuuvvwwxxyyzz{{||}}~~ abcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyIUUUUU?IUUUUU?IUUUUU?IUUUUU???JUUUUU?JUUUUU???????LUUUUU?LUUUUU?????JUUUUU?JUUUUU??$I$I?$I$I?$I$I?$I$I?ضm۶m?ضm۶m?$I$I?$I$I?m۶m?m۶m?ضm۶m?ضm۶m???$I$I?$I$I?"I$I?"I$I?m۶m?m۶m?F$I$?F$I$?ضm۶m?ضm۶m?j۶m۶?j۶m۶???G$I$?G$I$?$I$I?$I$I?ٶm۶m?ٶm۶m?"I$I?"I$I?k۶m۶?k۶m۶?m۶m?m۶m???F$I$?F$I$?$I$I?$I$I?ضm۶m?ضm۶m?!I$I?!I$I?j۶m۶?j۶m۶?m۶m?m۶m?????????\UUUUU?\UUUUU?\UUUUU?\UUUUU???\UUUUU?\UUUUU????RUUUUU?RUUUUU?RUUUUU?RUUUUU???RUUUUU?RUUUUU???????QUUUUU?QUUUUU?????OUUUUU?OUUUUU??@UUUUU?@UUUUU?@UUUUU?@UUUUU???@UUUUU?@UUUUU????$I$I?$I$I?$I$I?$I$I?ضm۶m?ضm۶m?$I$I?$I$I?m۶m?m۶m?ضm۶m?ضm۶m???$I$I?$I$I?"I$I?"I$I?m۶m?m۶m?F$I$?F$I$?ضm۶m?ضm۶m?j۶m۶?j۶m۶???G$I$?G$I$?$I$I?$I$I?ٶm۶m?ٶm۶m?"I$I?"I$I?k۶m۶?k۶m۶?m۶m?m۶m???F$I$?F$I$?$I$I?$I$I?ضm۶m?ضm۶m?!I$I?!I$I?j۶m۶?j۶m۶?m۶m?m۶m??$I$I?$I$I?$I$I?$I$I?̶m۶m?̶m۶m?$I$I?$I$I?m۶m?m۶m?̶m۶m?̶m۶m???$I$I?$I$I?I$I?I$I?m۶m?m۶m?;$I$?;$I$?̶m۶m?̶m۶m?]۶m۶?]۶m۶???@$I$?@$I$?$I$I?$I$I?Ҷm۶m?Ҷm۶m?I$I?I$I?d۶m۶?d۶m۶?m۶m?m۶m????$I$??$I$?$I$I?$I$I?Ѷm۶m?Ѷm۶m?I$I?I$I?c۶m۶?c۶m۶?m۶m?m۶m??is6&?is6&?f?f?:HoT?X*4~?0&??%a ?QG/P?ܫꎫ?h+ ?4?[s6&?[s6&?f?f?X*4~?X*4~?0&??%a ?QG/P?֫ꎫ?Z+ ?-?]<9f!?]<9f!?6lE2?(1?T5?9d?S(2?@7 ?bu?%?se|?9?oMX?15Ա??]<9f!?]<9f!?6lE2?(1?T5?9d?S(2?@7 ?bu?%?se|?9?oMX?15Ա??:HoT?X*4~?0&??%a ?QG/P?ܫꎫ?h+ ?4??0&??%a ?QG/P?֫ꎫ?Z+ ?-??]<9f!?]<9f!?6lE2?(1?T5?9d?S(2?@7 ?bu?%?se|?9?oMX?15Ա???]<9f!?]<9f!?6lE2?(1?T5?9d?S(2?@7 ?bu?%?se|?9?oMX?15Ա???  trip    ||Y||YYYY;**;;*Y;Y;;\*\\**\\  \\6]66]|||]]   ]  ] 6QQ6QQQQ[bQbbbbbMb[MM11H1@1V@DM~~~~M[~[Q[~[ 6    ::=:#=E=#=(#(DDDDV@VVD@@@ll@D@D((ll(>(>>ll>bbbb1>tbt>t>>((#v(vEv#vEvvBEEE==j:j=j:jjjF%%F%%%5F5F_F_F5__YY__5_5  Y f fff9 f9fv9Y9 9YY9]]BBB]W]WWIvpW]vW]9vvqvpqpWpq{{qjqpjqYjYww000m0mYm00]]]Y]]Y Y[Y Y[mmZmZm[ZCCCJ[J ![J[!!"J";J"#'"';C;';CIJ;;III##ICICIxIIGxuxGxu##xu#u#CZCwZwwYwY!U!Y!h!U!;;Zh;h;hhh!uGLGuIKGGKLLKLLJJJJy"JyJJJ""s"sJe JJJJ%dddddZZ;Z<<i<<nnnnQMMQQZZ<ZQQUUUjYU{j{U{I{I{{{{{QQ{{{IIBB>>>>tt2t2M2MMSM2MSSS2Stbb1-1-L11LhLhL - L-z - z- --% % % mUm% Umm   mU  V V V V ````` zz z zh h  =2=2==g=ggg%gg%% bb%$%b%$$$$bb ~aa~~ { ~){ )`{) bI w I wI ) w)w``wwI J J J J cI cJ cI cc`cddddd  J     * * * *   *  *      u u u u2 2 2 jj jejQje2jQ2Q Q  QQee A < A  h h < < h  e e  h h dV V    h > F  FUF FUU% >F>n>n<>>< ><< A < <iA <i<iii\\i\iA A HHHjHyHHyjjyByB\+U+B++ByByB++UNU` U  U\  ` %` N` NU` N % ` %  % %e Je %e e sE ssE E Z " E E " Z Z . . . A . A. . Z Z [(A((([[77(A(Am m Hm Am A m r Nr Nr r Hr Hr m HX HX X X X pR lpqplqlllX 7 o ol> qm> mom? > m? m? > ?  >   q> #q # #pq# p#        # p R R Q R R kkkR Q kkQ kQ Q g  Q  j jj   u  ug gg gg     RRRRR::: : 1 E11E 8E -888- :--:-Fj j -o j o Uj Uo j U n n 0 000  j FFFFFPP PPP  P       MM? M<MM< M  ! !  <<??  DDD D DD!!RRRRRRn n y y n | |   F y Fp p F p F Fy y y           p  p  & &   +  + + + &  & , ,   & & p  / /'/ '  ' '|'|'/SS|SJJSqGJqJ Jp7 p7  // |  | Un | U| o U o o 7 7 7     88EEE         @@ b b  b7p pbGbpG@bGpJGqaGa@@a@  &&$$JJ J J$J$$&3&$&33;3;3;    !;!!   ! ! ;!3a  9 999 9~~aa  aa11a44144          4             ~ ~ ~~***    SSSS`   b bb  `` {{ ~{"  "  bb*b*hvvv$v$vh$h5$5__5h5hh 6 ' 6 '66565_(   6'' ' '        E)E  E"E""("("((__($_$ 2 5 5$`NNOONNNPOPP778PO8`8OPO`8`8887777""""""a2a22a2""A2"+2+AF+A+282+82888222+' 2' '2  h h F'F+F'%F%FDVD@VD8@D8D8%%%FA%A%jjj770j0j00ZZZ8#8#@8#1@@##1HHHkkkkkkZZ41415411100776766551Y5]YY]6]56]676==XXX<Y<5Y45<4<<4_4_1_1_11232>>>2X==.>.EDD.D?.D??>.>?33?D999:9222D2E2DFE2E2  99FFGGFFIIEIFEIEI===VVGGQHGQQVQVHQH\H\,\VMMM,,MM555   --  -- ,,--,,\__`xx x   x xO ` `T ` T`T_H__H_TTWGHGWWG9W9WWT99 (GA(AG A( (A AO }twtt}t}xtxwAAwggwtgwgtsstgsgsguq~+4(GG((G.(.(.(--WW.WHHHHSWHHSSmSmSWSW.mmcc 9c  c  mcml:;:;;l<;l<<lll=<==>?>>ff+WW-++ZZ++Z+ZZ*ZZ** < * < / /ffff?@?@A@A\A\\\\{{\BABBCB{{CCCIIXIIXJ{XX{{:X::XXJKJK:[:[[:[[[[////  <<<<<<KLLLMM&E&&&E&E^E^EENNM=NN=O^X=^=^^sssssLPLPtttst<<*:<<<::*:::tt444--444^^^PLP^P^^..^..V.V_.33L_33wCw3_w__ii_f ii0 0 0 PPwPwzCwCzPzzwPPkVVVmk|k|zz|||CC}CC}33}LL}}CC}CC  CC s  s\r\s\r,,\\ \X^,X, X =X= OPO -  -PQP- ,,rrr-Q-RQ R R XSRXX1l 1X1 11VrsstVtts|tt|ktkVmVkmVm0m0}0m,}},RE}R}}Ell0}00l1ll\ll\l\XlX\STS\\ITI\IiliJ:iIi:UTI:UI(U:VU(:B(B:JBBJJiJEZJEJZRZEaZRR,aZaZM$aa,a,,,mVVDDD DD "   DGGG"8G"$ " $g$"$gy$gMgLggyyeyeeH eH H *c*c*H cH cc2 a 2  . K .K.BK a  a a 12 a 1l l 1a KKBBb b b b l 1l   l   l    1 2 c2 2  c c     [ [[[ [ [t} ttt} u} ~u~ } uui i ~Y Y~~~u~ttQYQQ  (  ( ( ttt  sss-s ss(  (  (   w w V V   VN NV VVNNAAz ANXXNX- - -r-r-rrr``S ` S S N N  @ `@ *@ *@ @ `@ rvvb b BvBDv*v*vD8D8DB.8.8.88G*8*D**N*NN***DDDDDDS S S iii''uu''u''h//uuTTN Tu   0   0 N iN iN TN T;N f if Sf VSVSVSS9 S9 Sf SM9 9 Mz9 zszsz9 zsMM,,MM;/;;T;;/,/,/,,g^ ^    gg  g gg666xx6x}xffx66fHff}fF O F F H F  HH H^ ^^:::: :  :^  hhhhhiiiXX     i i AAXi z AZz i Zi Z k   i   k } j }  s  jj jjj      +           W       WWWWWW   F  O F O KKK77kP73Pkk77KK9J999 JJkckJ3kcc X3X3cX3P7PPPCCCCCXX NX WN B^N^&B&^BE&BWEBNWEW E   WW  ccJJ   9   ++ + ++       2  22 2"E))ET)T&&ET&TT))             T^ ^  N^ N     +  +       .  + @+@+@@.@.. ( .( (. (     &&  @ a@ @ @ @,  ,n,,@annaq8nq8qS8S|8|T8R8T/RR8RnR,n,R 1 > >/>/>>  1>11      1         (  s  s s ss     le} } }}{ HHk k z k HZk z z H H{ H A { { ee{  e eel] A{ A Aw A w w ]]w ] % ]  ]r r rWWIrlWlrl Wl W IW I IISSSIrS%% %%d%ddQLQdLYQLdCCdCSSs s xCs CLCxLxYYx K xKxs Ki i K iKs s              /I[I>>I>//TTTT|, , >[>AA>, A, A[AG[GII IG  G GAG    ' ' ' ttyyy   _ xx_ ^ xx^ xx           w   ivvv vvwuOO O OZZOZ4uOu4%44u4uwwww1 ^ 1 ^ 1 1 1 1     %%%%4%%2r2YY22YYYY           x x x\\\ccccP P P P P    ^ ^ _ _  _ _ T T P T  T  T T yy y   W   W  W  W   cc***W *W *d*ddd]LLLL\\x\ooL]]]])e)a)a)aaaa666767771766---/ -o-8o8ox8x88-8-/ / / / eeeee'''3 '3O'O'OO``O`1`1`11}7}1}7}}}==}C=``  b  CbCeCbbeb b= =p    OO  ?O3??  ? ?p  p pffff ! ff! ! ff22#V2VV#2V)#V)#)v #! v 7 7 v - v c)c- v - - g 7 7 7 v 7  ^   ! ! f f 3^^  3'  ]^ ^ ^   ] ] u ]]]ooooo   o   u u 44rrrkrk4q q yyq q 4q 44u u  u  g yg yHg Hyg HyHH\ G \ \ G G H\      Hq    kk krkZUZ ZU Uw UU  o ow U w wv~ w~ ~ uo~ wo} ~ ot} o tt } o   }G }G }G } }    *     \   \ g - c- c c c K   K 9K K Kc))V   9 99999K999 *9*e  9eLgLMML$LL$$$l$Q$QQjQ2fjfcjcfccjc33l}QjQ}$Q}}l$l&ll&y&~&&&   lM__ ___ _ yBBqq(Bq(q--V(WV--LWL-qXWLXLLLLq))$)X$Y$XY$ZYnu$u$)uu)unu  )  )yy)y y ~~&~ ~ yyyk.kykkt.tt....nnnanaZaZaa[[Z@[@n@z@[@\\@]\]z@zzz66666<<<KK<<;"";;''R';NN;<;NtNtNtky,,3,,,NN'',33c3fppp===='RRR'''D6'6'66oo```NN`N``33535N55N55!3oK333""K""KKoKooooor00rrdz^]^dd_^_ddrdr0)d00)))d)__``44)044!!4!!!4sssss==s=ffffa`aabbQfQQfQBQcbBccBi ci~ iB~iB~B}~p}|}ppQ=pp=pp|{|{{z{zY$$Y3^Y3Y$$$3$usuuN~~uu~33u^3~^~~~gggggo^oo^Y^yyYyzxyxwxwxo44U4UwvwUvUuvtuu~.~~.~0~s0s~Uss0s00{{//s4/n4n4onnog//n/WWWWWv  vovo6ovoD56DD'De5DeC5e5C5{~5~5v~  ~{ ~{{5C==  {d d4 d 4 4SS(S    {{{({{(+ + (S(4S4 4 4ddd+  ++egggg+BMBBMBMMMffmmxmmmxx      ..]&&&...&]ttst]]&]s]rsrrrxxxrrxrqrrqrpqaoppaabababbbbabbfMffqqqvqqqd9dqvv;9v;v99;;>9F9F9d7dF,,,777d7dbdb7ooanonmn,m,,|,,,||,l,lm,kllkkjkjmm&&kkk&k&k&mnm??n+h55h?h||h|,,FFFh?h??>>W?W>WW|||||55W|5?W+55++?++?*??rrr[5[r[r[vv[vv5XX55[5P5PPP!!OOPPOOOOO#BBP#z#zPPz8J8z#Jz#!J#O!!!&J&!>>;6v66v6&66&&8J8&N8NBNN N    8N8P8 PPeeeehhhhBBBrhhr rrrrr KOOKOKOO::O : 0 :I  I  0In n nn: n: nI: : : II4 4 4 4 4 {nn{{{d{{d* CCCnnn&&nC&C&n& &CHHhhhh555#q?#5?5ZZ?Z?Z ZZ #?#q##  q5qq q  tf t t' ftf' ' + +  f  ff       G   GGC D C D  D D p D ppD C ppC ipii; ; ; o"oo"!oC ""C "G?G G??T?<TT!!"!!TTT<nnnnn T   o!o  T  T  ; ; i; TT==3 6 6 =6 ] =] 6 [ ] i=] i=iii] ihiHhiHiHH6H[ 6x 6[ H[ ] [ x [ x 6x 660 00::L K L x L L x  L 6 6 3  3 K K L K K K  U   U 3 # 3 3 # 3 # 3M 3# c 3c M M c M U M M U U  < <___c      c c # #  %c%%%%n? m|o|c|c|c%c|| ||c| o |  77$ $ B B | |B        t t t 0t t 0000B t B $ B 7[$ $ [[= $ = q= q= 8 " = Z " 8 " = " 8 8 q8 qqq5 q0q5 l5 lll5 5 ) l)  )   ) ) l) {{{{  { d  d { R R d Rd d _ _d <_ <  R OOO^Y Y RY RY Y  Y ^z^^zO^O ;;OO;m;m;<m<m ^ m^m^^ ^^  U K K K^>>>>>>wwwXwwwXVVUVUUeueU/ee//zzzzz444/z/S/4S[S4S[SSO[4[[          zzzDhDhDOhODDDDR"""y|"|R|yR|QyRyQQKRRKOKKMQKQQK``KKI`$`$)M)MM)MMMOKOOkhOkkhkkUUGUGG""GGGUU))$$+I$`$I$+!+C!!88+!+888""8E"Ep!p!CpC'p.$p.p'.#.'#$.$E$%E%&eeE%Ee""eee&'&'''((zzTPTPTTTPOOOOy/yPyyPPpp?y?e??e?ueu?pdwdpdzpzdpdzwz)wz()*w)w**+*agag/g\++,,\)\,)\),--.F-7F)-F)!)FF77R!R/!!)!//R/RR9RR999LFFT/gagaauuxUxuxTTFFTTxTjjXXxUxXVUXVVXvvGjGjGGG##*##*#EE7@7 @7Ej7jj7 7FF L L@ @L@/q/}/}:%:A}:E/}/E@EE}n*n?*nnnmnAAA}AAmjijiihihghA::%%%%% g gfg  fefe_e__   qLqqL9q999   ? ???777AA7A../AA@@@A//0@00@ _ded d0 pxsrcom.femlab.xmesh.Solution[ʏQqSxpwuq~+lambdauu  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~                           ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~                            ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~                            ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~                            ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~                            ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~        !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~                           ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~  !!!!!!!!! ! ! ! ! !!!!!!!!!!!!!!!!!!! !!!"!#!$!%!&!'!(!)!*!+!,!-!.!/!0!1!2!3!4!5!6!7!8!9!:!;!!?!@!A!B!C!D!E!F!G!H!I!J!K!L!M!N!O!P!Q!R!S!T!U!V!W!X!Y!Z![!\!]!^!_!`!a!b!c!d!e!f!g!h!i!j!k!l!m!n!o!p!q!r!s!t!u!v!w!x!y!z!{!|!}!~!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!""""""""" " " " " """"""""""""""""""" "!"""#"$"%"&"'"(")"*"+","-"."/"0"1"2"3"4"5"6"7"8"9":";"<"=">"?"@"A"B"C"D"E"F"G"H"I"J"K"L"M"N"O"P"Q"R"S"T"U"V"W"X"Y"Z"["\"]"^"_"`"a"b"c"d"e"f"g"h"i"j"k"l"m"n"o"p"q"r"s"t"u"v"w"x"y"z"{"|"}"~""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""######### # # # # ################### #!#"###$#%#&#'#(#)#*#+#,#-#.#/#0#1#2#3#4#5#6#7#8#9#:#;#<#=#>#?#@#A#B#C#D#E#F#G#H#I#J#K#L#M#N#O#P#Q#R#S#T#U#V#W#X#Y#Z#[#\#]#^#_#`#a#b#c#d#e#f#g#h#i#j#k#l#m#n#o#p#q#r#s#t#u#v#w#x#y#z#{#|#}#~##################################################################################################################################$$$$$$$$$ $ $ $ $ $$$$$$$$$$$$$$$$$$$ $!$"$#$$$%$&$'$($)$*$+$,$-$.$/$0$1$2$3$4$5$6$7$8$9$:$;$<$=$>$?$@$A$B$C$D$E$F$G$H$I$J$K$L$M$N$O$P$Q$R$S$T$U$V$W$X$Y$Z$[$\$]$^$_$`$a$b$c$d$e$f$g$h$i$j$k$l$m$n$o$p$q$r$s$t$u$v$w$x$y$z${$|$}$~$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%%%%%%%%% % % % % %%%%%%%%%%%%%%%%%%% %!%"%#%$%%%&%'%(%)%*%+%,%-%.%/%0%1%2%3%4%5%6%7%8%9%:%;%<%=%>%?%@%A%B%C%D%E%F%G%H%I%J%K%L%M%N%O%P%Q%R%S%T%U%V%W%X%Y%Z%[%\%]%^%_%`%a%b%c%d%e%f%g%h%i%j%k%l%m%n%o%p%q%r%s%t%u%v%w%x%y%z%{%|%}%~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%&&&&&&&&& & & & & &&&&&&&&&&&&&&&&&&& &!&"&#&$&%&&&'&(&)&*&+&,&-&.&/&0&1&2&3&4&5&6&7&8&9&:&;&<&=&>&?&@&A&B&C&D&E&F&G&H&I&J&K&L&M&N&O&P&Q&R&S&T&U&V&W&X&Y&Z&[&\&]&^&_&`&a&b&c&d&e&f&g&h&i&j&k&l&m&n&o&p&q&r&s&t&u&v&w&x&y&z&{&|&}&~&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&''''''''' ' ' ' ' ''''''''''''''''''' '!'"'#'$'%'&'''(')'*'+','-'.'/'0'1'2'3'4'5'6'7'8'9':';'<'='>'?'@'A'B'C'D'E'F'G'H'I'J'K'L'M'N'O'P'Q'R'S'T'U'V'W'X'Y'Z'['\']'^'_'`'a'b'c'd'e'f'g'h'i'j'k'l'm'n'o'p'q'r's't'u'v'w'x'y'z'{'|'}'~''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''((((((((( ( ( ( ( ((((((((((((((((((( (!("(#($(%(&('((()(*(+(,(-(.(/(0(1(2(3(4(5(6(7(8(9(:(;(<(=(>(?(@(A(B(C(D(E(F(G(H(I(J(K(L(M(N(O(P(Q(R(S(T(U(V(W(X(Y(Z([(\(](^(_(`(a(b(c(d(e(f(g(h(i(j(k(l(m(n(o(p(q(r(s(t(u(v(w(x(y(z({(|(}(~(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((())))))))) ) ) ) ) ))))))))))))))))))) )!)")#)$)%)&)')()))*)+),)-).)/)0)1)2)3)4)5)6)7)8)9):);)<)=)>)?)@)A)B)C)D)E)F)G)H)I)J)K)L)M)N)O)P)Q)R)S)T)U)V)W)X)Y)Z)[)\)])^)_)`)a)b)c)d)e)f)g)h)i)j)k)l)m)n)o)p)q)r)s)t)u)v)w)x)y)z){)|)})~))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))********* * * * * ******************* *!*"*#*$*%*&*'*(*)***+*,*-*.*/*0*1*2*3*4*5*6*7*8*9*:*;*<*=*>*?*@*A*B*C*D*E*F*G*H*I*J*K*L*M*N*O*P*Q*R*S*T*U*V*W*X*Y*Z*[*\*]*^*_*`*a*b*c*d*e*f*g*h*i*j*k*l*m*n*o*p*q*r*s*t*u*v*w*x*y*z*{*|*}*~**********************************************************************************************************************************+++++++++ + + + + +++++++++++++++++++ +!+"+#+$+%+&+'+(+)+*+++,+-+.+/+0+1+2+3+4+5+6+7+8+9+:+;+<+=+>+?+@+A+B+C+D+E+F+G+H+I+J+K+L+M+N+O+P+Q+R+S+T+U+V+W+X+Y+Z+[+\+]+^+_+`+a+b+c+d+e+f+g+h+i+j+k+l+m+n+o+p+q+r+s+t+u+v+w+x+y+z+{+|+}+~++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++,,,,,,,,, , , , , ,,,,,,,,,,,,,,,,,,, ,!,",#,$,%,&,',(,),*,+,,,-,.,/,0,1,2,3,4,5,6,7,8,9,:,;,<,=,>,?,@,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,[,\,],^,_,`,a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,{,|,},~,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,--------- - - - - ------------------- -!-"-#-$-%-&-'-(-)-*-+-,---.-/-0-1-2-3-4-5-6-7-8-9-:-;-<-=->-?-@-A-B-C-D-E-F-G-H-I-J-K-L-M-N-O-P-Q-R-S-T-U-V-W-X-Y-Z-[-\-]-^-_-`-a-b-c-d-e-f-g-h-i-j-k-l-m-n-o-p-q-r-s-t-u-v-w-x-y-z-{-|-}-~----------------------------------------------------------------------------------------------------------------------------------......... . . . . ................... .!.".#.$.%.&.'.(.).*.+.,.-.../.0.1.2.3.4.5.6.7.8.9.:.;.<.=.>.?.@.A.B.C.D.E.F.G.H.I.J.K.L.M.N.O.P.Q.R.S.T.U.V.W.X.Y.Z.[.\.].^._.`.a.b.c.d.e.f.g.h.i.j.k.l.m.n.o.p.q.r.s.t.u.v.w.x.y.z.{.|.}.~..................................................................................................................................///////// / / / / /////////////////// /!/"/#/$/%/&/'/(/)/*/+/,/-/.///0/1/2/3/4/5/6/7/8/9/:/;//?/@/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/[/\/]/^/_/`/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/{/|/}/~//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////000000000 0 0 0 0 0000000000000000000 0!0"0#0$0%0&0'0(0)0*0+0,0-0.0/000102030405060708090:0;0<0=0>0?0@0A0B0C0D0E0F0G0H0I0J0K0L0M0N0O0P0Q0R0S0T0U0V0W0X0Y0Z0[0\0]0^0_0`0a0b0c0d0e0f0g0h0i0j0k0l0m0n0o0p0q0r0s0t0u0v0w0x0y0z0{0|0}0~0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000111111111 1 1 1 1 1111111111111111111 1!1"1#1$1%1&1'1(1)1*1+1,1-1.1/101112131415161718191:1;1<1=1>1?1@1A1B1C1D1E1F1G1H1I1J1K1L1M1N1O1P1Q1R1S1T1U1V1W1X1Y1Z1[1\1]1^1_1`1a1b1c1d1e1f1g1h1i1j1k1l1m1n1o1p1q1r1s1t1u1v1w1x1y1z1{1|1}1~1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111222222222 2 2 2 2 2222222222222222222 2!2"2#2$2%2&2'2(2)2*2+2,2-2.2/202122232425262728292:2;2<2=2>2?2@2A2B2C2D2E2F2G2H2I2J2K2L2M2N2O2P2Q2R2S2T2U2V2W2X2Y2Z2[2\2]2^2_2`2a2b2c2d2e2f2g2h2i2j2k2l2m2n2o2p2q2r2s2t2u2v2w2x2y2z2{2|2}2~2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222333333333 3 3 3 3 3333333333333333333 3!3"3#3$3%3&3'3(3)3*3+3,3-3.3/303132333435363738393:3;3<3=3>3?3@3A3B3C3D3E3F3G3H3I3J3K3L3M3N3O3P3Q3R3S3T3U3V3W3X3Y3Z3[3\3]3^3_3`3a3b3c3d3e3f3g3h3i3j3k3l3m3n3o3p3q3r3s3t3u3v3w3x3y3z3{3|3}3~3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333444444444 4 4 4 4 4444444444444444444 4!4"4#4$4%4&4'4(4)4*4+4,4-4.4/404142434445464748494:4;4<4=4>4?4@4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P4Q4R4S4T4U4V4W4X4Y4Z4[4\4]4^4_4`4a4b4c4d4e4f4g4h4i4j4k4l4m4n4o4p4q4r4s4t4u4v4w4x4y4z4{4|4}4~4444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444555555555 5 5 5 5 5555555555555555555 5!5"5#5$5%5&5'5(5)5*5+5,5-5.5/505152535455565758595:5;5<5=5>5?5@5A5B5C5D5E5F5G5H5I5J5K5L5M5N5O5P5Q5R5S5T5U5V5W5X5Y5Z5[5\5]5^5_5`5a5b5c5d5e5f5g5h5i5j5k5l5m5n5o5p5q5r5s5t5u5v5w5x5y5z5{5|5}5~5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555666666666 6 6 6 6 6666666666666666666 6!6"6#6$6%6&6'6(6)6*6+6,6-6.6/606162636465666768696:6;6<6=6>6?6@6A6B6C6D6E6F6G6H6I6J6K6L6M6N6O6P6Q6R6S6T6U6V6W6X6Y6Z6[6\6]6^6_6`6a6b6c6d6e6f6g6h6i6j6k6l6m6n6o6p6q6r6s6t6u6v6w6x6y6z6{6|6}6~6666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666777777777 7 7 7 7 7777777777777777777 7!7"7#7$7%7&7'7(7)7*7+7,7-7.7/707172737475767778797:7;7<7=7>7?7@7A7B7C7D7E7F7G7H7I7J7K7L7M7N7O7P7Q7R7S7T7U7V7W7X7Y7Z7[7\7]7^7_7`7a7b7c7d7e7f7g7h7i7j7k7l7m7n7o7p7q7r7s7t7u7v7w7x7y7z7{7|7}7~7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777888888888 8 8 8 8 8888888888888888888 8!8"8#8$8%8&8'8(8)8*8+8,8-8.8/808182838485868788898:8;8<8=8>8?8@8A8B8C8D8E8F8G8H8I8J8K8L8M8N8O8P8Q8R8S8T8U8V8W8X8Y8Z8[8\8]8^8_8`8a8b8c8d8e8f8g8h8i8j8k8l8m8n8o8p8q8r8s8t8u8v8w8x8y8z8{8|8}8~8888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888999999999 9 9 9 9 9999999999999999999 9!9"9#9$9%9&9'9(9)9*9+9,9-9.9/909192939495969798999:9;9<9=9>9?9@9A9B9C9D9E9F9G9H9I9J9K9L9M9N9O9P9Q9R9S9T9U9V9W9X9Y9Z9[9\9]9^9_9`9a9b9c9d9e9f9g9h9i9j9k9l9m9n9o9p9q9r9s9t9u9v9w9x9y9z9{9|9}9~9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999::::::::: : : : : ::::::::::::::::::: :!:":#:$:%:&:':(:):*:+:,:-:.:/:0:1:2:3:4:5:6:7:8:9:::;:<:=:>:?:@:A:B:C:D:E:F:G:H:I:J:K:L:M:N:O:P:Q:R:S:T:U:V:W:X:Y:Z:[:\:]:^:_:`:a:b:c:d:e:f:g:h:i:j:k:l:m:n:o:p:q:r:s:t:u:v:w:x:y:z:{:|:}:~::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::;;;;;;;;; ; ; ; ; ;;;;;;;;;;;;;;;;;;; ;!;";#;$;%;&;';(;);*;+;,;-;.;/;0;1;2;3;4;5;6;7;8;9;:;;;<;=;>;?;@;A;B;C;D;E;F;G;H;I;J;K;L;M;N;O;P;Q;R;S;T;U;V;W;X;Y;Z;[;\;];^;_;`;a;b;c;d;e;f;g;h;i;j;k;l;m;n;o;p;q;r;s;t;u;v;w;x;y;z;{;|;};~;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;<<<<<<<<< < < < < <<<<<<<<<<<<<<<<<<< <!<"<#<$<%<&<'<(<)<*<+<,<-<.</<0<1<2<3<4<5<6<7<8<9<:<;<<<=<><?<@<A<B<C<D<E<F<G<H<I<J<K<L<M<N<O<P<Q<R<S<T<U<V<W<X<Y<Z<[<\<]<^<_<`<a<b<c<d<e<f<g<h<i<j<k<l<m<n<o<p<q<r<s<t<u<v<w<x<y<z<{<|<}<~<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<========= = = = = =================== =!="=#=$=%=&='=(=)=*=+=,=-=.=/=0=1=2=3=4=5=6=7=8=9=:=;=<===>=?=@=A=B=C=D=E=F=G=H=I=J=K=L=M=N=O=P=Q=R=S=T=U=V=W=X=Y=Z=[=\=]=^=_=`=a=b=c=d=e=f=g=h=i=j=k=l=m=n=o=p=q=r=s=t=u=v=w=x=y=z={=|=}=~==================================================================================================================================>>>>>>>>> > > > > >>>>>>>>>>>>>>>>>>> >!>">#>$>%>&>'>(>)>*>+>,>->.>/>0>1>2>3>4>5>6>7>8>9>:>;><>=>>>?>@>A>B>C>D>E>F>G>H>I>J>K>L>M>N>O>P>Q>R>S>T>U>V>W>X>Y>Z>[>\>]>^>_>`>a>b>c>d>e>f>g>h>i>j>k>l>m>n>o>p>q>r>s>t>u>v>w>x>y>z>{>|>}>~>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>????????? ? ? ? ? ??????????????????? ?!?"?#?$?%?&?'?(?)?*?+?,?-?.?/?0?1?2?3?4?5?6?7?8?9?:?;????@?A?B?C?D?E?F?G?H?I?J?K?L?M?N?O?P?Q?R?S?T?U?V?W?X?Y?Z?[?\?]?^?_?`?a?b?c?d?e?f?g?h?i?j?k?l?m?n?o?p?q?r?s?t?u?v?w?x?y?z?{?|?}?~??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????@@@@@@@@@ @ @ @ @ @@@@@@@@@@@@@@@@@@@ @!@"@#@$@%@&@'@(@)@*@+@,@-@.@/@0@1@2@3@4@5@6@7@8@9@:@;@<@=@>@?@@@A@B@C@D@E@F@G@H@I@J@K@L@M@N@O@P@Q@R@S@T@U@V@W@X@Y@Z@[@\@]@^@_@`@a@b@c@d@e@f@g@h@i@j@k@l@m@n@o@p@q@r@s@t@u@v@w@x@y@z@{@|@}@~@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@AAAAAAAAA A A A A AAAAAAAAAAAAAAAAAAA A!A"A#A$A%A&A'A(A)A*A+A,A-A.A/A0A1A2A3A4A5A6A7A8A9A:A;AA?A@AAABACADAEAFAGAHAIAJAKALAMANAOAPAQARASATAUAVAWAXAYAZA[A\A]A^A_A`AaAbAcAdAeAfAgAhAiAjAkAlAmAnAoApAqArAsAtAuAvAwAxAyAzA{A|A}A~AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBB B B B B BBBBBBBBBBBBBBBBBBB B!B"B#B$B%B&B'B(B)B*B+B,B-B.B/B0B1B2B3B4B5B6B7B8B9B:B;BB?B@BABBBCBDBEBFBGBHBIBJBKBLBMBNBOBPBQBRBSBTBUBVBWBXBYBZB[B\B]B^B_B`BaBbBcBdBeBfBgBhBiBjBkBlBmBnBoBpBqBrBsBtBuBvBwBxByBzB{B|B}B~BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBCCCCCCCCC C C C C CCCCCCCCCCCCCCCCCCC C!C"C#C$C%C&C'C(C)C*C+C,C-C.C/C0C1C2C3C4C5C6C7C8C9C:C;CC?C@CACBCCCDCECFCGCHCICJCKCLCMCNCOCPCQCRCSCTCUCVCWCXCYCZC[C\C]C^C_C`CaCbCcCdCeCfCgChCiCjCkClCmCnCoCpCqCrCsCtCuCvCwCxCyCzC{C|C}C~CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCDDDDDDDDD D D D D DDDDDDDDDDDDDDDDDDD D!D"D#D$D%D&D'D(D)D*D+D,D-D.D/D0D1D2D3D4D5D6D7D8D9D:D;DD?D@DADBDCDDDEDFDGDHDIDJDKDLDMDNDODPDQDRDSDTDUDVDWDXDYDZD[D\D]D^D_D`DaDbDcDdDeDfDgDhDiDjDkDlDmDnDoDpDqDrDsDtDuDvDwDxDyDzD{D|D}D~DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDEEEEEEEEE E E E E EEEEEEEEEEEEEEEEEEE E!E"E#E$E%E&E'E(E)E*E+E,E-E.E/E0E1E2E3E4E5E6E7E8E9E:E;EE?E@EAEBECEDEEEFEGEHEIEJEKELEMENEOEPEQERESETEUEVEWEXEYEZE[E\E]E^E_E`EaEbEcEdEeEfEgEhEiEjEkElEmEnEoEpEqErEsEtEuEvEwExEyEzE{E|E}E~EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEFFFFFFFFF F F F F FFFFFFFFFFFFFFFFFFF F!F"F#F$F%F&F'F(F)F*F+F,F-F.F/F0F1F2F3F4F5F6F7F8F9F:F;FF?F@FAFBFCFDFEFFFGFHFIFJFKFLFMFNFOFPFQFRFSFTFUFVFWFXFYFZF[F\F]F^F_F`FaFbFcFdFeFfFgFhFiFjFkFlFmFnFoFpFqFrFsFtFuFvFwFxFyFzF{F|F}F~FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFGGGGGGGGG G G G G GGGGGGGGGGGGGGGGGGG G!G"G#G$G%G&G'G(G)G*G+G,G-G.G/G0G1G2G3G4G5G6G7G8G9G:G;GG?G@GAGBGCGDGEGFGGGHGIGJGKGLGMGNGOGPGQGRGSGTGUGVGWGXGYGZG[G\G]G^G_G`GaGbGcGdGeGfGgGhGiGjGkGlGmGnGoGpGqGrGsGtGuGvGwGxGyGzG{G|G}G~GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGHHHHHHHHH H H H H HHHHHHHHHHHHHHHHHHH H!H"H#H$H%H&H'H(H)H*H+H,H-H.H/H0H1H2H3H4H5H6H7H8H9H:H;HH?H@HAHBHCHDHEHFHGHHHIHJHKHLHMHNHOHPHQHRHSHTHUHVHWHXHYHZH[H\H]H^H_H`HaHbHcHdHeHfHgHhHiHjHkHlHmHnHoHpHqHrHsHtHuHvHwHxHyHzH{H|H}H~HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHIIIIIIIII I I I I IIIIIIIIIIIIIIIIIII I!I"I#I$I%I&I'I(I)I*I+I,I-I.I/I0I1I2I3I4I5I6I7I8I9I:I;II?I@IAIBICIDIEIFIGIHIIIJIKILIMINIOIPIQIRISITIUIVIWIXIYIZI[I\I]I^I_I`IaIbIcIdIeIfIgIhIiIjIkIlImInIoIpIqIrIsItIuIvIwIxIyIzI{I|I}I~IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIJJJJJJJJJ J J J J JJJJJJJJJJJJJJJJJJJ J!J"J#J$J%J&J'J(J)J*J+J,J-J.J/J0J1J2J3J4J5J6J7J8J9J:J;JJ?J@JAJBJCJDJEJFJGJHJIJJJKJLJMJNJOJPJQJRJSJTJUJVJWJXJYJZJ[J\J]J^J_J`JaJbJcJdJeJfJgJhJiJjJkJlJmJnJoJpJqJrJsJtJuJvJwJxJyJzJ{J|J}J~JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJKKKKKKKKK K K K K KKKKKKKKKKKKKKKKKKK K!K"K#K$K%K&K'K(K)K*K+K,K-K.K/K0K1K2K3K4K5K6K7K8K9K:K;KK?K@KAKBKCKDKEKFKGKHKIKJKKKLKMKNKOKPKQKRKSKTKUKVKWKXKYKZK[K\K]K^K_K`KaKbKcKdKeKfKgKhKiKjKkKlKmKnKoKpKqKrKsKtKuKvKwKxKyKzK{K|K}K~KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKLLLLLLLLL L L L L LLLLLLLLLLLLLLLLLLL L!L"L#L$L%L&L'L(L)L*L+L,L-L.L/L0L1L2L3L4L5L6L7L8L9L:L;LL?L@LALBLCLDLELFLGLHLILJLKLLLMLNLOLPLQLRLSLTLULVLWLXLYLZL[L\L]L^L_L`LaLbLcLdLeLfLgLhLiLjLkLlLmLnLoLpLqLrLsLtLuLvLwLxLyLzL{L|L}L~LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLMMMMMMMMM M M M M MMMMMMMMMMMMMMMMMMM M!M"M#M$M%M&M'M(M)M*M+M,M-M.M/M0M1M2M3M4M5M6M7M8M9M:M;MM?M@MAMBMCMDMEMFMGMHMIMJMKMLMMMNMOMPMQMRMSMTMUMVMWMXMYMZM[M\M]M^M_M`MaMbMcMdMeMfMgMhMiMjMkMlMmMnMoMpMqMrMsMtMuMvMwMxMyMzM{M|M}M~MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMNNNNNNNNN N N N N NNNNNNNNNNNNNNNNNNN N!N"N#N$N%N&N'N(N)N*N+N,N-N.N/N0N1N2N3N4N5N6N7N8N9N:N;NN?N@NANBNCNDNENFNGNHNINJNKNLNMNNNONPNQNRNSNTNUNVNWNXNYNZN[N\N]N^N_N`NaNbNcNdNeNfNgNhNiNjNkNlNmNnNoNpNqNrNsNtNuNvNwNxNyNzN{N|N}N~NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOOO O O O O OOOOOOOOOOOOOOOOOOO O!O"O#O$O%O&O'O(O)O*O+O,O-O.O/O0O1O2O3O4O5O6O7O8O9O:O;OO?O@OAOBOCODOEOFOGOHOIOJOKOLOMONOOOPOQOROSOTOUOVOWOXOYOZO[O\O]O^O_O`OaObOcOdOeOfOgOhOiOjOkOlOmOnOoOpOqOrOsOtOuOvOwOxOyOzO{O|O}O~OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOPPPPPPPPP P P P P PPPPPPPPPPPPPPPPPPP P!P"P#P$P%P&P'P(P)P*P+P,P-P.P/P0P1P2P3P4P5P6P7P8P9P:P;PP?P@PAPBPCPDPEPFPGPHPIPJPKPLPMPNPOPPPQPRPSPTPUPVPWPXPYPZP[P\P]P^P_P`PaPbPcPdPePfPgPhPiPjPkPlPmPnPoPpPqPrPsPtPuPvPwPxPyPzP{P|P}P~PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPQQQQQQQQQ Q Q Q Q QQQQQQQQQQQQQQQQQQQ Q!Q"Q#Q$Q%Q&Q'Q(Q)Q*Q+Q,Q-Q.Q/Q0Q1Q2Q3Q4Q5Q6Q7Q8Q9Q:Q;QQ?Q@QAQBQCQDQEQFQGQHQIQJQKQLQMQNQOQPQQQRQSQTQUQVQWQXQYQZQ[Q\Q]Q^Q_Q`QaQbQcQdQeQfQgQhQiQjQkQlQmQnQoQpQqQrQsQtQuQvQwQxQyQzQ{Q|Q}Q~QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQRRRRRRRRR R R R R RRRRRRRRRRRRRRRRRRR R!R"R#R$R%R&R'R(R)R*R+R,R-R.R/R0R1R2R3R4R5R6R7R8R9R:R;RR?R@RARBRCRDRERFRGRHRIRJRKRLRMRNRORPRQRRRSRTRURVRWRXRYRZR[R\R]R^R_R`RaRbRcRdReRfRgRhRiRjRkRlRmRnRoRpRqRrRsRtRuRvRwRxRyRzR{R|R}R~RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRSSSSSSSSS S S S S SSSSSSSSSSSSSSSSSSS S!S"S#S$S%S&S'S(S)S*S+S,S-S.S/S0S1S2S3S4S5S6S7S8S9S:S;SS?S@SASBSCSDSESFSGSHSISJSKSLSMSNSOSPSQSRSSSTSUSVSWSXSYSZS[S\S]S^S_S`SaSbScSdSeSfSgShSiSjSkSlSmSnSoSpSqSrSsStSuSvSwSxSySzS{S|S}S~SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSTTTTTTTTT T T T T TTTTTTTTTTTTTTTTTTT T!T"T#T$T%T&T'T(T)T*T+T,T-T.T/T0T1T2T3T4T5T6T7T8T9T:T;TT?T@TATBTCTDTETFTGTHTITJTKTLTMTNTOTPTQTRTSTTTUTVTWTXTYTZT[T\T]T^T_T`TaTbTcTdTeTfTgThTiTjTkTlTmTnToTpTqTrTsTtTuTvTwTxTyTzT{T|T}T~TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTUUUUUUUUU U U U U UUUUUUUUUUUUUUUUUUU U!U"U#U$U%U&U'U(U)U*U+U,U-U.U/U0U1U2U3U4U5U6U7U8U9U:U;UU?U@UAUBUCUDUEUFUGUHUIUJUKULUMUNUOUPUQURUSUTUUUVUWUXUYUZU[U\U]U^U_U`UaUbUcUdUeUfUgUhUiUjUkUlUmUnUoUpUqUrUsUtUuUvUwUxUyUzU{U|U}U~UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUVVVVVVVVV V V V V VVVVVVVVVVVVVVVVVVV V!V"V#V$V%V&V'V(V)V*V+V,V-V.V/V0V1V2V3V4V5V6V7V8V9V:V;VV?V@VAVBVCVDVEVFVGVHVIVJVKVLVMVNVOVPVQVRVSVTVUVVVWVXVYVZV[V\V]V^V_V`VaVbVcVdVeVfVgVhViVjVkVlVmVnVoVpVqVrVsVtVuVvVwVxVyVzV{V|V}V~VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVWWWWWWWWW W W W W WWWWWWWWWWWWWWWWWWW W!W"W#W$W%W&W'W(W)W*W+W,W-W.W/W0W1W2W3W4W5W6W7W8W9W:W;WW?W@WAWBWCWDWEWFWGWHWIWJWKWLWMWNWOWPWQWRWSWTWUWVWWWXWYWZW[W\W]W^W_W`WaWbWcWdWeWfWgWhWiWjWkWlWmWnWoWpWqWrWsWtWuWvWwWxWyWzW{W|W}W~WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWXXXXXXXXX X X X X XXXXXXXXXXXXXXXXXXX X!X"X#X$X%X&X'X(X)X*X+X,X-X.X/X0X1X2X3X4X5X6X7X8X9X:X;XX?X@XAXBXCXDXEXFXGXHXIXJXKXLXMXNXOXPXQXRXSXTXUXVXWXXXYXZX[X\X]X^X_X`XaXbXcXdXeXfXgXhXiXjXkXlXmXnXoXpXqXrXsXtXuXvXwXxXyXzX{X|X}X~XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXYYYYYYYYY Y Y Y Y YYYYYYYYYYYYYYYYYYY Y!Y"Y#Y$Y%Y&Y'Y(Y)Y*Y+Y,Y-Y.Y/Y0Y1Y2Y3Y4Y5Y6Y7Y8Y9Y:Y;YY?Y@YAYBYCYDYEYFYGYHYIYJYKYLYMYNYOYPYQYRYSYTYUYVYWYXYYYZY[Y\Y]Y^Y_Y`YaYbYcYdYeYfYgYhYiYjYkYlYmYnYoYpYqYrYsYtYuYvYwYxYyYzY{Y|Y}Y~YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYZZZZZZZZZ Z Z Z Z ZZZZZZZZZZZZZZZZZZZ Z!Z"Z#Z$Z%Z&Z'Z(Z)Z*Z+Z,Z-Z.Z/Z0Z1Z2Z3Z4Z5Z6Z7Z8Z9Z:Z;ZZ?Z@ZAZBZCZDZEZFZGZHZIZJZKZLZMZNZOZPZQZRZSZTZUZVZWZXZYZZZ[Z\Z]Z^Z_Z`ZaZbZcZdZeZfZgZhZiZjZkZlZmZnZoZpZqZrZsZtZuZvZwZxZyZzZ{Z|Z}Z~ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ[[[[[[[[[ [ [ [ [ [[[[[[[[[[[[[[[[[[[ [!["[#[$[%[&['[([)[*[+[,[-[.[/[0[1[2[3[4[5[6[7[8[9[:[;[<[=[>[?[@[A[B[C[D[E[F[G[H[I[J[K[L[M[N[O[P[Q[R[S[T[U[V[W[X[Y[Z[[[\[][^[_[`[a[b[c[d[e[f[g[h[i[j[k[l[m[n[o[p[q[r[s[t[u[v[w[x[y[z[{[|[}[~[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[\\\\\\\\\ \ \ \ \ \\\\\\\\\\\\\\\\\\\ \!\"\#\$\%\&\'\(\)\*\+\,\-\.\/\0\1\2\3\4\5\6\7\8\9\:\;\<\=\>\?\@\A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z\[\\\]\^\_\`\a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z\{\|\}\~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\]]]]]]]]] ] ] ] ] ]]]]]]]]]]]]]]]]]]] ]!]"]#]$]%]&]'](])]*]+],]-].]/]0]1]2]3]4]5]6]7]8]9]:];]<]=]>]?]@]A]B]C]D]E]F]G]H]I]J]K]L]M]N]O]P]Q]R]S]T]U]V]W]X]Y]Z][]\]]]^]_]`]a]b]c]d]e]f]g]h]i]j]k]l]m]n]o]p]q]r]s]t]u]v]w]x]y]z]{]|]}]~]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]^^^^^^^^^ ^ ^ ^ ^ ^^^^^^^^^^^^^^^^^^^ ^!^"^#^$^%^&^'^(^)^*^+^,^-^.^/^0^1^2^3^4^5^6^7^8^9^:^;^<^=^>^?^@^A^B^C^D^E^F^G^H^I^J^K^L^M^N^O^P^Q^R^S^T^U^V^W^X^Y^Z^[^\^]^^^_^`^a^b^c^d^e^f^g^h^i^j^k^l^m^n^o^p^q^r^s^t^u^v^w^x^y^z^{^|^}^~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^_________ _ _ _ _ ___________________ _!_"_#_$_%_&_'_(_)_*_+_,_-_._/_0_1_2_3_4_5_6_7_8_9_:_;_<_=_>_?_@_A_B_C_D_E_F_G_H_I_J_K_L_M_N_O_P_Q_R_S_T_U_V_W_X_Y_Z_[_\_]_^___`_a_b_c_d_e_f_g_h_i_j_k_l_m_n_o_p_q_r_s_t_u_v_w_x_y_z_{_|_}_~__________________________________________________________________________________________________________________________________````````` ` ` ` ` ``````````````````` `!`"`#`$`%`&`'`(`)`*`+`,`-`.`/`0`1`2`3`4`5`6`7`8`9`:`;`<`=`>`?`@`A`B`C`D`E`F`G`H`I`J`K`L`M`N`O`P`Q`R`S`T`U`V`W`X`Y`Z`[`\`]`^`_```a`b`c`d`e`f`g`h`i`j`k`l`m`n`o`p`q`r`s`t`u`v`w`x`y`z`{`|`}`~``````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````aaaaaaaaa a a a a aaaaaaaaaaaaaaaaaaa a!a"a#a$a%a&a'a(a)a*a+a,a-a.a/a0a1a2a3a4a5a6a7a8a9a:a;aa?a@aAaBaCaDaEaFaGaHaIaJaKaLaMaNaOaPaQaRaSaTaUaVaWaXaYaZa[a\a]a^a_a`aaabacadaeafagahaiajakalamanaoapaqarasatauavawaxayaza{a|a}a~aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbb b b b b bbbbbbbbbbbbbbbbbbb b!b"b#b$b%b&b'b(b)b*b+b,b-b.b/b0b1b2b3b4b5b6b7b8b9b:b;bb?b@bAbBbCbDbEbFbGbHbIbJbKbLbMbNbObPbQbRbSbTbUbVbWbXbYbZb[b\b]b^b_b`babbbcbdbebfbgbhbibjbkblbmbnbobpbqbrbsbtbubvbwbxbybzb{b|b}b~bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbccccccccc c c c c ccccccccccccccccccc c!c"c#c$c%c&c'c(c)c*c+c,c-c.c/c0c1c2c3c4c5c6c7c8c9c:c;cc?c@cAcBcCcDcEcFcGcHcIcJcKcLcMcNcOcPcQcRcScTcUcVcWcXcYcZc[c\c]c^c_c`cacbcccdcecfcgchcicjckclcmcncocpcqcrcsctcucvcwcxcyczc{c|c}c~ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccddddddddd d d d d ddddddddddddddddddd d!d"d#d$d%d&d'd(d)d*d+d,d-d.d/d0d1d2d3d4d5d6d7d8d9d:d;dd?d@dAdBdCdDdEdFdGdHdIdJdKdLdMdNdOdPdQdRdSdTdUdVdWdXdYdZd[d\d]d^d_d`dadbdcdddedfdgdhdidjdkdldmdndodpdqdrdsdtdudvdwdxdydzd{d|d}d~ddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddeeeeeeeee e e e e eeeeeeeeeeeeeeeeeee e!e"e#e$e%e&e'e(e)e*e+e,e-e.e/e0e1e2e3e4e5e6e7e8e9e:e;ee?e@eAeBeCeDeEeFeGeHeIeJeKeLeMeNeOePeQeReSeTeUeVeWeXeYeZe[e\e]e^e_e`eaebecedeeefegeheiejekelemeneoepeqereseteuevewexeyeze{e|e}e~eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeefffffffff f f f f fffffffffffffffffff f!f"f#f$f%f&f'f(f)f*f+f,f-f.f/f0f1f2f3f4f5f6f7f8f9f:f;ff?f@fAfBfCfDfEfFfGfHfIfJfKfLfMfNfOfPfQfRfSfTfUfVfWfXfYfZf[f\f]f^f_f`fafbfcfdfefffgfhfifjfkflfmfnfofpfqfrfsftfufvfwfxfyfzf{f|f}f~ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffggggggggg g g g g ggggggggggggggggggg g!g"g#g$g%g&g'g(g)g*g+g,g-g.g/g0g1g2g3g4g5g6g7g8g9g:g;gg?g@gAgBgCgDgEgFgGgHgIgJgKgLgMgNgOgPgQgRgSgTgUgVgWgXgYgZg[g\g]g^g_g`gagbgcgdgegfggghgigjgkglgmgngogpgqgrgsgtgugvgwgxgygzg{g|g}g~gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggghhhhhhhhh h h h h hhhhhhhhhhhhhhhhhhh h!h"h#h$h%h&h'h(h)h*h+h,h-h.h/h0h1h2h3h4h5h6h7h8h9h:h;hh?h@hAhBhChDhEhFhGhHhIhJhKhLhMhNhOhPhQhRhShThUhVhWhXhYhZh[h\h]h^h_h`hahbhchdhehfhghhhihjhkhlhmhnhohphqhrhshthuhvhwhxhyhzh{h|h}h~hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhiiiiiiiii i i i i iiiiiiiiiiiiiiiiiii i!i"i#i$i%i&i'i(i)i*i+i,i-i.i/i0i1i2i3i4i5i6i7i8i9i:i;ii?i@iAiBiCiDiEiFiGiHiIiJiKiLiMiNiOiPiQiRiSiTiUiViWiXiYiZi[i\i]i^i_i`iaibicidieifigihiiijikiliminioipiqirisitiuiviwixiyizi{i|i}i~iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiijjjjjjjjj j j j j jjjjjjjjjjjjjjjjjjj j!j"j#j$j%j&j'j(j)j*j+j,j-j.j/j0j1j2j3j4j5j6j7j8j9j:j;jj?j@jAjBjCjDjEjFjGjHjIjJjKjLjMjNjOjPjQjRjSjTjUjVjWjXjYjZj[j\j]j^j_j`jajbjcjdjejfjgjhjijjjkjljmjnjojpjqjrjsjtjujvjwjxjyjzj{j|j}j~jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjkkkkkkkkk k k k k kkkkkkkkkkkkkkkkkkk k!k"k#k$k%k&k'k(k)k*k+k,k-k.k/k0k1k2k3k4k5k6k7k8k9k:k;kk?k@kAkBkCkDkEkFkGkHkIkJkKkLkMkNkOkPkQkRkSkTkUkVkWkXkYkZk[k\k]k^k_k`kakbkckdkekfkgkhkikjkkklkmknkokpkqkrksktkukvkwkxkykzk{k|k}k~kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkklllllllll l l l l lllllllllllllllllll l!l"l#l$l%l&l'l(l)l*l+l,l-l.l/l0l1l2l3l4l5l6l7l8l9l:l;ll?l@lAlBlClDlElFlGlHlIlJlKlLlMlNlOlPlQlRlSlTlUlVlWlXlYlZl[l\l]l^l_l`lalblcldlelflglhliljlklllmlnlolplqlrlsltlulvlwlxlylzl{l|l}l~llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllmmmmmmmmm m m m m mmmmmmmmmmmmmmmmmmm m!m"m#m$m%m&m'm(m)m*m+m,m-m.m/m0m1m2m3m4m5m6m7m8m9m:m;mm?m@mAmBmCmDmEmFmGmHmImJmKmLmMmNmOmPmQmRmSmTmUmVmWmXmYmZm[m\m]m^m_m`mambmcmdmemfmgmhmimjmkmlmmmnmompmqmrmsmtmumvmwmxmymzm{m|m}m~mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmnnnnnnnnn n n n n nnnnnnnnnnnnnnnnnnn n!n"n#n$n%n&n'n(n)n*n+n,n-n.n/n0n1n2n3n4n5n6n7n8n9n:n;nn?n@nAnBnCnDnEnFnGnHnInJnKnLnMnNnOnPnQnRnSnTnUnVnWnXnYnZn[n\n]n^n_n`nanbncndnenfngnhninjnknlnmnnnonpnqnrnsntnunvnwnxnynzn{n|n}n~nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnooooooooo o o o o ooooooooooooooooooo o!o"o#o$o%o&o'o(o)o*o+o,o-o.o/o0o1o2o3o4o5o6o7o8o9o:o;oo?o@oAoBoCoDoEoFoGoHoIoJoKoLoMoNoOoPoQoRoSoToUoVoWoXoYoZo[o\o]o^o_o`oaobocodoeofogohoiojokolomonooopoqorosotouovowoxoyozo{o|o}o~ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooppppppppp p p p p ppppppppppppppppppp p!p"p#p$p%p&p'p(p)p*p+p,p-p.p/p0p1p2p3p4p5p6p7p8p9p:p;pp?p@pApBpCpDpEpFpGpHpIpJpKpLpMpNpOpPpQpRpSpTpUpVpWpXpYpZp[p\p]p^p_p`papbpcpdpepfpgphpipjpkplpmpnpopppqprpsptpupvpwpxpypzp{p|p}p~ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppqqqqqqqqq q q q q qqqqqqqqqqqqqqqqqqq q!q"q#q$q%q&q'q(q)q*q+q,q-q.q/q0q1q2q3q4q5q6q7q8q9q:q;qq?q@qAqBqCqDqEqFqGqHqIqJqKqLqMqNqOqPqQqRqSqTqUqVqWqXqYqZq[q\q]q^q_q`qaqbqcqdqeqfqgqhqiqjqkqlqmqnqoqpqqqrqsqtquqvqwqxqyqzq{q|q}q~qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqrrrrrrrrr r r r r rrrrrrrrrrrrrrrrrrr r!r"r#r$r%r&r'r(r)r*r+r,r-r.r/r0r1r2r3r4r5r6r7r8r9r:r;rr?r@rArBrCrDrErFrGrHrIrJrKrLrMrNrOrPrQrRrSrTrUrVrWrXrYrZr[r\r]r^r_r`rarbrcrdrerfrgrhrirjrkrlrmrnrorprqrrrsrtrurvrwrxryrzr{r|r}r~rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrsssssssss s s s s sssssssssssssssssss s!s"s#s$s%s&s's(s)s*s+s,s-s.s/s0s1s2s3s4s5s6s7s8s9s:s;ss?s@sAsBsCsDsEsFsGsHsIsJsKsLsMsNsOsPsQsRsSsTsUsVsWsXsYsZs[s\s]s^s_s`sasbscsdsesfsgshsisjskslsmsnsospsqsrssstsusvswsxsyszs{s|s}s~ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssttttttttt t t t t ttttttttttttttttttt t!t"t#t$t%t&t't(t)t*t+t,t-t.t/t0t1t2t3t4t5t6t7t8t9t:t;tt?t@tAtBtCtDtEtFtGtHtItJtKtLtMtNtOtPtQtRtStTtUtVtWtXtYtZt[t\t]t^t_t`tatbtctdtetftgthtitjtktltmtntotptqtrtstttutvtwtxtytzt{t|t}t~ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttuuuuuuuuu u u u u uuuuuuuuuuuuuuuuuuu u!u"u#u$u%u&u'u(u)u*u+u,u-u.u/u0u1u2u3u4u5u6u7u8u9u:u;uu?u@uAuBuCuDuEuFuGuHuIuJuKuLuMuNuOuPuQuRuSuTuUuVuWuXuYuZu[u\u]u^u_u`uaubucudueufuguhuiujukulumunuoupuqurusutuuuvuwuxuyuzu{u|u}u~uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuq~+UlAuL=:=dY%05CŽ> p-Z޳w}ԙw?&Zk?YX)tJ=kjrC=Q(GCh<Jy>@՗G>ϐ52K?q߉jK?"LW ;;! W^9b >P9PO)> %GÊ?9/Ɗ?ޡwO@DЮ<ڬ4R9x>S5Dx|\,мo+55hit6k3<#"ZK 9-FX`1no< kOWX393e$;0¡ZIK[;(u>DCMJZZQN]& ?YTF7ξ/ot¾MDľ,rž$ž%1\¾(%"BuT+׽'\SS>hSE>lJ3>Y/>* #r>ajG>2e>6_AҾ>VK>W+">rM.ك>XN> M> }Ox>5Ѐ>ymV->G4hy?j'PՇ>Alh>n>BZ/5)]]db T ؾ=wTXl A? ;LP?t~GJ:RLMH5?yd?c#u좜=.t;˜Xcѿwq ⿷pH75ϝ&h 忟(πNJ ҳʫdſ)HٿHL.m%)zZjpNNֿN ?EɎ?hf?Ks ? @=y9?#w?]%?/~Ɗ?Fb˫?=?gVK?g_o?|C|Y?A(LIq?T}a ?] <^|آaCOyzEo|>w: 5GCpstH7ذ~;JIxĩ󻾙"FG/Bþۥ{žFwžӨy1ľ۳7%OY垾->E>V3>CP>Roy>Z@>02y1CE><ަ6>4Y>7L>(Iotڰ>6lw>мc>{Vw;>]/> ZOo>26>y>c&Fe,S>$.5\ZD>g=)#?xpL3tCf!Bpuh³Ͼɴ `4rIŹOv7a0G$?$tZ?d/7H i7>%^`C?@+ p??Wo3EGKkտc4wA&hp󋗐;Ͷ閎ғv"e.˿d!]޿X,z￿Gt%<ǿ`?9*3?sͯ?ſk?e{=?gF J?芟-?/&+?Q\֓???EYN?αC??LZ`+?p%%@u?@?AK*YN#f1yXCȽ35-s,0$9~P RByc̫$;tmJ;ҋbSG'3Y@.„bV4|i.@A[Lxc^k^<*Y=W$@^= T=/E!TX=`ٕ)=9P)>A&Be>W|~>|f #$= =>X0=ԏ? `e>Mz>R]AȐ ?sPI>f׳;:4kΣdzNU$I%0[" WbGxj4qC.>dr?ٓq%?6/ET;?L;VO?M [?N}\p?6<1?`9E?~zV?@[?v>0ѐ?92p/A@%?p!|O;?kVO?C;[?u`?1?Mb2E?4ZsV?% [?.*􇿴qte :οkѓ 俬u m ܥ}p3"L4eb^cy֟ٿڻ*>^:~~Oͯㇿ2?R ο{8 b†S%\zs%eP yhϦ/Aٿ\?7Iq8R*P6TrBv'3gec~K&Vbha= .rNb~&S"QT=|g]=V4"+X= K=ͅ`=ABnMW=#;GT=/@>ߤwͅ>@Sl>V0=k =t> l =pg@<˂Ǧ)<]Nò<[WH+<2+Q<i=<6J< \a*[a(?mY=cZ=4K;F=#8A>yb>pO >0IA/X:n|g跈Hff׮W2MP;vm@{-zO|ZQ>ѓIN?}!$6?KsC+?l*v'A?6@cR?>u\?RBm!?R5?2vJ?uY?HW?9R>s:?U?EE+?jA?B>ER?͊\?н/5?b J?19 Y?J3W?OBnԿsXݦ[4z[k8Pey`ljxĞ*ǿz'fEw8T53 z<"N=={{)ǸrcԿ[gu !xy/M'ǿ%g'Mn}ӈO)bXQSb3 RTsm<΋s<f}!,p\ f6<ǘ+=Aa^C=ӐNm=4S~1 =Bv=&(ʝ=j7Ut=-i>T7>$Ǫ>$z˹)>S.2>RV{:>&A>P{$f2H>|9P>eX>1kw_a>\f>s i>[S|f>=4Y>P.=ϼx=b<)>fm>oo0%>8wW=d9i{9 Pz9OSr9 ;ln934Yp9 V:}r9q2>1xZqM9*VkN=(Od=2[T &>-E9n>F±>j6x' J]M<٢V>>U)>=(H΋2>4zaj4M:>A>$bͰ0H>{ly@P>3(!X>|Քa>np2D[f>R{~i>*aF,f>T3eY>-<? ܒ?WGO*?q{DC?j;[?wds?k%c ?6?R5DP?|>O f?ν. ?t6Am?9?^ D+?":>7C? &[?_crEs?8ڂ/6? V7P?W:f?M?3/L?봚?n? Yp?36e?G @ 8@lۤ?co&Ʋ?YEe?!?X\c?tdxPU@@a@cZ"@aQSK?< h?x:?6Tq?KjlKi?jׯ @F@pw s7?F˲?!Dhr? "?*=ұ? gR@[@7T2!@_`1 ݤPl>Xg:/$>`OE/>Ksu6>Y5->>{`D>:JjzL>h-)T>Z6K\>[tc>98eevh>`u.i>Sb>Lb'H>ID0hd=hA`L=ۢs>ΣDD>cLi>>Cs1>2F2~9 A#9Yͳ+S9 5O@3pX~X9I}.eF>u3΋>*P*Zr>ܻч'l>pTu$>:'~'g/>EzA8f6>X%>>HD>8""sL> 8%T>k?\>$8c>cmh>]si8%i>7LC$b>cJH>2g->q? ? ?N 1?N*7H?/va?4- x?\%?aɎݞ=?(^zT?}£zm?8氿?Zr|>wT ?f[ߊ ?w+U1?Z[&H?&9a?ZfxRx?Be=?Ԫ UU?Fu-xm?G? N6?>~# A?hv0?q,B?R ?VM@ 9t @(.&@1Dm?qn?ɏ@q?8Q?;Ƃ?\;@ @!m@Hl@< ?m2¨cU<Qf=~=%DᙾP #3} V|w~E5̸P>BN>>1i7>-bgsw7:oV<<Ϥ<+z*u .Df&%mYqVѣCǿ(ᩮ)D"9>cFz5xY>">n>bĂU\>D"<0m< م&<߶$=\:H=QEL}c=iE>Da v=:,=bSԼGʡU콍oՇ?-Ԉ I uSmפ{3ՅvҾu_P⼝5IZtr듼ö%[UX?e:? 88?Pv?S!.N?jF ,eaC_?;?>Q\?HM_?}~?zD>>"5V>q3?>,($>'z0> ME,=>֦ {b>`-u>Zezo>[ g>w#>rٺΩ>P >̷>e̷>y'ڼ>Wb.>[Q>b >@Pd!$>* >k/Em>p_3>67+>dR0cO#Eľ&ʌ:ž@ayľx3Xr¾-ڵ-iW뿂l pܿ"IB {M}M>r&Or+z&DI)n5l'y 204,yT&KyE 뢿EWzJg+鮾ϻzWM53[ʂdf׵[qٜ&P r@#G_pERp>:ݢhN9 6V]现gޮӿbbf<cjv8O wy(žvپKsx>'7=#j>b`<S= EJw"=k $21=z̞T$VERmyGp#Ƽ=)>\)EnWq)->ANs>NK+7?Empз?ߢ?s91%?G*?Hn>]`4yY?;z?հ?j?M?nA?غ?ꁶ`Q|~Zx@/s`97PKzmmd:>I, 7o99a!чwHPL-p'<.:>a6>ȮBm<[Ѕf<;4O'=7"6}= +Ek#_A !3ž 7zN#f+)<;vFĞ0{Xc<-14<# 3Tc<&)ϵ<_p?jq?b@?|Vt?aa70K?;bN羍QϖWH~!?< 8p?\?"6FE?q,p?:> g">MsX0>m@-(> 13>ޟ{0rp>$)>`_~>ōdX>So>@.ht>pl%Ƶ>ɸי>4>!K՟>*>hs>i>ow> V'7(¾4R-wľIAjxľcFQ¾2#f"oCRSٿ3ֿ̼B\nnV[-H$3ZG?7;38!{jE#luYC {<8õh,E_𦦾ՕPon^V2|xؑĉit7K @aY>[Id>4nz?2t?Wo?_@? 4?6?+Ds}`?mQ{?Z.1p?:=??uB?E? f04gF$ȇV<4濱icᅢJD{_CV ,4rF;B<1KnܗEc;>{JAyPޏt\Tw|2E+(пB$+>Yz>Hrz<8eP21<قtQ =Mw($=ǐNӀ`5iq=Ž"Z]O:Լu ޝj7l$;e%%]<4D?O. ?\c?yU?%5&4?pVe?ig>s|W)>T4>"(C>)w O> lm>d)'>EX@ۆ>R0M:>.r`XbqwpK࿑鿣`p$j ܿQ#-]n%'S8'YG(\*M]⾴ξ h1lʲWOxI xVп ]Q)?s~?n ?6iɂ?},?b|î>jG)}x On< #7e/""<Ӈj YVU>j>; %>7TVX+K^! 8+Q Gc7^-iYbrbقzMt+;ν"K'/¿YY*fԿs/zkf+25_>§$> F>ѯ4< 49)#S >nމ1>٣D/>=3>~4+>آڵ">m% WV>.;Z>PmAas>X^r>;m>]>>Fخ>ܟҔ>8O>>c>>u>AXy>8[|>RQ藇z>OILWþI\!ľ=Hž'wþX({οĶ%CL_є}6"ŋ6o^ ߿q(dؿ v5U.. 0<"r%&-7L_d9 vT̉M"+N@IݺӼ4ȷh'ܩLܫ).b{⥴k(zzX$kS,RU>LŦ3m쳾*%#fފyO(CG_ O:rxfƳfbp'ouÿrhNɿV3 |ؿdlxݿmΎ [&k[K##@8_Y>UQs>7O=鯦=ARlV={3=O=2nP+r=zib%e=FZfWK:>Z4nEu>* d>oSX>^=W>&p?7װe,?T!?Yc?3}Gʫ?xDcO?8Z.?g+?K͘*z?!D?jp>A[f> &LF?ǭ Q?{Xh?+pqr?4r ?HC ?5$6?R y?8zr?np?xK_XvO?Έ?lq_Կ,;(gtZWTBzoc3;:0# 7>ә!!rOQ7avskDIe%ϿFZ>tha4;-? !??7)ap]?52(>Nj!l,9?d?'0?g|?V7?܃}Po?{]1>w}P?>;gc>5>i{w׿E3*N 濨2uAgտxE>)77Dˢ:u&L9._-]U9Dy Ϳ&Rg#÷:u>v̨v=&RfԽ^H>o(>+yv?@-e??(a.m?}- ?Q˦!? >JnN?HJȉj?_? Bԕ?^^c?2 ?⇧vѿ> p]Y@#?Ƒ[w\<&t=Ze5=`% >i_nL=Nn]04͓-+rOY84< {֢0B=b[Sk<2GpPF<-fgX#>d>I [W?Nsg?M<֔9l=k}B=힉HtJ3=X"]u=B+!>nR@ɐ>tsX>W{>>iڂq>{?6/"=YF^3:<\r1=K @+-Uu +) Jbý6fv߽p ;D`4>Ϳ]oTzp|$+? s=}P?=t5?>磮!?P1G?W6c)ce-m7^E'8zaYrfi } 5p/+wo4 w,6GKgfo+$qOe(+{Oƒ>B16s(kCc/'!&G"{%}ϱ(;ٗx' P¾T܍ɾh̾'$;L֦;2{̾ƾ^Ҍ þ>=fAX񭾠\6퀮i\ @ h G9߿SǒUG߫ !o=6@6]j?1W $*uFM,ˡZ.R4xխ\m -|Lea`b5Ynb@linzM*`J7{<$$ڤBӴ/?oG?Dj\]?h?)ճqiɿ~=@?MFYmw?*'Bo {>ɹ`?>R?: I?ue&+?{=fe>/ ş=zIeT=ؑ+"a=ؓ1•e=0$=p/w=W bP=XxPV^>>Ո |>.X9>#M?Rؚ޿iv7¿@;vD`|Xw?]RU?5A?نn?m? ۻw? \/X sq%['pR3\BVӊc͢$eꆼ, 6$=Y8xFC=A'DikJýs*߀]-3#?D:?8 E?\??BQCpDG]]];sxj>T҃>Z71= ,ȯdq*=ZaU=9>;>5U=z0))=sѻ(> (>fF>'+> =֛F<}i 7=7>s#=,wh"qZX1Ľ>߳!r!\eGh W˿n*~jO{/tƃB?:1?N'?MLA?/d@ې!\T5:޿h*eWJ ["%gb !RZcj!ohW8!]qXa 3(:"9k>t=  ~099.iûȾbeʾUi{ǾƊqþs Ym*jT%k6hp"DnRft@Z5yU ῳw#׿8^~#!<"FY112b9Qn7zFܞŮ %v?Y;fnCCp!|c_NHu/8F>7?)R?M8h?Bp.r?B)y<¿ N?M ?\S+>l>3=Z]=U֋bݮk=K=WO;=H0k=ʁ3aR>L7>B>#-n>(?q-տd:Lu8eN?챔V?{[?'F?F?WUh:u?$`N?0?7թfJYyM8_2 <޿Qxpn-;(˸<*9X6'<= ?s95?2G?6gKR? 2i?̊jϰóKοI>U7}}^>vo'9 ?}b}{}< =ұ=>Uyw!=no=NAz>ʥ =K}<} tr`"4["黒7F#[o+鿾ݗľRN2;>6:;9#ˮ+˾'xظD{J$:뽉_}2_FMP6`58ҷGŚN(EH@?:ͣQh,?aX?j?l?804¿jܿ;/=m?gV?nK?tv%?tNF>F1x=ʝT]>Dei>bѩ#"?s˿cҙ~2"Wh?o3ch{?h7n"F?!91?:FoIۯ_?U go?4rE4rɺ;24IUJv >l^&דtܟe  /Avҷ`=<,~T<:XtLTvijQc} :ֈ< >=C{HE1=u^ᦎ q>=>ǬQ<"y++=u'+=ц6=WQ>&>Ye=X=K=l=B OgE>%>FN>o?Y&=VhD

_v>ﮈ$>^=mz=H[ t=B3j]Kh=2/zl+=WRr^\=^e:>h6">T֦z>V=>|::@?#ݘ!r?Ӂ-?v׿S5Wtxҿ\1^iG߷GM l_ZI6ﲉ[|?ǜN]}? XQ?JL?åB Ϳ? t[>)J>=flTT=\w=Fj=9SdN¿=.Y{ kT* m@6?:?_j0]%?q RE?'?`jb ?yd~3?ZȿzBbJn'P?<?t&&Q?lH:?hk?LlZO!{?Q;b`wa?0L &E޿ (d Ʉc-8ޖ @KY<4@<!)@< > /O<Tꔤ=H4=##da> 0د~P=!<`DGKMSb>EI뫾> >#d>!,h>l>5XáGL>oĵuQ>^mi>V{)?#6?w%lgE?x1o>7YMN'܃<_PU<~<ꈼgQH7?w͕b%Q?$g?*Jm7.>Rr>TzNT ?**J?~"(=v=vD=2~$6=R71 =<:)'>qKs>g[">0àA>bUv>*g& ?vP%=I/`I@?./?Y`?HKU?BFvul? R?? :&?44H_V?("@Γ.g? t& @EyZt(?1 >̝S4)>!i4;>^A>s6hO>C KS>*e[>0Invj>5`>l1>X'e<5>{jۤN>Y[\e>дNGu>R(E>0bp>jk>һ>9ܰ>t~jڶ>gòw>ςE(>5 > ^>arʨ>juȯ>!>b&3ٽ>ea >TI_V=ٟ>~. s>S}@0+k @sO*Y@(b7%?o3P?0m,n>|&'> EG1>o C>J I>r[R>­Z>}f>}B}gg>IS~>Oao}>q\~>:c'l>A \[>ZWUj>Af>nWBE>/x8>9-sS> 'y7?^JS?zn;&m?t4?HZ?f;?$s;?z?-$>Ս|>A`?ws$+(?B'5?~_4\VJ=3o>bqӪr>w|2>&?Arw?#N=?Ǡ?>V1 O?*KP\d?hSL? 5?'䳍ٗ?;gm3@ <@TM@i@aIsd@uUBg@5-?a@6y:~<ಘۏH_v>;O+?Q;(/E?vg]?rt?l&qz?Y?UV?`4%>}>dC=):J/=L*9]=Tc*?A>vEJR_=j.=lcd.>4yG)>8̤Љ>N6>Hd?eyb= `#*r΅l >;ޑ<$(Nl<"< Y <;ai?s=tm"P=`'4=S:c=}뮁v=|A*>.> Cbh?l] ?T J?ă?˝ld?O0U9?^g"?R?m`@)}? #x@X?ӈ5">͸'/>n_mA> wu9B>cB^nP> Un>ڳ5*f>Nk~C>UOH\>]nbٶfr>HLd!>Q>>MN> o2L>W U>S >,T>k>b؍{:>KG>^dW2>+hruQ>'e @>`J+Q@}1Ҕ@? ?NT-!>.sT/7>#@>Gr W>C|HX]_>zti>,F=)>4;i>)z>>Vgۀ>6hV"q>& {k>ִf$f>toY>f~K>/cFB?gNO`?~y?5M7?lC[P?YǮ&?UQ?G`c?ԴИ>sdM >->v3=(̵ɡq=.'n=i-=1yOr=kiX>ߡgY>Eu>0=3??˧#?o5/?]p?jhIxj?=nR?.+?\ᴸn?@a/Z}@Y @,p@l!@[c@)^ @4@|痼=A!gJ<9C+ ǃ?+U$=ރ&5>㫗ȹ>-* =ڰ_ǭ< %+Z08?Ir]g?jcwC @%G3?1dXk@XE @Ti=?P؄1>N G>U"8V>EA`g`>/؟d>k>2>';>2"D>W,>%5p>4*@!@ ?uR4?<>Y,B>A>g F>͜O>1c>$1I?%-=5?cJg?/y㼬?n/?FQ[K~=ȁ=N>?c*?FĀD?dE?h]P?v5d?PF@R?yM 9?nSYo??z`}@5)5@I@z)?S@Ѭ_@@,`rE@(<P611?e帣+?Jo`D? lfE\J?]q\?O/wb?ely?{+t?XƳ?XJN ?8)s?,Z ?,|?¼o?)N06?|V>~w> ߻K?D<(Fs=1}xS =3#nN6=i`n{->V/Hq=$Yc=}Y=%O E =Z[iK>d)F&k>NX52ɩ> ##p?놎¼P z<\(Ype< uZX_񁼦E8d< xxEn >Ö(U?0!P?{'? ^w? {M?VfQ?r?EFUw? z+r?N[J?^Z_E[^D?OFC;ƹ2?9H! -?bD,\?zNAixb?nPy @ ?, @P?_?wne@G; @oSg @?|?%{)?Sk:mE>kR#>E=O5>T9I7>]ͪf=>8wyJ>QŚJ>z=f>Bh>=Xj>uqe>Ǻ5Q>w01%_E>=P^>]n> [Ӓ~>"I}> g>{/v>|p mX>}/>o>__>TA'>-eȹ>_s>tse>ǕW^@SxC@- @\U@oV@g^_0?[@I!˕?;L5z?F=> lNZ,>IDrW5>ݥGc8>DK>!PV>2\_>li> <>و>#!>ehs>{'i>cHk/da>$?U!O>O]=>FEC?yO H>?oύ/0?Hmeaa?n) jZ?hȜZ0Qs?S? ;ly? ^ra?[$?)[o\?Hs?AIKS?ͩoG?}D>?>?N)ߩ?i:2?P> >iB>=]苂=FY {==[ )>J=։>U >^ ?<׬?96?f%W?qw ?xoIc?Ug?؄?9?9[??LT?U4_?dAfW?nfE?"Co@?Axu?3{?} ʋ?JC?D)>I@L0m@P@3 E@k @{K$?@]Ti'@!ci~@)6@8ώ@58@rD;< @cDFm? _@~d @D~@ ?DP9?CLR?q3 @i?Ǿw??:ڪ?@<% ?rw>uA=n9p=n~[=,!=pr' uR>pnj>. p>f&ȶuT @%@rS\?VUaXp?>={E>"!>6aQ>C@O?_P?;?6h)?kҐ?N~?~ ?%g=tT}->%< Z?L?? b"JV?g9@mj(?Lˌi?XN@? #^x^?OyE?6׮}?Al"ԑ?2h @"44U@5uVVX@E1T@CZXe@M@q@$~tO@Y(xͼ;eU쾟y"&ZwSA+}Y(ʽ6%Z<Fhxo+I?eˍxq<|=p3#=jMgB㽧8FCB½߆D 7i<nuQC+@eDK/PAFߓC-N쯩 ]U}db߽lYy9ć67_]nõ<@gaIHtB, x>?`$? ({otQμy|j<伤5Ύ,wYZWɋ =:Hmr S;Jgq^s;ұ5G2 NSjཙ@ޖýU1KoཱིpQS9A/\콕D$ͽE;^1 Tb֭8׷6zOPJtS"6xٷMFp VFbc'D-&8D|4w[sPa#i]{] 2tbդg?MQg6;zni_hĵjfvgtv&Av:c.P~;ٞb:֓6GFɮr}vX$*|ݺ'ypg6]%`w侵?Ƒ23IG3s.Ϟ_B_,%*}h? 2C*@,;ȏеA蠿;RT%i s ޾~'ȊI~M$-HUH6Ŏv*;Ꮎn¦v GhTC)[4;m^@RY2p[- 熇J^`у>b"{+{@ኾŇd㾝1b&F1`^ n[ǫӾ:lgZ.yBٕ߾2LGپH~h[8=W'Ha>[w پw޼þ"儾GYkח>5jr=>svA>;o~>J\8'" x#2`"Fkf@vgEKs%0<oPrm4979~*6rhuڂZ4ldYM-:%fcdAc+?YݦϜl_ .$\:`c~uؔ‚:~ƨz/0isGUƀfxY_~dHښz!{Mr&7G:nCd}z)ls4{ju@$ߓ˿/Û+>}=B8F>!Xb>6>.wX>Tք>]>d~dB>d\>Ѯ+JI>0衒<0>k=xP *j>y;p%>1:>.{@1C=% Gν=za1ߨ=g&]=Gk>:====>7=rĀ#P=lS(:=|B=j{=uQm=@=ka37:=ݢH =CBc<7 =ȢJ=P? =C *=S+$҃Md=‰d/=j!o/$Z&+U4sVh:^O }7zJxh7In$׽FU# Pcݽ'qCr_yWGJ? 98ҀKd5Gah|d..a>߽cF.=G^)Ď0K0n$ sDS\ѽ%x"V΄!3OhA.Zf.+f42PlhY=>7t{?:^F?=^sڇ켹 >=Lq+J =a =Ҍi=e<D$^O=Y^8y=sХmߊ=x=S_)Q=j˔=8PK=yC=G3[=bX?M%>>AL%a=u[ķ=@.c1%>l3>}d>4׏a>Χ:E>Sq >̀<7>CČ`>*5X>O>> 5g9bn>"< B~ ?a;Ĩ>}.8N>A?Y4w_ޣ> >-(|>@lpb>je}w>3uAJ>mN>U<#v>o65$I>W=S>g6 >&>R&>Bƚ7=KGw=AEr!=q d=KM=0A5=CV=0r=E=&c3f="N4=M=6q K=da= >N$>`׽3> ^>]U>LaZ>=x P>J%GT>,4>q5>N#K>s\I@=6`>YX>ڿC>L V>r=F>,^k>iihl>h0r>\r>pcU>* dC>>p$)>,û>KN?K;5Թ>J>*!j>߄'>jޭ> +>\]_(>Hb !]? Xf9>=@5?Kg3?ԙqWQ?HR?yS"?ֶb/?`u/8 ?/a?D>n˜?^4]1?X?ܔuA?cH5^?0fO?\}H`c?תY9i?>FiF\? ryZ?Z˾*?oUp l=?[ 7Z0?JA/?5!?)凨pB?H"aÎ19?]H?0n:2?cv#?14?{ ?}i`>^*?n ςB><>|,Z>e >?a[O8n>" >ëV>l)>,B>Z>dg>T}sS>5վ(9*?y4F?c߶R?L*-?ȿp?9y~?] ? A?3|S)?U_ ?r Ri?_?ϸ ? ?R} ި?QR} ?$ၡ?sꀢ?EWC?-ђ?at?s4Ĩ?O?;`޺? Ό֨?/nh?cd?%mYʠ?[2Χ?V-?q|??Uw?(T?ҘZ?~Ȁta?#D?,`I?%kcYSk?$'q?֧3@tk?dJZH?Sj֙C)k8?R[. r?+'Hw?*5<}?Z;\P?0'2c? 0C DS?P~1~79'?~c鎭>e->'?4o$?(=ۚ ?94?~}(E?tVod/Q?3swt7?bIA9%?m"o?t'ݮf?鹟M1+?fҁG?E3g?M:P? K'u?*N/?W 2w"b?r?(gFL?ږV;c?[6^?S/V?_8>fO7?ߖ<1??`A3?x*;<?i&7U(?l;!3?2/p?g>G5g+??pQg?_P>{j"?B,f-?jbcu> ͳH>V!Y>m,>E z 0?>S"v??)A[?İlLE?~B)?jWAFf<#?܎6?Z^D?w)E?l>aH?| .B?OViC?=+׹2?ģoC?)DY?Ei Aje? E:T?f?Rq?fo[?U Q?ZWdG?:Rf Q?jX?Nzq?@c|Z?+e{? V:' :?ځYu3Ly?t,W?y<{?~T?CH|?%Έ?/sRY??wȟ?Q+u?g!R?m?㞮?'!A|?//ˎ?zh*a?\Ca]?3]?,,q?Q:?h ,?- J?׀dy?=?lj6r?"?y? 3??~XV?j'k?']'z?OۅĹ?H䆖p?R*^n?Ma}?gc+?1lw5y?BAk?md(j?zS?`a?V"]?[nG?pSYa?Q%P(+?o?J5>=qBW?5&a(?D>ou÷>9V>BTLN>-\<,>?ZΡ>^@>gn>Sީ>C:K>Qg*>ZFu>ޜ@?ˆ>uLj>BP&X> uJ>@ H>]nUӜE>W9ʱ>Ay̧>3u>^ؗ`>nqB>e4^>"6@>6f:~ P>uG~$>E~K>-=2G>pbe>&y>D+W>H:r>2z>Lk%>"Xѿ9>_P>BZ>d?>@Pp>wWl'qe>˃1>ў!>>̽E[>CP9I>g>U>eY>wnx{f>JdDd?>VJ\>S|5>T)h>K2X-x> Ob>݈"ώ>y:}>*o9>W`K1>Ђx>T>qD><5,>rw>'d¹ >ѱ>,>s`0>Zr>K,q?:ؗv>].#M5>ކy>G)U>0C>td>jB;>$C^ѧ>4-(>C>rS.>,Q>mHɨ>ss> G(c}>w6Ģ>ڋe>X^U>}ٙ>L\>m>TF7XV>+$@Չ>R`>)[> >**z>/F}>n8¸> ذx>ӵIk>5S&s>C94 h> 2g>0%}>l!T>{g>Hm>mWMt> l>7X>U0 B>B8>(e>TubZ`>ؽ9>N>=xڭ>g>"<8y>@Gڀ>TSA><<>+M >k rT>D >1>P>l׎>S]>;ձ>`B|L>,9§>P;=[>y)E>یx >SY;>2OQt>֢`7>i>tp,{b> *d0>#KR>n"v>Ph>'N\>*K>>[Ei>*&X5>¬>˜ >}>0>ψ >r^ɝ>ocx>w8{e>w y>3M>;pa]>0AuS>ZpS:_>V≅>Sդ>Z('>37 tQ>X6J>ߐU>`>͌0>p>xiE>cZg>~׹>RWQ^>"; >b(>aԧN{>w>T/F>QU">bW^>b>Bp>?/0>UM"l>-zrTw>> 4??3>J+= ?ryXU>hpT>據b>>ÿѾa1yx>1 *>K)v7x>q?.>;.u>Z3S>*u5{v3>4 g>)*>H\qtI$va^>,>⁳>Dt$>&CL>:^;>B$>RU>><>X[>%n>֕4>X >cZ3>#T`cV ܺ^q\5ޭ \ ((󾾈|Ⱦ?˷~?ܴ4 Z,1:ق6_F¾A?)Ffٕľ*+ľN(Q&5g]eSlL ߚ>WFO #Un߾Ǿ̾wjҾA!'|]sEE1ĵg3O mS:/ΙIi-fz65f9jψ:7yN5Cc~.yV`*1Bu:!Ūa0Sna}<BD_gm7~e<ڛX]_!͖$'t_:ݵ8pt¿w8x)ƿ+vͿy+׿8sVƿGgX6wǿYM㲿=ȿq[zvM@zǿ0ӊ̿VIп)^޿RЫԿ)kCfͿ TW¿/D^Ow28맿aՂص(bS.ۿ?[5пٙn񩿝Ფȿ >{w !By]T!GeqS[iJHRK_.gHMw>}OMt5RYm3T@db:R pWX/ތwOfTu[οAҕLjţLHOVꉭ1;i8"(ꨉ whagqѿٸΏ/qh˶ƿP(N>z WgY'f~n 31!^RԮk\ *|NȑC]/\Oozzjm!hZڄ+4s3aE$Pri@bձ<,$+? `NްS AX)rUb|R̯GJW+Pz5Zh/lL1@*0U5'~fHca/.v_ FOӔQ9ǀ>#!C2$L۳]Bya;W+s ['K{GlW7-o8̓#k0ߊѷdwdSF6\/b6^9E61 .Ts+whtsɾq9qRǾ.MVCھ:nޫ5xET)/t4鼽&zվv^-[! Ä==^6v붌X֧-à (&Meぅž5G I@w#s} i3x(x%NRDWP0c*G⾧[fR'>>@.?z#EnԓӊEwn龾?ԾՉuz޾p$D׾$LpcR 1"ٱۺ9As۝)YRSq|ӻþboaclrz]_8ؾEGiuY3_Qvڇ' u Kb\mZ6¦R(l0{]vlZ.].)d)a!q@pzu&G)d&훓b<7V")WglIW.PS^}\gWh3saD4u) RxpՕtcliXBRS~{$18:^10mjt GNxPбyl\oV@|VS@eG@WcK`UV\gH:Q.: ..c@ﰽu*\Et5){3L#|o(hXarN8zNˣ , ]'*M5~p Jm_uGTip~`/:_2̕&՘*c鰫=նjdRܾC]IоvD¾hM&q-EKߦ?h! a͓㲾 k ơZ0NuL,)5]W%?[B9lR ¥\oZ-ml gOj~bI&i9>*2ӺDuG`b֎\/K^盾Ѕ;Π*.!;Ębs'965V Ä<+jVߊFSgs--*e:@)0'?Qc Oa|oa>YzW~UbQ2y҉񁏒H]A ʪ xERY&oۿ=17^տ5iE׬ƿnHϿ|F˿-s?ܢ X6ꝿʝ~[5߭5p5d-p?樿ͽ_d'<1g2vl XߐK>8C岿0}F\NR.4 ۜĿE-˿E)eɿ~t[¿rpDͿ.?xпſػ^w1&ſп1BV#vNNLN/|T#鿂@޿Wr^ R_w-PRd濡/b;)ῖLQ*߿ODPֿ[ϿA82ҿXGk;9ؿcXԿ[ڰSÿTeտ<:;̿fOrLXH|{ῬJ}ؿ:3dҿ!ͿÿĊm^zۿrǨJl?x/ɣ?(a mاRVA4_4 fz?̮벵y˂a2?aD`M\KUĿ,谿fCV@kH 3ٍ6=a*g^4ba{5Q@LRJTgRIm}577t:捡j ?u{ֹHOp9~*"X־ f. -r%6A4) {#^)PNBpm.WE#b;`Kk69b-”l1ٍe֭܀EHmr4(DgF_b[11D}G0|h8 OG! ':=Gd_kR87`T>&gIeͿ"UOR-})@̬yPQ}Έf1[nUwSQ9q9/pv+L0@&tվTE?| \޾NRd먾%]>eþYwڸKYIW'r>IcI0=Γ`bW=Ҕt%E >!b=Ff`CWKxX=TѤrϨcLBl=*V! m>߫#A2>E@A设>q_v>5 䩒j>xhL>>s7gk>|1s>?u :?o2?U?7"?!ui1?Ս?^?|?f4?orpE?οŨ?3l?+?*ؙ?5$P?a cm?=X??K*\!?w'?+?zԄE;4?2D?nB?FcS?yb?Dxexu?_8v?"d?TC%d?*яz?m5p?C$.~?kN(?})? o짏?̓08?tf_?q?=9Kww?$p6?+"?< aS?xyԋ?'?Kʔz?iq?Y2e?tb?/뮟r?eh?EnZ?@_Q?5jKkN?3tf?bvZ?6+f=?Q>[A?KǔmB4?<{^1?Ev:?D%Q$!?7 ?xRX;,?g&FW?X>Bw*?\,#d8?I?@!E?ԽI?Z3RT?T_ ,K?&䥉4?.&A?_M{h5O?GEU2?ѝ,)8!? קd'?>ZE?gY@?Iv?I?*˜zvG)?eb22?Ĩ%?&[ŦI?a?]iq?U[?.b?}?~_?;y?Dҭ5?ÉF>z?9i<?~%7?b?@x?^? ?[V-?V?p̉}?h?eí?䥶v?1%GV?փ?viB'? |^?V? ^?k/ؽ?z/6#?ԓ >u?uW5?,u?*M?Q? 'w?H-N$d?&)_D? u1?B.G?Q愛?'$6٪ڐgA\ϿHbrٿ jK 뿜?*pxb^P7:U}RuX_Y<{<.jPKܼ8҅kbŪ<0J~ `]Ыռ7uP )A8*k;׼:)Nx+WR68 &`̍%x+N;~R`:i2).֘mX.qc=?٫Ք%-ˬ ƽFޝ_FIrk/r&*%˽T)m`ܽPg^LNѽ}TuHI%A@{$ě: ؽ~β R)4B6`Ob'2:$3T TQ2Zj :vLNi,o2Sz?b,K`ցrN#ؽjˑRdڽ ލֱ˽򽽶@ձ \xh9qʛJ"ozkIܴp*y&6Y|g8"|' Hh!&T@,դ,k S+D][hyo^e Ex$j{?ߠu41~{tvc훾5y}{e'{݃s\~uAytU^RD>hU5,ʧCZH#\x-'pz?nZm15%_Z*Tdk'}0Nʣ= QEK~Kq+b<"NL¾AzV,r_ ,{ǑאQQ^}¾,b"J㹖<piоeDx־2Cmt߁/`rP7.KU㾉E C$cl:-tàfC'R5O@ܔ{9$Am ,(qʜZn;%L7DUVXuPe&euh-Ӿ$\׾㾵" nWA|uYpb#Eҕ@'9Ѿ s:¼aNx40֤JyӾ7aJH$VUzosMFL@bNZ*lʿ&r'>)BFå;(V{Xyq$f{m32 Oys>BGVǼ7<z 9.Ƀܛ#Vg?43t<J"EP] g;s0z Tٖnxz&uYΦ ?)}[&UMgC#ZM[_Y~ׂ#jY՞r"s¶?1W'꠾AU09͐ҴTrճS,peBw(/5EƾyDEþa%rݾ6؄=o-o־65O/ȾmJa;?ݾ bƔѾxsQGQTe󾭤 a^ULta-L ^.z,ݾcvjξp.WѾ/.Z>]d|ɾ g0զT얾px#E*<𪬅s4jr_ᄦdz}q2b">K>;Gin>ƛL>^>z<(.K>ml'%1>,< `x>+,>@D|> > Wоrr2Mʓ?UӲɺ>UD&&H&NvBȧ:o-@nC-bҽZC`>A/4.M[DVN#\c7a.Vz5#H)`/qШ3ƙ}ņP-A}ྙJf>ҿ$`Tŷ hry 'Q/3;u8IjTM!6Ay.m|6}4E;=pJdK6_ . WYM7qaC< gS5f`|k\7Sѣ.j''u=*n~roty|Oqqsaa".kcp*y6S.*v?'&tZZQc?x TIZja["3k xupQhD%X6k@VX/Bd|`;X`q:9eЪEFnU`LTOWJ#l,ye&+x7~fZ``Exf5]g"aF7!FTktXJձFX7S:r|;\ajD@i̧$,\#|#gb/0gl/eRpa7  shVbNؽ8暈s}k(y/ru"эÚMWuߦ{ِ#Rp^wb)K 'Ϳw#Pr>SO >D۷>- 9>"z{G>Sy>a>MV5Q>>ȕ>%S3 >W1>lgn>?5WiX>-䫃>ctn>w3>P>ɏQk>Xu1>>;>5~5>#><<>:5(c>PO>h*.>*_wQ>åّJa"y,M|vzF>$B0-O, =x؃o=r;>3A$v>3>=vw=D=I1=0k=2[_5=_H=%@&=X+.=T>Ŗ>6墚=tΗ?>P LZ>Iu>% Űxt>m]UJ->m"]=mх=Ż]=l+q=+vl=aR=#=>"tl=ZB.ae=?ޥh@=Lp%R=t`Sn={;a.=tDp =07V=x/?=r7@ l=V'=O+S=4c=Čl= ZN"=F.GY=jo7u?=x3Fh=epƑ߬wsν^NѽGhxDakJ HF:CsnmGDƣvCC4 :d#csP.v#\vo`n )f81ϓ)DOEDڽ%u22kĽduH*vS/^w4>ltCDM!oHNv )X~ͦlƋOJʾL Y̾Hw~MS]h?Ќ8,s븾_1sݬ)+D}ſy7=i:%Pcqr>#Gp>ALW:>}=:r&FqC=Ml; =,bAGo$ 2v齤* +ߥĽ6!7A͎5?BNYxn}M*f{[)_Ow1ht??ESnl SB\ LqR|yzt~'[V4ޔdOɌߖ*vTF=hb4Y|+5 EI21fA-eqMhadѼS/tڼXIмK:(Qg~n s9Ht5ҳwʤ{|Zv Լu*j>gCFPMQ D'fJ-Al ȖA=_;<¼#gG6窻<}6%<1<ϻT=~Myrj=! `>č=>=lx=)ǣ5>%$ږ>ȢO,./>뿋g8b>V,jn$>ib>yCϟln>~N2>~}:>\-)O>FmIL:a>'տ`>U ߓ>=Mƈi>Ie>bܷQ>ivZ>"> [c M>y *>o C>Qh$>q0wzu>X f!>0&Bʆ>-xC`[>}JlN>Hf>=30>׉?b>%g{>2/K>.ug>ti#oh>A>ǖ+<>^#=ܨ>H)p>G{3**>ݖ ;>nE%>WK>-#;>`> C=' V=2ea=,Mp$=`C=; g\== u=Ω|8=.ͱ=Z=H"=!=sZtY9|=PCY= ,C j=f(t=$Nl=*l=&ճe==Aeġ= =YU=&=g1=jdȾ=L,=a =.s>=EI#,>1!2=L.Nۻ= =L&>d0*>ێI3>+>fD>yA>ɄP>%8>\Sa>kF!`>D=+w}>tÜ\.e>TIc>}VH>RsQ:D>z'YͫD5>c<">ԭnA>P_ >rQB=#X=?ʞ=gxMW;=@x >$~J>>Fl2>~` $>%jr>{4VE>z0d>Q>-[E*> jfCK>>#`>Q>y:>5}>Qn=u>PZ6{>l{:>+~H[>7>>طbI >A>R'> q3>y/>^>}fo>Au5Sb>Sas>ͅ()>;O^>Mf>xt%v>Fp{>U >>uN j??s:?^:0?`E?avz?B?5bA?~(1?AuI???pL>y,9J?d}@?l|>Crg>8k#?qD bA0?A<Y&?]|DN?6?hY?)nj`?z[?Xy0 d?c-B9p?'{Tm?Bf?Y9bw?Qˎb~?kjN?Ƕb?]u?ބg}?g.Ȕ?M0?ލ?<ԙ?)#? à?3ǡ@?HAi?60?B}e?G?PM?\hv?UM?l/?T*P+)?E٭?er??cŸ?w? %Z5?,? O?XPN?fa놲?o}g?ALl?ٲA?*t;?.I0DS?ŲE?iKʍ?,?2?w+T?]݂ij?x?B+clw9?dS[?}E ~?Od{?M;zrr?Ed?zii9\? \01V?zPT?-\?V !?0g?KՋ`f?Gq?\¤ t?dkDm?k4@/?FRg?3rǗ?_^=?&Y?Pw9K4?b E?:Șz?LBc?iRm?^#"`?✌U?ro_?Ru?XsR?\HY?sow@?)UR7?D@L?#^pT?~6_?_^#DB?BITE?PL?"[4F?Q,6?<3?5;-?jbx4?N?n&?bH?}"?w*X ?oIig,?o:?=qg>?4"q4?F%1?m6?(A?ٛ}E?v|P?rN?_6h?F?{"s" >؄G@ ?8Kl@/?l| ?뭣`"?#(?8XN>E>?x]F?R(-?g>jXUE>v;O>hC/>ӡO%>95> >_ˌ.>\d>xC=n>"G*>'T1>Bb4k>۞;>3Z>g W>q>&xn>;qb5!>4,e>Pɚ> j4E>va>?Té>s>"6?>V\ؔ>> 2g>0Q>EQS`{>kS~ %vLS+>b>c>о> (>Y# >LNI>n>9,>Z>TxW!>ͫm?3d?V:>NZ?K?ϴ:Y>N]F2-> ;,66Ѿ zݳ01ɾd;5ྍ}MV`V_7ؾ`⾠d"q3?is/.??1?% /?m?7<ri?~F~?À?t?aJƊ?)uUO?9E%?u?}8t?+mXz?7wD?cL?vaק9?ִ?r>L??<Ӆ?0B# ?Ӝ~)d?(r?ޥq$?ZT`?a?KB?8n'[d?qk|?1-l?o)g ?CN?}kG?+ҳ?[wTI?Y@?,9k?5᪪ ?zcJ ?h1T#? t`;- ?15?V,?~y=?3R89?[s@nQ?V2J6?aE.K%?&o(?(!~?tIY/?:k ?S<4#?EN(>?s6U1? C?u6HTe?bL?!/5Z?$+p?Kw?ʈo?Y_w?jFv?,fc-? G:N?(=Om?i,dO2|?C/?J-ы?Ճ?~ q[q?%q?<[?oUs?m٪V?2sj?%\k?d k?Osd?9؋yg?mT&R?-%Z?V[uXNW?R?~ԓF?bQC?l,a?pҕ_Y?m[\#@?uV-?)D;?C-HI?hЧT?K^2?2>+?}%,?'6i0?&>G??ap?ͧ^?kj?Hhٶj?o!P4?>[!?ASm?27|C?$E>u $b?|?a2>ñY>FF,>e?;cGe?R5|1)?R&?_VQG!?%4?"Lx2?U/=?&)9?KrD? :?!na??xVC0?M :+? ?/F:D?L?: "?$ 1?O1?GeP??Yo{G? \#=?i;'?h5?y_h=?B[Yd&C?)#8?ecR@1?J曃=?ݽ `C?Q%2oL?OL?>#N?+#K^K?22D?r NH?*y`?z`?ȔvV?$t%^?D ]?y&Np?U->Wx?sQsk?[Ξj?"vge?Exd? gKZ?ԃe9[?,V'R?94U?P<T?J P?\_HM?V :N?<:N G?_fA?oln@?qF~ ?&ư…??#ϊd͂?*={?~z8?Sgh?Muʓ? ?5>?kFٓ???rj?yG?FKB?cQ?cv(?1(?B\?o-Qr?O>?Uw[8?j?drތ?T ?D?YJ'?ЖKB?46?kP Z?Q}?I\/t??nA/?Yrr?.. }?tA?'z? z#lv? %k? ڠXgr?5??oj?A? xR?pl ʑ?_Jg?d#A'?5C y?G곓}?.i?i&p?Kp?Oh?%f?+$r?ݱ::Nl?"Pju?u~mj?0HY?s[MCX?/jP?Kî_?V쁕7b?|E _T?Q;?#D/@?&B?4` IQ?g&C?i*-K?.D;V?!b/@-W?" ^?Wl[d?EˢMd?];e?ig?:+R?6_ /IYT?(ޯH9?WV4?(#/>G) b?+(}?}=,]>4R>o?Kޱ0?H̅8?P !?:'^?5So ?cUU0?LM!?£?`d^?W >?+vT!>@2>/L?}?mu ???]>1v+]>U݉>~>+U>C:P>I >AZΈ>ڹx>r>&"H>WO5>Aay>gቹ>қ>lÌ>x!q>ߊ[>m0>H ay>nđo>˧%[>ۆq>AA{2h>K,d4Q>9Md>.kB@>95K>4S$>kQj> N->oL >j6#>A>a iչ2>JWM>7ۛS>{QQ*>i G>20> I><>ldnY=>}& P>EcxR`>|/W>\ݽp>%S>u>]Vf>y7V]>գ;L~>*WB"Ɛ>3W>Ж/{>W%v}>yD>PS>AbTf>ȕ1>BD)s>RJqP>`(Ow> :w>!*a>J(]>B ΰp>dh(IX>59êP>S{@>&,1>}틩F>Hm^->ݬr?4>i%u>>H>{6W>GJ>eEP>m.][E> w9> mTZ>Ula>Cs>+T?`_>[0Ke>۩UIj>Fl>V3R>:,Ygq>|Bº~>0Z>#U>grz>bԒ>wͭp>->P*-3>O2G>br$>|W ֗>t$ڈ>.!> >@u~ߔ>QZ>m>4v^rN>D%ځ<>`2R>~K>R2>7>&>{rUE>I)c>L?񥾁 p ?(Lg>52_>L9 u>!\-.">46>`L>ђHc>6 _u>HC>Z.ӽ>H>>H$>$A>}^/¼>K#0>zjE>.F>Ln>q[F>M3>n8}!>8 > g>x+>o#ߠ>+"ű>77SG>?/Y>XRz>L<2>h8C>OȀ>`q>37(ŗ>v,W2R>N$><@𳷢>-/Y>7$R>8c9ȯ>>~f1>Ot>Lj>͉>p/->>A+(t>HvN>h̠>N&>>,Z:> ?}z>v]a>>wSC~>Zܐvw>KV|rp> Iu>*dk>Fq^>^R"!c>uSfu"P>%G-#D>D>aY>?in>]>eg>r>]cY\>t[a.R>`Wn u>o> F5Lg{>nyU<>ƌ}Mz>3voFx>!Aވn>n'W>fF|>f䨴>\ >Gg>gB~ >j(> >7П>eM)>2H [i>ߖ5c>yVO>qII>$iԑ>HӋ>W>ؐ_W+>5>4}>5>ʮڃR>4$x>啡>WOŗ>7}>gmT K>Y>>>V O>m>f>gć>Jך>?E"_>F>F]>Mx>&9>qMy>yW؈>F*յ>n:R>}ɲ>MxfkP>f8>b%>>]w3.:>99>>W"/5e_>gʶN>vʤ>u]*֪>@u>>}5>rbNF%>ʒoñ>){ү>9y>2;i!>DS> I&>!A>N*̷>H>׎T >a>sL>`N>ډ`>^\X>|>,^u%>:Rf>|/f9c>$^fi>H،lJ>PGP>n#:>; Σ>~>#Q>MI>%p#> Oڂz>]>?*>H>]!. >o Z>L >oL>4 R9>e=`>}>g\i D>ȱ >f䧹> >U7>,eQ!Eq>p?>U"η>\}%/>i%>7#й>->$hտ>iAW>n~>xpK{>~q>'oU>x;>o>2>+n|> ͯ>4n>t]>7fy>,>B>E>Ye#>Mu>'f>/>V'X~>i'MS? 0ak?%r>?ؠ?[W>Yz>ϲ>Ǻa>2Mbx>t f>ǚE>#~>/VM>l '>2p&Q{>X?=>EC8O>D)>4LEk;\>;r#>/v*>(,`T>LP>vf> bv+U>' =]>=>&>q;a> q>N3Q? XJ ?.6ٍ?k?uJB?ґ߱6>\n>]>>5k>u00?kyF >+f^`ྥB> V>d.>f.$U > 3T>_ӈ>>Ul{>6sw:>لA >ݬ> zI}>',3#>rp=a}>Nҙ>>GfQ>t> b>>?bR>%> K8ýg>}>R;3>@m#>04>.j>p2>mp>v FG>U">(O| >/޸z!>d>ǰ">6'RS>>[+?"> LjG1>d<㭶>U>~E>5 Q>>2㨰6%湾TP5hhF?] Nm9Z {o\D 9">h9=딾,i᳾q1&rJľKгX"+㷾B X*{0X0F%2J3"1޹$HTþX¾h1TeľRÕNA13wE ddg!gH¾l3][¾v!¾CVM]Nf7ƹ'BR Uދ4$gþ;kf¾% þBK¾؜cľJ I2urhFڄ κ N{47D(XMwpvZ~mؐ\QݾLF쾵ɎH}۾ 5C;dqrоZƾ,\ξzpԾUǓny B־1]pѾ,о`'42ľo Sݒe?>>xq¾\[ϾۮAOѾa9ھ+4r7RUhط 5t#X94&LM?8a%Iuv.,Ј^kh6?N1|H߇$b8¨>!GΦ6ғ&0:`%m~UNq*%7<1$ 6nsvR aDK~ \~m9$#]3btǎS~kb: XtbKg>@Px!^pykHI~囇"~4D ɳ> 4s[{DÁGZ˿x9?Ksv/셿em-\m獿.91JOxbO+o.ER* n}lcT9!oQ$[m=FQwYD[ 5A<Ũ@k]Lu#R&a,rBFp}3Xz쏿 $T懿N~z)7@Aޚ#n=R" d3\xh>Xj홢,1C䧿b~DQ,.겿⼑hిеz|'Ŀ( 1ʿ#}ǿXZGI6ƿCbʿ*UpɿPǪWĿezpۿLhA+ҿ OTeӿ}05޿s aԩݿxʺTٿH^ͿY ѿm?Mnǿ$٠<<BgWн 8ى ƳI6!Juސ?Aw39ſDϿ;\T4L{ǖA&gZ俜TѿQ¦q(ӿm2Ͽ!D[! jaݿWطCS%duֿ ܀RԿMsڿF{ѿz!˿Ffi@ƿN`2Ͽ;L)ɿa}3}pE *!;xRBJ=pN ;(]}UUqS"D|NĿ)[ҿڧ-ɿSJۿ(Կ=m~!ѿJ|ǿzʪ[w-/F4pe ɕL:k¿TlM8N04zDu8L̙DDLTV\+a3*XN#㤿8pz vQqdui0˜%z#ɇuJ%cccBB_eU|zZܐ3EH07UVX-䦌Iѣ}WЂx^67U"*3cxU}`vF8 hفR(~vyQ8Hx>Q΢ iyZs,qpv%pym(}g`iP] ?[TVt!kGM6\r?L>.yvcStb7쑇񵶀_u~<{u hsl2O$DnWi 1z>Wj&4d`Ud"ÿzbƿם^*A?oϿÀӿ0)^ٿ ;Կ(pѿ$ċڷ6~CĿ@Dɿ{S&KV«:kY3=VF[Oeb,rcaPj龿:DV*ɿjNxߔ1!ċ|%gp=ݜ$r0J i#ԓ഼Fy"ϒ bIմ[R6BœU4;@||C7Q8JYiklJ9wyu/ }3wH|ytf5^e%ugyd7_'1 uF~e;)ps͇Fh눯?mJLcSg QM3&|0,cTG盔t-<b66p֞Z7@ r kr|ZfRb FQ?bĵ k(,Zt+jQQ1< ,,JtTIcSD ^ԖP['sILOzIn[KVf|[|1Fn 7>M[Gi2E=?n@tV1SD;,dBڀHw m QJMUO-%TSF{U͎ɗAdR(t{ Ze#Z2hQ܏e^(>c`^5Z_>eEu R62a7JG=hS UTZR(fM\.1Jd Kp:Ⴎn4t& 6-+41m8)YۭCѩDBe"ʌ< @d Q21Ɋ9-0w-+f1?76(\+L1.WzW'm\f?Pcf =oZ=3ZrMO0&Al (pBV9"_5̀q2<>CC|D:AUyֶVQ$J.WT<6iHG%Qp:[pg۷+c(}dI8hf}#;p[QZvDɍ"Pjk]qWŢQKxɫTtF39o@A5CA-hIg}4SnP$Ob']n$s}^d/( i@E,p'2/>B(M,!+h#wȺAQndq7 r..WN,jJp2Yȭ?9)hžb~1sеN !^Á"Ҿm[8ѾPI(wJE 0&,`x1QߙﶄN:V>߸3F(VϾM;Ɯw`۾isF}R L=N_Ǯ/pYVW gBأx%_о_(uӾIV`ZL~MSL=.߾!xت 'afZ26 ;x%r5n#<]Z'H]𾚖!9cB Q*)݇\q'ǃ0b0"4$Z0 6;46G)1tx.:#_0S<&_vEc7*ޢ.*We4uITБ!4`}qyuQ*Y>ؾ)%ܷ/۾6S2從F!߾#Ͻj8Ⱦ0XLRIY:)smz b][рԦNI€wXʈU6ǾT %̾)l tpjHNF%Ͼ^ϳݾ]-Rzsd&Z_3$C3qVcOb΍`Qm\ton!o+X̗s^5/ جLb0qٙo5|RA%!{nxSYIF_2hu Rn\iAL]Ml@L:ͧQC0UjuR6: `J::@!˜Q% E'A9Gk>~p.A1#rrRq$5?`J9H >5QS JE1JD}Q^E.F]1ԦtU_fbMؐ{lYG2 g5fꂾ0ot|+ƔXnj5m: oРjbkUca`% u u qҐB5kՈMM8G"`esO_mn̅hsE7{&|4nNxbgŒVaL91 E6LBQb+RvGF 9,G3<:FjM=SiʜZ%"qSenoRqw X)2'+[n>`âwUt^H ZWY=`/ kv=\qb50Wh -mxQ&uFrerc2Qu~@ d*ΓuLHC~P[zָvl<4rx}ᇾ5FpR1 3YGfD=ƮzVTQw7gg;ۭukKBU9djEnYjϮ!rǽh-^򄑾gmZ'nKw,覾|I៟'nFs'PO҉[mpEܷf[Tվ*5p6Ⱦ oȾԕ ĹQ<}ܻf?BYd":sHh$lZvfp^iq9N?, .G'r-<A sﰀǓ69vLfjTPN(+G)7-$bI7i(㌨5.z,_Փ«&]βD8!PD86Loaf!mㄌ+=MeH R,걾0=kpȒ>η98K;߈,ok+wM܁! z}jމp8@) Aڡ8Xc}v٨_'eztUݻ)G BM S|!}B< /a;iO]Pcl>R`33R^|Q˲u±`UsB iP9=C/~2,k/s~+o;xhݮڐthОurgܹ mj䞾.le oHi^3Sc`9d;*Z4|O"kw!OqHd1@f1,I6`z 1=8L HdCᜍ(\H.z)>Hm61ONI`*u;gfT#!iGNV#F NXɲeY[X3Ýza)0h4>ip9z!i K3b. p0HtywĂWy c; N4“#p-]] \_dBVL}vsIzqҲXkeM Fy`ߪ$|i·ZӅj@g[޿kWؿ"$%LGؿ&ӿ'WbWֿU̹п3~̿t5ɿ[Eʿ(;;Ŀ N{ ſQkpҿR[ͿyfƿS,t(EO#PT;ƺ0e2K |լLC0m|rZ¿& :BG$ߵpc\@֨-:,~,fYmB"鐿: ZW☿fNDס0}Vp6 A$t9o,Ceձ۰s$u^񟿠]Zej%!yuCٙ)\󹢤2c~&8Du# y-威Jk2"ਿሊ9iɃhFS7+`=҂5ygZ&UKSP2u6خyYjSjGm࿒" ῵{޿@0p[)ى忨hh忹:=9[ru zM\{迖!(jTiف ̰[p࿓ʎQVa#ݿȪpČۿAd/ۿ}Z,DŽ%߿o'$߿tڿG~G5׿F"6nѿ=ӿD4Ͽ)|п](Mҿ77 ؿ@տj-п8Ͽpп#п /_ȿ=Vrlǿǿ%2Vſ+OԿ8Fѿ? ʿRoCӿ07'QؿKOyؿ:/ӿAE׿ Ǻq޿g= ῇy?ɻURϟ YY,9⿔,9aZLq?/3ײؿVxVF= .{`砿vT{bZF x㤳%ͭA)@WqrM w,CT~BYʙJo*K=GM;BxHυ-8H~[qPam-ה+:&XY[-;z|֧IWl~o7 D %/nn'3܁ $qhBp'+`7=rvi?&(?A h`-Ok_8|$Q~t{18yu$u%6o-\i| oa:DrPc[K[{XR ?w_'9:L &p9)jԺ_? Cw1-D)jG%48mR\L`=qC;G"_aa9ZxTVS-\]At~d~Z`JtRl|@[e_̿oRŃʜNCRme\YJbT%\]#[_zքHc[MvEKfx 5fhm~llqht.7 un VpX[SFX]<%D3]~`Phղ؎K*m$:{NuZzǾ.x?m6c{ɍ*c2šJ*MLgVQsu}>@QZgzvHCXs`D~6;.40SCT8cs7TDl'U^fרQ& R$-cL.hC~C( @!\%LIZAl㼌s&.lNnf/V;hep<$NUCZՀB40zgQ0 yDww<Ęd1 ?P| (5Ö n4M7E _!7حHYD>.u+qC6š]!s$%閬,K =&(@}f4ϋN@v CJݷyGz:[oI@, 5 )z7 qN.ɘ}r% D3"3V :6%h;'b, h*+íݖ%OGa)ʖ=yE1}7̵%*Ocs5rc>4Y,$)gJ0ȼrGH$լ?F>7 `H侩|*B4ҥ, Ro͚X\<}/J@ʟ̉#¹⾶ǰmxžuUb־Jj>T- yHNBcXо UKf߾ h`ؗ/ 믾p̳}f,tdD>[[ӯ8d[9>~ ;?>uw5>,6"'!wt1>]>b"_No" m)C ht)Gb4d=Ng= Uv==ȱe%Qt)f=4:a=#%=lL쭔=#s=18i(a=H XȜ#Pvo4ޚf=OL/=!]6t|N=KuU=?\+MPz&vSe\j2RĕIn9ܽ$=\^[AG>,LcŸ=4;A=3r{۽܏r [=x|KR=תΧ>×G=VcEB^X>2ΜV%4l>cq08vz vo>/ ?gȵ>Dd>x|b^>ѽB>n5Z>oЈf>H>h,>it>?G?>+u>~m7 >q>FTI>Ml>} i?xv> Y`sn>b>"*?wx?u2K?QAVv?!BA?[}Cl?JɘP?jM1S?[&?s!??$x?4Y&?hW̢?"? !?H  ?o/pN?ȽC?;D?|?pd:?G2?L?bg>L? \{#$?q % ?+â_6?)?)-c??X/l*? B?9K*?D/q(?49E2?Ѡm7?+.A? { rI?|DNK?%ZC?Wyt?pyk?&h?LJ`v?꺷]x?}g?Tl?Cd?:c?B 0!0#?MQ-?J+d"?fR%??׈?gd?2%>n?#W ?_e>?)J?-Hk? K$?\#0yQ+? a4?en2?#!5?a)Fy/?O3?VZ!9? (MFO4? @?Q:H?h/A?YG?.R?9M?#VW?"(E?5\]/6G?R܀O?*M?PXo_YF?-!X8?[hE?GK?8d>G?t???>:?An(C6p?"@? 5?(Rt7'?Eh ?:k$:? k?d?/Qe>5i^>;h>؞>46>!?Iplg>c8>~!^!?Y~?C] &*?6%?~T$?Ls/?'./?yOi7?@Ps8?Pb6-?ƔE>(n*ݔ?';3?W0;?~U8?ط]B?Ҿ_V?&{D?$Fp6}[R?@yX\?x2Xi?8a?vjznY?FK?]b7=?K܍ĪQ?ƄT?-CRFY?h'Q?R&T?u!V?ySxe?*]?)]l?0҅dn?@iHSDp? Kh?1$D$B`?yl?kvx?`Fu?1~?"R3q? plt?gI~? PX7`{?6rW3Ԁ?h߄gO?̎"D?7s6!W3?p?2A?s[]?urEȄ?ċ? GmǮ?jR ?=~o?.Ͱ?.N?ݘ?ocΠ?E?q9Ǡ?yK%?|wX?r_\v?@?4PY?.\a2?,p?΅a?_An?L/z?sd?l!1 ?Aj!?2baa?cm/?OAm?&gڷ~?!vb?dRb?k? .?{_4F?I?)-$6?'|?|D3q?=?9?ޤ?ϖ?r*n?hځ1?Ӹm?.n?)G??̱ ?S?RL?&9 ? pADz?;g(z?zz?/׬DY?` Yu? 9s>F?k+p?!(?с+J?7k?7 ?bjS4?Vm*?xE?w)Md?e8J?&?pײ9W?Bn̙?p {?h55?ԁ+/?Gk?hu+?>?8?X*?"W;?p Nj?P?瑲?ZWM?G?7MY?7_#T?g%!C?U1 ?D?_0N?V,? &?#?2 j?mu?L͚п?8W?DVԍ?%?(C?˻?f.?\V;֣?B,~? 6?q?Zٞ?22?ҊBf?>NL1?K$q?j+ `?](DU?k8R'?Q#K?ӤD?a8sS?s|60?2?w?vd[?ZA<{?u?4(?,Y?J?ni?rIF?M?lxO?~?"%?Ob4?X?d7?YрN?z+TH??R lW?VVo>?d޿X?F7Z.?B44]?蕇{?EC?eq3? AG?.~q?)AY?%>?Q? ?@ *>?U8^?ןR?+O}?z>ڿwM⿕D޿%ֿs`Yʿ iv%@l_Cȿ\p+ֿW(߿a9߿}{ԿDp㿺V= zJesՎ;뿝d[zU|俆@!}ȡ@4mf꿳b *O nȳѰ>LAwݠ\dJKN^迥P;[s- LNgѧ￯ >9B?y_p Z￐{te6^TB֫֐Qu\^S_鿝Hִ"؉<ڕv1{+<3?Z>J> >v^a,޼18639 Q-sћ -1oD(H28RTbyaYD1ˮu}'x=n'aUzhl eirģpN-vu8ߚ3 Q ^=~wQ?L>!)|x\>>psz~=~iA=E.Z4.3l֊lѾ6N7>|)4S~>$ 𱩽hZzpMV>'GL0>t(=I7~ >HJ~]> (-?7YZ?-ke?z#]j?8d>d?}<=B3S?S{D?Qc}?t#٤?@:=!?;HE?Ɓ?(?>~٫?MK?IY?;$XcvY?&m?cfv?~Cm?gÑF?=Y%@?c^?b &?S5RO#?x'?j8 ?8_U>H%>z@ >p%Rip>ܳ>.c,>,e웅>, HB{>l_B  >.B\־??%g,q??Ya??@i4? $?lҤFP?(B?1~i?T1?.>~?'|?'?~I}?CDQ%?- ?+:?2B?+}?R!Q_?Oh?BTܙdeZ?yޙ/vؘh\?-פ,?!j?J?nG-~z?$g3#z?:u{ls?ӳk?.ηO? ǽ+iO?d E?DnnC%?4?б!3?%C?{Eu7?]F}}x9?S6?-a5?wZ?|E/?a"sOT?1Y?ݔKHO?"l?@\rkp?!ntޖR?bc?Xͼ1f?֦4p?*YM?)I?r!/;q? 02?8Cv?L@?KwY?4I#u?t6Yi>vg^>J),7>Y{ Z>8:mS>ӴQ$>3l>J2'>1%w>puuoʠ>K>XMx&b>EL|ʠ>J2<> Y>bA|\t>%>ECʷ>뎭L>ݹu:nߞR¾OnԾӀ  sټTMqssڄw?UqeW34Kx6̐Y5Ny֜yU;}Z b&@kv7}\EnFIئx~Q T({`Il<ӿ=+EOſtNڿl]ؿ_8\aڤ 4}=xeYEPR*^AncuT${9jZ߂*NS A` kt_Gh˭!)eޣsR}|mY\dDZXQ#]ſ.>_nyc9p8o n(# mٻ~tEz8Z0kj,[F:$$Ny"JH{y.sG{!h CJGh!4[]pEG3ݩH#FE6z;_< "cd>P)@OӬ0(/Y!nDjrEZ d2)M ց:V]-G]~Z"R ǠNɧMf̏Bgk%9jF{rQmn^Hr_؊q/Bsz<؋/e.X+"ҿr¿=\xiVM/WoԈ8$ X_T\y^1196L̟@=I*a*$TXEP5ǿOƿوi]~ؿ[!w׿?)޿ۤ1y"俉:$߿ S.J#?kLTϡF}?#209F\ry6qZ/hӹA'Ϩn.S.0?Ll *ͶS?Fx&=f?lRE}Vf Aq,?v[ '?Cڽ F8VT[#X}ڜ D{Ub jzUe]A FjAz|U j /Y :U,2w`"OTp7![f];ñ6S5 s@8\-#BbEo]PKݴ]8C=1xkc^}mKہ$>E?6{C9T=o ZFL[A6S?ĕ-?Rc= `ڴ{U ]X>HxS=/$T95,m_>l!u|>-;>2j`>kk>ew? Ǟ? W?qG%?x_'?p?9,M?7p=oa@?l#fY1?iSȄ>?XɃJ$=?K'G?_eI;?HV3&?U?[>->mt ?eA?hHf?vV?o?!U7u?>Ŝˀ?jf~?c a?&LA?ād"?vƎ?20h?1*4?X\? 4?/U`e?qEl?n_?~g.O?8:6?WO? BҾ?sHj?D&RF?Yg?A>??Pr?^9,?er?Dtu?N}^?v6?f<5?I&!?ο K?2wʿ?qÌ{? 3?<%?B?[m:?P:1¿v™?_:4?Ƽ˙?g䠹νᝓ濐""+[>qhdځf):zn<{brc+f <0-@=' 0}7YoŽ7̾tȼiwA<6md"`ף͖o֥a+B- SXj)"&-~Cڱ83 ` T=_Y.?J`xݟ)E>iX*۽t:)ԼV׽͑?ld&H\=[&OUMZ~#ٽ"QC˽* BԽkjg׊$ Ւ9^۩xa.:?}91Er&Vfp$U[8׷Wd܌":@l " *iHZy¼{4d?#s 𼜨׿4#O?_o7B}G"Tj4@oUN 'x5tXhV̮2t29ӱнO<]B8N6iNֽ(x,ߕ5]s "B6Z~-]D[OZtn Wݽbd #H"gN%hҽmg2;/ _Qm3ԑpeRA(FH 0|^ 7R>[~p=dWHx#0b2S@~hQqO<\y8ޅD;%CR@ɖh}ƱxK+tuwPXԭfaEEYΆ̾L=پ#-ASlrǢ' mtD06%ʅӾ S}о Fu˾rMkL#ْ !VP,Z,$r*"Q'y!60Cu$OX~ 0=6At S ؾMc&5;{BfZ.ھXPd(>Sв >|J<>a>ˉh]>EϱO>[56+p9WX/:wDw\ֈsMt逍-&*3x>&)E9Qkɵl 'dsCDs4;AbR{DKU5d,pP._1rZNnSECR9,ƚd@Jj?|+kN2h5ǻmcWH{.m)S.ܭ'TJ:5F޲|2Vƿ/Wgӿ[2 ΚĜY>qq>>EM2H>j>)\rLg>w>B|jٿ>2 iRr`>`&k@>:R,>G|e.My>/l VQ $pͽ=i޵>)P>p2.n[U>u)\T1>N|i=="{=8'V{=6O=.lv=,Ü=J(7<=s=9^n=E&?>ָS5>Ә=R>?=nlK=ى=N7ff=:j=bowZ=.t4 ?=RƉڍ=e?Ru=ٜPIR=bS=<R="~Fm =&|V<ȏ)p(<#kȤI=Gg =dn(=#M MG4=!t(B?rE4I\|!X`"xd٦֖IzXHPTë0:?J^X _2>&>>w>O`N,#DiؽBD*R[ֽ5wXi}YսrJP W\pyf(.H,W"M0AbW^t(ֶXU?jj?GkIG^ `uP%iu wm-*TMA):+l;ӳӼIsSJeg4ޫg7't<ϐ<&3-+rS ?SR2RA|,o =ojf"= xm<Է>ҝ{*IDû~<[e["+uv!>z+;-=I==k 3u=zhs5=UzX ={S)=h8}iA=(}a=Qu(=^=4)=A%q= }=Ʉ=`PvQڥϊ8=䲚=},7=03;E*E>q$A>0v%}Py>M֏Qc>`J>.u>,>e>'>rj>XA;>%`.>6y >^>ׂ$q>f{ɑ>d0> f>F{d>!#pc>ڙXWa>L>Ew>$8C>hnC\B>/?>W~z>/M!>V9Ir=jfp{== =?P߷AĘ=nmU=bx?=Uum=n}P=nepNAv=j9ŷ=C ;D=1=hLW=b=9 =RK L>]c> 8@`>->e`>2'1>qw<>H}Q޸Q>X*S>ff=m>hs>N+^kV>V{bF>(rcm>NՈqw>Z;->=jf=ԇD={9Kj=oQG>M23q,>>q=|O0\X0>̋4m Y>Y[[Y<>'2_W>uہo>fD>8>P}>e>\Ȧ➤>Gr>>'n9?>X@>`>'k>lg+H> ?I>5ᇂ>ءAέ>ص>Dm>adI\>_>鮀?v?A0Q>?\ 3?jbL@? 7A9?Rwk'?E>zϢa?RlV?0 ?: ?+LD??Ǜk8?FmSb? fOu?L!J?&R=FS?jLub?p?kP+?scx?9c? K?E~?F7?i-?10h?>2~?*|0#?rZ1?= f??u ?P{糭?x|uΚ?w4CT?M{d?εO\cw?.~?g6Ƞ>?L_h?fp?O Q2??MK?u&??c!B$? ,?I]x-D?Af?X";+?|r[027?tV?;@a>b ?l>Y_>Gf>R>PK#> bO>ɅFϙ5m>s2r>Hx>Q>I5?6оbX5&auԾ+X@TH쾜 LB?t\?R =?=?{ H]?Cn[?AJw!(?+_ M?*Ŀ?*Gcq"?񨸙D?l߻?ղ9?t?{d5?oEv?cڕ?k.?M<@α?}q?fw?<#?%qXI?%$q?g[? 3?"~r4?Q?zSA?8/?\?<vnSbۡ?Ԙ ?AܾgYX?P^wE?lX?J}?5*?Vݍ?<"Q|?B`?_?8M>?-\z ?Ƌe`>l[*?P$t^?+k0?d \76?)^B?`Z5zD?'9.? K?=Gu(?~ȇPO ?Osf8?-S@?g7NW?˟Nkb? 8oHm?6a= 7Ȅ?1?}]aJEu?3,Zz?Khy8z?yeOX?{q}c?%xa?,si6AM?Ym4?^j??20&JT?Vݐ@?-,@$?ČLf!?O0?)?,??,m?|'?A ?+|k >e>N҉}>كTdZ>J5b, >Uڴ5?C4bb!? nY~H+?F:=?:őy&?u?6+a]?L1?Gj@?7~ /?OAG?neiL?l*Y?"`?ʍ9Xq?5@U?u K?dN~@?],1&L?4MڼT?tE`? ɹd?Cr?&bHu?+ym0 >k? |#?۝+?lު ?0>vȣ>EvU?^H|>VN&<>!>"B?>GEA>_x> 3=C>t`*>[(>T |>Kcf>%#C>2>\ȥ>D7?>֖>ȄLWw>dNH> 2q>oxxs>bͰ Q>GإaR>+,>I>ws1>d՜eP>e:>8yH?>D@>qDGK>JՆz>9!Lh>UJ c>RN<`>4hPm>si"~~>wG;>[ պM>Fd->j>cie>cd7X>6uD>G737>W$7)>R8N>uM>!.ͻC>YZ:>?_X>kΈWR>og>tlr>GBb>7i=tv>N >B3$z>{>L>d\>@tN>O)ԯ#>x>3>LDi> T>i*>Y2>aȋ>Ba*>'s>] 9>LUǼ\?Z_n>xB>xp[>%eO>"ѐ>K>5>w*g^l>yБ\|>&]>E=>jbFܮ>FfO> oo2 > JѮ>1U>Τ[>x]Hީ>DPU>71>TQ>dega>a9v>~v%8>t*PY> >S#B>; ">Y|yħǃ>oD2>Wauu> }I >8fSC>ł>cbt>( (>mIz>f8q>GKm>bKgr>(T>79(]>mKq>%)`>di>9%>cԣ.>z> uwۡ,v>!s3>7Q1>0?r>e hP>"ͪ>H]>>ˊ>fɡߕ>^uQ|>;P북x>&z>^ Ȏ>^{Ɩ>Ib>NA8<[|>6,Ge>/<ޛ>~u8I>BW8q>XI)>|>)>xX>Ƨc>=[<9>Z}NR>3 >m>-eIe>.>÷>b|I>c>0ں`>é޾>e$2> %/>݂|Y>؄>se>O \b>,mB>B)a>F">P2{>TPAO>>DEXJ>~>V<-l`>ofS>A >]d >4&ǂ> k >ͱĻ>?>ƾ>ǗE>>$T>xxq>[>هQG>ewp>oQ>xu>eeN>Dq\>\˯A>A=*>8]@>_|>D>-Ar>* #>&>DN,t>Kp!?ܰb>YfC?miX>7>M>fEKO>34>H>mr>=D]>I3[x>uӼ>=>>TQ2:> Wp9>J >oIk>uŪF#>NQR'g?ʁvC?<46>*>D>P?c`>bUsB>ANh>ڷ>4Vd+>|.5>5]>Gi\T>%>6<>5mC*>#ba fӘ>'艹>d3ݺЍ>ȰuN>W91jɫ> ī>a8G>F( >>ѕ>Gv[A#>K)>'>`[i۹>ى>?!,G > ͈n>#,8>^3+|>:^>2y^RvhC(^ՋqЌxʠjЖa1O|ip ݾ}c澲 Ϛ׍O2 ;w3z]"9+*^4xCP&c*4R`W2/J?lDlM y9@#E~ESedj n.C_tsR}H[6k1yyhވX]JDv<>LZWH%Z"(jfPbʓ-,L}.[cà̢9 rVr`Ͽ_o"Zտn0 HпY͍пb̬,gJQFR$|NX(!q߿I2Z/[J׿C[ԿUpۿ8ሢֿkN[qǿZՇ]ǿ:qҿܲ{ٿݖR#zL¿b 5s߷apWR!-o;2Xw؋?ꑿt@sˁ5 @S]֏'ž.Q`=0a./@dO;̎~l_7z):R4ey1Mwߎ@.*ʜLcTrE˿$Pп(uEv&On hcod1]VKd׉zv/E0e"#^qqM`HlsjPW^*F-\mU54=?6!bC)nR JN~30Mz;aO]mjW|?8aX!*`4F/ȡ={}b8T9$ o$~\bZn>Gf\ !S24J¾zӾ;$* 7(+Z8[&'~P8>梅wp͔XDX#;4" -*@3*삻_D@$rs0d +LcE̾Ќ"o% ǥ.0:款Wa/򴑧b\ռq;GOվ# &ľOP wо:?ViDՊy?q|A͢xTdkY1 gx>ӥ})TLO3WHdl=R89g+keFY*)17Ȟ0$Dg;0pn=CY߾D6N7XIQU\ `-YD+RFaY=qk6ep(H#3Ǭχ]#)򍑾,;ߜ2pVZO *]<5afqUHݾĘI¾1>lp¾j|ӝmܪdRB`%ElKֶZ{|btWE0`G^Sa-K}]6)#fv~P69%t6⽩=!Zf;{j~rֶ"|jT7aV,8Q|oV.[z2H巾fx೴#,'ʦprVPddW#EJ(KPia?Ja٨ H ̓DAL6 }Xޙ@؆P~;,RN8\|[Ҳ^Sds~ -};]\nSh_20 +~SM.9SVf}BQ"L:pze%j‡)fэ{3h셃"Mmxkb%Jq󈀏t8ǿ4?aqۿ#2;k6ѿyFN7sҿ\Eȿ ae ӻM_{f2ᘱE8ARV葿ף r,TI>O'ckvV;`sx>JdITA:Hq!*",qeUyɿ&O-ſrbmǿ\PHǵM!˿;Fӿ@3]e|ۿ(ˀ ٿb'TN!IFߘ(UcEKѿu̿ yпDֿKS߿|Z0FUZֆ޿_HB׿ h=~п>ѿc3Ϊ?/q)?6v47¿pN7@l]) h}6؉B2c[堿4aT騿ۄİP?uDo%D[wR)kpn Eu\YYr#c|:&I!U¦:Q xRJӞxY {hWQ:+Y`IFbGK+gtXmf$it C5Ymq@2DngR0 9`iv/:'nM_4ԜPhİV[up)HT  :2LBSܸDECFQ RB@Zp8 }chc]"\jn^a $:%Iq"]MMnTFLYbtkHo$)1#K#$eC%1?]A0Q~ [:db,Ga ;^{~Ͽ~%ă O߱q'aӾޙz~:CT5\P=MV%>]">O=˨اRR>(+辛(Ś=l,J=nK M=yD%'xlAi.Qh=ɠK=8=18=8vj؛`u栥xk$K<1!2.ɢv =j0O=jn=p֩iH> >3>$ C w`>HÑh>kt>( 5O>SN>y]C>;c6> ׁ>fۤA><ŠE>_,uٷ>40>R!?.8?f1L?jz?P?FzUW? ޻`?2#kf?Lv<>?~-Wt?z+T?D!~u?Vn=?z?S4Dݨ?r&?I>+?d?p ?T m.?.$?8;?Gӭ,L?; .P?p!m?Z#5Fn?u3}m\?[0F?fh3KV?}.n?cs? ]K?Er…?/vy?M~w?\mQ8? D &)?9 # ?+X(?e ,?̍[C?} Lj?'6 t?򛣞pq? 2\?PQfY`?5[3}?m&`?j@KC?2J@?&,9? %?dtE ?0v ? \,?wcY(?Lu8 ?K<%?Q34?];??ڙViP?cLP?m!}B?V-9@?YTLmD?D94?]??DP?| ? ̧JS>I

pUm> 4R?ۧ@!3?k=L?F(?+rd?ӡ-:P?L?6^a?Q$ e?ٸ,V?qz2w?_ϝۉ?bD#2ʅ?"tu?~VT?G\HMWW ikG#9x}BUcv x'iڵ@qJ<u& Ͼs c?~ӼR C#mq(¥eV>7=>{>؛^LaT(fm6~8|960; .02|%P[eD/W!^$郿ʋ6Ts~CtC/_|Ah$@ȅ:b C|P?da!Vl l>V/U3mVĬ@sڐI~t7Pt'ѝڀ0VM־wX*o*ᯤ^}5X T.h&"[/1>.-e>ޣZ r+q>K: l>#"> u >t =h-bBN>PE=Et= Àb=B\=n==!z<_=ްU##=gkF=nuz=E[ 0i,`R ὭJ6--F@h9%jᙀ6VgS@ֽ^٪<*zdPljbހXIuMVBӞ/$ll$,!Ao~qz\=Ѓ^ k7*Y<=Z׼#KdP'=5=pĘu(cA>SK0Hz> o[?{>#:(|>@F.!A> ~>"SS>˒>Io>Ɩ ">1O*>٩%=Cݠ=q=T#G9A=4p=:`}q==ݐ>-+| > W[>1  w>֟A >~>gc>+>{H8u>qnTx> P^>5Oþ>\!>q)Ĕ>Ԣ>^ŗ>b>jP ??Hj@"?U,?9K̸B؊@? a{>$V >iiMd>))_>ׅu~>k 3>G#B>m>a\%Ϡ>JO>q >J _>_m]Ǿ~۾_?Kg4?f?0?ȶ2`?ԫ((?IG?|ZH?v?Q}3B?8ݶ? ;Hê?NwH?lD\?uȢ?!-D?ƶg~?nqP?\l/? aۜ? ! ?( y(?g T?=H'5?II??@̙?MȽ4m?M?I~)xנ? 6'Vp?E[+? n!QF?#g?ɡiq?}*"3?(z+?W2çI?A[`?\o4K?*f 澧?5?.kޣK&?׌~5v?~s~[?\ê? #7?K;z?@gC%p?M2og? ~U?,S?g}$lH?Sa YJ?xH u)?x:J?ivE.?w ?C >m\;&?1m5?.37?l[Me8?tU=?ٚ2?l#Q?@EUnT?kp"J? oYkT?_Mc?I u?|'VV?'פAM?؂od?Tk?;p?)&N|?jo!?JK[e?t& Z?W?PÙ?92sk?ONPf?n ?.?-_{?45ݥ?C&M(!?DBI?M?7<36?֊'x?D57?/ \0?>CIroM?t+$?0M~?!;?Ѩz\n?0 S?RK{ p?ha${?FiRs?2n~c?%*jF?k T?"r/qa?mvX!?^>'? $>I>Ql>M/n>B*B8>+Zm7>W>A>`>|FF=>o;(>肖2>8hWHq>c׮Ք>m>Lw>8>:=s> X>@>A"S>#cb>P3ȿ">̘->W Ѵ>=->5&Y> >!>29)M>B=> [A>Q{>Ǡkxx>fG>Bp;>-`4">i?@>r5P>q93>׃nv>2)>Bv>;L>Jf>љzٺFd>c;j>{H+H>;‘"o>,Y_CQe>Sz>vA(|>iR;<>#w>qD{4T>@yh:>^? >}Y,@>6"@>ĐE>pa,̎4> 3>fqéB>8?[>$ ~h>>nF[>-c2>>e%m> /Eu>lϹ> >t#x^>g0>5}>э8J>$A]t>_>^^>yj>->@!?.E>US{>~wtZ>PXBoy. ?.F>.a"??bN>AE>N>>9Ai:Q~>gSM>k!툼>i7;>ʯaR>O"5>Db>FA ">ޡ >5->)P]v>Z稾}#JJ>h_PEa/)ľaVgȾ(O(~Ǿ,:¾eammE? l`Vþ:mWj־2$G亾v _' -:lV@aL¾ڲֵʾ1uྫg5Ծ]laY㚢y侾d,ůǾ@ѱ*վ "XWV1ワL6t58ؾ̊?.Ѿ\]`A뾾W:P0_िlrFIk5v0IBGp%L,,n]FD ҿur&uo.a%}]z®a2`5L6*b46:µz2]:G+ Wtcct4JZgrI!ṱǠ)8?Pl(ilcctQ1ѿ̶zAYCʿ4vֿS=sɱ|Y~qؿyGxg4ܿ2L'࿰Eҿ¿`SIxſ4: ر¹H%ҿ4ҿw-E>ᪿ/zHIZQzhR l'Dyz,{чw$ҡ~Mtjj}jͳtg9.l|tɼwL/ }YzٴCEbZ@ڥ ;p'T*dU\aauc1οu̿]as;q'|}{uwz\0$_%Qz/pNDm1tW#ȇ^or۶ b?t(Qs74%DfUTWX5|Q1*YHgA1EQ5 +lDYrgkry} vԿ) Ͽ#0[Ŀpvj*w3#%-W`sJ?:MN0^{]F27ĥ)[ 喿[-ԲRA晪(;>ˀc\Nl"0nNӄ\Ŀ~™>ĿK+g-ʿtJ?@¿z:EGuݤ˿ǡ׿]#1ؿ;EۿxӬI῁CIg濖U8ʬ TFM1@K.7俍^gٿx^ۿÓIqԿL Pп?̿v%N;ȿb-8οRҏۿ&L_K޿k<<ڿ=$0տ 5cJ?˿l8Ye8I@Kܹ-fe՘[Ŀ/r S\TS|?sSno—{C|/zI@@Yn6.ʐ{Jӡ@锕 +兿gM(]‰Pq8k??yy>l3)pct^jq^5LM;;@!?Ò;LPCmbJI\)pU>Kcf,}={z7y 3AzLxW8~r8nbhVW|R2vAq H̛@5<nė|%)"uv": j '-9;ǪE ,0[<"\Z7I:~mBč26P]@ea:49-+$h+oPMhտ'al)4|gN^|s,p a>m0/A/_%DD>t4ѷ>W=& =>+Qtp߽~|pA kJz>H>C>صu>h*?a">l??+ ("?P$?f?ϊ?<t?xkG?<c?}E?& ?Qu?VxZ?d1?'B #?9j9? **cS?A?}pSQ?gQ_? n$o? q܊m?6l!vs?sm2S?PUO/\Q?~b e?a?P ?} }d?yªծ? դ9?LQ|?3W]b?+or?eys~?RGq?$+0j?Rz?^b?MUV?|kY?FIt?t\w@?imC?qV)? jM?1?zt*?!?b?k=h ?F" ??g$g>`aPG>UB?K?JnF?7?Mf0`?2h"D?NrS?דraFZ?wwr?@uj?97Kl*?쑘}?qэ?LUMq??e?LV3a?r?e1"{?_A ?-"U?B8"??nv&B?/ü??[Nи?^r?RE?b81#?5L?=Rܗ?`á?3-QmD?Fb?d?.u/?B{^XcY ?/Mx?-M"L?r=ho??.G9?0ѿ;hC^c&Ψ8"Q&}1`=wF(]h_^x>J ejW?V.cϜ[]܈'mnEJT<Q.'ֳkFQ>"xG#>h8ʚ >vii>&i_<>$f>K4C=Y>YluK>>.5>O^fP!>ܼ=wg=u,s=V_~=@Xio=_=-Z=6 7$=lV=ۦ;u=V&E-=@EhHI= kB=^ /=I>@<+=Ѡ$<«vmE=q= C>ބs > m>Uϻ:>D->13s>?j2FɦEkT>8Z>kyP.>F!e2>fhe >`j>DݓP>8mK>᠞+>Il>^ _>L U^>On>#T>u>[>Ԏ1f(>>S|F?#>RF ?&z>Qq ?-i:$?O઴> ?R}x>>jw>b ?-xS>ұu/?Qp ?ˤY#1?qRI3?S"iPBqew㟚;>50dIف>,j>Ӭg{>]6|z>Uys>S>KE>3s-> 3>t>w F>ёL>5_>椊qA>ɥt&>чm=_n= >ᝠTO>aiWsjs7>p ]4>8v@@=B?HL >1w=F>!=s=WEX=T2=|AX߁ȭ=B8~e=UiW̦z=+w|t aLW=Lji=u+ =l@f > `=\1=i> :>2E>//\>s\7>Bv>fۚ>Z b]N>/LY>*f>dA>ѪhF>`|؃>2NS>j Z>F>ȊI>p(&>1?T>WW>'RHw>U*+I>$K#su>;!<>B v>_6E>^i>&a==򣯽=a g=r>=3+=_) {r=<7VK==="sz=z7=0p(=@Ys7^=ߟŗ3P=20*=t1=_@x<&4i}=PИ=,a<>b>d=pjt=aE="UHf=P_<;e=ӵ_.=\arC=ެw="<2S$n2B`Q/=?3(=Kvbr={='Ÿ=8Bu=z=)qB=#)=H$u$=P{I*=hp=Cԡ8=]W>NiT"\>xVo>ߨ~=G>R4>8>J~Nssv>(z~>|Uأ>1)>xKE>_u-]>lcꦖz>!& >UPW>yh>FL1>,0>,P♾ګb#kt|HQ>Ž1&z3~G>|KQ>2>HK*yh4H YM#6φ> @64>,E[=nZ7>'w!>-.=[oE@=O*=z}=؄}=c`y=]״uIv=soU=[$JӼ9[b3k}g SҾKXe˾;YWR)4`}Y20̖*F1~cnQLA[_=)j uSaԾ`4bAAqv T e@%2ˌG'͒մ5 sbKQ'9¬R"nA( %ìRKwr 7U LX^mqdca +ThT!L=fH4WE>}$J6︫pq{׸KP!CZnaɍJXBNi>vnQV݆pjn/US aͫGe3_(w KxtL UzРULF>Lx?^FY}?' ?iM>"rV> w?gb1?[1/?ڳ} ~?hnK?L`W?>Ɗ8J?U>.B>3>q>2^>8*y?4 $?3L? ?-K^5>Io2-?$>W; ?,hտ;_H;0ѥ?;CC{@]v"h8 hyTmCeq[s)g?5a]̄bZSjǾJaTGxVs`%n[b2x`ᱳ3Q\0slM 99"s5G]uu_惿qS/BL@[*dzNIO2nˊ-jn\S8E _,z"ljboX[g1خ+x ؾ*-aҵ%Ҷ2ussnSJ}"`ƿ<mpZƿ|y䢽TpF뮿LicȠU,]*|Əu6~g:|=BNlFE)Ņlx`m|RTℿZim6y`gWqEiW"PqQ_[7B^GlhU]I"a%>}{bt[_*վ1rul f j 'D{#⾰%p?<73Y˾| %w˴ M#衱D.t싾q v`ojIu PVq ab[hBW)F }L#mڝ5-$;eK&Z>1pB ; #5Uj&qhbEK<툾~WS}e"vN3BÝ!zp$NA1۰=E[XŮ_ښ~ -{CR¾5.~˾aKD1ԾCebC⾋ ]?r|>{о't_]ľhw?oҾO0DQ¾8wC]gAZ9`k|D"aB|[E(гBzbKR&Nt>žU(+oL{UҾrNo۾:Nש۾d̾ 7~ھ@Ӿ A龆't iF]uh;2 ڙP1A!I7Pse@]AT<B  u>3cLE!fLC5P 52;\ N}YC %*B]!J%w_*SyBeZf C$c AyRZbXjV3P/ ?%1#9徛Z$پq־&Tm߾CS{Ӿ1о-Ukξ^+IѾ]S;u:ھf^`ԾkѾ6Ӿz+ߒϾ!ڭlȾf8\̾PxvǾ}|4Uɾ )Ǿ]ʾjK&JȾ6blNi̾YFоa5c;^R-ھP`{17Sξ}Ծ6Bž3D5ƾ'Ǿ(I{upN FIAzȨl̰ s7B!.e@V?G`Ŷ?۫p Ѣn&}8ZMJރI9B {yoɾNϛ\@C Ǿ2C-Ͼ`۾Pq쾀 CPپMŽ5޾dZξpǛM¾'wKfJ Pjʾ[]M"ђY۾WT'!Ҿg FmᾹeNT]J,+ϷIT 0wʐ{MQFIBg\0F!U'Iq#N}'e2ĥ3Ns̠oQᾱ./dva ő9=d=TKoZ˾ &ݬgK7uF@ve67ĥps]CVppZr6/I [.\z6IMg׃V h/ ~_N7}?~3~<i*\ Q>AP&SGgXldS4JhSh.89VV{R0$;WBdlH~5}E̸K3ܞg ~ڇxmQ,(ZCJEvR4e]So_u+n]T;wSB117C~.{(NKW' Hj~kkm6: ZK!e7" HzP6Pĸ8i_ȾaUľIAپVr7&Roq2ô\yVW A i!S1AXv2XҾo <ݾe*eXɾ߷i,E O]YK[KVN[d@)A+kglZĺ ly}<@K9M ,ݾeMŏ #h g!Wi0뾕SP;Cj վ1KBf;16&=P9G Co鱾LC 剾lܙ7f >[]\C6Ҿ#Z@X<ԁ,׮Ad5i3#`<MC 6mm+\PMaGQk+DaSr6`X5#=_ %2֤"I`EFp2:^Cs.Y $)ys"hw5"'h]^o0@5_pV~I~Zg5/zgw %g 4pV`FVO;rZ&%A#+.4&x;=zp1~yXp VfU`[t*VD =P_ZTޠT9i8/? &tP?Ѝ?0P2?󀆈?€}?8 b ?;[J?J?3K?IA?[:? ?O>?1;?a uʒ?y/ݻ?)?ԑ˪ ?8cb ?Qclo?%?Gڭ?;OI?_Ca?$o?h7w@R?F2?ھugi?6};td?x?yj.C?`?/(~t?,Y>?D-?H?!;.U?%L?]?䵾M?UBBĎ?N~:?{t?4Ң?lu? i?"bBߩ??g?$S$??{&|?Tykc?38Ɂ?Mj?nxLt{?n#u?5I)o?1ڑ `?4n{b?ќ@? (3XC?;4,T?'X{>?LQ?/aW?U.~K?˪Cu?O mQc?ޮhzo?<(?+BUy?5gdr?hM?sEr?z\]?`i;U?mZaMr?׼O`?C5?`x &]!?Bc?Ż?Zq>EE?+>P5VN> ]奬>N=(v>,z2>ʰzƈ="+v[>sܨ[>- H=Q7g=C#v4p=0M=Bj܄D=m\=G+>E5-z=EQ*>씾>ZWu?.<^C?K`{R%?d[K?J_@܁CĀ.Y?sCK?Ɖc:$2Ý?iu? ը5?ZpYn?,|?7b]5w?\5?T1.?}(x?@c?8C?{¯'ɗ?38%E?C+b?PN?9s }S?_-LX?NF j]?0k?ȋ{s:g?qncw? x?)=? S?P̳?E*@?hd ~?p6k?7.?4#J?rm.?(ъ?_Dk6?W9ݬ?5iڰ?oPv՞? )bʻ?y?}5l?[_a?,z?/y ܪ?QTuH?c?;>?K?4{즏?7c*?`9`x?>?BS?Bxh?يÑ+?p?dae?Eꦗ@`?= z/=> II=⹪=R u=V%'I=DN=,Z=?IK,=!f <ї< َ3mX >Y@b= u=F(=cl=Y+~1=$>i6:e>N^V0>3 #=>,pcR>a)>f>`vm>i\O:>>+%5@> iZ}F>Ƴ>^J""%>Kř=youy=9F=zl=G= 2a=1 '|=wJ~n='T=a^?:k=vc=e.\3=F%kX= \_!=t=}wj =[?g =xz>R= 2:=t|ZƲ =0l 2=P!==fj=T?=vEA=x"=-=(%x5=݌90= P8'~{%C`=`|s=^!qZi=B(3r=lYoDF=}> rm=Ycִ=۵:==)JB=ta==gh%:=0f=?=a>P\(j==gx=[\.2&=dWnOq%U=յ/$0= [Ǵl&. (pϟv* "ýY@zqp'qSȽWka᳽ǪCŸ`?5spBdHpFO,3Rpix ܽj.{ս ngz,/v$ $Qn6x%;myF/A^m y.g[*V1wPYc3Bd) jf+wrL 늾ϒFʾhʉ7Kqi gn V$+5?+Mו9$iigX{$.vPfr+wOG?}rx~AxXhD:j#$C ^$a0p&ۘ~O[Z3c(ꏾ')2L$Bof O>ۚN־ʰyC6&KzQD ,ne|Z`}QûѠ¾HzdwϠvǾ3;e: K<@1J'V>b־yvn30 >K68yXP2cf}b5pf\Lo:j/b&%DGхkQRSLQJZAMƾi)1JʺQH&Nɽ 4I^Ծo|󖇈>~d4>>PB>~e{>\Ú>݅>D.!z5RiӓF K;rLzbv(4s@[=ٙW>%#G$>MԫX>ͼtg>,D>3I[>ڇ> !>2n=;y>&H">eVv<>BrA>՚V`>{l,>dY>7n>pB~>̧A>`)pc>iIQ>Oz^>\!d>0ղM>m7L>^3⭧>H L>">cǜ>*_t>1MS>PX{e.>aX>0Ŷ>4>/|>"v>C7({>#=t> )#?v3kA>Y>(RuF=>;>fۼK?O:~>i ؙ ?nH?A ?@z1\?a]R?C,՝u?51?o(3?qR?~͆?=` ?k N>7/ ?j">>)>^/X>l4>ɷ=>#gT>#!-q>l2`β>q}<> ;Qݶ>MB4I?jW\ ?6?ʼ7HҊ ?d %?*݋?eC#,?Jiy0?1V|*?8km0?|0s>?֧"h=?s6?G#SD%?lni?"r3?unW%?:d)?`??ӏ#wa;?.8'D?p9(? 9?9;'_%?l'?sn|~3?ؙ ?`ؓ?2sHt?PR>(#s>F?>fL>̙ w>AyՁ>r?3u ?亽/>r=. c>fo;b U\+D!<,`HM(z)>{p 7E^N +{sT?9RlNH x3b>찜aUB4DέH^U;Dt^_Ϡ ߽qVbavѦˆsk'WM~aiA l^]aq_Y2(voK.N P>t$U\`)p#?k]օ{@Sf;2{;x>Ze)1Qo 6QnpM e0[Y6{\cnU*Da_cUAeteʬY j `Ӻuxs71[J˟zNtnq8Bpm'4#ܡa36*ՠw*ya"w%nćgg]tqI S't^mrkN,1GU\k}ǂwOv@e/VO^Opxxgk@tgZ1wPU@/T ɔպ_h[u f$P]िWO̢CK3jsSpCs9Sp bzJ(4i¿0fhRÿ(4HĿN$?X1̿FЯ>RsәR>RL#R>bN*u>+Q'7>XXo>W[%>B>M@Xv> sJ>AyH>2H$>=й>2 >o?>͈>pwJ>f{C> DA>` #Z>x>5$>>>ZT'> >Pˣ>$ >dW>@>4Cw>71N>]Eh>!k:W>dK>|On>9ЙW#3>e ի8C>Smf,>"=U= -=d|\Y=nfk=3ݖ!>Eg*vC>)H oK>#w&>/XfwKv>v*_{>ȠIT>qkɳ>,wrf>D9>A1} 6>5<1^>61= 9L9=a~AwX&=9*=|P=` ՜)=I|=w19=4W=$8:=Kn.='M ~?=pg1=5γ1C=- Tnm=exSÓ=ݽsX=|;BD='X d=']=I?7 s{=u9=q_=Mݦ>N=|dH\3ҧ=D^C>\ S> =Hr)=X+=$};)=LUcӱ=3F_>=<V=/1$E5;=7rz<=U/=5*`hep=@4b=F1_:==K|5H=P%6=rlK >`>=Nc=e֒ݼ=@o_(=v=d8w=7;8=SvN=ٜl~}=.n=QkY{=!V@=6ɿ /=E˲t=¯Y=7=X =|ɒ=RZ8M=_VEҚ='59g=ȑV=W. =y:>=%HB= R!J=P>?>]>VKR>x:A~y%>8zy=>7> d=G7B >u@>h5,e2>~[-F>gz>}/Q>w">Q({k>A>[6w->jk(I`>\߉ i> %W> ӟ>[W>%|Mn>B~>rm饅>ٲ>09 >.N#8׫>֥U$l-3]~Q:u>_%d>{(C>w*~-P>we/(B.=3 KL ?Y\ͷSq @>ӓFi!>-7T >hx=iN&7=8D=>#>gQ? >I'&L>;_U >V>%փ=CJI:= =ԙ_ɬ=|=tp=N]i3=Ew=\ m=sŜ=;3=_=e e={)h=gc^G=T*_C= zN=Cl=PD.Ӫċ~pB-IBl9 } 7PDքa1CWkHo5н@lZ{c+" DĽϮ"eZRJhF=]F)uht%ŗ$=)^h)OD;H*n#i0!(wOz6|H<5VArE!se@J8Z#P$>>O#A-0$$.[ck>=P$;!VŒjٽս9/Rƽ~GJd~ux[|9, JA;b }W+2y(6S)&6@MmGgb \6K1DL]>4\=Ab r 1[;lqd%CQlgt\>Eܣ<[rVо؈&uP'-ྵod ˘N8Lk:P/w@>D^zRrNR鱄fG~,Q.2ʣkқR PpQfp!0a}q(ؾKшI ry90mZ/11a4G %U,;{esTHѾ3Zܤ~d R^2=}&fR+Ew.dɆfSFY|ԶU(`ۙSMir,nf[ h`#)ɸd"#5ruz`Y8yNI5 EO܍P^Y8mM ;L]knP_EL^nWU}R8߻r5co֓gQ)A'ym_7sh:gxARKTʞ2}_ˊ XA- /f%Ծ.p58%bL哿Oz(@xv}֢CybMEr,hĄL!.dk oI顿BQ'gh ^0<#  BLƆUrZˮ0%%hL85&NS(\ǿ x,"꺿O0Z<,7WcĿ6B?qշSV<2\ r07#&XVLn$ljڹNW1iXZ,><.AZyJ.ǹ!(SL(vl.xڄU7D'>&=L'T$ZeUo7[84KS5lx#J4ve!.iH˅6(Jdwuwp4k ӷ_ӇR W89W4R %IhC.Zq|oOHXfUcZCs@J)620FfИ7uh; 6#C#_ʭKF2Yyܰ ,U oOb߁+s ZLuy׾3A,>Uj>د> ?>SVg ?`?s ? f@< ?_\3x?,-h?PuuzSZ>5k-?W *?iW=?0"ua)?)?2?ˏk)?o,?lzVc&? *?qE8? *ɽ11?U~h`i;?s>V9?&ʖ(? ޓV%?.e?SvG> "!>XW \g?|c)`N ?sX ?g?hu ? Q>lU7?sME>Hb`>F8t!>SF`!>"X>vi@k>{YO>?v=?6y>5,>^>bo>KUPn>Ǥ=`> #^D >LƎ>Yw3>ߛù>v<>Zv)>>|[>O>!@>' tY>$S>K+i>LsE>M% >;h/m>#">#C| >4>d^>x>OPS?rP]?2}}A#?Jqgu?ʿP?4e?jyt>:6R\?L ?~4?.r?jtb?XlH?롭&? u>?kPݾ0?OS?w;k!?z*?Po?R>cշ?Lȣg? Y=?EQM\?&`.ζ!?Pe';?޿6pkC\@p4ۿ ..+tҿY+ k0Tܿ㶉οil ԿԭF ࿡Oegx7?Rro)o$Z "vZwW濃'djNGֿ0k߿})\տ]ƿJqÿODE.ҿ#Կ 5z=ݿ+J6~XYXֿxzԿH]x0пy-u:ǿr˿ܢDĿc﾿szy|\c¿@i4>#Q刦;)_'>#Hi'MWײ 51Kb2;z-g䦿S*$p&4G释l竿yt28G$$C Psd` ]zPv[o( ƿ 狭Ѽud了ǏO+6˿Zt#9GpLxl8xfS$Se8L[G.IH>(Ixj5L1/_ݤ]7xE.Bh`u<XPoHVVޔjR+eȌkP*SQ)KB NC*,2w7C}'b|OJ 6P`"jP@>\U.dڕ[UZ8TiZde Sexj1r,hv`㢎Ff6.fj.- jZn{bBi}-m˓$":}D hvC|r#%5g{F~7$ZJqPҍs PoX ͒0$)J'pFKTbq}18gf>o1ۈ [;!SӡO$9~ ps܌ pTPx]crVSUe ;C5FjCܢ¿ k۽WYJPPYz,pqhGARڰӣG-1 2eu3$sԀVN@v <R)zy$_;^o7JϿn}ӿjZEex~ePsnÿv˿V!ƒ!ڿO ӿDPzӤ˿*::οES";ɿj?¿x35eqY7է^ ) dl=è UKhd/^a6 ,Vgė`)mvr5c=+3GWvR/hDqGunxG=ƃpluNwf!tlChZ)q'QuhѪ눿F=dH߶.BeF3ġ)K$sz߬yiWXqu,pug e R\qq;CjмWt '+hI6DV MUavM]]A:}uMOO'1QX &1)~I!j=lrmDWw%)&6>J]C"\9T4-f́-)IkV@SmeQBdaHDxcӳ@ CډhNbXtOZO'MB!oqX('}G2s,ADJ{A S>{7hn} >80Wy1!}[ χ'*[rl ikEb Hk@GQvWN)x2cW@CIo&@_f0Ľ" \!U1!Nd$S3Od,i7,yZGŀC66#49y-%9*7$R4@6;7}NI ЍdңiL,+AVX[(Hsd)V}dĨ];cngc}CBI$;<-֥^&4%kRt :^ָ'v.u13Ē>Ct5n28g"srŜZɧwt0'ep5yھ6,vU6ƾ*ˊ6g_\ľ۾ qA`(=24^iЌl_ ѹʦR3>,YIb'N~ؾZ4OBKɾcHʾ$yAZݾqّoy Tr ˾Hܾ2 qξ&Yɾ6hչkl3hb:ZtFKq*gOdys|?cHe,Հ۞Zyt+LhڰOKXaVbdI<9ZC05yHzZΞԏh2x.AΓ>wih4yl|Ja?8L jy~:pn4skw F/^i8j'%Bx~#s<#z3jp]{%{#͢5& [ i~)] {P:~tdV1cp`YQZ\\ S gTTyϦJ1>Z>8O, FvFJOI1]y1"@$%iA7'~:q\^Du:DQ%DF=b8rv'b5BnP VBa^q_~ JTe"U0.u'IL&%`> VpYc747jāqjy}h3n8ghVm㭘nq9ͻyT=]]~pF$%'s{@0opG&3lypB;dEh imUKcnWY2kw<}Wǝ^ir Y |O85ɯ.]\&DauV̄g#u…4 e4e%8VmLha-5vY!+iN M-3>"Pw+Lh!"uD.#JJɅw'P^]iܦZ2 ;Ə,c=ǎӆĉ Uh4Zms"&fwVhe&&"0ctLvȔ{d\`0eG(kٳЧgƘ 䩨 ]$̈lcabb] z{휾Hg8ž>|wz >Nꟾ/ͷOqOw;ΦqmVD8Qj裳P%fqïq G{u$4Z S%Vٻ|0.kNɴrDU>Zhu} Jþ$OP˾ĄϾEAgҾ[>ľ)/o%1ƾVsԴb4S=cU#Mq[ث+$(Lod&,憠fض]JķCTl6tr fF1I'  BqH/yntоV¾ }־cq־^ȴžXM--Niþs7оI׾NR J|7l8'`LıȻ 5 >M߾ɤբ後m1m< kͲsYK^ 'x5z#jh #zu;:E33#SvF޾W/վDWuо_+¾“;;4m,2wj7]վU+=(侈"-Ssw"Hq%\y%r ca p Lf0r=)Ǯ # ȧIQ 2&([`gK2޲]Enřq/Nr=y"Z <}45="h+Gm3:j@S%^oiïRRs_kF !{VMbWIx"\jmmP]%ؾ: ?ھyM!վ0x1ֱϾǵ'Ѿ۞3VSMϾC鸞Ծhg% x)Z˱Uվ޺Ҿ8=oCoݾ1|@ԾlѾߨ˾( ǾzkžJ_d!:-dVl޾=zԮ-teݾ9d>9*8S'pg70n!X`!6rf_faVM>:LLUmjtt!_ʛ rR7I,I3@Mϕ~yqn7\mt]Zm!~ N|"rK%2,zě ٲű/綿[CΒP5OFe*j@6>Z}%Wÿ\̿o<.¿f8߿\WӿUGѿ|3ֿԝȿs@IQ{^P;|ÿp\ʿǐǿ2 6Ap#짾zdbʿKz ÿyѿ Cӿg2ҿ;i`ԿMݿE8] B"Ŏ `}2f4b^{ؿ9ڇ Hh{%,c6>~+3 -BR zK`2/L*jjMɽ.iGtqrȆ$ܿXXƹ9 (ސqrd#|`sbd0ݿ񿷁 !h;y׿ ڿ@ֿќgdlɄk(>%e&Sģy޿2 ׿ 5ҿyv3Rٿi90ӿ^GAKɿj!WÿUuxſFoƿחq3rſ#j"HVtvtT.郲?6¿UEqп_Hj":Ϳ-0ѿ{nͶ1%z/ٿ!W?d$r/?CܿḧZ{ڿ WԿ.ԊԿP/vĿ|%տysԿ>aHÇĿ 9x1(hCFh7̿պhEÿ#? P~rk]b꧿@\~*c&exsx2ȢxllØT޴C#עjjZ0$ 5m}ޗ`+z Q癿`@坿'wSLRORi y8`~,7 ܤ*O ƙӗekќ)%Y{jhQ@SzoO됱{j6azwuu'aÿ4\fVvi] GΠy^:(ƛ*Lҟѿ̍ʿ/ȧcN>8] Fvgǿo̿ZĿb2~SԿD1N ׿n:9ܿ}eտ=N*ҿJϹWXƿ{".̿TԘ _]I) }͌a͹h3f^[X _|n}KJzQgyWq{rxI6`})V:VpԴ@5o>k{V9] _MdTHM~""74G2HQ+zaUo0\JyX L.5$Uykl2[8eD3Dk;"E ED6ED?lIgiUb^ђY`1L*\jNJGx0TfTAMUpbnıhXӜ?VLnR2BmONKPgVh>7N6.bcb06)5Mu;F%cCz ӹg=n@{ A2)n(|-+4T2V b)5;[qˇ D)p "}r0 i^u XDg5FfQ&uj6ƝAhmg.;wn6q B^XJ+FXR5oV>_p^ tp]-OG1"X*Bfc m%lcAwbot#6r=;C{ϰ7'v"2{ryucۑVaX$8LGG_OLdN`ʰR/(=&.",pJ2s kr #xM 4"1#Q< ܺBVD*##ڰB0XR3(b&o90 kUmB٢94Tr꾼1>0|N`þ7ӉaQ⾰kѾPreоu_Pҷ'˾Jper'ܒ+IbjϚ1?[l$Qbĝm̾yI䱾6y ؾs؉%T͝=3C5^ʼnc7yf{SwJ\U09mH˾osξ|Ҿ1( ܾEӾx`׾VŹPyԧ՛Aui[tƩmoJJ"h(f-{xVľ+o+C*ھk}7Ǿ846׾[E7%!u\Vd "QRnnNOd5@ U({S`N4+{wqTg~LUœ*&ϼ<* Er0y`:e!lWHs F:_6~GPeynfM 9lV.`W2[x.=(bPD>LP=*Bضp95xx,)-4(t|9.OU6f~403EB-%p>d8<~:&5rtLq,77- ]B_Oе5hgTEFHY*Gnp VSѦ{wZflMh|bR~*ɂhɚ|a@oN:R*|z!oCe?O"g|HcvGvtUz:z igdxUozs]yឺa8Yd]颔Qb^3Z>I&/H83n(S_L-y+K3;͢4t.V#Z%*i$yD-)O6#?pr\=ӲSJw4ff66W^C7ݥ]U84] >{!<q6rW] 3dV S[<'SaOVYcYpr֟aa~U;= \RSؘBOSW#WछTaT^@ M6f0V8X5b}Rht &}fVު`v{b}YQiTڱ[/CSҞ&ЉILyF//iRU,o[ \l%`8}.ZԂтus Ͷ\ Ѣv@`kݔRZЌכ囃ac?h'{2N餾yvn{ /׾%\8ʾJ_*ȾtD;UQCi*]9Ʈ#X(Z 6Oh/6ܨr}ٶz/7qǛZj+%%oKڢ{gtt!v,8d\ aϊ$72pP]q:hu`8XTv >?n.QlxC}k&wqT?+A=\?wZvP?}TFGO?&zg\?7dj_?t4?r|F2?G?8 >? sE?!9?fs3A?# ? p#?9m? ~bC? `LBG?vavm?>,'? kaZ?>L]?}c Բ?LO P?7g?d/)ɫ? ڷ_:TR?M?]v ?ciPk٣?oyQs?](?.&~?P7?' f?ƛ_Y?9ޞ/>?(qE$?$_CB?]D(?%U˞?93?]:wP?&@uY?|퉻'?NT?C+? ˳?x?vjF'?%QUu?gLQ?p?#X?y-bB?-?UʱQ?I?2-?Q=?.UT?XFN?MK?AY*.?\c0?\L?M"w?P(9]f?D)?忍?_?f9? Zb?P i3?pE-?iɄx?\A?+$n?Q9?',^?Y ،?,x?"LR7?u&&?,͜?71?թ=?kʑK?w 7_?}?xl?F|z?k?+v=Q?}K+}?MnŮ?Uʮȿ:~-yؿ(qĿtWsJp?cX ?),.{|?c-2??y@?\N?:U?j7P?G:?D]K?4^S?|Ş?8?Mpw/?:p[?M29U?b?j"?t?&x:2?dR:s ?;?k@?5/ 2~?b?cl_?gnFr? #Q?0ʳ?L6?J?v?< .w?;?F,?a?@`6}?O?̆?Z??3v#?vA?)?f\)?o=v?4]?J1?v+^?7\?J7?]?a?[8^?!*?(^O52`?9?h1j? f?ЁM?YL?~vH#h?7?%/?y?5 W$?z&?`̤c?nGh?ߕR?sIa*?aBk?_zW?$vLJ?*,䦍?-,O?#mgb?MDL?ˏȘt?W ?1lG9?r?g?_x?_?G!#?BC)7n?Q?bk?UN?'B(?2i|?2p?Q ?O4gV?gI6?'+L?'Ò?k ??,f J|?u7?Pnl?:?Vj;?ULJ?+Sʨ?<?bR8?]u?]>a ?X䀈^?fO*F!?#m?#T?0?4k?? `5?2n?^m?j08?rgw?檃?/lKI?A~c?Cڳ?>ÙP?4h??Fk?ߤW?bi G?Ă?wSF?.?jى?Z%)?s]h޵K?\k*Z?= :`z>Ǹ=> |k>x|U{>(Q_B> i1>SX>ܒ* {>|d*>yo)3>{> AF0?;{D"A1?X }v2?L-=,=3>nPA>|+$`>a@>W0R9=-YI=QRZ=m =i󴛦=8 k=f.t=].0h= ]ڦ=M=tN=g@ݓ=CA=*&Sgw=eF"=H (ڰ==R8?>y'>> [=a>9x9>B-ow=>Pi>l>av>kzO2c>hȭo>k5h>o>m>>ˎģ>nq>ҿ\? \Z>)9?z*J*3?_$?Հ?|[1?3A?rj<G1?l%=?3>vS2~?w_>Ry?wT3?O/?`.?*m@?#cX/?$??-2'?>y߿WhKʿsu2"̿IĿ N22/SVQ`+ka brf9? Yи&?Dq܇?^p?ՌW?їX?Kˤ?P5vT?I?MF?yjGT۰?;J?ƪ(?y䀙?_?'?Oiy~? ؙ?qwr? m[?9 uZ'?gK?k)C?X W? 1 ɼ? (qƛ?%(9?I.F?>Y `?,%]d?o?h Lh?m?c?N:d?3 j?:fi?d R4s?# p}?5ps?[x?ZkXc?G W1?L?-z?ܜb|?>4e?92?i5z ވ?H&s? 6z\x?ct.?*ܒ?H,?@z?P=D?4q{~?=t?v q?1k?k{p?"[Lq?0f?_? a?Z^?MQc?55*A?>[G?2lB?҅ N??wM?jC@G?k)P?""[?(~X?J5k?n{e?ng?~ڑ_l? `?At[ =?4^GG?IErP?8u&H?^R? gX:a?id?P}r? ֊<|?ahdr?3WMw?}Ƅ7w?ݕ%*?;1{;?}sk|?0f?Su&?a?9W}?3?vu?{W?h?eN ?gmMЮ?\n?UNZ?"87*?‰?;K9r?^??VHj?J?;OۥI?H3*?)$r?t}^@p?45'C?O?߻S\?aDf?/&?dTo?3?*xM??,vk?c?]=u)?ò?Eəm?T?x!?4ʭ&?֒m?3z?Ɔ?'p?H 5?{/id?o ?A&$3ٿ%Mj"Eȿt^خ xxݬ? P~>?IS]]Հ+ ?|adn?bs?& &t?L~?f ?-hlf?.bCB=?v?;p ?U ?.?|g?NL?@úp@? cz h5?k۽?vC? */?E? =Q?ͷ ?t ?Z?V ?} ?#?bڣ?M~Ov?(?n!?UEU?i :? lL?gI~? w,q? 22?G^#?,/Ĕ.?1R&?֌^?EEr? M?g??C?rg? ?΁F}?.V?}v(?>a ?^iW(6? y?jMT?! ?/SP_?3yj?*7,>?]Jdz?ᖷQJQ{^oZ9? rA`%NBsWrM4~6[ 3ڿ*}Ќ!N쁝׿oļ?w?OՃ?tn|ǿ,"X??#T_Vz[Q߿OHD=6񿛄Λ3ֿY8̤A濚ҭ꿽]?CϿ2d޿yֿTmÿ-e;?%M\{.-8f쿋|F6;?_>oXn`t=i@׻= )Р>o9t& BU0mX!FN`CGGJ=>+'g#O>fSV>lJ>?3>g>p1w>) ?H-?'ۂ> 1[?ݑ>X?2G?E] ii 4?c}e?V78w?aMuH ?խ>-4~)'!;BM{N-6񣷗k0]gKξ.``(<ߡE'b,F[2cŤi`*k/jG;s(pқ5T@;+"7L [>2mK)>:[=ci U=x%jN=5~Km>+>}OF_?*f>۩&>al*j=){<,%é">4H>9, >;=(J&=bWVbPKNOkK#WFRT:>`geAH1\ (E4,YɣITF9(4:i߉(>d(T]v,})w 3@a%>Q'?ם $?8 ?wˆr?>L />> IHA ??(>>=cE>â>MY+>?ܖӶ>kN?GL' W>TcpJQv \~2-DCK7_9CI%o+;Hݗ;[7d4˖(,T&*+T@gZ[p QznAsϩsUV2kl#.uhFl+K<֙ՙ7%Q?A!F{o@cٗ~ir п6Pݪα_Pmф9tidιI< g3`IY#;ifVQ[P B6ԸBž=H+i̾]ʄ%-KP̑CceڅMs@k2FțtߌmG2o»5>cˠ^EAuMpZ]";i =+񍻾R^]Vhži}ʾ\Y΢þ3<$Dv8^ܾќ ȓ; Tw=iV G{㈿%BB ^%ŷ3:[re pqo6zB {%5Կ݉(]ſ!Ŀֿ6࿪w kTWj!2¿)o\N_6ɿXŤͿTH?<>X61DXmO{4v?1ԟiw`v56r(lM zJ3*K,t~ *Pz9ka+|Vf1*eoGALP7gw8~FK;ՑI:*c,S28GEDGQjG`nGI<^4G/ϰ$GAy=b9d:7~C1AYHfƿw%xUBt˿ d,>=A{J S=+G_[2 P F/l(A@樫TνKajIIpUŃmIx1WMB?Yoc? Dr?-)VM?Oix? ?#kDt?[?#OIGa?7Qp?%{p?n֦?}g?? 8l?f!?WN& ?-),g?v?~?)^)fv?}O?T@?;➩?Ǜi[?<+ }?l9]l?0)?ͅu?fj??(!?(쾐?!`q??6,]?=p?R(M?(?R7u?K?X%?~‘mG??r~?cVΆӑ?]:|?dr?%rr?)[3hr?sK&q?4D/R?l~M? D T?KA?pD?zQX:?Th)/Gc?ȼ͗~?ݐ>6"?Sd?J6??'{?:d?aݟQ?0>?/>wX >!fjkj>tۇ9t>d85?Pgd=?(x ?##3?|7M* ?t$?qF ?g?_>네?KbjzA?}jo_?G?XBun?zOS?VM???Ҋ>?\?hrs?(g( ٿXݎ5ŐUW<`Ya\D<5^l<|=^q})=2ړ% =h<^MT>9h(Q^>*>VQ>^))Cn6>:t>axK=oUO=~=t o[5ÀFUб$ף_Pk2m*gP!M-Y"^;c=|%ž] EBjo4Dќ+H'-ƾ<æþp6 vk2㯼׾a$ ye)pf(F𾨡bnQ[XJ!ſJʝCCt1Rw)Iܾ)@򗗻%ln}kL:"꺉I~>`0>4gl>_P>L!%Ho>N*I$rI˷b2LMT.dR #=Wh 1>x61v>> \2>G>H(g>:ʭB6=\ЄQ=م-2)>YNLS>ҐB0>@8P>4hw>u ;9e>{$iR{>iG> w>.!y/_>b>/*܁>JBM>&W> f}>MF >)>V&7>F'A ?˼!HB7?p%8)?~l?‰x>Ul>$4I>"X?ߠP?ѭ|*?co/ ?(? B5?X]C ?LEZ~QF?t~rH? Q.?D H?;I2>t1$?9_T?2\GDKYF!s%? v'zc^񮍱Gtփ`sEDžyKU VmqSUnxV[ C.ӱhTSI;vIDc4`6y=c[kワv 1P%CBea=󪁿&Ac2Ǩ}#=}$cĿ"QKӿ 3O#f_>/F>zm[>;Ls> P>.%v^ >uNp>zv>1WnS>Nk>`n>js!f>L+>[AS>ͭQe2>^*`>a23Y`>ה>nP>{x->L6 W)>?B=Rm=%=5>>Yjx*>Q8G+>!o0>*=v>cC1>Pp>lR> >CMT>sf<>h>;Ggx=gc= Q%=,b=F=[*=boє=)NpV)=cHb\=ɪb\=4e5=* =fv[=y=*`=Ti<>h=`zt={D2=Z`):=B%W=V]*p==vMK0>>- >2 2=} ]=\]Y!y=݇2Bn=mV]=;<^=a"/>3zr>'ѐ>|>w>&t]>X> qb>ԑ '> ]$)>5c1>xG;>R-v>,_!}qo>-V5m>j5+>^'>6o>rM<=>vl>ۙX5>C$Kx>> >jz>(Xsg>)4Х`>#I+>"b_ >X(G>gz>==4=PfC=%zT=2{xt~=y0f!f=FLI=! '%= *=O=STxC={ =,u=D:IdJ=~q]mi=_E=og7=Pb#(c<,j`i3*R&9r+>E=9c @A=߉r=CzdR=*a')=n_T=a5c=\/ d=7]=)Y}=;=o!U=5A[=fְ= ~.+==7+G0>ѷ*=v3Q!>"E`>ήl>RE<đ> UW_&>v;uR>l>`쾕>=+Q>gpQ>7>>Dtq% [>N2n>͎T%j> ܄SS> ?IJe42!e?̣1{wٗ'>&T >=7.2>l7/KH8>tV;>1%5>ޙ>xfy=* =bk=}wu=BhC y= 5=]~=CY=.2=&BT@=Df=&8t<z]|Dۙ)ZRÏ"QB+xh}4ĐXK|ῲ!ݟʾlltqL9վ? Hm| 'o3-I0e9_.h_OkDpɆ7徘EҟL֣Ѱ\ %5 ߉b^ذ{>#+W1l&\Ïa/n AZyG+1xUILk6Weɀ䬀A¾~RϲǗڶT3"kD,>-Ӝ~CKڼ+܃ReSS2 ¿2+|ѿ6}:c V?sqb6e tAү V{[Y){{WA `s6<9PUU̝b7vQ!p(g) ϾdSp> 0?bM&>ZSRHrt"?Ɔ;?_W ?8b>.ą>P>>Cw[B>p)>-nwn>Gq>׾:V>c.A1?78)?< >m?d{B7?&5?q'V?'¢! ?"(!?ߏ[+?Rj(կȿzP*0wiĿ#{YHSW],ȿ[;n_$W }I0!9 ſZ2lؿt[ ۿmx꿭Wz^#}<>xl3=. " ٿVֿkF?ʿ(c9)Z'j|۟S_S#'(vExRA=b1K]NVs^'v{#d[_4Cxc[C,٭pbFKpS+_H $KZbGˎ!?`~wIHJw0IQv;@ћ5ץL7T!ڪjkz%&} @[Y Rř~@();2ɠ؅?:V(Re!!ŤsqYgii7ӉS CM-?7BDL K6jenO3Ep3D4/2a6 "%p]$P>$]qxkFĨ2aFzzeó*뾟xn.nh+}ڊ%g_2 欚jAx) yTIu*X2%AsLߑ/ǿpQ F;_Kh,|\spauszy`^Y$ lNܠCa/Pϓ9bZ'ϧe( i\v/[}C 0 /r|wǤsMu5/땿.1 =~~;|%ЎR8[?[kVu 0ʿ+wÿn Tڿ=G?KқXR8@j۱"r qm8aՆ#q3Tx{:)[c1}iw™us'D=?cWi֖EnѿwZ~6NZ}JY'XKYH8m]%#  ) R b${B@u?&cz$?ʾ"kվ%^2ImXdi`7#R k3_*q 1 g-3ٵNQľ!3Ҿ>sw\+ݾ 1i 8(r|)ԚEb;eYvm@зcA+.VR*7 D_f!='k@. _*t(b/sy0lQ; oT]FY[dءU/Q!t?Wٔr2,iNŪ͉iYd6P]!qX=6@>2ԾN.Ѿ|{ֺ1Vо(Ӧ־QB .#QlPf0YȾhR#ҾDUY#Ҿ~& "[پQ=Ps־L+u-þ6#Ѱ `a.E5T +TH>갾R?׸f0$[3;6 |ƳӗMX$)p{$;t@h"sf7rCviX8%q@%ikhㅾRNu`-7 Rv)rsSWZFnNl[LxL!VƊJ` r [{Λ3FZA#=dT:Qs4CFuX]c*veN6jYI\ nQ[ b~_л]o~*bqLjg xt uhBt]#I:n&{[x6 wQe3ee6NΫ6yvx`lD-ŀ%&kDe9%Ш*L[Eς{~\"-f3n쓾biA擾a FX R4Kc@nb7YGf5ɈgӏrʘAS;l{|~룾C=%=6KsٷyTNRP%-v$[XjA)2wIȭ, Nڡj[:*¾F5~* ?@T9'v弾0M¾Fe`hо4,þ}*&i|m4;[LJA5QFq !O˩a__mA2 Ⱦ}t)۾Ͼ8 jžxQXg}gƕ(Uuv pc+l׾C0T{F>vbQhѯ(Gt_;\I!ьV?Y:OwxVY復"Ծ~o؅ɾҾ Ӊa۾F$ܭ߾vپkg뾁 }oXVxUB[}(]<=( 'ǃ(R' 6=ܚ:R8Q#c <~*/+zJB1h<˷@nI{ƍ1-.=MGU F;C}"qAz4޾*1߮Nؾ ?aҾ19ξxD-ӾaU$ԾljιZ`M׾Yо_|̾ܩžVīJžOjkʾc1Ѿ`3ɾL4 ž}#ɾ2^0S̾\_˾@}WCp̾I-{4:;!&)̾$܊%ʾwkQ̾:S0ϾUUӾzj\Ss +rRzd!p Ѿ$ҾG'оHDIӾ ξk ׾6ɾ]J4OǾCQD$þX_kþ&9¾| E?^ľ uvƾ2S8Ⱦ乴/OLQuAogP6A9 K\{It\VEA'+;PBk{&VZ7ѡad& ࣾ#ɪ弾sHþ޼Ǿ$G NžM+ξ_XoھR(M㾅MY羑.~Qվ^Ê-̾+h/"BǾiŵY0h?6E?/qX@D캾^m̾YY)hJԾܹŔ'ζԾ@Q+qUҾhWW1g 6 d\:/V2 Hf(G# .~>C@ W?`!GauPx,BPX3q1mM=>LTO e- k,j'ʑ'(澞{!$D Z}xT]:}5_ 9)"WWJJ0Ҿ!Į4ϿE,X-M[2WZ %+sP;rVGyW#|B~(X,KGB|WjlcJ \Жewυ˱ȡ:vl2ߙ䘿 󖦿,oKRR ܍?{iCpEU4zM "4c"ſ/RпFPԼb//oaUȿ&d-;ֿH 8޿z Q*0nZ69\JW+誱2(뿡q`uz4FLvC%i585߿O#ֈ޿g_Zh[ZD rUϨҿq+ѿ䱻[*l_<}$uqWf% 0@/Ŀ^ҿUÿprݱ=v / mx-gWO5KSRF qjٖP֊3Ct!6rb5i=Vj2"dOS,Ťg'!u얿 !6hMw"z¿;@п-Oп׎4jVW՚,oֲjW >n~+H[^v mdΝ*a5XNIf''hRip瑋fԽVykJ1؎B4cT4'>v#C~1QDLO}mL}JmbK +upXY\X]uLuJP&@;Z*V9z@04+%zXer'MqbS{EbI[O?+ T 0*nR /2:ZG@ߤBQ?TPVTO<jK`|T&f)AUJɤJ@?fFIͨd*6n, L1?x7 wL|1Ɗ: ~uRP?(j4&Ͼ] ؾ:iDVeƾ v־sٻN6ޥǥƛr+tXURFH_E0p`Ⱦp}*϶TQ rEV#mw~T sS8faf&ɓQCо bxOU\ ¥w$h$Ak#4;^w&6mn2!&N .oewӈoZaC_sݜϠV8ྭϻ8þB8F!9}7塹[dʏ>Iwl-찥2`6оT侾wiޣ=ʸȾ5uk@~-nj;MpC:IPEnirVE cE|YV4hy4՜+qU[r8T֗AA X+aI;%PM;Oܠ 8!t< 3 ,)4G$:E ;89mE)wP R2Z@31 5od`tIKwRPwD=*P\P$q|@f Yn%ciD8w{,)p8vLJCwJA1q!RAm6/5aտ(S/%)U-:?k85 d^D-UWk` qHT&XCo P"-HF;J\ SOa/#aT6?eLO_*3]&}kp+К;zd?lQIٜ`]~Ezu)Vj Y d6#YV:hЙc%xra^%`¾!rɸO}AzS?E릾4=6 qsX\z_N؅,ss Do7'Tsb#M oh](o=8]*羠DBCݕe@ГnXqi#LiXK`~c{@F+QR1Փ'B]s?4?Id/>?:%N?0U?]Dy?v>#n?I ilc?ou/t?:O4$?߉V?|Z?x׽c?B_ ?Gwjא?@%s?΃Fu?=!>{?*tEʿԏ0?'P-Ί?XA?V~;b?&H7n/?J?.ؗ?gz5g?Fe(?6a ?ٗ1?ѹN:b?74O#¿?]Z?#?#yŠ?M?F7?]S?oԔ? Xj??? &?G£?8{?Ra?|=?ad d?1Q ?0 d ׿gz? oS>?r?p ?cȢ?&W!?P%?W&?R?̚f?$Ar?,?μi?Am1S?u_K?&?eN?ɩ:1?2-?ɑ?/'T?.?*?Qn?g_OQ{?(lN5?M ?c?4Q?N[xc-?`آ?$(?1t?!, g@>QIb8:>]>w>œ[Ք>kY4<`}>%3ױ> ěkr%?s0W.B=MU=XyvV=h_|L=)ː=?S)Ov=}xi=7m= R8=&Ǽ=d i=΅T nu=hЏ=^/ >'):^C>4b YRS>4#S2%f> >]>Q(L˸>"yߣ>2^&s>@4#<? ?"hMG-?v{ R.?|h5W?n?Ę<?GP,?.A6?g{?)"]K?KqܧmVwTr?qK?V0?DPX!%-{@ 6f?H5mwܿq6J ?2 y&T~ ?l,7*ѿ׳y_xkSx<MɤhjJ#sjDz?)eSG]WQN.j:GjB==S!'>GP4J>kCv.>TzE2=L@Z=o0N=fC:l=ݦ<]8r,=iZ<썁0z>a D>;h"~d>^y|H+>#>^w3>VHE>$U>)>[*>x轴>=ꮔ>3A5?3Q@k>[c?Z&?b#?!MT?q>LSd>,6Ю?0}?ق/?M+R\(?!s)?Cx@P>?7ҷ?hR& ?c8*zRR0f\6p>zlT{#cc1—MMog8P*h8mx2}.mk?eM23">@Ϙ w)~eFz&XmqlZ?kH XaÎ|w>K5> Z>0> Nxea>߅+B>=' >,wކ>G/*{=PID{=6#nן=Kq9{=b.Ky =7@ nY= @b=qg6w=Ÿ]ۛ="nG=;YT/=gwc">Ϸƾ>k >J >e@>,FA>v|X`>{)x)e>v=.>>ov>VH>]V4>0O =ۏh=na Z=c;3m=vN=\n%+K=<Dž<R =x^҃RN=1DV) {=*3F=YQiN=K؂l= X=0Kx@=щ+=V ϳ=-D?w=!7X=uq~=a,܆>gPҲ=702>6IC1>J;\b>Kߞm> ĭy>sf>1 >qCj>Dyн>Ü~)>iK3nOldk[ 2*>~*"=8}=ޖ=pi {=Aoq=3Έ^hG ϽloO#9`*x@X5=n\.[m뽖)NϸQWuD-O ܾd5"gnоUcl#<ѫnpJ{ ]оcy U̙/~4 ?b Uˀsgwi1bcƿQަ>SjBD;ˑjXfLe~au*:qpqXKo3 7[Nb}Fa>(S:d{?fa T|/z@?EdE#?X)?!)E?tS'D?W51?)I?Mo?H(]&/>b#n>̍>WA0>>?^>=u+>D\S# >w۹>5u>c>U;>u ?tH秲3?@?r&?! :)&?x:=R`?1wŨ?9翑_#׿ٿb~WvO6f4\[Qwѿ4(%Ͽ=ʿs 悗4˿^+ʿAﶿ%YidSg1YQ 裿c@. \跿ڳRǿ5[$e7տӿO kQSe給E㿍/}K.wtS޿tӿە(]ƿj\JgJǞ=̯EU|q+昱g|-N鎿TʴovD\FC?ܛٯNKQKtw1]. %q F7<ۊ.}[Z}U6xp?p:e*b`YTًPH nTiGz3LCtZz2r0o›aNܸY;-yR97˚94o;WgfA-RURYO*I,GVK{uIIz|w]Obc#-/ wh1tfvliTj;wsdFB9N!$ ^)㚾"TL`ُs0砣l~ {u΍v鉄LPrSMπ5¾L?YAe/.`OE`&Ea#˾8 Ծmk`Ⱦ7;oQWU3Tgu.EܾXNa荟 E,!gpL)fu3?]|,50(_74SL/Ӿ-Tо˭pNϾQ{Ͼ3ھN@Ѿ 䐽`پ0 c#d;(|ʾP6qƾf9ɾ- ̾tш8;B#2̾ʓ̾ w˾N#vܾ"Gھk9lӾB3Cʾ`+Ⱦ@B-ľg'Ǿ RNTvgXTpBu4` R ̷|ȸ$9O9gVMþE_"sӾ>e !YBlݾo˰o_ѯ?> /Ⱦ`پ4:tv&|ڮFͯPlJ-9a3?Gksn\Kߞ((5^ޙ]G5zx㴿ƿ3K0ٿDͿa_"MFÿdc οT[ETI&ܿ>׺TxQ k %qԴB GR俎{ł߿y̿osοW ſ~irn˿ec|]u"Ϳgkqÿ9X*5`}0;6.d2%G0+˟ߊѴbz`ᄔ)RtGp1v]suQ~)W01^]-̙硿=tAvmLF;Xfܷ=8ñI2A2]ҿ{fϿЈxLJg8XTn%[?A&pCl<=l.sNś҆&s5-w]^`PKc%KE3vByA[][Rv:4nR510H6E1QBۃn_sÇWMHW+}c EA`G--Fp8a3ARS' !:9]¥4H,wBFD%]DYH~Xu`4N$؞s,W?I6 8wA#=G@IKӾS4: N_8h .þКIت玸?1:޾CKD= !w >~0J(K5΀4K#m[ 徬eEt_¾Du⾾G\v//I諭w׾)B*7T-T?BQJ@ueh8y&KLtVV[EC"TGaU4M/kW2.Ho'-gI)o>PRaӞ`sh_/0sdDqʗ|NA28:tȪ/eSH@y5.6` K1 j)fFS}v݄-(φ}󓓾tD/ɾdۜZn!cfWvMLH蔀LꊜPSkˁuK3yhhL-? -~k99.V_Bi\ TDPT>gk4Gtex=?_+K?o"5^?\/Vu?E?I-n?z: z?tʓ?[:N?nP[,7?FiY?S>?H!k-0|?:VZ?D60޻?\#?" U?DhZM?a,Q?J͠?I7~?Ųٰ˭? 3?D?}?.T8? 2Q?┰k?ت?,J?$&?7nv?|T?09c?VЄ?I?hC?iZ?.q?0mf?o?fNV}?|nV?#?ѿw?:$//?HO?tB?bfYR?lj?}.?JZp?إ?pt^?۬?;?6~I?ą"?4fM?$śt??r<,?ž?KW?orI?0Nӏ?|?N z?cUgӸ?[ 5ͻ?߿[?BAϽ? ?u?'h?Ml ?8|\? e?$?M~5Ƕ[?#Us?hmr?0Iq?Zu?&-rf?pI4P?G? =S?#ԯC\?_K?MK?\@?m>la?;h?o׹x(x?gt~)?@$?q +?j&Q?b|Mx?[y(>d?'5iZ?ܗKIn7E?m'ڋ28?[F>eh>7*޸>uj>`yD>WO%h>ׂP=/?=$3>HJ3g>t>D-'8?0_E?.B:)?x ֿK"?jbZv IE=?2\O?oj?{z?#)?pR? >,b8&??9'?jG?y6??jze[?fZP?0 T'a?f|XHv?E1 xj?Tx?2Ov?],L?t5?(_$?.s?kp?:x?!e~?sl%[2?N?n?+*Qsҷ?CW?+!?3[?ܲ?/Զ./?g?K?~n?`n?ťĄ?Ţ;?EÃ,jl?()Ɠxs?[nF?` qO?BJ64P?FMI_?U M?*Mr?QJh?뗣X?nB?`PS?)#Y?e2UYl?]arĄv?fZ?O ?^[?P(?s\?Wp[??;?HE.?{w?Dh;?lg?P|?bI`?.OXob?wN?@k?;,Gm?b=?"@?86??JU?cƶ^?V?$3!?7ޑ.?`#d:?b;?.S?|*g?#_?bx?&;~bYV?Io?q:&tJ?N(?t Ϋ?Rq< ʘ?Ohnҿ#p!f?P J? VF?R@m5@?pv?wRD?V?9x?F0D;d?P+?Iܿu?5?ʱe?b#ܿ@ɿ дČ3ѿN?!Cnn*DuYݚH Xed?;1 O ʿ I/?<֥࿻l$w 㸿L\(:P*јח <<ð+$UO6 VP<:`0%"=Z3עJ=B I<ͺur=D"=*=72=|4=O*q=& E=vww,=X=7Xr$<40>|=L=ZV]u6=G4w=R̙d=h;m=Ц =(3NK= -r=x0F=xE=#2=7lI=93w>UV>V1>|&>s>l;9TE>vs> Hi>dw>T[/I>V0)1>F߮=O(==a=r$Y>;ϣՌ=?:Jw}=Ռe0=`ۂMv=TNu=ScȈB=@e"Z=w%oQ N='@T<=^fe<~=)<-X)=G=.!'k=f*H=z~='JlX=0* =_s0==ԩ_Q=zc%=,6$>b"H=Z?H>P;y$>0ƽG=V4>QcI*>s-d>p'[r&>1r=31>IEۉh>(=@,4C=GY%=u<=9=>m)I> >1E> '>fwL>E! m>"7I>ypI>LUbx> @ o>=$>0YJ>4~9>Y%ʛFm>q a>gX<>/luB>[dnp>Uݛ>>Pܝ=>q+9>?>7J{k>w@j/e>ּ0n>SyLG>/> ,>;RX>7>/p%?-e/?p>?+>>$-:?Aā9?}C b"?;H?W_)j>2?ք?vN[ ?TZ>(<? %?Uُ ?uj>qwG> RJ>o?V>Z@B >~">q> ƈ>.옍>m|>KI>"Eja>{@>+)P0>@a->C/Gc>N cԬ>N?Xu>x.>x"U>>:8ڍ%>؈C>I=>9rlf>ٓH "?E"'թ?](>nʻ?5E ?y-p?4c#0?i}>D)C$?]3>.]>)>8꯭Ĥ?ֻ?ݦe_?V/[=?F?31?"?U?ՑK?vp?!.}? Mw?|?y?Kw?sZa?#GU`?I>*?ӄܼF?l>i?{6a?\y#+e?;5e? > W?iCω?e%J? L?hfz?0b?iA?!W$%?hF?{Ždȉ? ?&c?xsg?s?Dr>.ty@>R>>z1>7F>]0_>G*>띗ϵ.>d®ʄ>7>C$>MaC>OM>ύ狂>(OXBc>7]E>p~*>3&=7]=h>NhaϔR>{x;>g'8>poL6>867>?=4iD+= ,V=9$|s=ƀ˥=++Ep\۱=EVj=aHq=h1H=Ie,=i@ƔP=$p0$o= B=E)o >Z禒%w_=Lp=P&ym=pr>e7*=R:?>#՜>%)X>d`>"t<>%z>FP+[>4v7Q>A_>;99>t;Z>h>$f߾">@g c>^`$>Z *̿>+-P>KEѭ>P] >{2>bRxO>Q>Ʒ}>1>ZrP>>9aHiJ>֧>R@Cb=NDR:=6(=^5kϭ=Oen0="u=}#SsP="]=?a=ՖP=2Twj=zT3=vZ? R=kg/=ԧƠ4=|1On<4"d7 =^ ="<_h=%Q=x@ aK=Np=LNk=NN4=`;<3U= A=%?P=X6 -=-Q<M<槼<Eau= ~Dd< =AwU,= B_ e=ƌd=XI=FQmZ_=l$=JmFW=_y= ˵=Ke)=x=ލ<>~ی$>(Tyx+>Tl=>={=dbfi=a4"=|ހ=q;c=y=r=;B=r&6=.=DΒ=#> !>b~_e>C6o r>6l=qu;T>wNLO>(Si >D?^>a3t#>S C>bk(v>]f>ō>a(>.uO ??/ƛ-?$4i>WJv>C@? =>04>(ks>̟N͹t>s"H>ay>-"V>`O > qT>^kߎb>u}`>S j8>P|8=>0> >躅Ybj=W4=ﶔ{=bB$"=:H=]+Ԛ=L=oVt=n+>v'ܧ=L=u=#d>hP6>]N`ᵿ+>Z ;>E$> Ie\>R㤁`>*&>rszkY>} 9>2QXy;>VQ>lʪ_=s^ >B@a.N >DH>u D|>*w L>R_":r>0q>"Jw>L9>W*l>S1q>D>R۸8>:/>=A@?s> R>J;Ogq>맑?Ѱ>A>>S>FÏL>*1?ivi/>I ?C-|^E:?'`vW?Q0jtX?l\'?q%/G4?%tA?tn0< ?meyjk>k=?Rwdf>~ӰY>M7sOr>✮\X>g?]$%0?(F$?Tz}?4؁)>?Z"ܜ4:?p-@? ,{?ɡ#?+>{?R=* ?(Z?}/?Č?j?hc?z>!?'Tc?=L?+)#h?ʹo2(?a4%?1eE?$?~-|?i+:c?~?;Ӱ?6ao?hɴ? Xe̸?"9 |?.zʆ? ɟ?A-?ڠ ?@BV?@ ??G!?["%r?[? 8"\?aGy?#1 ?$@?Ge?X ?Of?ONK?Ҝ?x4?n0V?ߌs?-u?㔷?/r沲?,GE?%M}?{Yե? vt?=Ӕ"a?ԬH?Ata?.̳V?e/W?.d?O{?MM}?ހ,`?-BI rP?D?n">?+jiFP?Gԇh?YԪէ?]v?pi?1b֩?1Au??D焉?>Ti?T'}|?ir8t?xsCk?AryP?TޤK?OX YR?sS 6?+I@?ՙ{0?Ո?+?FD \a?C0s&?3>T?ő ?J:?.??o>7̟$X?JŹ se>Rm?`WsJD?*w)4?^M%?t >}?W??M:?C 'I5?A:#?S*]F f)?T?&X?t.fP? P?WK?S n?>TRTha?JXW?.b?"cfm?;*?<07k?@9?+=?A3DV?rW<\? ޳?ϺX?Uҭq{?}֘?Ni?ZA&y?4#G??޷Q9|s? 3 0v? Yy? Y?#Ŵ? t?M>p?cfZ?,b8?Yۤ?-4gٿ??#Zre?;; Y?GbN&?}M 4?Px?]`'w?(=W??)c8?Q?D}u?,@8\? :j?P㴤g?5P?j i?uѣ+3?g( ?⓬-Հ>#i ??m /5?2Zo ?ua>({> ok>|V'L?C?4>b;>>5.%d?>ziI=o>tr 8>/|>jħu>ְ>yS>1{>v>"<9>Kע)>Xɒ>[Z>ZϜg>n(J>!d>tbH>&xXX> t3>V'W>A2~S>2,kcq>բ, >$k)b>gs4z>Os ~> 46/E>a^+> >k>eF'>K!t>p^|r>D?˿C>CHP>a+8" j>u] 6]>k秬e>F/ k>ELw>>>"HǶWn>FQ/>Zh:z>o/O>Cƭ>&%>I}+mq>폮>=#]{>"ȄKp>HR">pK>NH>歾>:(U>zh->>O> Cxx]>>?n@8.'?ʥ>nH<ֈ>= >{.~>\>0. Y$>&>=>Gnw>> T>P{<:>u>Ӡ>lvO>s>ظ>2;>|8M[Z>Ž>Dث>y F>!e-\> 'XE7>lZ&>#Hv>=\=>oޕ>(*\>J>aJN>I]U}>Nܝq>,1p>Io1s>I ѓ{>XQ=Gd>2)O>so>|Wy>صlƓ>w5>?X0>Vy> J>0_>Y&gu{>o~F>[=B~|>ɺ)t1>ct>-u>&yc;q>iͺX>J=dg>w>G]>@> R>>QX\69>ʩ*wZ>,w>M~ђ>3>vְ>F8>Nvj^>K긡>ffg>]7>ɚ>Ʃˁ>W_?ں>~>pxn>u>w">">sܱ7> @lm>,!>dsk>>`?1 >*3e>~aA0>>=T'j>9M &>>׮閑>]h>kܓ`r;>p"׸>:v6>>텸>}|>4B>F>oB#>-B?0ABo?R^,?փd?67e:?_1^5?=K?^?_3>_ ?O?~>?MGC?ԗ\?_UKn %?^`Kr?w 3?aָ@m(?3?zD?-i,!?;k9?-߷4?;>?h$'?0IѦ(?A!?̛/Ж?KEi?.\? ?O&h??91a> ?0@I>|d>=> w>_>y4yQ>͞>l}>uye>%&>\m>t$Zs4>kM">>G^[> >]YF6>v>b >Z>zM"f>xi>>X]>_z ->ŀH^ ?1= ?fI)8>>2U1>Z>>FIt>$8>Lu:O>jMw>ի>#\lͮ>=E>$>ä>\T >UVrV>jQY>G\">w<%I>By>wnv>J& >([>tJG>Ap>O<>~r>SkJ>~1>J%.>ѿd}Q>V>Vp>os?*jq8>q?ͅ>]!T?!>->0޶}>}C>+DU>!I>'A\4>&Q?4?a>}K>>{>O6x$?*Nq ?Ҙ?_Z0?g?I"?WCO ?lRV?a8%?cz'?Irq)B?T.:?FXH7?2e[&?UBRb?AF+?z2?[A?+h ?И3j? $?pD?"̽X?(r&?֠Y-?r|;:?)¾PI??pQ?&fԜN?Iha?xs?n='q?- wy? inX?|w@9?d?,YEtL?Tv?=`?*(Maw?XX?Eh?q3۳?j\VDK?`oI? J8?JJ?]cN\?x.~La?/C9e?q??W?Rgtk`?2qcTG?qŜ=?F˭P?dәOwC?㫯*?$rPB?*W!? KxD?TR?w ?{g!>}m>+u>>Z1>2jpI>7ޞ>?i>論.>Ѩ>`6>>o >r:C>x6&D>@tR>5u}>K>i4:>vFف>Jk>ܶaɁ>Cg?F"?d;Y?I' >ǨMS ?RB},'?NB?:MN>ApC\33?S2?obj?ʗѿk?Ӝ>T0>Y>܁> ߗs>TP>i+> >t/>;P>+p >)+G뜮>>,Y?b>S5>`S;>zD3ɖg>!'dC-[>c@>\nrw>ek!p[>ӂ>rsr>^5[pc>J Yg>vb~]v>DA*?P>`߃0>lr @>d>e֒LЕf>ed呒a>o#73t>'slGE>F鷖>rד̝>t0>B *|>%d>c'w>,%,ݦ>W89!(>p!Xd`>* >p>>Uz>/ ١h>ֹV>-͐h>o3:_>gbRh>9q Jc>>j>4Ggp>?Nrr>Z+>*r>>!xE>s>Dky>)ςЭ>|> (!t>w,+p>蕘{>c˖>ߊT>~9ע>gP>δ}?>A>v|>QU>k$Ua>[fs>ZRg>4> >QЂ9>w@Ij?>KVB>2Mv>;rxa>/B~D>c~B>.( ̠>ʧ*>ۈP>D b>-$>(>U'>P>䢭>>$Kٺ>rһ>ow>ů}>(ÓeP>\>BMp>zZR>mAb>r\z>}>KhxPy>i?AQ,g>98\Jp>Ļ;[NT?A,d?BJ+)t?aIUb?S5d?%=?y' c?8A)?zip?2g? 9ϸ?c\h?W-2?J%?%H I2?Lqޞ?W[a?Zh8?>ҽ?pg?OC? ('A?4Y2?kַ?=&yn?E%r?,Xw&N?Խt?!ܸi@J?}@?lh7i @ @ߞ @p @<@vO@+ b@Yp@{@Fj@y @a n@ K@!٭y@t|7@Q@@@}@9y@P5?: U@0,*!@qO#@S $@w( +|@F'W@v07@d1y @Z_RD&@ݖ~3"@$ O'@Du@@n@x@Q9P@u?}v?$f?RT?{H0&??3Gw?*H p?Ts n?z9u?Ro?z?+i/DH??,l`5?ˀ7?UM??%?!;WUź>ċ>;y [>K>[o>[(FW>'.=d*>m[;e>LUR=I=k1w=ޭ8==K&=o~eRŘ=mT:>˪6X>X҇]>>>E>q4?ίZP?%2H*1?Q~V?^ӦG?k>L^JI ?@W?H?^t?o0?ςY%?O$&W?{??Wʄ?g_$a?e/j??^G1?.t?`V{^?("yB?9ߍ?Ycr?dM[?}q^a?%e?˄Ae&=k?ì y?ۤ4|v?uu ۇ?ƤepA?r;yo?T̅`?M?ᛶ?]g?5*J?=n ?)(C?EbO?/Y?Z?cK?X2W?Rw?U?UpP?/duw?δG(?g^"$?5-&?#̒*@?+a>? ?:?qi?Nn4?sX^>?N$?^mi`i?;֟w?W~?~;r?!x2m?ۦg I?;q_? 2n*d?3Blp?qMP? r?s4{В{?T3 ?{h`?ojZ?Ѭ?|ISMC?6P-#?0Yá?N0>?a?6Pt?c)✏S?giʹ_?hwZmi?^Gp?}[Uh?lOYHq?[ri?kTG?R?zC?`?G?_ ?}':?ѯfޕ?@)uʌư?1 G?hU?Hg?bp?41^[h?YIISp?E@?5&`?3?]\˳?f?yҖ*? @`V @bD?Uš?訢/?&vSu?o8?񫏰|?n?ݠ?Dba?y#?U/{Q?RQT?JY-O?lXJ?x~U?+ɨ@MkL@G/m@n@ДB0@[ %?l5@<@ӌ\?g @ (?qќ@f%v Q?Jn: @7@8"@z t:@w @GokB"@wV$@NO'm?@.kV@N@xĜ @C@aLv@ 85L @_@ȶ?!@8Q+@݉D$$S&@F4 x&@6$@{DL"!@WA"@LiT)n@ v@.^ @Z|#@_%&@W}%'@m'%@1#@}e @,a&,"@ǚO"@+a@-"@<ɭV=TІ<#|>$=H<3 _y<@(l >%oͪ>oS=_y= RK=3G=73$>PX%>3b{7>,wnD>DV\>v4>{42r>=s߮x>ޣr[oJ> QP>ޜTX>S!>yS:>aW>18N;=\_p;=k@R=5clpE=~ =}> C=xrP=cYep=L!<=nz=4uF=!z j=Q =Pm=1ǧɑ=A)6b=;HwI=мD5w,=ܵxD<=[DtJ=!i^hr<~65m<T =} 1=ܭ+k=U4)L<@W=q*=.kC!ѵ=xsc-=GN=N xov=L>TB;=4誔=A+[6==9\=)&=AV)h=4?j= A?ܶ/ >*&> cIf2>Vt= f"??= [*2>=PJԔ4$>>FN0>B֯^> >ɑ΅eB>T΂gT>=8>@&(!>˶=,˧K%>?uF= T=7V{U<=H=z =BQ=w5=x3 = P=5>,;i>Ig=r>#g>X2.'>5}y>,Z>w2>EJ2>eT5">YcBI>N0s>-J>傹Xq>yKx{>1+ >!ˢ2s>c>b]>_pJߡ>Z>\AF>&[>#nC>)1>` I>;b>Y(>/.>Iwa>8ҕo`>ңk>Ϗks>iLO|%>)F >vr<[J>B[r>z0>M->\>@;fgz>Bn>>q.^> .>Д8q>+@>">\y9>Ns>g[ҙb>JU > A ?!ܲ>֙ו>x=?jDQ#?XV(A?G 6W.?$m6F?VIA?EF?t dH/?ϒ)A?S>?9n"?EWv?)'?ԾmӢ>5%f ><A>,OE?zcK? e,?bxܑ?3>ok> Tt >GIn>Kmyd>dzb>pSg)>5/>\~>"o>G?Tk>C3v>k 3>,nz@S>;c>7O>(4MN>` c>28>gB Q>}{G>nٔ>>e ;>U>V>*Wr>>y>u^p>H#Fs>VL>'>~>1ة>S]l6 m>ךZ>O >/'2(> O>7>aϝ>(>#>i&c>̞5>-D6/>aWo>a$t>>0S>;~C?->\ ?ĈB?/?|C&>Sl>8jH>.m? Ik!k ?]}8`?2+?<SK?7.>8JL)?h\&y>]>@֠`>_7>>J>>>C>)L9Ϙ?t넢z?Z߀!?65{(?z<.?@JM ?Ctq!?bF? 2=L4?{u:?YE}|J?f ,0d?ޗi?xQ\g?B$~Z?㧮QLwY?US?6*H?bkٴ_?;-5R?4m\W?b%ONQh2ղz?|܇?ţ-fc?](?}$}47?=?4;%K?PF?p8cS0? c8?-EO?D5U?Ng?$@1@X?A wQ??Rc?& Qr?]|z?wpnLw?DU?C졗b?=C? T{? 3k?ndqs?Jw?F8|?e Yr?ߤ?>Rh^?/A?NL ?x?4%Ր?l u|?bwOv?C_?bPاr?0V`?;'(f?E&A?{M?z3S?<ƋwT?%FSr?%#̗{l?Osw{?!,+a?[۹e?jT?`㨏l?!b? M?k/M?`\ `?%)`?VLAZ?π3g?ى ^Pq?$c?™Yo?:(}Ts?ɺV{Jg?}o?.a?(C?,BE?4q8~?/+?wae?i/?kSk?_5i6Ƞ?2u`V?Ɏ?U2?7?-?,m̙?:Ԥ?FK?u^q?9 O?uU?؀T }?*iD~?̜Ö3?Eb+?[r?U|%?cs@%?axv?/"d?Pj3R5?{P#Sԯ?Ep/7?fH2?}Z/Bʳ?U?^AX2S?f? Q>?1`%?Z"&?U;?jgP>i \wV>;amJU>fYy>A{Ջ>co>L*>Ia>R԰)>݀ծ >p>O[?>8V>q%u>v.>0޸0>Ԣ:%>j}?ay<>!V>CJU> tx> p 6>9H}~>U>W7T>ܛeX>F־*>>v9U>p>LZ,v>tX7I>ec8r>΁#)8>̀Ku2>0J>Ty%2=u.=1=l'nZ=\V>WNŒF>0a+P>y2$>cBm{>uX4w>^铪X>RgJ>+'&*k> X>>a :>􆓖_9>F9=ɰ~=nΏ=esÛ=#=Eٰ=衤Ш=D[rb=ɘ'=O=.I^ =i#V=f Z*=A)=5 !q=7X=߄5͠]=-G=9TN9g=@&na=w)y=\i}u@=,"= R=/)l[ya%>ɵ&>XǕX=|`D=Ol=$1|C*=M"=4q=a%=D=3d=7fax>+-2 >$9>] fM>7z>`?>Z$# V7>Aع>&w>= Sr> hL>L指j>Z>mQ6> JXq>Rrp f>p4k> I4>uuU>6>T>>^XنS>YU>k3X`>1ղ>RM>E4h>}SF?l?e?#P28>p>#t>/= >Z|?#>CT>>`oo>XPBim!>yFK> >j /c>R>1nӳ>ɐ=g>6˦>SX1>o@ >HCmg^1>*El>nm14,>:Xy4=n{&!Lx>',>"RT~=!)=,GG=-dDt=F UB=beZ=#>?=n^=Pʊ=9?nQ=5֋1=?=]d=g=FCދ= *M>=<3=/~)d(=N=w2`-=KŬ=!^=t=Ma:kZ=2>=g w=\}q2=`=]7 =2wK9=G)!=-je(=4<$<Kh[h=6=;A+=y=J<\<<X=[rD̋=Ty֞=bd=`I>>?5=` N#' >I=z=7%=~=29-D=ՔO)=<=~0l4v=]j1=L>=ŋR=3={@[=h <=]=BZ=`]=[0=HM=TY$(=x =ꣷ=VH+S=m= ˩> ?t >T=>4O ,[>{]n1>~E>>)n8v=9N'N>pFsS>!oELf@>sU>~b>dMP|+\>DW.>3ú\>>G>o4*'q>3l>IHu>(&S>΄K>21dI>XP>Lj>>%*!; ?˷m>;G=>'}>HΝ&>ˈ>_V]c>o.@BTl>A5C>8U!zcݞ>9= >=ejkj>B >oU>PFI>/3R}v>P>ظI>f7D)>`MW&>%_9>xgZK>(C_8>уnOd>Tpe`&>a=C!>Z\z>=U`/=a6b=> = {$H>6}0=$=\=2=R8<|`==L=gi=srau=B͛p==W\|@=Pʣ=3iD=p'=.`= =H=غa=J2Z=G= >Wɔ, >~XH53>Jg,B>\$ =&s%L>`70>X6>!B4<>)ĮLoL>J8BAI>wV> UȚ?>of>(~ׂ>Kj>eܬD8h>5[uN>@iRTNI>DȮ:> '>{K[F>>ԽP >Ze b>Sp5Ji={{=`*G~>`>rp:% >iLKQ>͐57>.4ސ>=>EK>9j>!ES{W>1["i0>RePQ>[pKe>m(U>F$'>IBނ>.Dz>>FR>A&>#XY>#>r>>nPQ T>9f>>W>ƌ/>sRA>f @>k>:f>w׷ġ>;`I>en>ps>M6:>8>x4A ?ST9?hj17?UCP??CI?M=7G?Mƚ6?àAv#?Ob/ ?F@>vq-2? +{T?9Fý>lUz? D}*?G5H5?$-?,Xa%T?[;>?أc?Ba?^gf?Xb?Fj-wk?THv?' s?[hn?U'kr?e@r?Up?%f$]?UrS?֔$7a?C=Rqa?q? ~?Ap?:F1n?;=+/e?wyz8b?K*?{?@weK ?F?X0k~?Jʃ?Eʼn?)pP4ʡ?qI?av,?DR?=t-?,h? ؠ?;9E?7J,zՠ?83?}ք? 0։?)(_GԆ??ֽ=?t?HM7%?dptc?V `?z?:?ojS,?W#Ǭ? _2?Dc⊹?͏6JuI?5`?X?j?[w?̅X?upzWS?xWŲ?߯+?S V?_|z)?c.ݹ?5wvw?Bk@Kyw?iR?XOE?nF?>~`?2X #s?Bj? l*d?Da3a?&]h?pSt?NGXq?fTOz?0?6?ySex?h  ?zZ?\s??&?z?H-m?tic? Ύ?T<Uk?$[fu?Cng?b]?HGlLe?5E|?GyBmX?7`?BF?dҍA?jgT?*__?+/h?r|qL??R? QZ?l&T?T@tB?PUY>?8?jB?l[Jy1&? ?+S,?Z5)&?+ 3?2?q GO?g%P?2G?߃xA?T%NED?@DT|Q?87V?7Ib?`OG`?tJy?ħl`]?:wR?zf]_A?*cK?> C?aC_ Y?F MK?U۶i9R?FL?L_Oݮ$?A*?,.?[?s ?<ɬ>'i?N] D|?s?^K9ݙ ?Siq?G^ ?ǔW,?L9>/X>`z}Ў> \>B# ѩ>oz>Vi>4l>x~b> >lM >;7>">~/m>^)[DE>Y3!>p]>F3#>!)kQ>>9k>G4?Å<.?K?81=!?]A0?RM *)?ʤ0s?)kQP?o:|?0?d"b? 7?AS+%?S +g1? Q$?i~5?&xJ?uery:?e~)?O5)?N4?&=?F q?pC*}?XJd?v%;"?u7?)hm(?l0?09Y?]]Z??^?(?Ɇ?OhK?W$I?Y<?*Pޘ?Ws?qx??fr? LY@ O"@@fw?),?IY %?>jж?'|?#f3?ٗpA? 7/?f+c?GcajvM?Õ ?uEGA?6#`?[EP?lv8=?DOL`?䑔?Ww?ez-Z?af?{?!?jYt?R-?%saV?o̾?!d?->?&B@?Z z?8H&??m[ ?li?AwЦʲ?hU^? ޣ?ox.?pn?=a<6?j {4?NȲ?h{5?ɓڿ?xNs?OIU ?zv?jtl1 }?n7y?4?*VC9?z>" ?W10?9+?Jb9?h5? tM?W 8?}K?!}?2?@_T?kkO?y/o=?K_?Rö?2蘲?UDLL?f$T?S&Kh?`?k$6!?a1'?bB10/9??{∏??3'ʤ?g?Hҩ@ 6@PS?"})?gN.5??{@)?@? R?ۉ|J?'l?%b!?yC}\?um@qf@+P?.\?m_a?e?cm2&b?:`x?Fn?'@l?0Hy ?Y^?p7Q?Βk"?JT~/?dܪ03,?m4,?DP?5 ?Gen?\8? qyٯ?.ĭ??%?i믓?{):?:??bЅ?+4ٗoF?c0?`U۵?9?w>Բ?s-?T-\'"?i;(?W?2BH?ż t%?Ǻ?j*!?-NC?mo?0 ?['?`?c7t?5gN?K(2UVj?m*m?X~c?B& \?I0N?ze;^?¬a3p?pAx?Cy?gWb?zh7GS?򤥔M?I?fy]5V?Y[F?<{G?J49|^?e&@\V?%M$j?{?tkDp?E{?DAvے?P&+?(CO?\UCx?x髦?uu߱?Ͷ?U=Y?~hw?V?ܼ+?Elh?_g['?!S?m?/3?$'+t? ?5?R_?z?ؘ ?̲vyh?tBhp? D(`::l?2Eff?=1]?CY?uf6x?;q?%W?E9D{wD?,m"U?URqd?=]^n?߄FXP?2/F?],J?0Q? P;?e$%\?h+ȵ??R=?ޔhϨ-?@@j7?O(}I?[EE?Q~59S?Ҹ"N?|RS܊W?:*N?'pQ?e >A?Ұw>?UO,?a .?/?(b2?,MFB?cEB?˪M?,XNV?tҶ1K?E6?

6?.X?\OR?i5馢?d @r?~u]?xOlJ?v ?z(_t?gh?#tj?ԋ??=?]އG?0D.g?ܖ?͚?,#`%Ϙ?.%\?R?؛ޠ? )?,#%?5o#5R?VW?D?1d?s?H[}"h?2C?-´?ü?+T&?fNQ?F?w ?5?N0L?p1?䢬g?0x7?M0?>!p?t0?U![?Q`s?5?jv;$? c ??,Jɶ?Ͻ?he?RxW?J C?'>?$ڋ?Zԡŝ?f5 ?'?2T?5Y?Iޛ?]G:?=l}?NɇJy?xQ4?r9?k׃?? [9߳?$X{rʘt?Ri݄)|?F?j=qp ?Hgm+?j ik?^ ›?A﫫?tDs=?Z!5T?`?i}u?B7Ŀ|?Sd{?Ds?eq?-8u}?0Kdv?f_о?ot?ֆCzyc?w@hb?$Y?Rzh?MG[2m?,m]4`?\5F?7$*I??ؗL?<]XY?(TkL?гmS?ͪ`?'C`?7̀e?w`n?Qm?ΦN2n?Tv\q?`/gVZ?h\? -MC? dXA?ڑ>?e?n>*H!? Ou ?,V?d^%8>+?X ռ?7?sB?aЁ,? |]?֩*?@J! ?8] ?Y?l>·`>5" ?kj,6q?$o4?_?ؐa[>>Kp0>(3>U >g^> >NA~>7N>Ms>S>-u>׍PD>SyR>dy>KyK[ >Ԫ-j>-%YJ>X=U:>>;W7W><ᝐ>k P>;=x>]@q> zX> |k>zregE>,(;LR>/)Z,>pOF>lbq5>=b2,>]t1>&i@LbI> t;>*2U>xs]>~y&nO8>K(-Q>q%*{@>OgU>Mg;I>,ˌH>P[Z>Ri>#ߑb>FGjz>I{A]>6ޭZ>Mce;p>d3e>oLR{>L\>Λ(>l|f>b^G>j̞>2Z[Ad>-稉>gq?>4f>rI1>]s4t>W*>M>|UDo>oW.j>G&沼|>_O1d>}2Ws]>pB/M>]жB>@V;=>IHgFB>H>1}XQ>D cW>pPaj4f>&2Qr[>_ea>-Z>WgJ %Q> pHl> sr>j/u>@rp>7t>K.{>Ԑ>b~.>H#m4>m>Gۛ>(]߀9>(F% >a>bϒb>NCR>c>;B>$>k>&">F> YW>d\@Ҽ>B?^u> f>^fE>ɓ\>Qt>x$x>GcatP{>R!>oz푾>_> ĉ?cV>9' ?dF?7ݤ ? -u4?ˎz ?l3Â> J>N>_q>{n>J>>iF}8>fm`:M>(Y$>yq>frT>o`>~p~>ׅa>^8Zx{>V ɾ>,9t{>1 >:k>e rq>Ӂw{>^G>- >JD)>ƐZ>Yc>.ܺ>o$Ҙ,>\vC>cYE>3>?>>᧖>tyuFY>E:>><l>:<> ?7T>>>gz> A>x3>w=>W#Ņ>/ԃ>ru>EV)]>OEb%>˲c>e;T>l>l;L>z$[ψ>8sV>HU>xEn>b+s>,/޴r>9Z20b>Efa>Mrh>a?i>2c|u>/zqg>S1]c>W>#q>VLup>-1.Zw>(c>K:!>1Rz>􏁚dv>7lY>ܹ|V>vg@>.g6><>cG>ǀh>7>b_d0>o7n,>V!!>>k >J9>/|>8؁>nCOĒ~>Y>tLu>wu't>bKrx> s>@:9p> Kۙk>iu>7u>RMn> a>'PffP>,H>$tZc>^wIg>KEoq>ֻjW8wk>8y>Ωs>g0u>*L>0*`o>8jˆ>#d(>)8pvB>Bt>Gp>LvE>>G>բn>;Hi>6(>T %>`w >*ܮ%З>OcD>>aR>` 5 >->܁|ʱ>u uk>fX޻>tNDi>/>vA>}AJ>.|P><>}vX>T>ș>JD)Ҷ>ǭ;>Kv=<>ԛ>d>/;/> O>$ '>+C>>e9>ʋם>ÅO>7=Y>Ξe>Ӹ>}"΀>,.BX>S`>ϫ@>cn'U>ޫS>8.[>CO>|;>&d6M1>|wȡ>p>pp K>h.>D>G<>;p>HJ>;adž>w>r>ZmY>4 >UAs>b>ĢS>˻vN>:C4>>p|>maI\>C0>L?A>UR>z=>E>}#> %^*>qTW??Fc ?%*?2>z*~>q@?~⚂> ?k?j+{?J-(?~7'!?]wu5?ew!dU ?mW^|"?{USv?JnVae?JX, ?N8?O?>}>i>m̑>o>"nQs>+[c@>54>jjJ? Z}?u^?02 ?t?P.?r{?ƛ?;?KN?NZRS?=$, !?M؝]w/?0 3?d|~8?l-d;?_gD?HqB_,?L\e,?0 .Rk$?BPP1?N5?1ŀF? Dv>??hE?ak!F9?) v[/?P^s)$?9R`o$?sSH}?_ϣ·#?t~??T}%? p<?).V?BV"@?Y?RV>m>1#>{%>U_3o2q>0,C>LT>ǧ?!'x%?*<>ѐ>Y߮>3>e: >x>jO>Z1 >f7>I>#s`>ώm>WҒ7?>uS>OhМ>[y>Q> ",Q>"x#O>s">̀Y>~ seO>X[>>BI>4t>H8`|>?>4>9A>!3>xP>y1>I>A9?  ? Cd?Z?^?]9>=Wm>>O?D ,>E}@>FG>oW>xo>> {>GiУ>2_S78>UA0>xLhb> (!>Ww^>\f1>1uO.>N>d9'>qR'>/k8>DH>wH>2%pa>$z>M;>Jey >>@kU>,H`>Ԯ o>>,:f_'>+>Es{>1??>"| >M>&e>srąm>|&d>!>Y}>8 >f>">[yHz>Y@E>Vã>b;>v1>8q>7m>v6zI>>ZeI>%vtQ>#g_>iY=,?]kL?.`V«>2T> ns>j`>p> CQb>`[>2~'>)O> I^>O>+W^V>s!ѓ>Rtu?ܔ0n?p(?.!z>bh0w>!ĭ`>ܚhk&>9?O?5w(?a!,?3L ?F̆Z?U0?m6I ?nٙ?D,M?u?XT&?G\0?:?D K,?{6?MG?vh(l/dC?yGJi 8?Ht2?f|+(?$?94s"?hw]?%{$?u. ?knHU>n?~>[6>R%?6+}?Y[?M|x(?0?³A?zc?Ol<?BPE\ ?_\\Z?֣ѕ?H}^?sw ?;&?Wx}*?[W53?g%?۪yB?ɐ0ڠM?2Ȼa?(a\U/W?0rOv?`z(M(Em?e\u?;VXEW?OVUi?#N T?.1O?[j\?oDM?azB?pWF?>ϑW_?8SR?yoMMW_? t?t_|?\Vb?{Ekg?`v?S&?xop?_>(?Jvt?Xv?4WD,?De޹?;x?'}3?'?q-?x!՞?eȳ#?/?0ȣ?m(S?#IKZ?F3Š?KZL?/Ö ?4H[?O䜹?¹?[nMֱ?*,ռ?oE(U?126z?q)?9O??]雕?%r?A@T??>}hk?CjG C#?^LyZ?.@?ў_?ڐcc?{&nڸ?J?U>n׿?B7F?:tq?Yt #6???TioB?ud? ?cr:v?@O????sM?Z?Nnn?_z.v?%Xd?:N??ң}$?厢?-~vK?8uK}?TJ|?DqIO? V??jJ?K\bL?)$72?B~?kd?W)(?7׋?>Q'?KU)w?!H.?@k^? MA?X&̈́A@ E@x@p<*?"kq@ S-?%?qt?l?=,{@ӪSC?/Z_?6t@jt@v$@-Xy?qzC?WD?qg@MW{?V;%?X?p7|?I5+?P9?œ ؿ?T?)?H?@56l?l?DN?'J^f?u"u?P@??@6M?D?JuU ?AO?n]M6D[?!y?isiE?%[Cv?ob?w0?mʿ?xOa?pE?:ts1?/_Ҩ?7'?*g?)4~!?-3ء?=%?#BCݕ?ƫ&?R lj;?Ee %?J5+?,?M?)l)hq˚?j""C?8A|0?={U?+20k8?o?vP?ui?W?1?k<2 s?Pq?̠ăn?̵,6}?^G2vߗ?]IR?NFH?*˓#?"?SLk˓?NL? ȃ?τM?9=f ő?z8$?OR^c?^?ߒ+IL?T?nt,?t@?CO_ؙ? |oĢ?^?[5?/w.b?jPw?cL;Pܗ?n{*?aG>?N?|ݿ?,R?]"r?Zq?Z]4M?͜^ o?d} ܀?E*'?NسV??*3 ?^|{ՠ?үڙ?at??cFH?Ǐ?}?Czk?7Dpc?cJ{?D&z?Đ[w_i?x _=k?!5Jb?ĪEY?DD?P+w-T?O0pv^?֦,m?gh,g?8Ke?p@JX?db?bwGg?m8#R?毭;H?ˑV0 S?|U/2Q?,fK?v{A?S 9?3DF?ʙ4J?j\Q?n TP?<ٺV?$5_?, Z?{M\?(|B`?(j9c?\ ,Kq?[Ԍ mo?y*3Z?ms?mk$Ňx?Ju?+Dvo?K7k?h?30T?;I-)7b?`2k =Z?|uz?e?^jc?Դ ކ`?rO\?67s\?,|$K?V?rU6E?2>?jC?c1I?G7m`S?UroqQ?'HdJ?&XN?9:+@?m~1;?rF,@? Jj 8?ryM1m*?c/?k%n8?d1?t_*£?Cу?o]7?_D?jf6?.P?cl7 I?H2 E?y{zP?cjX?=U?+ d?B&0j?HϷi?F"|&]?wwe?g7%Rq?,x?{Ď{?g4>??|2?H#?l덎?-qq?z/7e?"p?(ʉV?Z?Vn8M\?2a?'RUwL?ôZ V3?LiB?= dU4?\^TAD?ryDa?,]R?4?1?ELM`!?]'##?.=`?J#?Br?Bp&?-2H?)g؄#?g 3j?\q\?t{>y+>_çR>CEC>$B4>QO>]{5">f!(Ľ>`^'>[05|>uQ>~7Cqf>2>#(>(U!>> p>R>ڦpX>yM>ό`>]|>y~i>̙Sd>l:>/+N˰>>1>A!>>Fn>tA>[T,>|Oh?LnV>b?I >oDP>~v?z!?o9?4}?]FD!?"Wl)?.nF 3?#0?iS"?vn>O i>`@?ș ?;d~?]eI2?0h'?w2.?: AZ1?WB?+ӵ\??G)%*;?@~]6?I\2+N,?jUD?cM?Ac2?O 3?at?⫞/?{"+>fR?k]m$?QdN>Kky>F9l#>B?6>[>W>V1a>Oף>{E>SN1>MDn>(%)= >۶~x>"9(>i>h+I>n >\Rb> < >Zb>uņP>fz5Е>&2i>EЕbn{>lEm>=jj>Xy\K>ҧcM~>;w>a>y }>Ȧݎ>*p:>pJC,L>^>s+Yt>Tgm?`>+W|Ie>5<[[G}>Y+;u>3u;r>Hz/wU>=EB>_6>B1 TY>ݛXkK\E>U>׳1(>.q0>uF$#>2VMI>>h[>vGB>?,T>cWd:E>ED==>@-[>Ȍ5k>i}U>̹b>\5;}s>H݌7>;)H>7"j>ĭ{l>o_v|>! wj>>'>2T-|>vq>8Ir e>\ dp>KƦۅ>oq>fY>',f>- I>UYě>u>?d[>#1>c߯Is>$ q6`>;b Z>1ǒV>:Ѿc>'}Y>:PQ>ۂ̨S>Ux R]>>V>N3l>P'Ăe>"_@c>║וh>-zfDMj>m>?tWͶd>/`>]Re>҈I&(a>:ri>Hl>.Ti>o"n>~Dn>q>ttr>ACw>eyo>m>T>ūd>5=mÁ>+pe~>xkEH>W+'n>}PAi>}u$Y>a7>+C W>w48>zӁtے>W{>L]KDs>by>eFt>pQ>g7}>>*U>^40>_>9?Z>?ų3è>_R>nv>HԴ>b (>Yqu>=Bm>%>19>퐇 >RQ>E3D>ml>Jڎ>z>hM>>hC>kyeh">OwW}>G_Jn>P-'=>x'U>X6>t>Li?>@ s>à5^>xqM`7ҧ>FY>=,Fn>W>i:>-# >%UN>hr>QI> |,>jB>\&o>icVn>6g>'LN>]X>tZo>Be}xꦴ>}.>M1n>'>g1>ECK>X>}逶>|졼>>H~>oy>;^ q>pq>Դ š>'>'

L+N>Ơ0D> ?m!g>rϝ>꫿>"yT"^>ZdR>Ggi>kIuq>"S3u>}x>7]fy~> "zS>0q2W>UG>c[>@4>TLC>5(r>~g>FOU>C=JIK}>\uvz>ўKggw>#A1p>r>ȧmx>A'6Wu>Pt>4m>ϖtvf>4r\>-Pq[Sk>CUjc>rFj>^A? BE?'K? R?-+R?T!.b?Xܤj?A]?i4r\?D(i?4m?^7rUs?ADP?\r0Zx?z }?J@r?q_q{?Q:g?gaQ?GGz@?K"?[¸]j?BjUx?3I-F?#z'?Wg?eOkh ?ph-?5Ѻ?r@]]ey@}N@ y#a@d{w@ΰ;@Fd9GTN@] @==6@s)@d@_q@U2;@ьV@m}T@tN;}@嶱c@ZB @& @G9[y @h=,6LK"@ou#@Z,"@cqe @,2^@ꕞ@4w@8زN @9g2@ܹU@5V"@l*J#4#@;bz;$@ W#@l/K_!@ŭ$`@d ʦ@ @p0/@k]S<@Q |X@T&P̉@t(@I/@Ir@@քF@~ eC@Ǡ@dy@^(m@lr?غ|?:x/@:g?Y+$? À?E|@>GC@ݸ @XS: @s܃] @ي`@]? @Lx@n@v$jŒ?@f@?D`?Z Sg@F]?r]? o?b?]C?l96d?fF?ZF?;'믲?O?i66?%}U1?`4w?s^?2Z|?!T?j?/?2?Dޟ?g#g6?7a 2? ?R?+S?6*?{?" -C?JY]?w 4=?qr%d?C4I?gQ5?7=>?Z)?Z/?H5?%MY*?E!d4?CַM?DS_?_?ڶ *r?l ޢC?6)?μ?}ُ?:U/?d7Â8? n$,?$cK?Y&=?+k]H?#?zÎ?hRI?Af?kliH?LG۰?ttn?Ϯ?u?\a@9? ?hT&?Gf?:x6?!?Ρ|?0M?~UJ?& Y2?-u?GM?{?Hz%)?# t9?`f4?Wl?δd?Y31?E? f?@?a?!*?f?Զ`?̤-?㷳>.?S?Ǝn? ??;~"?/,󸫴?7MX?Ã?Dlq}?r$?X3p?x0?0=?,l/??)?,? ͔5?!="?Dg;0B?$1?Vʨ?me?O?0GN\}?I?{L·?h 5x?2}wAq? 2hE`x?/~\x?}` ]?}-?& m?Yφ?}ZpjN?h{?a?~ɏ?' #$?uӈ?M~<*7w?8q="?K?87r?oq_wNp?< n?sou? -Ww?e?e,OU?Jrf+bZc?aKGg?\X?=PP?hu%J?i@MA?ʀzH?vC?;pW?H+Rf?G ip?v#X?-U\>a?Mywh?R,^X?8!O?%OS?L `?̼9a?˽M?t]G?w7S?w'^? Ttc?jQa?uHmy?rdgTi?]w9i?:}f?׎z h?A]Tp?ZUw?}vu?Lǃ?-lؚм?)gϵ$f?M %,=?mЏ?I *?6h?hb=?q~ց?nMc{?N$ ?vw?ٮ?(1,&?ZHR?J]_97?c;tI?PS-f ? T(?L@tَ??@P.5?I?7'zqT?XƳ?8`y&?,?+cqw?/Hi?Q*i?Jii?sw?>Zu?3P_Rd?Z?Ο!P?pDR?Z,;D?o&rU?\=9?P?'H)?PO?i?0?k11?jњ|3?^_'?l?^>+>UO>a$ז>_\@6>Y1>>\ >%[Lņ>pYq>4Vt &>@9?9ܝz;?CA=?g=]X> }&>Zl(>HPNh>#/E>BLL=?~=g{=*=<=:6=Nn===!Ƣ=_s[=EKT =6F=fMQأ=^av= xB= 10ֲ=^U`=AF=F>D>\1>ź @==wX>N=FQV(>fk@>0C>M)r>{rVX?d>57>5 i>ϵEv>ieW>h}>fE9># ʹ>A>³> ;Y>G.>Ok?37? k$?0bd>?0?,6B'?=บ8(?Ȇ >ވ:?%8%?iP9?C28?jb-K?kk20?#?5O6 2? h?Rp?&n$?n㳱?y̓?NU?%kP=?1T}?笜7?"u?J?5J?k?5n֪?%~?p*Y?_)?x݄_?W?ȵ?wkO?)L?mp?g~~?j*p>?S x??b;?>eY IJ?p~o ? 1o?$h?Z/sQ?i@?TSRZW?}nu_?IZ?y4n?Q#n{c??}Qu?x=\gc?sW?J^|:c?Pa?NTi?.SOwm?a Ct?7džY>|?6m~? Yx?i⍌r?)r~?A-ϡ?yQ?XԪ?ԏ:?{uė?(i&?2V!?\?dz@2?'O̜?}Zf?ۜ)?L?\{;c?w<z?\ms?=3?Ӈ?J!?䜢C?ȥG?SDq?s4L[?[@?!<>?\IŲ?D&NP|?)?6T~?`T? fi??4uݱ?w|2?d> ?ٖs?-EWX?hOV+?N?!?*9?S?ڞ=?⯗(?dav?:`F?Ga ?fu?٨?Fg?0?FQZ?E:?Hn?n*?Ģ~?\g[D?&M?11?`u?"'?顮?壎b?|p??mb+? +? -hg? 玘?|'4ت?fT?lxx?A$?s.l̡?)Yɛ?H{[? ?&?3,ט?5@an?&7N?r{?ȮG?J<64?ftݘ?_z65?9O‘?i?0*%t?`Hyl?WACツ?\^?b>?a4?axݹp?zdw?ؠ⻬h? , o?ʉw}cr?Xk?}uO`?^iali?B;ʙe?8]lQ? E?uOD?GvM`T?>@?C֞b?=l?£FGd?#Zj?CRE(`?ʎT?pq&B?)Ax`? )&T?u{6NC?D٦[?à^?|Om?JXq?YB|?#T#Mu?_gz?_Y{q?W4붎r?w?u\aXv?TX*v?B>?z?Pt8?+?&?j( {? Srw?'?nY?^SWA?\W? ?!enn?#chѡ?j˫0?o"i4?'Lb?&? "o?e]o~?tݵw?"}?Vt^^bA?0s?mO(n? V@ j?.v}p?Xg:_L?yS?LoגigN?@ +!Y?d.:X?vzŖS?? K?&?#VE?e3O/?#i0?艱2?r%6?~V*?%t?A\}?z?r=?ٽtl?vwXF?>>??;J?Ģa\ ?}k:?R8ް??] I?`(aY?TR@?7?zB>T?1z ?)?oKP[?Ѫ.?zY;?ln?iY?^?O?9???fL1?Û +I?ҹm?m ʙ}?󽆤l?Bqw?`@t@p![@`+OO @_n @GR(Hs@_"(2v @C0 @@PB@j.A@y/?e?bRk4?N-$?Ll?{( @@ t@Iэ@}3B4` @sC@Zw@&ԓ?%Zɵ?M>x? ?SԌU?GM?4?gx0~?m?xb?UiL?to5?>ȺE ?Z?lo +?Y|? >u-?'l ?VR#?H?M?=O6?^?tN??ˢDk?#??\??F??E?eA?t?I?xz?"Q?e)G4?+;Af?N>?X.?R#.{?y.?ƅU!?ġQu?%:cO??ivm?JO^?M1 ?yM?^#?7?9;?|+q? ?O ?+?PO?:d@nx&@W|?ݕ(? ?pC2?~Ȩ?P{.?r @ٔ @ezPD@+$0@dbܩ@CB@)Iu@9-$+@@j]@"OT/@O.@YCR?2 r?X˶5E?ц;q??-/P@h`w?Iy=@b@HGy @ٍ@<ҋX @Utҙ @8|@E K @?q@gr?뷽?Xxi@Fc?@f@9X@I@Tx@Jin @}4@Fo@젼 B@3N@_k@ @%Od%$@aZ@(A+@lj@+4 P@VR@3Q;@ S!@;li @RX:i#@#@J>2@77>@ֱY@]Im@-^oE@}I@^@y@2@$@5@_ڽ@ȅy@@'ȿ҆@:iڳ@2k@p@3@q0@dF@ #ܶ@:@TmKW@1%@!( @Č 3@F-@\^V@+W>N @@T@lvL @e:t!@&ɖ!@ @)x @|E> @.%@a{mO$@2"|%@QKV"@ʷ,&@}fW'@e%@/\rU&@Ȓm&@. &@)%@Q"gtc'@n䕒$@z "@?=E^"@d(@Rc\$@XS @pvW@Zg"@qk @d^"@x\6z*$@𰇎 @pLQS@$w [@*QU@9"c@} @ٺ@@*ob@" @],N@E @pLu!@.*@!@ע¹$@_ #@7:\"@ 7%@a>'@Z&-ѣa'@ ё&@ݎ}P)&@%@2y1%@e:&@ 4$@P>P"@vژ$@J"@K!@o%@jʼ^$@W#&#@-v"@ij"@ͦ!@+j @㒀 @eCɗ @ڥm\@%p@h @8!@ѴM@@;6}@Vs,@Ry@H@t@ڎ6@amx@ @"@@豃>6@A3 @ɵ:L< <5 YԀJw=+_/o>ȾV> ߇=@&>I-[R>)m~[T?S?`S>G/߶>spI1]>LS>N >T,j;>?We`?*31?j9;0:?:?U?0br>]Q(7O"? BjR?]Yd˩p?vȪS?!oKH?g<1?r&?m]'@?6'vYtQ?U"w_?e"%e??!G?fzt?졳]?8\l?J7x?Bi]A"w?b$|?BE~h?%?)˓b?n,MaE?G~?MV!R>{=:=`k=Z/==FWs=gzq>>WEL ?t>NFJ>ֵҍ='q<8*5<|Cmw<^O;=ϨL#>qv}>ƇE9>_=>㥎=}'43$>ccЄb>.(73?qURhpa?m?lE{C~r?/nj?ӥӌ'Y?1l?ɹ>Uq(>_Y>+k}R>ry1?MR/?UXL$?ߵ1U?ɑ?q%-T?Pu? Hv?[ZH?q%(!?\@?Hk.j? Cȩ?d?'E?³Z?~KE? ,?7T ?}@tT@솺R?;Ab?Ґ?eq?^?e?mb?x6?uZh?"D?CDe? 1c'b?0z`?ŹB?$&?E?FʹiCW?|ׇI?T/I?n*kE? eLHB?C3i2{9?k$Ma?|,Yug?J]?g y?A燀?8Lc?7mw?}짒x??;]?!u.?22?cz'?s%#D?j?G'eT?JtS?Y7?KXLߢ?>-X1? 3 .?/?8dtB??^Vq?Sr3GMV?r!~V?O1 H?=A^9,c??u>>\f>=Qx-@>Vc> 𾈴>b>.>?nue>wVA>Ϊ2|>tf;>y6V >Wvq>JX6p>i0 X>k>n >WO?K ?05>>4Zl>w^Ly9>-">G7$v3?,q7M?`+m?KD?f?E!h&?~X>s?[|?=᛭?gaf-?O.?5];J?E}?j?%Ų2L%?{k"?h?;VUM?O(_]@ؙC?e- ?ϔ?"?K(7?8?AM?$5*m?4YJ?|$ ?>hSì?sGߔ?Ѕ?eS|?5!W?uQ$x?Em ?2?ǺKX?ѥC?:?lB?{:?i?>?JAr? b-? |[Z|?̵x?޾v?* ?'/c?k7{r?aD7%O?ŖD?i^W?{&q>Ni`b>~>~XM6>E>>7b>2em>Mnu>ћ +~au>JfO?]q?JQ>??^ Ӗ?cxg?Q@V?1?~S?c @V-f?ӿ*?#.G?O?_-ߵ?[+?6{?-'?`?K?yv?R?et?gzn?bgg@8*J?b?AŐ@@zN@p5@O?fx?@@@@JZ?:@Դ@Qi@;S> @an@f u@^5C@"/}5@T!@-fl!@#@m3q%@.$@J*I@-aF @'Y @<`?=?g.xܷa @ɼ(@Ym@_\\U ?I[?s={܆?;T?cf9?tZ?xr? p>?ebٽD?W`|?W:,?Z?t(?"?@{h?`MƢ?jz@?=1߭? a?lGh?/_O?(O?O ΍->t&>֊;(|>G\fwA?ٔ0 H?A*?:.]??Ш?/>?]QW?5+̼?l?`P &N?x" Mq??rM+g?.)?8e ?ˬ00&?qZ?GM?>?ˍ?&?62{0 ?i?!_Ws?[m?r?$?bpld?LoyҤ?-L?CW? ;e?hYK`Q?!ۋ3f?CZ ɣ?er?2N-}?H'?jա?ӞmN8?=fjz?漽`?pOX?]L?+Xu?S"?KH3?\δO?(P쵢?d] "?'e?%? +?9>?_@LWI@^@4"!@b?Qg?F?XW.]J?q??ۯ{ ?C$x?`t1?lZ.?KHL?F0 ?мw&?F7 @Į @@Q@Ҁ!h?< *@9%Q=@" u7@s%aJ8B@,G&@c6# @vJY"@}'x@@z@)K~#@{ǡ%@~$@6 0#@hsݥ@w4@ lIY%@цM$"@(:@cJY@EԴRt@&׬<2[82vLT;<U&f&ߢ$ %=-6>=DO >JOe> S!>)d)f>Cv\>=@wD>F5  .>A>F>=JǪ=Cи=q\x=0 = ->=U"= =D1a\=^@nPo=/}Dê=uԴt=N}F=@+u =]T/=sAT1=EH=34u=s>k<=EFp>(1M>-D~L>mdiu>4T,>닺?=8Z!G=3̔=&Knj8>qw>(=ƹԑ4>_>a>KUU8]>0>ϛ+܃>Nprk>T>bd/b>ݫ~y?>go5+> X>io>>ەB>э>/`>e>L> !>ٓljFݧ>eI>ݵAE^>x>0&> 1>> B#>}.?Tw?\]|=,>ORl?$'?&??5?e*? @L_I ?ts?Xbj>>SЧ ?^};—A@?U"?h*j?a|2&> Ǩ >MH ->8>g{>r78q>z.$)>Q1 <>t.>"c?r>}G>Əx>U2[>O]U>:go>H.7>@gs>~3'>4ly.> 5o>d˞<ʸF>,hb>3j<LJ> a> [W>`F0K>}5}ߐ>y?` >%P>d>~(>+6n>2}>oZX?`KC>{??IP%? :E?Hn)4?B'??iS?ol>|>[lNi ?Z > 2 ?"G2?%?P.?b?qc@?.C?8/bp?A/m^~c?!CI['6?m1hsH!?Xg @?hj()9?/)IvP?Co&5?v^?WU70}?ZgY?X-7lo?Jo0|?bp[?\Λ`?|8 ߷j?ߙT?Jix? QY?bX??l?j?q?ey? ??fla?<\?nOnw?V:?*J?yKA?p?ϪTM?;i*q?9B?X1Z?̍RD? C>cc쥐K>Hh7`>'DHp>d>+c>}>P>D̽>GIt`>ټYt>'>͓>},>f>Jh9>|f>`Kre>$+ׅ>waDT>t!>>M'0>H?===r{p=@?6 >]w >ya& >kkK0>L?1 (4>1z>6 (_s><~U>\ > >ƻqP! >A2!=P=<֝X=qA̺=:[L+=H~>FSr=Hv =A-=[׺`=/ `=|`C8=FCLnk=9wX_= U#b=&l=E y=5=\҂@="sZ{`=ȴ0S=OA+=K3>3Ψ>.7=JLb=t9#=H^!xv=0RY=y1=0_U2>/$V>QnS>8u>q=|>Ub>K7 +e>+>@$->,R5>؎Vx@>OH{>tCs>߃(>'HM>>f>?o;o>{>^CӪ>IFsR>FH>,&ij>_ڧ>"nt>Uy5q>Z_ĭf>)':2>pf6$>v ;M>`>b(=#_8=NqF=zXW=,nݴ=si=<8==Sgd=R48=C =X z=ˤ3ҚR=}LOߵ=Jlu+`N=c\Em=^1Bp=D:=_[i<֭؏=@)dE=^Xɭ<>>۩ ^=s ]C=_q}B<=sv\N^=f`F4=#_ h^=yn=r k~=ȨwJ=Q?y=&>G _=45=D侵=\Pw2=ߞZ>-'} 8>yU ^>d-> J "o>j!Xw>urA>>uf>@Xm>A Ѹ>ưS>8#>DҘW?H8U=>kDu> ڌ>|0">rށ>+b/-嵜>d>&tLp>$_6n>zm> [tY>>cU>}cV>&RkU>L0>5G/!>3=R =_l҃=X=P=&Ȣh=Q٧ɲ=e~:=g!=N-r]=Wwʂ=K0=N_[{=9 x= ,*a=.[-=gQ= >F,>ik>J BG[ >h >&]<:>0,ROkC>9]*X>x)W%8X>@s>My>[#\>L>7#>@">D"w[3>Ӝ=SiE=JSO=%w">Juz1>u0R>z4>gc`<`>{gjA>`"m]>-s>\^y>dD`:>..> [`>ou`>)>0>ixg>q>8;;> rIf>r5뗭>߲5>FYUk >>V'>vQ֤j>QJ*><>Ѣ U'>h$?j"?(2@!?EE?橧W@?7RP.?;}>:J?n{A?[?:!?:HK?a8@?>#i?mu{?CP?lwErY?{ݯlh?N u?Pko??JQtP?֙?,>r܏?bP,?#7ݲ?M髬.?޵Z?,}?3ͅ/?o<ݙ?vhDy?)L?H?u%Tb?+Dq?$gL6?F!s?\?+ '?q?Fu?0$F?;zV?jFH#K5?~Ϝi?||9?U1ܮ;?*OQR?D.u+Wv?J @4D?8U? !H8?j_<Ϋ?/; ?ﰺ>KF>۽%($>D>rI'> >+Ǡ>Zk%?wm4?WB+?uGmO%?R5>E?M@?t ?X$?FHG'?83?Lj @W}b? 5I?BX|?%?}[:?G?Q?=h#%?ua?@{?B Z?<ьl??)/?/גs?זu??Y64?5 ?1?3k ?h?uѸ?=?ی /S?Iq?K ?}x?5ttQ?D?`ƥZ?o~*״@8K?e;-P?@dw?N-?` ?^D?I,#?~?΢T?N?Q?JZHg?lh->?ϯk?-|-}T?ڱ[Kk?}a !W?+_c?++[n?*K:q?]{"o?6˾/Z?솀=A?nψP?>F?F) c\?T#@d?rј/x?)ʝ?V#?K/q;? ?z?[~o??aMWs?I?5=u?Q:a?}!5N?y xZ?w s?Y^?}LwD?E6-C?.q3?]nm#?Z5?A!5.?of$?i>I?.*8'?资A?+?ha?28a? ?)Zg ?rJ4?`))?t<'ڻ?kڸDf?b?QΝ}? gz|?)"?$Ct?L+2V?+j$h?h9x?i՟p?*XTd?R?EV=Af? zg?~W? 5? ?n??_*$>%%?3jS.?(؋d7?jo@,?l\?(e>V?wMJ?¨dz>Tmwn>fp=W@> ɝM>ñ>wFÒ>aa>>,r`L>ۊY>Ŭ->^>Y_BV>8y?>ґx:(>u>@PG>>؎!g>dhDx>_H|>+eURW>4PX>\2>sr6(>R H;>lmNW>WD>yo"TbL>LdJ>NYU>=wP>zԂ*s>j|0?n>r[0h>ۢ6EV> 29Š>ak%>3>+rq#>Lx>^pr>V Ye>OPLS>tI>i8I D>Y-Ӟh]>ߒLn^>YzZW>>feT>.i> c>QS>y>&I>TH!r>nf>Qۡ>A\w>ؼ#]>!C>2DWԨ>1H^|d>Vo>9">) >\΂L>PIo9>$?A>kZ>c>\C>VQt>݈z?Q/&? +?#3>NG>!>qc>o9V8>xFmP>!>x >kv>Ʒ > ([>5c@>y_m->O>a >ѩP>4K>>ߓ>*.5>ch a>h:>>1><2Ǭ>hGơ>nsכ>-=%Z>r/[#8>; >,> j>`f\>ɍٲ>MT@>xn>.>X> ~|>%aWz>ψ ƒ>LHe>C=h>j!r>Dq=i>2Ķl>8~>;G o>'|>gvRt>+|nȍ><F>Qe,^>q9><~K>iR>+6>7(>k%o>Qɏyy>"N (q>J{wl>~v>ާ4t>_0af>d]TW>\Z_SzZ>nUp>cǨ>۲X><y>=>&j>}ّ4>=>hbi$ >͸<$>PF/>/[r>gN\>tȽW> gᡷ>$>1\L>oV>3#`ɲ">.:>pHrT>^Χ> qG{>W)bv>s*&>k밵>(1F>gX>nw&>Kꁎ>2˥8>z>-> ys>C3>>͑>Xf6%>c@v>L>21D>L)Y. >=[}>R >FUmr>2ЦQ4>ͳE>2>+f^>ZAptog>!Ҟy>qq]> )Kx>u} ?;*?4S>w Lix>_"#'>fz n?MUHv?rN??L1!?vPbM?Pbt-4?ƥ"o?iW!?冫5-?ϥz?g>nw[>x>*Du=>%kt|>3NdNJ>$R?Dʔ䃌?! ?+AA?JY*?5B'?VpFA3?х ;?Ͽ)?g۲,?rBr<%7? N? vyA?$NC?ֻ2?jk (?=\?l~{ ?kӑ?ze9r ?5!}ox ?D`M?y ?rSa6g}? i?>y+>=zv>[RS4*>~6>9>ÆP?z>qjI+Y>7a>x >'˜>2"_B>7 >hV >ExKt>!>E rB6><&L{>ex >w>] m>*pB>5kC>cU>ɼ+s?_t%?.?Y$>fR>SN=>~v>=J|w>s&N+>>&lM>!>pJ>k :>37>u5:>>9=]>?-M>S p>˕T>3}'>~)]>,M8>LEi>Yz>Q訐>Ot]>!Ve>]a`>+1F t>px>De->G >h,ou>qK>igC3>"՗H+>=e>,.>̇"n>E?H"U?ٗs>h>sB>~mك>7>h.>Vo>J٢Z@>.?>e>$ {>R8>;>*Dc?8r?bcm?Ժm?f4 ?u=)C ?NjK?$ax ??^d,?Gb3?+ڰ(?Vm??V;.\E?(zksC?^u0?y-/?v{vO!?pʩ^?C?@C?5y]P& ?gAy?7yeH? v~?n! ;"?: ?e?eĉ`?Li%5?[3 )?͎/Q0?% ĕ@?}4l"&D?5>hj?8?-v`?X~̐X?Au<.S?8N>?:nW?yf?Fr?jNHt=k?qt?%6<?r?.T\?兜?ynM?)?)$ ?^?n`r?(3?G?9?*]?7?M6T?ܐD?am"?oކr?<^?)YT?JK%@I-On @RZ?҉Ƚ?Hq @db @åHf?B6?΃2?ƶy?RZ]P?$eR ?VU>?dրS?ts?s8?xיn%?"ՁJ?k7H?d$\RT?4?-UŽ?עc?fs?rh6:?[b?'?jb?Nm}_?V?p5v?eʄv?M{6?Pk ^[a?\?Q?'x{ע?"4?tC?vѨ?mʪi? (C?:?lmZ?3`?Us?zw@?xlOd? &"ς?q`7%p?]L?x$?E-H&u?EQ4P+s?6]W?q0͡P?$.a?+~sUB?rP?GX?b`X?3o?A5|?'7pf?&Hi?6\vW?]M?iF?e쐢3?6Y6?g.H%?u*5 ?4B!?ZB)?)9?w6A?47N?^]1.L?f6❮\? sw?DQ5?gӉ?]BNSO>vPA;? g:.>{)0}>ѩT|V>O@>(]:>4>89kd>A!{>7b>. >5 aM>fH(>6s>S^i>$ק>frw>np> :-s>s,">Cc`I>iJ?A#M4?]=m ?Wv!?Ue*d??-f?eI&?M@?՝ &?31|"g;?BcP ?xZ>,r>qsn?əLL>dm>vyX> )Ҥ>#3> a>~Y> XF+>e/x>}`u>C +/>f >e>K͡>i‹>lF˔`>-|;n>dV>`}>k>SҥK)>]4=j>y3{X>QBp>R4a>tϏj@>4 ,>F;>,nM>UP>#GY>|D]d>8sam>9*R{1R>mOGg,S>K{-}}>ӌO>.>%U~)>(Dcx>{M9J-r>G!u9>AwRu>i"u>P>侣>GA#2s>_ە`>&f?Lf>Xʮ\W>WZ>bQ>9*j_> dhӝe>[>h>'W=cg>EKHytm>Z7n>z'w>_%Ky>2uـm>rku{>GpB|>0ݝw>EB>B`򯈎>2>J>4k m> o>MAXAX@߆>|a-tr>H!Ƙ>$Y>0>їu>6%C>詬My>7\>h?d>|t>>k8>Ot>,'G>3^&>"H0'>B->(`>܁>[㥧>[;>M>|1ԝ>W[3f>ʿװ2ט>.a>^k>`$>RE> W&>Ѯފx>[jH%>6>_R`>p^>@> u֮ǩ>Z l>߻ќ>ųB/>e;>nhuΆ>ҼU>x_2[؋>N>Ts>=&x>2NcЙ}> =y>g׌>J4,C)>7[>-_6_>3fN>!z;a|>~+Z>x-tq>Cm>t> p>ZPj> ģi>i(׊t`>;W7f>R%R>߱3 q@?_'XJH?$&Z?чc?;x?h7,?&$t?w9?r19<콮?qtx?N2߻s?1o? l蕊?Fg}l?i~dj?wG<? y)?u)u?#~nj?^?P0?|>]?o޶?||? _Q?ӭJ?;W?\%? bH?)W?T].?H7?]A(:?!I?G|?^\?Ztz?ЮW?I-.?{GT@H@ֻn?6=2j?/2?3y?S0?Z>?Z @F?@o0@$U??խ4@DX9@׮Z@ 8.@" @.@CRS @#+lo@[C @%@O}@p^@z@i$"@x @[@1Y!@ ,&@=iR&\&@=@ @mZ@T',@E$@ +"H?0ս_@"b @טa@XB?e|Z?P?/?c)*? Ιy?Bo,b9? bT?G檸??3mv_4??f.PH?L`?TP?Qg?"Lԩ?Ž?.,>?0?+T}?%??"+?z2Zx?Qq??5'??@'-Y{?2v?fz;S?83 ">EI$>l-eժ>lS0<ڐ>p]˝>$C>tPw[>BOC1?U>O=5S>'rM*=k=RzZ.!=Ll9z=]=-=s7=LAH =}=e=e3}|=N-=I>/0J>y7X>~?n>K3Q>)%e>'đ->ծڰ[>(jW$>^8 ?`~?(f6?WMZ8?hP?ƋrK4?ͿO ??cM ?=HrE?{4?.#?D_/d?8?LR?:?Koq?6?%/?PH?L[?x?3Y?(0?b8ò?1Yd?anL?%@pT?S&f?RP3X?e q?+yV?? j?N{ L?Ӵp?Ҭ2 w?\?G+?xd&?+:<[??$I.հ?P ?E}?* >?x܊?0awiX?ARN?r3:|'?jZ?mx?؉~}?nO?vء?)?ז9?4–?=&@|?z) }?Fu?Tb?B L?{`&M?^:W?,k?]rQsW?"]Ek?S6}?tzh|?߹`㺎?~0?Dq7??e[9?`M@?)7 Ԇ? 5`?xkm?xc?T`[L? vGa?ָx?.sB?0T?} s ?7mn֠?RX[dҽ?R$گ?b9x?f??|7?&eO?^F?y.?yG@eS?&?:zD?ͼVQ?2U8?_Ž?`??L @Gs? =%?*+@Q`*?{M?6)F?`w?K?!G#N??q?P?)[@H| @정?@鴈@zr@WLl "@D]N@aZ)7@)E^,@T}@^@@/ @V"@I_A@t=>DH!@ #@֍Y%@`Dz'@#@P!@y@ک#E%$@2+*n!@\ @4$R@ +n@:f@N9Y"@-?@VU2@LpUg @0q I&@w p&@x#@i x,#@M] @Z( @i@`A'@FԆ}@~A@>|[@s / @h*@̩XBТ7z1> XLhS>ڮ U@>ag{=M:=Z=W=P4pԔ>.jD>6Yn`>{}A >Lg=tY=B=ºc8>C#9>AKF,>{D8>~1E[>Vs >Gzs>)+Qz>>yhN,/>ʦD>WR>V- ?ϣJN?$F >T M>ջOf?0#8>I>Ŷw>>5=j|)>d(Dp<>?>7*~>Op>(Oð>Xh<>8S?&W?%"T?1g1?>|5?Jh>0?u? Bx>?y>,h?Xq&?x/?;r?14O?)rn" OX?hb+?XdD?s)oW?L5Hb?ǔj?mP?1Ɓ>z?V0 ?v@d?Q|h?{OpV?y/f??Or?\m%\?TcKb]?pDt?%A?Ly?7{]|z?OQ? \?M>T? $!X?Bϫ? ?N?f.S?Tr1N?\e*+|>MEc>7N*>m^pf>=^ff>F>b{#>!\:,>5[M=*==R]<=])Zb=$}`=N[l]=Y"}umg=>0=Iι=qM=/- \==>&>t>r>SWS1>@;rlD>LcD>#-t>)ck>ʲ߄>y>t2vP>A^ >CR=sĜl=P|MUu^= ^L.=[Cj=TG>ʬO=C^< H!8#=CR=t=+EaN=SP̯bǷ_=9>b;nA>V6e8p>V4E >6灂>a'>^g=>6͞>Y &X> >n Y> Nz`̐>ƮB>r=j)^ =֮>8KM=|cM{e=Y& w=l\lOr=% Dۤ>Jmr>Za>vTPY~>>p}y#!>7>R|h>Ut+>x&>~V>IpJ>i>dmq >k>B=m>rȡ?3ai>s ? Yy1R7?j8Μ?CHзf?Fy+p?y@S|e?P`v?Wn a?CJPA5{?FK(?{?苒$K?+?`gݳ͔?mZ(?/?(?:;(?X)ْ?+#dN?q`H#?IV`A?a?2Bm?.w\ߍ?Z)JW?!N6y?b.0cY?Mn?4orZ?O.HJ?ގ3?[yvʳkz>40>,ra>^)>,AN>i8B?Ӫ@?[O?Z%? ӸS0?<?nz?#qv?ͤ? =[?ox~a?E;K\X?{ͤb?R(q?C}EE?Av3g?QIy_^?v_j{=Lx? }?LVA?0gߏ?s5y[?Mٓ:k?$oʓ?a?Yk?8ʧ̩?.ekҜ?%{?Hc ?:ۣ?y~QQ?s?^ry?iF{?Y;C?]B5?!fh/?箄'?-%?$`?RqC?C#?$GOu?cZN?Rc3x?I’+? |ɀ?Zq o? nP?šl_]?#ci?/(n(?$? '?fזf@>^ @!?w"1>p>:e{ʣ>0>G^,><;>,&" f>ɸ1:AD> 1>y%? =>qD;|z|>CMaV)>ŧ>y:҆>>Ŭ~N>>^R>k!g>gU>od>ֲCNt>$>Mu>,#0>K21>v>*f> d>w9a? 'C>u:f%>@>&r/O>VNA>,H~>Z">ن>ҌF>_>-o 1>}˙>'t>]Hպ>W6لv>U Wr>Rݜ|>{-dv^>&f;t>j_‰m> aqr>\>e͊>xY9>q|>6GQz>O+q>Pva>\f>:gc+K>̰>8>͂>T۬>.w9>;>i_{>t[.>|7#>ؼ>'>*}I>,,sPn>R/,>iG4>,\>erIk>܊ޤ>xg>Z>R?1s!)?M}?%tR >ځ-#?P ] A?Ga%MM>nǜ>}~R>֗}>%tee>#K>uȓ>n4|>>!㹥>h1G>גP>b^^>ՁTm>ڥ.'>jFXj>0^?u>qE>,ݥO>? l&>0KD>eq!>>zi>Z,>8qo>Y> oz.R>l>*W>3!>g?~h>^]!> @H>1Zkg>>??r??E臄Q0?6Ѕ%?vgC?'& D?WYc?u],?ȇ ?7??d_>\?S6?;Pz? ?$?nrqz/?]c?M'W?b@e@G.z?C3{{?y?soDo?V?J>j?CT? /Cs?rvS?Yح?A;?9+ήM?q| ?&{ ?1N? ? ֣Ȗ?k?#l?]^!z?їQ?8:͓?@Bq?Nn>TѪ? 93=|?Xbo?W٫‰?- (?Nؐ_z?/(?e=?D56?s ?\o~?]"W?=W]?w??J[?մKM?$}nݨ?^Qج?fN?z?T5w?J ?(h?b)"`?P`ށj?>,KVX?9A?^2 O?5vnD`?-]|B?>?E{U?7RO6eS?\!W^?N`euy?r k'?^Cd?}p?[S?Pn=;?yH: F?`!N?m-0?Sy!?$L;?DL[QT?xf?VMx}m?5}?C~4Bf?NRF?мEe3?-b?Bu>cҬr>64>Z>e>F Ƥ>{9;r&>0e{?qt?Wwϖ??%Pz&? ::k6?/ q?Qau|M ?>?>>Ͽd>sJ9>uGÖs>CH>Ex>yE1P0>Ңj2n>hf>sKw>𣋶m>m[>8I43>;bF>|8Yؑ_>De M>nH>,<aO>#zn>{>2?Ь> `{~>d>zYՓ>˅Gs>7v a>Ѭ`> p>1Vs>vֱ>h̕>>kო>*p>E@hֲ>ym>i\=> ]hɶ>N T>aO.h>8->>,>P2>.>J>(˸m>\ʈ>n1>3h->LGYm>1}>Q-k>JB^lH?Aa%`W?2}Ӱk?)w;?/M?9?E?fUO?T0-A?Sg? @]??{$bƜ?E}?A+?/?q+? P?(J3ڳ?eʊP?Jw?{, ?"I?"W?kH?K??kUO?Ux(?!uDG?N4?5~bZ?q? %??6@/?pl?؞ ?+r@4RkFg@_@T7GD@ɑ/U@I0 @i U@hwMު-@</@|N?1@ ?%@偲@aUԺ @쑚~t@ՀWی@<4| @ kv@.4x@Z@!@4Ij!@5nO@N>"@#$@lPwk%@Y1@Fӷ@؅yk@$` @;^| @kfH@NIX$?|[*@b@BD,A??|?4>x a??X?>O??\b?gAռ?rj?t?YC?zy?0e ?gɭ?D?=p_?]bB?Ѕdб?+ ? ?~))? g?(?'&?;[(? /f᳏>hF8X><ϭ>C$I>VL!>9$Um>Hټ=PP >M!*>A1> DD?2l?%4?]0?[}bX?Ȼ?S]~B?$_??8;*?,Y^z?Et,^? wPS? 4[?Af[?al?aG?S4#c?3ge?%2U ?K ?<!w?+G?a2?z TB?bf?Ϗ~?iVu?pF|d?m 0?Y?N'?B=?+t?Eը ?-?n B?>=bM0?I?e7V;?/ފɊ?Vs?5e@ю)@ncI@H8w}&#@0$@5 `^%@f%@j% '@4cl"@5!@ g!@Q  @Pa;@1@{@^@.Y%@B%@,$@۟4#@TE@AhM@ce `@R @!@v[O@uq~+K@0Mg&Auk$<#O-^U?QKn @ro @rP89crЈwb=b'\a=I뭎>+>Hfr>|mșƫU8l > uc5> w=wE>hs(ZUO>5X(I>J S>=dzd>D>,>9h'@>ƑdL>I?P>^=K>`y@0>{fvuoZ*kuU͗fj$VYˌp=MyNs=~}fYu=GCv=nFv=y]u=s_s=aq=͎?\o=n7k=ƫoh=Ni>f=/,d=ғd=d.d= \e=Xe=zf=%Xe=ӣd=SzQb=P_=^)W=BLWpFM= 3=uMkb=~H`J14=`o6H=j[=kYR#>Rȴ}ͽpmKT=i\=PxL_5Ƿۅ~_e/o F+a Pbsg`Dᆽ&u|hQ=;*2gjK =~oۈ=GCOb3(G.E BdJEPgTUWj:=RMY]I;d h!r (8f^^9I9wT1 YvQP:,uy=WLw >G l0M&>1 I;>캶cH>LFSQ>9tMK>Y1&@>pw 2=6$ "P>WUA32>^C>DΤM>.nrR>j :P>J >Sv{ߪs<'u= `0>p~Q>:0>H>++ָ>h16 ?(j3?1UZW?gX=y?,;?n?<?Nf? $[?ز@`Q@lK@Z}U ֦qt%bQ>HZ>>{< =߳>;I >O ?0B$W3? BRW?T1Hy?Tn*? A?-Y?$f?؅?@g '9S@܀@͸k @ k @q#l @=%tn @B!Y1k @sl @>0l @Øl @A4Lm @! l @ zk @e~n @h{!l @yml @v o @u: nk @v8h> x=> u>NrH>!U>2L>+e >>QsW*O>!I>Iު>T> 0>䙥 >$sR?>hv4>qh>gǖ>ePN v>->#9.> E>1 u>yI9=P>©b>BYA>Y> u>W>^?_VmR(%j>u:)Λ>ʊ{>8&4>=S ?# 1V\bE?J@wh?o(x?%V?3g_?1^?4Y?=#֦ @j{@`+@,@ɕ(_BŃ<# E7šf4j>%k؛>Lq¤>I&g>hsG@F ?;q*NE?*ˉh?wj%D?1y?E%n?#-@?~?kt[U @2@Yݓ+@yn~X@iW j @唄ܽj @-6)j @=gxj @\j @pij @hmj @f\j @/X4j @H>j @]-j @S #lj @Hkj @8"j @0j @0j @)Vtk @3.k @_]k @v0&k @8ok @ k @8_%k @?$@k @pxk @r#k @ATk @]Zk @p6c=/͖8t=k%=3ʈ==$e=a f9=x==32=X=Nu y=AYm2 =k d= u=XaՊ=Vy=_1T= DIq=Ya=i=w=Wr= D"X=*>,#A>xzRt>2 ϧٟ>>9Y>4I>T>D$>I$\>?4>H8 >:>)=x>->`^%%?= V >{c];B>lnt>r)>ޕ>m`>?, >-R>Lh2&>K:ѿ@\> t>+%>"k>a}>p`M>jy%?n˱i^pJ>;3|>Ы>1h3>7I?'?nhK?uscl?lsR?{1?ٻ?jrH??,f9?D%?υCq}s?ai2u`}J>O }>%N>>>??e'?JYݴK?B)@ml?!$~?K83?v\כٻ?խ @?i ?&^-?O8?k1&t?mq=77>ك=m='J=ʣ&=Xܐ =LI=Rx)b=&.=# ,=xpr=8oq=Lf=pٚ=iY=2K=IE==2@=E=k=f4>8d>'r>>i>q`M>>dvv>E4`.>FR뼵>Cm5M>qj&{>K8>z7C>A:2 >?VO>khEU2>rò4>*ܰ d>;>_K>%M>tVr>gbO/>)Ty `>BpM> k.{>H@`>I]~>/A >z>1>[ofh<<)#)ö4쓛}]PT^<<<@q===s ==Hf=厯g@=P~/>9c>a?>p>sVk>Yn&?ۙ:?ĐmS\?W%i?I{?&ha(?'x?ߣ??ao6?Dc(?0y?c ?8;tǕO9XGM{?U9Ȩ2f9TZX9$4"Nr'-913mVI-I(LF!qRwo[ ߣ<4oq<؟W1f>=Ԋ԰ =]S>~=)=UL=a /׆/>]c>WTk>oۇrJ>&:>z<ù?<39? f\?PKM{?XPqN?ai> I?C?A?:7? ,1=@?Q;?Y?!w}f=úx= 6{+qĈ=Bv쥠=[cs=зM=M㮽=\3.=|)=2 $=AL=ņO=9Og=(ݷy=A@I=)nu=V޸=w̾^\=j 2=MET=8Q.>=|Jnd=ؒ?='R>Rª L"Xp>f6R >oK>|u>Kz”>&`#qf>׋l!(>5|X>끥>r6>~ \>l$>S^>ٷ4Ů>>GA>Wp>XVC>mNM>޿>Z>n>f?8\(>[|X>6]:>P|)>nzC>\O8>`F_|]>J$>ymL!<َS_ [Ii<;a (PD.ǟ=pi<ӧJZ< &VFK<\sRFE!>$oF~h=Uo=@T=kU|}7fhv=xF>$}tK>L'm;>SB>TxYϚ ?e=ԓe=Frd=qqd=I…d=R*hf,3e=)W_g=] i=&p=^'džq=VHs=G?@u=b,=v=Ar62>xJ(`iT/)PNߑiFdH4{At᤼liӞ>!l<8]cN¡s!5>pg>8Y!o>~pՀU\7zsxNʳ%g=K=_,Vn!2 os<>3gM>On״H>GK?JgUqRB Pu 7kXE㋈"|\}<\R3U-<52>8OhVo!>=#8wBJ=!9=#{Au 7c]Բٰ'=ҭ~C>P1ԊG>Î}/>g=>jpn1<|Ҍ< R] =yy5=q2`0=*E7P=ʜUoocV=~~x]= ia= ے3> Sv@>{@=>="HUAʼ=c=WJo%#JbE>;N^J> K> ѥ` M,uRWY7R%{kZ`B≲ĹMDљ8AʉJa${91>P җ3>\ =R=(Х`ʂ%WwfP{(=EB\D>G>!WTK>\"|w(@>pmI<-o+d%n$>p>xx>aIf=suוVfb=qkU-=O19>\gC>L>Z1+@G>K {<[2I",X<^Aa .|{<&Wڭ<2P@`pn< L$eh'9'<T&\_r<$oVzYRkz< _,>k=g%=8>( lX&>)^e >9 m>2qX=#N= &=L2N(=xŏwYY倽殼sQP%oZ97h쫪=jF>=t5F>x2M{L>ԯlM>[p0>K>yD>Z<>eH<#{ 36`-c=a~I1Ne=#ٷTe=-fe=\.Zd= #X*d=ZVn=6%p=x?o r=J4t=u3 v=E[I=kiCfo%M1+Na V❏KCTq$W%I,DUphzE@s=R p=n@Jj=ݧ$= 9w/=#Da=it7N=`aesYb$kQ#˝:))[1c½<*ؽLyOqf,217XCiEĢH^[{!ﰰ ghs.-f] =Է8=>:S1>pHi*>r>z\W/>.#=Z=Cb#uq Mu++_p>Ӏ0kK=;Cչ=/JMS="rZ=RWj߽ >sX~C>':vʢA>LČM>:ٳ} J>Z` K>/iI>]qDq똣qEgJ0R5,R6D#XZnRcG>TZlYިݞE=|E| B^<]Als!$x(A9 "{:>Ht <464=H*aGq<_0bY]Js< K8&ʈK#?<~Ù[zy3,>>t]($=(f=>3}yn/ݗnuf=#8C>5JA>ovH>$~ %8>%<.7alcQ%i×@Jxœ{~iR)>Cj>_gk&=G\%=~{8S|==a=ϥN1>:xF>f2`L>Z IE̜s W]ջk[RU_/Vҩ?%g =xd3p~?:\յ}->=#eo/Ғ[>d>4=B7:^=>"JO= 2=t[.>p8>.Plb>YȠƻH=x )=GQ=t=!e7p=^Jҷ<;`,< 36SЩO<˼Ѝ o?>2u>v>Qb>Dgq>"X+;>d>J\=ɛ=d⼑=5UJ=vʥ>1͙G:>E5n?.Sh>h>O싈>10?N?Aup?d?)<ݷ?_,m+Ϲ>A(>Vz6>0jɼ>Ґ@M?8X{6s?Ldf+Õ>_cR'8>Vg>F_K@J>Df`>\d Q->:'= y_&=LqY=j>nNw>mI>^fA>cXp͞>e>%uB5>"H>QNa>LbfgtA<ΞL?.L3~Њ<(e&BQՏf> ֨>o$^b=hHn=ܮ=i횢=w}5&>c>V>%g!}[>89 r6=e'ʃ_<޶MXKVI1 Y{*Ńf>3>PXrq>'mx>"fA> `>- ==n.$=ˈDS=Ps>4/K<>Tu ?p >>n>HJE>߃7?i[C?0n e??]d;?}D@w @g˄m1 @-"@0$@uY|3>@u/'@dC>j @+ @o# @[A, @ˇ@@N³ @"N@޵Ot@#1.I! @G%5" @LRp,P?gddQ?E7>7 >RB >R$/>Fhy>uU!!?r:~=?m2b_?.O@  @şT @f+@YmG/@0@.yc @7BE@E@mc;@]]=[`x=8Z=Dh&=㋢ h>Bm>eߛ=>ě" >f9@M=RuZV4A=]q8`~VE ,,"9A&BM{1< Ow=ѿ$A;;G=T=p9 > Wj>PVZV>>?%r&>`9i=,A=;3m=NiPU>>M">ӈy?:E>>߂yDZ>QR>x>VV>%ZB>;zZ }t>|S'巟>*]s:>Fb=VPS5$\z=폇F$3C=5ɜ<~a< ):h<.0P>rT\b>-g,>#^rA=dup =y=qI5=Y?#->HA>yhE?#uwAU8>!l>?r~bKK?ޠ?>^?y?V| @.C# @۩:7 @BQ$ @݇L$ @FP4 @WG?\0>)a :>#x>W EJ L?[sb? O? M?m ? 24=WߠZ=F>)Hw`>#b03+>|1Ohu=NCsQރ=! ='c$5K?[2l>}E$C9>:HQNa>Ѝ_=+r=W?='IT=]a>Bżw6>Au(>&?>+>qa>-*>>? <,ߢ<-8I 0d?>Iu>Ba>+>W="Cd=D21i=t=}wB=jg=-N=(k=o/G>w >,%>= 6>;e>*GU>HoG>s 1t$=h'Dt<<u7=u1Sy=|ܰ=H{R=^c $>;G![>+>0>"D>O}>W^XJXU>mr&H>o/e2>EN>sc=X=gP=V.P=0_= h"=rW6= P~{U=7B3>.>Sa(>ߟ+>xD:> "?^ʱ?9>8>s>Y!>[` @} |?A+?TZ>?9̓> Q`>R>K.>p6>D*)e>> ?и)?8pJ9?C.?ܾ~?~0]y:s?KjKy@HA_ @L"{Z_ @ ^6 @`.@ @uGA @&t=@o|aJ@a~O @P*0PW @uEq$-%=ʚ=NД=PG;`8=A=TT'`=y=̜ x=`=8*@ t>9>b8֠>|>^;uR>kǢ[E>EͅH>wͦxZ>#14=d+DN=/"<~$Ԥ<&~lP {<<){͇Mo{>=m.>j2^w>c&7E> nS>H{c >->!В=Xo.l=x05(T=<=Rm=li=WM=\α=>3{&t>>Sg3>¡>Sk>'@9 >a->ԣ>=+s>5Sy>|[mKU>G=D7 >gUX+P>KH>><11g{= =NN=rm̎=ZVH㘏 >d8>gZ0+>ZA>QrAMU=-8#2<<.JâNuꨶv<° x=z᤼ӀkբJY[>4,p#>o/=u~ST=9Ֆ=3=3f ?^u>բ>Rq! ?m>x?a'?k&i?{)?RJ?@k8.N?9k>D(hG> Y4>EAuIA?mPbܢ?$|]Ʊ=7[U̠=5{=d"=SY=B>#H'.>ݑ(V>D.#>FvL#<=x=%:=_ά>TOo>K>>Wﭒp>r,E=]牪=T=Fn?=`yڃ> :>>M>,">#bnֈ>P]>tU>f#'+H*svWB;{T>pHF>h =XY΍=5}=>b d=#ٚP.>C`> G^>&O=o( =L`j:3U="y=?ot=KοN̑`b,>< EN;Ny4|횒:0Y|%_`1UB<F센袺sosc(낼 %}xs<EM=Eb=:m&)=OT=6~k9= gQ=L>̻8Ss7>o>C.l>0F^˚>k>Jcٛ8> A>= l~8:=X8]=^=(Jv@g>y }>d|o>=ZU>$L>,4i>?ذ4?: B)o??Ot?RGbK?oI0*?%9?g?OL"? )?|(?IՔ??umm?7BH{ ?Յ?7=P?Y??n;[? 0 ?S~?26?jS? #"?vFw>/ >>=(>E?nL>6M>>!K ?_e?*=?II{? ?m'?l?^J?CH?C"Q#?jR?7+Ǎ?lG? T6J? M?f.?-֢W?"a^ץ=Ӕ=_R=]Uj=/_-e>pE~ѐ> j&<>X.>A kr>;"Ru^>^Fg2>e=J= % =r >Fm>tqs>oR>;<>PgI><l>~U5ض>cf!>PXk=mXțۻIY< vlO<s64<;+4ȣ`>Wv>,K™=P1{=ۯ{y>Y}2V>w?6+;=O<:@<۷S,Cq<.Z Ǧ<[#.s;T\ 򙔟<9A&9=ht-(Ti`>yf6>>` > )r>cхL>>Wv!ylr >Cp=Ou0r=E^ⓐ5=rq OU=0B>يK>Nσ?! ǮX>6gY8>.5,>[G7? X?Fߑ?8C]?}I ??ә/]?b͠? ?ߍ-?Lp?(zTq?J♉>Yԍg>系I>D>_`X>v4ķ>e6߷m>Mti?֍ic?@Ԫ{?c?*4I%?ei%?w 5?? ?/Ŀ^3U?n=E?x}?FDi?0QO==$M,Z=F=vϾg>y%>̩C>:CQ>Q*0=(L `H=|䗼>Xڇq|7C . y<0 ,5ہ>eW>t1>ȗ5=z^$=!oYLYA>:H4xl>g.M>B>w%q>5Q>hV>NB. >B1j U<R ?pu\z< Z8=&؇=ZrZ=Iv=W9ق >v~bp>v]_>j 8:G8>11`e= `Ā=ip`<Il@X=..S5A^> Z<,>lZ=>`w~R>%ZH6>=ڙO>`?v?Uu?35u? C3+?;JG?vO?ogzVo?4?'Az?z:X?qߘ\?` | +>g[R>eH3>a>eK?A?RxU?kB/[u?k"Y? S?UXT= A,=DF=E7=Nm >h">Y6>^>hm1>t4:=J=)5џ=Ը<\}ڑ<?n<r=jN"=<>AIh>΅e(=>?)>|å=3ۨ=?-=P5$}3=̆LtQ>ų>,IP1E>s$=,>~M(>Q:6>ס{xz>}~=>zڍߪ F(/x]l7>Go>}2>8]횼=K9Z=샒I=?$=,#== X=`=gI>8!>_Cz>]780>H[_>vQ>DÔhD> $8@M*=!dF < F{p=OJZK͂ҡ [?mE<Ȇ@Y:E{<<XsE9켴<֘<<ѱ>1s T> hZ>*}} ->DaY>t v>uQ>D>"%p >9$)>R&IPm=iM=jH=\Jn=3x=mɜ=*r = \0=;Ц>ϟ5>n>{> >[>#B.>I>:>yE"b >jHu>"?yeԴ0?8(UR? A8?$W6?~?uf ?,1?_N?Z#?#R?mV?Pu:?E %?|~F'?EWe(? g?5 ? ?V -K?J:܃ ?,Γ8{?|8?rKk?Y:N?g!>[Gi>> >ts3M>!:>UZ>FM$B>¹m>[>[AI>>Q ?;' ߨ/? )!?U/?0+?ng>:/P?$TI?"J?_8Ǩ?XL??CD?V+?a?&l؈?X")+?(s=]zhYG= О=X= uv=H䂹=j*(= L=yfm>=q>({>EZo>Q^$>X `R> gBF>/n?]&>U ȿ>iI=B3DU=QtNxpٿ>M->s>IEEG>yaޭR>+_(>O6>=$nH=eQT=HWV=N>9d=I؊=q+_=x7L;>l>o6 e>@)>.>>Dal>_q*'>gB>Z>]i"j>#b>~(C>:4ܞ>uVy>QFّ>Yt5>0>.\=C"i>7vy>.?ܴ>`>>>7Z=^wʹgܒ4`z6xkn" XJ&{Z<>} 폼{|I<(ظ<~¯ =z`>A?8V>^">q=' qĵ=*<=",==sa>+u}T>訖Ks>0@?@+Ԯ/>(?J?\XЄ?D ?Zշ> ?ۇ>(}.>6hC> %_4.5?Syz?9ký=ª2'=C֨=*}=0M >q;|>a+[>PrRmW> ؆0>~ۄm>POC>t<) >"$&ol= =!=h+=Q35>ar>NlFc>Qs#>v8 _>Q>>[m뫆>t﯁k>XeG <\<V'\U7EĚod@W"<=T^<`X:<%|ec1q< RCS駲-K^|;sb%dg!xR_Xp0Y_<֝܅r*ߝ,(L {<-7<Hdagq[ ܕS,X)0h<,̘yZO񰬼W?wμP bb?qu=j-dsH9otAkӯʙ8dn<<w1= n^5*d ic9ZHxUnr '@tgSޒP׼KCo'Nü ,murֶ9ltHJ;xm,F! Ft}iԼ' $ LUƽ^X9ܼ>EZG,zH5*vjbB$4 oWeWQ>=cIc IuV 8Mv-YOWKUQ;bOI >?<.̓)=E]/(W2`ؓJ΁bq¶|A ltT6gF;ֽ#gݽXpKs@؞w?废i{cSȽ 7Kǽ\U콌6|B#2н홋ZŽv˽A ̽|o8C];/𽬏@RF*y.)n;a-{ .bv9J HOtcv=S񽝩]kR^Xn iTF6\S<*y}M⤼O>@ѱm<&߼ž<@y]}&2J"p<\JvJP8<۬l]$LF<ivƈ@"=NnPb!= WM=N?Bo= :=Wxh7=(7i=!=ֻѶ=*#^==~~ɔ=~~*r=Rj=sb'\=O{=Ղ=(}=UK= XRk=ŚRhP=&=!^1=b={g[=!=lY*=.A= ϯf>5?q>Xy_c=95> ~т=oR==Šh>Zt8>̤ >`߭ >qS3H$>@Ʒ>H0Ja=xO0S=?p=ݿ(=&UI5U="= prY=c_8J= ̧=SzL=s$Px=&g =b|޹=8X?.=Ia=nvÓ=><!z=!P~=>Te=@`P=V|@>ݺ/>J] 4>P(v->xo6><+>Q(>lE  >ط>Nڡ!>ZY!h>JVty>)FW#>6͙@ >/q˗ >[`>y >;H:=my`)=?iDj=# > I=9q=Λ% >7j>?=Cz>*]9H*=$~ŷ>Ky >p'>#>-SG1>vkS9>>#0>/~  >tYa>>OtV*7X=@ ѽ6f+2}=cN սb|ҽV;#'n{="R2F=|XN=2H=O=цG==b(WX(4t<=j; y\HȳA!=+=Ǖ؁=Be=LO=`v!{x=I!=hXPD=пwO=mp=wX5 `v=yό=\|I#=^!=kv=b=3= 誩=ۊ1=99`'y=BUM>=PmK=E3X=q =@.=| ] =JOmrx=( t ~=Rcu=<2j=;J_=׻gr=ޠc=sU[=g=c qdzh=ȉ2~G=a:n0N=BC=f=U`=>o}Nn=) >^P=`Ku=9- =xt=Ҫ"І=Dߎ0u=7n=q'=ѠqC"=Q<=a~=o>=֨^B=M0r=A=ODj2=8e=J=\[8;=+x!J=W=?U=;u=~C=Qt=$=WX =fa=:X=E,i=$ч8T=\Xm=h+l=!)H=>b^&>$#>j3=^=ɴ=|Cpg=ԐCI1=u6p=_2=* =+=MN>`󥆜=^Mkh>Bm >BM,>q8hwP>ؠ$>(7Om*>Wj}> F>DX> >Mcb=yl=@y= >[=q =ɻG=h{߷=c+==$^=i[_0=x.=G歘%l===0? Vh=A="j=k8a=vj=y6#=KjIN=8S=Q= T<++9< 2=|2ڋ<q=C3ؼ(=(%:?=7Z=A<=lqEn=}S<]a4<^|< B<@JBGH=E}G=1T1j=/*F&Z=x_N=] 45=&އ=[l-=M{6=;rK,=v #=rZ=zz )<)=ݍn+=K2=,Ș4= S1+7=G?C=u2MTG=G<>=/KG1=lJtB4=} 2=iNK'=RDG=9 &5=&_aB=ߗ0=rB q=܍5,=O="ɴ =zH=Uv=& bk=PJg=$Ibk=l=L} = KH\)=. =ڇLvF"2='="=Gy;)=N9v@?=JK==U!K=NU=cn΅O=hzF=C=== /g8='= ^V0=ը!?=xPN?=~Z-I=X;~KEj0KS[JM槽(esQ.2VRVܸv<[7ӋĽſͽ,)/Qeh塽_ 󙽪ԡFLMI" <b-]x94RFI`Wl<0f.KbT͎?"lzFy-oǽl3˽'c޽n?~f%Fy.'0(?x7J\A PhJ=#Dw,9 |<&%G^Vn'i*k ǷMe;E,m#,!:1%ɯg'"^աLlQq<ω;aly=?h?f-= …!=9ӛ$=d=06%=V=l\8 =P  =#X=co1=c!=5{F00δ(*g[=&KG=~?޵.=2V3=JW=)yJ=̯lV=Ft.(U=G#C=K4ZՖ:=/8`ʮD=|vL=ݿ"cO=+ )c= S%d=$|i=b,@X=*UFa=bC{l=xao_=d¤`=A%+n=Ȃ#us=l˫pKp=7eAi=hcl=C/ho= {^ZE^=/.?ʿTHrC]DE\h5nT5?]Ȁ:,.7)<#jXy_d1M8'P`Hbdi#U!Ơ, 0R? g@ŏs# gL'+F^"%ʾp&ω@53/;zA]c=P86qL亚@/` BP8m(#v096\A#_zP`inP-:6LS_U<殪Od"SkI&1bT?y? W,fS"ZQ%pHX[B^ qF8"v67LD|Is9@6LFcYT'(C3XELBXŷ:PV?QP>76LJE6Iaq UF9G`b> C+2}x:=h|(4d9뫈-b*|$ga !B5,* +Ş+f>'+v#D:H' *Iu$yB l%}#BgsR>(^,hW(Fb>.Q372WE潀0 ٽ͍'RɽEkev^ս~چ)Ľ[^h^dbd5ƽsC;=ub,mŽo/6aZ/c}:7B偃 ͋ S-':z'|"Eݐz^=W8!1mժAνYQ=%鴽uH]Z8~0ZmS᤽TOeX$Jmi"#:̣.&꯶ ( kQ]^1wnjIЅqgۣ$g케7˼XB<뎣@¼o< (,<*ɘ Q_MA<EZ -T=IQ.A>sǼV<>hƙǴ5>/r i0>=24>L dy`%>sT>W>| >>fQ/>O_=u駘>E#>m!*J= 8Y֓=aV_n=8c=-@7=ۉRJ =7b}=! LtE=mdj=#pB==T=H׶CMLfc)bX:sl=QpS.j=V0y=tx=I,E=A}%CJoE3z{|$~BQ a<Ϡr;Xx3#Bꆽ74e6nf%Jb۽{ܠý3/0нI*r0 w׽Խ& &Ž6%8)<t1{<([4a:!xsSC&ȅjFQÜ$T\RQA7mzDžvo9#YqK>>ub ׽]]q̽KT\ߕdޣm_J=QƳ>$e=BV=w={Φ >z9 n]>am>PwdS>E +>V" >@m!%>#9>)_M&>T+k3>î:>҂.>\9>aBQ;>((>{D@>ZCS<>ۛB>D>JvD>F>(SyB>,bj{8>{ùo\2>)>.iOnai+n`>撼8t*5 lٙ29 !t%6"A[r|C03,?Z.r :o5+`;> k>u1>CQ=>N3d6A>\]F"F>qзL6ÛFū( @Q!RgZZ[i@UZJhZ HW\C˞osZ' ?`<.N <}妐8]`O@B<ĥ&QBSz'DvܙunƼ/ļaѼF\aټh1 뼎jdIՠX1A'm^),0vsWw:+$CVWTSUwݫ0$><0) H޷ D>۾!$c+5 E~>:by#hs'7 ZP8{+Q_v~xcXJɔ-՚s ok=ܦî\S t]k$ݏ%(5܈̦:1/yX1%vG.GV٫>BaYNOSGЃ|m{1xJ"Ҽ,uبټ.T]wȼP azv4a &cbdcpהCڥHͣ}怼^Z[<[6i3 [!`gL8¼3'&nƼ\rK)dѻX缹;U* egc@4 Ӽ2OXWZCj]ҧMhqiMb Z#N e0!J(-&d(cU" =>#1 {9𬙥664xO-R_;w.@]@seb^AxM'5u?/A7* T܊IB^ۓ~Zi Rf|o)@f&hoPff7=KDCVu BY JVnDY2?.)4YHK)/ c>\,KIqőt>] wRW3Y-td=dh=|& DlG:x^cA!ߺF/p4=!In9=-(F1=M)99Q< eJ8EdAƽ9@ƽ Bx|TI갽ph5Q]7˱J^i6Dxp7gΝ!ŗ.gQYҡa]I;SB^4JauX@{_N7hR_tgWf;^oxVABsݛM7B͝/q0 MWM1;g2mp :8;ν.5?J!ҼoiS"A7]ý9Aս&?۽4ڽ gĶ[\JrXF,,Jѽls]ٽzdU߽$Tsou}k(/d*[o.y?M@\q㽵b&߽ oЁ=VƽDUٽ.g# ƽ1Di'5ν*E 槽̊l˴omΰZ(ld7 ~ٽHԽ R((=BȽg4PνY Km"ӽ0+ VʽA'DY-pbŽ/ZŽ\SeLuνᦐyֽ7Ƚ=ԽkfIٽd#MbϽ@Ũս#Y?˾a\ާ:Â1l%P' R߮qUwEhh"t `2OֶD4Lds6 u8ΧZP:GYmfkٸTオYuoe yF GvsCrOiuVKԡԜ0T&zC"&r[nwb mi_"5̸J!7A.Qmm1U遖2+" 88rw<V&~ڪH%lEa wh¼ak ʱü6tΗ6 gisi[+CSqkuya&O<&"IQez<ûuA@JQ=U}P=[Y ="Z%(=BI2<M.<"v\b<Z<Ҝ<7p?=C,Uʔ&^Ka9>\ >0 +\==:C>Ma>h@it=n6FP*=YUb>=vw1t= &e=ƒS=))=H>Zp75>3T >Px[,>9◛>bnN>kR*I >.K >*Im'>O>N:.%>Wd > eYU0>  #> t@!>>Je+>%>##j5>SΓ9H!>yf>̳Uն >8 >mo  >X(O>=q==Ǧ m=`J=r9#`=ʺ3=Drw^=߮i=iu=Lh=_[=re =DO=o=JR~eq=Dd=_=lօ=HwD=Q=#MVn=eF3=S5=Yщ =$m?@=ll=UU=uZ=*Gq=Sġx=Hs=Z^Ͳ=`ǫȺ=#'qp.= ~3\==3a,=P =Zjě=,Fy=wLJ==~=ct=9u,g|=PD#gx=pH=If? ~=nB==+L==b=d}=3}(==*݀a'=db={}=e= }aZ="O=@u=j=׷=K4B=B* % =>6op=7Qc=nfp=.h=[,Q=NS@D=ty,.i=-;^=c%`v=0 =uȠt=\SV=X$ti(q='"es=hYg=Rsm*I=б:Z=]O=@6-=C=(dG=qDE=QFs*5=+s3=z.'1#=Y2bn=k5G=~cVddIX,o)hURhxHB9JNpK^bg;]XgpY}^Ym':>SjտC>%W>>]7> />m4>E @%>˳$*>-p>ұr6>@Tx5>>:>Uwg^;>+zŇND><@E>=75C>ʖ @>NL-3>je2>"e->ɳ_;'D!>VP)>E.Y#>2š>;^3>1@#>l$>A,>a2>F\I>*>%#&>z^_#>y >{1{">@/8>=#p(>>N!>Ȳh>y >Q> k>0[HH>M]+i>:#5>>($>%>y=q=3XC*=K/=UA=4=bǸxK=06\=w3 =F=e=/j>'+B>A>a`[>u$>gv >^WZ>PYlɈ4>Z>T>JĪ=IBI=>d=9E=i H >"e>L=RU=!=*G+=l'=& >>-> >t]>o > >>(t>Te >[,v%>z1.)>3gE!>]!B'>>2k@>0oa?>6D&3l\4> ϟ*5>Fb"2>XP2[?>&>">\]->n3g\>0;>h#>s>w} >0K=9 Fs=)9#>"=Lه7R5C=͏)=2LQi>H1Y>^*q=f bs=RPF= Z'#%L˽n5ӗ罍$a8Խ헙ӵUn="Z½7DԽ'6'ý,'ȹ=D\B=_=!0=&2Z=лQ=ԥD7=0l ==it.=X!'=AneJ=)(B`q=y"=0F=u'=482d=o+=u+n==`o"w=Ʋ "0Fk./&~t=b {̃ ʽֽR==[(Ʊ̱M˽UfaaQLw=4g+u=ȨXMr=o)ۯ= 15=ML"="Hd=RF|=O?j2p=~*98x= C&Ug{=qQbۏ=koە~=/ӄ=ɳJM="ۖ=c)=$X=B=?QH=*>=V.po=j-qR/=KE=uC=6z2 =̡_=6. =R;$=ԥ=Ԃu=S#Q[=h_ =`= Z=h)=&8K@="^& =&=Q=2^=У4=9<=ؽ=tjx$=0X=_ =*W=wJ=4U=X$=:A~= ;e>0 II >?=2>k>~ɲ>&*8, >#*>ѫX>S0=|:A=C=JbNF=[9=54M=uU~=qb^r=rp|==0=4u5=qH1l=]=j>M=&dE=_ =J =0Y^=Z% =A;@=X)C)=o1`>F~m=i>(ʺ>ړY5>(>}|>kao =߄>=`4ud>>*1[[>7>Qk4>&>zd#>#Tr)!>Dt,>ە2>J>`uh>! ]>4{Z֟">YU%>2+*>HLeG8>D~4>y.>a1>I+d/>r,l'>ǯn>d>7=„!>|`>{I > I6>n">%:=S>.ׂb=l}]>*u >C_=)=*h=-U=(X=@2=;G{|U=p& =YG=MT8 =0=ʏCi= ~=V4=ڞ=$X\0=c*ԕ,=JË=lh=m&=[o=H9U=\sԖ=/v୐=*\Qb=^C=n&;d=Pc==CJ =Pճƒ==Ğ,-'=X C a=ł[=|;=3nj=J)?=\=! d='=I="`^=/kv9=N B= |=}|=-= =ʲR= 9;=~؞̚=ObJ%[=5)4=\Z}j=_a% :d=&9H=dNڝs=?d=r=1=7=5m wv=ԜC<=P$=|Ӵ=e'<;دy=oƚטf=TMb=k=Å̅*N=4A=9 e=ui=NMr=dk=޸+=4=wvCA=ItYK=A_6=.)hwG*=ÕLb*'=9M\Z=<<)P]={LcnQ='ft=#y>9q=<ӆt]=ScoV=ldX===ˡ0 0(=&]u# 1= 9dnt2=TA=N((=;=<ż$=̨).2=wOh"@=ش3=Q\1=PU%=Pri=Zg&w&=$)=v_+ =Z)=?-=A3=k-=&O⠻E:=\=<=[7=>u@=' MB=-K~v;=:cTB==6=Ho-=mm? 2=5&>/=Gœ3=Ԫ2j/=+59=6YC=H="<=zJ5=o#Cڊ>=1>4=w P$=:#=OlT=,(S =uN&=~Γ !=U>d(=NO|}= &=x =?4q:=8.=)ƄE=&n=ޭ>p=?B=WDl5Gj=CE 5Z=w+$\<+Y<6dQ=rRtA=RI=AˁT=kM=C̷O*J=GA=Z:=61t?=s~A[;= )!,=*Gh26=>1=>]81\(=3<;=97=LC=^rD=P:=w\e8=>L:YA=IeƼL=53S==~S=sK`M=^(KK=ܺRP=sw>S=ZR=7K[=6QY=Tm)^=W`=́j_0a=U&<]=9\=3!xY=K/YV=x,B\=AiW=\X͈W=\R='M+hC=#k6E=ς(L=2T7l?xF=.E&O=LZwT=X}Y=.i8U=[#sKS=4@zdS=x#G2L=-I=cKsFwF=OT={"iW=|~+^=$B5Y=yfO[=%Wb=Ӳ#dc=U2ba=4!I}c= b=?i d=I-9fd=L=Ad=Jf1#`=YކuBd=,>P4^^=bڳ`d==_oab=JN%o`=(9Z=6$^=&I&sjb=0b=O0Z1Z=~T=QP=5'R=hS}M=C4C=J=߉WC="K=xPjdD=BIS)D=kCE=|N=^^|T=Lte=h\l=#go=L=7d=VKi=NԢcnW=HH^=qA@=#4:dD=w[X=oS=`|XyooehӡJ^0yxJ-'=gCW8T>"`"="p[ 2 Z1=FBs>=] 7=f$B=-=$:B:=t@RP= t?'5P=<z"oT=xG!\=b>W=DBKY=R=d?JG=hzEG=83p6P=͌qþP=YҚI=hL=N=BDS=#UrU=jX=n0@]=G{bY=>)jU=u2Ĺ]=ܠ`=ס`=Jc~;c=Cνqa=z5dlzc= _?'d=`9b=Oab=ͣ4c=/z؆Z=},`=Mo`=!b=+KM"f= z(h=Ag bg=*jsPd=^fμ`=Zhd= fs~+a=?#Y=M՞vS=\K:aG=F=^hg<=fy̅E=D2=47SP=*!I\=^R8MLQ==&H3_=4Qa=Sw]]=s2wgU=EuwO=!U=QaS={{ S=In\=4X^Ab=_^=|!1)df= Kyg=/Pj=Uyom=Uo=?tyi=d@/ a=CCc=pl= yxFyio=L傝Rj=#q=`r l=Vr=zL*mFt=- t=h7t=kҤu=MOu=׈t=4n=/sTq=oq=Oԓlpn=e; i=(^-c=le=Z:l==Xg=nNc=,I C5`=<ѫX=gXb]=šטR[=6s !I=dPr~fqf=ٸ".a=.ދf=a=D&zJW='"\pZ=#S=+XF=68Uw$=t Q^"˚ht =s/R=Yu3=O ٩>=!6F= 4B=oP=ڏNN=1)eUh.=\8<=-7\`l> V6=|,] @$ Lғ ,B78:WՄ `L[88ρ6@yGh}MPgZS_b]$Mvc+i[.qG]T9N!)^OCUV?aDM~~nqum@}{pq~u6_(ܕTVT>Xq3RNp1;[+F(dtb5Z$1S`"&`#;C:@ UEVvS9D==3 w'=s wE=뺣=8Q.3MM )KBTSAwk9InJ݁F=޽ '91=d#$=>^r=ά1?kA3I V{Gyc_S5'&Nc%pAcq{W$ 8is4@AߟC WPV[Fvxc~TwJ1|zۇ@ zOmyڐe{삉 Ew닽]䉊3pIOT788T8U##Ƣ Hߩ| (̽-+MUֽIoǽEc+x½;ٽ"̽M$Աѽ(" a ؽAܢC ҆齮KIۙ81)P.FoAquM A]E?-lܘDPp!C:%Dn&4Mr818~3̮^+5$3e˭}&R=>|$1"O%YJAaaq.L Zi3qA#*E"uL(Pv/2A;#To2À[CRS3;sx=7KJh0Vj.(\$( %BTL7AG(ǧ)UVݳ cr,zp$U C f| SL#[[|gBὉ"] ?dV_խ`UFou> x45y rj!>q \?{ȶD},"A'x$j7=^1 $v ۛ4?|._h=r!%1Z9;S =F J(:/Rv}E1_,)|U9$M? ,%Cg{~+@ =$k&ʴJN004b~&[$;X$N vzYυxD\2Jq&qȪ')W4PǽFkSN2dY½3ǽ\c^ 9Kt>_x5sKjH#DRo~T[/[b%9zsZ᰽ g1mmŴ.p=2pI|6cֹq½٤н WpiནeפF潓)S~hѽ-Խ@"]nѽl ʽI ɽ;!HŽu-9{ݝ1J|Խ^2M۵| a3^UyAnլXmנyb##EXM>g_ӯU7H^`ZsbS8I_Ҙ觜Kg@N T<aa؉,"aĈu$-wl,]~Jp CV8OX kΉx˚s|up& ~h`/08lݰ)|-λQ½;S\\10UbŽZT6νj.н yz_ѽ_ٽ{ʟJԽ/VxY_ڽF½5 \դ.Y;xҧ<﮽-*+u*Bj[ahņ .faԨ0/ŧ}7yדWjq!KˢobQmuttej]<y-\']{wRuZIbRfՙw . lF+N;9Mk;+.l=lF?=b\B='0p.(d $p{V<<{t_;ԨQ=o^4$[R()˜2:T#2FMίz3Vg.(.FR֥ 59Oۻ)uVh%B`8 R.wJ^;oh)}:Ae~%1 l]/2qxkxrKL[Wvq]{~RD ~;PfZiЉ\*(a^yUէ}Bdm&qn?Z~^}CDNrF8^I놎J6|落527젽fcN՝VrOf# "4|b;ҖpQP䫍ZpOb=~3qk}s%UQ_CfE(-YGkzd W1SKCe5-B d4" JCl8& 4@H{r :02,cȧ_34!-[8E·Y8Mݶ[{j:}^Iw*#dNK3qlGżYXGܼLS˼#Ii- ɼ<,%Ђ߼5o!tg CӢz󹯪ҵz`꼙R#&ܼF;{м4y~6(cAw]|Mռd'мN9vNqZ훼6cPf2ZKR̵ ґ갼xo(~ǽʵr~!5釼&9қد- 9)g䉐X;=y@5@=U<~,=6qQH=`FT=N`+V=F!f`=Wu?2d=9x[f=2'\=VDUCQb=i-te=i^ʹ g=uցQk=g骮c[=a=!TV=ٔ']=+S/ka=w[d=!j=b:m=Mni= |IVc=YOf=q=p=0q=\Q[?t=g_t=Xts=,am=O6n=ڔq=nhh=}n=Ml=@}_=“i`c=1d=[=Kc= 0G)i\=ۉ8d=x/g=*Gk=:e="@]={$ {Y=ZR=y?gؚS=ePO=G䊁S=~jM=H=RgMT=sV)rU=cHPP=~ s~J=&P=e?= rJ=F-;=/pBJE=J=njhV=Sg{YU=Z,`=myOxpL}NH'4 u9뺉VI1vx쩽NA)◽J ӦpI /f-I$L[cVJ/PDzcLu6l~ExҽHTkڽuXݽaʽ2~bJFͽc8 Ͻa]ν#սSr;?޽q[$߽Wl޽{PսYYN1m)|1D%V@B~-/PqR!щW@]Sun]S MY齛 彄oR @wWHؽ(Ty/SM兘 @BˆmMqzJFY;5K8Y`ͻ8A1*%3q4srB <$ZS6~-1%Yl2 JB(m, +d`#= l,u!3Lzt&$ǵ,/]v(1Erm+i;(>+>Q$%'g9K$ ! \:gVx%h ~! [e絭pSWJl(%:f/6If SGS 跺 7&q4QE1ipU! ?7Wiɽ8]$}Qr%@U \^u9>uPz8v4f)0Ob/1X>,`,E*rcZ3nxt7%F:쬲d@$#GA#lmEIS2AEH=g$EW@(L(eLMc|K_&C"]E 7>gNoeDQmd3RrLJF,c.OYTuS%Y6UWxSB疀 R^1 PWʳQֿSrƑOPS!фy+_AJCn͠E'K?cdIșDp D kM$E1F<}@^nA\2fBklBMQPK9bI9%㽜E؄L_OG`"NJ M AH&0˨L6_Q08OTUVX(Y- -UDXHW2P3^VуQYh>S0r}_SŊǪ`OO N+=JmMM8H<.hT3qll{S'R*5JeĽlKAM&Fu^!L 5H^:rD-@y>mBâFK`0H@3s_ >Y?F>kG78=:U4Ơ>ǭZ6u b;UK 1u6+j -;7(H{#z &\S-E`'}>'!,Dc2X&V2)29A+;l*:8+˔ߡ?ɫm<Z7L7S,֞06{17f+͌s0%1r ȟ|+_%*{ i.!eyw'44',6+%_t% _(L iwz>Hhf܏j? VFw0}r\!8Jg!!p,e(S#^-_B # 'E 8=w /rjnX2 __!kPwA6|31 V6q[ +"p IEvC< ğQB8 s`k/ Թ/S<%|-J%hgII_N1k^`[߽CCh׽b%r1Ͻ`bXFŽ,\Mzƽ2AʽL*qmڽ>vǽ[ӽ\4н7٭>佫\$CemoVw۴X]N\R1{)CUֽfYϽ|)cӽ٧ڽ ڽn8޽I{ww\彆q(^Z.g{ȓMK@3A^Rp7c}.Bh|DBYl:o ; q`cK*̌b%<\ oY IU.)h_¡ :F, .Hprg .>QGMC.U9c,pj] ū*E4P󽶏9@=+kBbgƌI>h位N^|9!vJ qhڽG{ҽz{u2ѽaOn[ݽ+ѽ슥ѽ4~8ٽFKwOZ^qH轀ݺ!K'FSL4)-lvtueֽG>Ƚa GͽW6)Ž 39oʽ+ˠG%ᓥrꃯO,̰!?з7&BȽ^bkʣhgǽXAh¶&[=f`dͽ#ʽL ~ý4Zƽ}ؙye!6%XW Ϙ]#5䫽0U(liUZZR+Co+͞M񐣽6<ғzo</\L wX'g(y4)e{Ŧ-0v鎽e>UI}͟SIgo؂߶[/Ke``hxGF(~)fuXl9fԂd6mz" Hŏ_x_ȃ۷T?SbŚB PwhᾤNmGez 3e uVŽ/A V$?˽9/E.JADŽiYiج{3=+@ \*0n C3X崽v?νI"\ZOŽeYv½bFLOsPQˮ!GrsO+/Të,C;C'[.ΚNMKT?W{rS0DӑL0.Jq;Gⅽ~Vwcy?kocN|fcZqS-GGmoجRKa{߻F>Z[^a 2ybP3p4id2?80 k+_y/|Լ-y-޼pZR꼾Z @L͡,bR䄬f/P)T[k#sXp$MqgSڛ֑<Y-UՀ r"<'n gxA>8 }@>ы:>RH@>XHj<>V^w79>(ٻa4>ԍ3,>/q֫~22>fä_5>O;(J2>L3>Wd/>xq&>*#~: F,>,H)>b&']&>6vQ)>e >Ҵ+me>SVuZ>ɵ >FBǚ>3X=> t> ۃV#>@P!>azU>]{t>*6e+>1#ħ+ >vRD>RQ}V>! =!=ee6̟=)*ԟ=\\M=#Ȳz=$+=`Y='-z>#=vHr=k9=C0cTVGh="t=.Nfn=nv={{=*m=۷O|=Yx W=/IJ u=yQhw=ч=%7‹=5 =(#_=ԓw?ܣ=us=';G=UƧ(4=ך=:=b=V} Y=9:\=]=n[s=Y%65=G.l=R?=!Sˊ=cHJT_=-~+=5.=DX=J4I==MُǷ=T(-=gx=$vE= =a=ܒ'>=Q=zX=҈+n=oeq(j==< iz=%@^=pZ=Ԩ!J=y鐀=%ZH=<Π=cO<= Eo}=} r&=ks=?O$=93=mql(T=M=mѨ=|=y =sY=Yg\=tW_=zCH=jx=^=#mU"=a==rsr= A_g=-[b=S^a=[&=/'=f =1)=-2[=| g=ޥ:լ=ny^R=;=,"#,O>=N(=ڔ!_Hcǂ=.mu{y="=5|=@/=l\=Tfe0=\=n=p:RP=݃fY=>1à=Џu=T=[\v=389z="7==z*m؏=HE=?7M="a=[:g$7=AT[t=qmx=~=Iv֖u=YV7=-ű`=~)*='rr=SV7=>,*u=OY=]9e0='ShPB=/"^=[}1=xLh=7+sTs={%W=kfkI=0^R=ZC9߄K=;n< 3FI6+8t#@bx|=km0=‹e=:Z=B= 2=j6LIUZ#V._XxYvY%HASz`,B؎^7F'?'`%䬽*,zN0Lљ+$ҔlG0+ ˛o+ Bt[-mYq?W{8IB Y gVQ cs4isqܽ{,{ɽ zɽ:*2˽nT492J.(V86Q&|Gwϖ|q4*'FC HCsi== JUսR*བq%׽Y{x޽*tѽ_νZϽO% AUuTPb܄sнXw\Qΰ;a# |۽beZ彖#3wMqM`32VZd!>{kN^]%**LM}Wt%LEVDy- )gGaб-Jm[t-VLBpߒgR `dTDP  E=#|x',*+40y(zB E3.M#=bVV& U ^~X8KԄyd 6k $}WKx;4L=s_#o==礤̽\J.=1QZܽog2=!x=!|ҽ.Q^B :3QB 7ꩠC` uffѪ$2lxR 375_ܽ4͙=gL }@ս7=?7=`=B9/=7BK=&>=첼l=P=M!=e]Ip=JH`0a=os"m=¢m=$H=7U3>'>Vm>Ǚ- >]@c>݁ l=T1>5ȸ3i>%~X>id>>?ƭ>h]>URN> {>1_1>; ">>t> [2$>`'>~ڷZ$>%>JӰ1>.E̻!><(L>݈">g/>5-Z>& *>iM/u>Cd3 >S( )>gm>䊓}>}mD#>Uy vcYR!>:KYD(>/>Bx7>6[C+>KH&'>pMg">~9~D'>.[0>?j*>,Z:DM(>4L ->: />ȺF1>Y灝5>щ=6>,J:>*7>z8\7>}/>-eٿD6>w >>% =>BMfg;>*o j<>:>53?>+A>\WA>E):A>hD*E>b @D>ܲżaC>]aGC>qD>ӗE>h rB>w?>.;>YV5o7>67/>eI6>~Y9G2>n9>+NL>>0,ۢl2=>7+>|W>i-%>mj > tt)jx\C(x%4$3 >]M*>OrU&>ePv>~eӸ=SY>=:,@=ONi[ 9>@"*TD([|,(y=7NX%Hb2~o1H%]fٗ~~\!])X$O o0}$nD.>(4AE3]A&8k4 Ѽ<(]%Sw@c."Cw?C&@:5.4)Ѭe)Hܹ0 @<aK7dB=-H@a1CBƨUÚ`cѪ5>j=>ӈ)>ʖ>>8(2>)?Ἆe>>P2A\&>0iV,2>gm96?>+׃1>]?>w,C>v|6>A>61D>tG>&A>qY3G>WSVxH>0L>PB>BXG>%zvu/J>t]G>LWE>pE- PA"NS蹸kK|@aHw H72LD`L?uk%OGq"&R 5haOMU,_T|Rڰ0WvN6S.+V5bT6ѴU/WfPWJ~,X.xͧdY9W5GYY 'Z=z֛ZZY_JY[;:TަJXsC`_Y8>viERZ j\fw[a3Z b[D# \ó,hZVʯ~Y[P[Nt͆ X-X|$VbXWqnaWĽT6VɽʲÑhvkܽrQy#Ľ{ܴӽk}Yqqr<ݽ@$QCtCsko^ϐ]l2yñ)]$ |C,<'p<ӔgTRnF!2a3mix9No1tD.xtڼJڌ<wӖ}]ra7,|̇9=$UUx>h^ >ĭ0 >/7)>Oq=HG=Scu=VV L=n=+=t=o"Hpт=X==ͣQ=ָkAB=^xn7j=QǠP={8=TF`=?3=,& @< <'=W{`Y*+jA燉C)Q61Faf&:>h%ޒ(>;K@^&>Һ$l١>>ap+:>">GUf,>&X>̒L>2#@[N=2=hb.-=־ ==k3=* @>= =䦍=AǗɚ=z㑛= z4 >+6>%s5>;;H▏=^Y沽$s"=ֽAi=\1{V=Ǐ5=̌K =\=I,=$Ph=0F@=Zbz=i4=cS%uj=nXD=t+A=O\Φ%=_h=o$=༐=$=wq{=2 r=9!~ =!<`=_=m Hz=\|=Lq=^#b==6:2H=4jw=J>YԊ>\=̆,='l^ӀZ>Y3>=C.1>|c/Je!> ;>f~Db=aم=-=7t=Gj=';=hq8f=xs= 2=C6=/NݱΓyJ=s 7J=K} B=kmkQD=]22==+c=s Me=L쬉j=B@LƜo=u˚"iV(tg%#\YCݽзj#t= P~S4 5zc:NuvȽi]Vѽ*߽ge@@P;Y뽽 $ï8P{׳Q"cEvҫ<#n2. `ۅsAkaK'CK& 3-6Vm#L"X` t%T#-Z @g1;똿"սԄ״ӽnн>LN߽eZ^ Hؒ`\dUs BL(Iw$+Q1O;t^q#>1lc>V*FS=#W= %L=ܻ=Ϝq=6vì=y=۟ao =rl1Vu=xc+F=B"Tح=8Jw=!,=*q=ՔG= ý~=|n= IdR=!nP=pyY`=Wxsg=iOd=/x(9T=(*Z wYh@2dp=0.=-{gYmT%~nﻎ0pSeVSF{`ZXPŽ}`н~<">);^ƽD?b3#V.RF+R;NY?9|,^xk=?=#C=f-bmT6Z={>Nφ= QI>L>9k>O#>؛u5>_X'>#>0OP1>ZPuO&4>bERl%3>,L?>_ BB>\:>N1>vx-(>WM ٽ|1Zev &.y"'dLO>m &FZG<^>~ A>SPxG>6:HLKS\Vn[ЊaZ!~9ZvD<3X t<*nnt<<};.}<{F҉g6+.85k#םS]}"$Fm< gl.Z<z*5dhr0X˜c'0".At=9EDcTfͰ7yN/ebEgdX ܷ{" l75cĒ>셽UCj炁Ic\(GuocCqI 9n *$f-rAK5$e~Eo^:gI0;fn] #'cQ,ªv\#ռD6urܼ(-VKgˍV'&3>f֢L0fN#~=E=ߵga$(Apt/ɽ} 4 Tba)JtD(q H1\}*'.Q0@И>%e : ʖKݽi,l%w$M]Bӽ ֲ.L\%OjvN&3ҽxC&3UlyU~BF+15ѽ/ư׽1>"齯/=<6clRk+wo^t1ŭcq'Uݐ cp)&e5 c <mQ3Үӂ%@̒=pn.ʔ<~JKm5"ؘT <(؊< \ <: <+Uu<Ϭ=w#m =9h,=<Q=x142=)Jv,V=xK1= h=PS=Xn =Nrj <.B=O-B=U֛=c;aTH==# n=lMO(=,Qd)>KU>3r*>Y,&> br5>pŠߘ&>9>IN%Zg>h_>i =1 =^, F=p_t=˞=W= =#G`=. +G=b =Njl=e?=VS+ܐ=l黇=kʻ=!"^=d} c1=os=G֏R\=* ܕ0Cl=DעD(=_N:CV߭@>3MD>] I,>fXp63>f0@>uuH>)˧:>.BY4>J!">m>@[G>#>% >,Ի̣> b}=߹0={ڀ>⤳H[>>6==JSh>?Wl> >4~ 1> <&:8>^19G+>ږb+>؅r>Ol6BOT=F^N=@v`4Ž`#Tƽt9۰y.=S^6p=k6I4=_~M=>f$=mĐs /l=X sORZ0~=Cw= ~=T8=͘N=-mp=nk2=ӳ_t=GnT=j:h=ne*}= G=vs* =B"s=Xб=u#=Ɂ=) G=PU=e=Aߺ=&is=a1:(= ,ڰ=^ O/Ђ=1~>w="Ri=yCOn~=&gSz=hr=e,0Pf=vp=R]=U=a"K==>uS=Ytb={LNj=u8k=oc=ٔ9=W|-Ȋ=gu=Zn{=Y+<=wϣ=]y=A0FZ=zmDs=(X=X_q =ճ|ԣ=r% =go 죣==_ǐ='T d=JSh~(=9`;=]^=nA.5=&={1y=XE,=B{|=X[dxP=޳r=E+ >^ψ=t%X==m ̔>5ɮ$>Tsxa>CJ{'>sO:#>Lv"D;>VKOj>gj>-_yă>)z=>"(=:=C:MS=h=//=ﵼy=-=̅N=Y;Uz=X=FV=-u Iޯ==Vt1=\r}X[= .=qF'3l=5G\t=8X=0dyh=J=<=vS3q=žDW=2+nW=*MJm=6\=#mg+7=oMB=ψO.C*=>"=)D =Za=`J2=h-(=+=.Hw=,,T%=L3=0FZu_&B=OO;*M=<K'=n<O]<y=J+h<%= <=, (zu:=$=#R7=Hw?=X=JWg=I1grS=tYvK=(kyV1=B1g48=@ z{;(=?ˤI7= v==V8U:=Kw[,=ˍ | =<)=|J%)=Wa$=ջ@0=.%'N5=M!Z,8=3~E=Wm@=VɊEC=ûGߑ2=9Բr.=Ƿk,=:4J9=ΘU?=FX1:=a| A=gó1=.&(==.abr=H-6{=mւ"=Dd=b=Z=7ޞ=]Way=>.ϧ=Lݍ=qvq=z`%=z2;<`~y='=K~K%Z =[}3=6/ 1=o]o5=ݻ(==l ة(=΍ck"=N=#۶QCIYюB<Q02=zw||ڤæV6=iwA= :=C:=j"B=GӃI=-L=F5 Q=$<W=9PK+^=t]}T= <Q=XG= 8xM=D+Q=BP=|3U=U͸1[==%W=2z$7T=lxZ={-`=mb=3\#ed=LER^=[a=b=u.l{e=O* i=|Km b=͖dMu^=wIV=mH=bgF="[BE=J(Y= uW=ZxX=ܔKT=@yW=gH=dXc`=^.O-d=HplQg=0Ǝ&`=|1U-d=o8n=`@iOj=O7ig=G@`=w2ph]=. R=fr5>R=Ac=7bި\=gك`=$T=t>R=cVFg9=~s٬ =npkT4HjR3*A=RK:=z==2`L=p)Q=`APO=B a3=Ͼ_2=}C=SQ*7eH-V=,}D-)Vb5NJ @P5i/W4'55dYэ_‘ SnMI6L*r2Pc{9pa܊ b]>be.lr?w BHe j }Md<"v]! pyvjl~e+U6+WTO| GSKOd6 =sN! ;=af@c!yPpgPhֳU<8^C!=Ik2Շ٘Y ~$W# :arQubmIŐ'T zL;%u<]b\A՝֯Iy+7l9K" 㱽,8[н0Kbֽ1k\A]3|X%ٽ ԽJ1aj61E߽qCpb[99 :[&n<(nO G 4&xc5B>*fPl99H==owu).zµ$ ʐHYn HațR pB@ ԒEdΦAr2!j2-!IH%!6kۇ^:rC@_3Neڣ*eu`\oaV (Qyxr6}\drT꽻#hY=v?p#a qB̽ukнwεU{VO7*UJh sJ'&7B6& p%T$?)(&TP2649EӰ\S3+Lp nϼ)Sp# ^~⽷L©ѽhgMY!gނp׽-ֽ@u /8;V½Q D@w~ͽ1t,׽fIJ1ý -!z֬ýg4tˉ2})Pcr\}sܰ.^=ig|ck |uib؅ J₏}\ޠ89 2/;6ʽDGCFb k׽O4x{3X3Nd\2< U^>2hr9}=ǀq0NfjYMDÁ{ 3bMX0L(s7YyC[Y:#3.|D'Cj '%nPA=S {S^Mת3q00x8r֤VYtGSG B|SgK^6C8/BĘ@YV6Qc*ct-g&=Y3fStBUh2Jʵ->ikrUF%Sg^ʎU[ߠ}C rt䂤tYCfz5SҴ8Е2Up\D,iMN–H]P+\]R!mͩ@tTgBs1v1PQ9k;[6"DqM&_m7g ˼@ 5+`$?dOb[켣lҼES|y~yѼz趼:ziH`40Ȯ⩼ĺ\.TWv=c*]%=. 5=E9\{@=I:@]=RR%R=I̳cU:?a4Q%ЇGQzLwи4[II Ap0SȆII[g!z՝ϼp09)bcN㭎Y{2Ѽ/Wd\oM<~P.yLK<>uW<8\iկ/5<@6%뼒mSټtwmݭE.h4sH:ZQ8 UC8'~;P kLzfSh:-\B],%T[6, #rM$=l13?>2: OB>+cR8>ZB/>u7>#Λ)>W">ox+>oz">uz>.9b >ϣz>;'!=j5FS >U%=G79i=nB U@^=8ܘ2{=p@E E=t@v=! =a#=;2=,&=@ƞ=^[-~{=FO=r=WE= =`ߞ=vP= =/*f\=NSz=*$=4(l=+sV=FN q=65?Gf=GP'1z=s:-x3= =>E@hf=7+N_=6Hϩ=/t= R=;1P='2_=efg`=+VzjDS&x]wh\ z=tqQca==Oj=[K&a9\x(NjmjϷeF+|OL(}ۋEp4YNZ1O{ɽSR]u%%Ѡ觽MݸP½-$ս0DQŽᩚ\us)q6QŽػÖEֽ[В"qǽ Sƽjz9L,FDPt +E E~{Km_:U.= ƘCսĎ&='B=Beۂ? ɽ+ӹ=[ r> n=v=r(5R?>7HHd>D}!>{It[$>6C;@>Vq>_>/3>501>=Xk6>9:.>mQ+@>76=> KhNE>|x-7B>2+@>Ԣ2>I0>lkX =i-<>qtByi3I}^%$ԾO)u&XB2p'<{ON53%CqO(WHouނ {%,<1>t, ԲB>=cWr>p 7>Jղ8:>]H>YIH>b _D>6}J>0U *L> JgKQ9t%@X|M[S&_PjUQ3N8YBRs[ң2_QḺUh[vhYlF[ AYbY=YXydUG{ӎ|uŒs<AT鑼 4e= GrCrgep<Γk,qWsU[ }=<m6< wjvATku*4d%2&yqx<J}d9;$ v~[ޱ'J/V 1q<ӿܾzƽ_vͽΨJb'gZh⽠꽻)9I||x`lнey`e1Ͻ5Wlٽ/ҿýWv43ýOq-ٽzua3}S*Uh1 oQZH F75)\8)RS*4|ObX@v'(dXv<~ 1@=ш <%O<<*U@e<Z1.s!붥ݔ<[郼:kꇺy<~H1 QJђA>9^,M=N(C=RX=,tV >t~ >7Y>xք 3$>Xl.>Éy>/4=H=b:6{=LEAP=N=*:N =ϧh=(v=`e=UcO G=3N^=eb=$tn=A4gC= &eXъ=% :=+YBy=vC=<Äu=%F]]=Y+dYD= ۃc=ڦW -R=r<=#3AvPaeUB+2>f/>lW]C>|_DJ<>45>uW>iB>J`Mi>f9fd>0^B >53}>'- > \>I==mI|=0N=pz;K =&q=s*N=!a=gd&9>w>'PE>Bb~F+>M༌<>o3> `tr>,/N &^=$-~Ֆpd=->Bn`lu`Ƣ#z=`O|j=* F/=}p=Ƒ=h|s&=cVtkO=dt"(b=⦂=߁z=ea^U=pX~=cYo<;=Gk=+$=VA=C 8=·=NIW>m=,^=eQ ׌=v}i=F6q=i#n=:wv`=Kh=3љ=, 4s=+=V => =9>= B$=qX{=d1%<=[-Q(=hYOr={F]=AP=Jt$[2=͟cX<=n= N==N=5!=n =)5=QSE=Pg= =eJQ=B~= q3 >QZ=ͺi >KQWH>7">tg>`fŰ(>uw<y6>aan>Fu[d>;<=ĔP=Yn7=<=Ρ0M=.0=1_Ry=_=[C=_h=reZ =G2,d=Ru$.^=7٩M`"=0 V=дX=ʪA=4r=]=>6=M =%¢#q=mރ/ < L=0YժZ=iob={=mi=DMl=ͽ~q=eVUk= _=1+tCNi=MV=XCR=jB1Ig=P_=2ᨗXC=2L@MBĖfW=x+A=9&jEM=Źu;_őXJQX4?o#™9V[\b3Db72~ڴ)c,vy4jQAuj,9:F1 XǏv]:`~Q 8xXp*FD!B7]cd4佂TͽV@ƹͽ$ W0mnm=3_,#,-ws{.z4NX"ZDl,`Vx4]BA- njRkHox^P~Y+w:e8~I6[! 6 F ]*KoH#=Ǽ^eʯ| .|CѼܿDc@p"zP]l薼Gj2<6]<<,o9s=e#F<=#z;'=r JL=o(&==a M^$="<|Ct-w:1)=׶ToP=;*rI=kƤP@=ߌA=}Y=qn`=kwlN[==0%t=? efq=aNo=D^=#|Oh=9J4=?=A=U> `D|ƑOo᩽?ýME5Z㽞s½νjmT[ 潈 dH{cbkB}W?h޽dmB5S*d> Ƕ4^a9:!Cd%1d'*q=N6G~[܋ ؕ3[ Yn'b0Č+- @%86p, >oZ\>**}|71˃Wu8M m@|q3MLX"+ /C=}{HI σLH JJ7Oa?2'Rq0UrQĮY R'G0MlXYoUo5N[(2lMj4G/,6B=6xD LAFçH -EP 'W^a"TpQ[M$Qp(PRHyHHU7 E = ;gDCi2Ǹ55%;!9$MR6c4+3qM#ȇp%v&Z4o|҈: dg)c pHs1Vv:aVRO2zU轃A ս{ҽ%t1ؽDN\,콠\,ནBQ?ҽO79$ _XBw(cl~ fh}36 }Ġ%F 0A(׽HνЇὌTR=G;н>*wW3$=ܸOT1YA-!ʕd9cN7yȖGl Y'҆pxR -̕۳ )0i½3rIýʚ}n~ IfU4rˮ=U~Seg 8>@c6>Ȓ7+> ǿ%>w#!>rI_G>7>c8>`P;>e% =rrU=s-1= w= z[h=`c=0L>=5u@r=x"=Ha`xi=7*#f=Ϋ= :z=HR0=T/=РR.=K=C 3=*w=zG=IV=`퍈= T9=QN6͒kZ&=Y;=Ь8ʣ=f}3.sNMn/z|=2W=ټf=#g_=%AN=zba=@v΁i=u#ɋ3[=]Cqj=NW;#z79bnvi:2W|ruW=dSez= =lm=R}[QA n@Yd{MD)\-N߈cjDp5j ^M&A|~\6T噽ub ױ9.8ɽ*нRJٹ5]VJv&Y[@ó̽#EuǕ#۽lj0ҽZ뽇$#G* ;GQ//Oir(rY\X1 }==* \ c1gC{e=΅:X}t >f =c+>K =,>(E>u >Ug %>u>M->">d->[ٳC3>#x3>d[2>2`{v6A>:=>Hz@>/іF>k$=@>6>V38.>,>d^!掾>b4 |/dfY+ْy[T*43:<.83iZ%@kwyL#<լAaTm<QN>ۚ6>~(>n7>QDD>X I> P8E>BS$M tT"[&VU hZTI_[Rg+[M%OkYTY{SGYΓZ}7<^.w{<72r-<m}²VYO&>'uƕ5-FIx}Y<7Ϟ<|=Bh'5J=MPӔ~='Jq= ;]=w^PZ=ӹ֘=S_e =Nz7= &߈=/=kR0=e > ^A=؊}pq=yƣ=>V.b@>r[!D!>Z*I|b>2ܧ>2>nJ:dR>㔪zbx>p"I=#k>ɯ>LE]>`6hi>>>2E>I N>/.>ak> ":> ">z.n7>:Th*=o@˕>=Qλ7 >t6b`>ls3>A_q>!۠> PW5>!n>T >]8F|>_|Kt>^>nIm>O?> 0տwv>Ơc>*ؕ\>nM{4><7->> FDX>[X(~=:"i}=\$&>+U= cT= +]=(2δR=\,=Xm=4z=k礞=K+==;v=rxO_Q= ޞ==ˍ=&;Z=Չ '#=Vz#C=J^~A=<#A=y|~s=;^a=z?=JQ=J=ܣ3ÿ?=!ٽQqu=࿢DT=8#rc=|>=X0dz=N P=L O=Z]=n'"[=CL7/h=^N=4H=^ȴy=l=xvk|=U3===Z=o< >'g=9>ljZ>2*>'3zN>TGZ>-}9f>{>4a>ni>?x>>~Z>>@>5Vb>x7>kՕ> >`>I>etH?>ң#f>DW>ޜ~=h]>\dg>s&g>9,[>G ?> \W>>.N>K<('vû\*hB3HT= T=J)=i{?# r< V$RSns<eJ<&Ѷsu]<ҿ<^lZEepB=x`x =?PXuY=l2t =s"W=\h}=ϸh =zƐ'=|p=1{JX=b@{=$H= 4 =cSJ =-WMz=K+=1$0) >6l;i=˜L=ު={6U= C俁=ߴn`=u:@=ӆB=;|FW=k"nG=9A"=*D_=r*d=诘\-=Ko6=R=(ҷO=L#9=I&p=\=G C1=[~>1,=)d.=(=3=ɿ_ܶ@P>qF4h>D[.^.>0>Sy>gYq >wy@>!x>D0>I:>^o2>0v`I>b>}3q>I>VYi> G-睙>>@JBs>ز>Ԫ2}>vM>ʊ:In>0((>oD?3>k[ȆI>0>Q1oJ>w'6>@,S>3;>߯%lE>r5w>t`0>YmW>| b> n~>KzV>7 !۬>k@>an3>:8>ƽ>zb>8f>^+=GV>0E'p>[+m>"b9Xj>c_Z>Fbw>VkP98ɐ>(<ڙ>B>D>BЙ>jӗ >cۥ>-soX>m2y壵>B>c43->i` >_>K[U'>( bYءN>/@6>! |.>@mz>zR= =#\=~\=rx==cЂ=D=kJ =Jo=W = W/=Q}풿=;#=Fq^=hF===) a={^`Q=2'mB=Ӄ|= #=/HD$Ҏ=mD: ="y@_Ռ=A4h7==gj>z$b b>cR1>t?2hw?8c>H9?Yrz?CK0?/&&;/?)hq?! ?K?!?Q-r?^#?ߔg}.?e76_'?X==G? &>:? TT60G?ՉN\1?ߪG?І6@ZH?z2?Kr}A?}c{9?_L6?kO-?؎q&?Gm? ?=l?4 ?2!?멖g\?6d  "?P$:? aFY="?4~ `6?P!y@?;qY?r+$J?[GJT?DWf? y]}M?eMY?+Y?bQ?Vp?S䵖(s?,Yz?ޥ&c? #9qA?JѬս?;J>F??ycD}?c\ZY?vo=?3E؁?|΄|?!%J~?+Lfތ???5c?(GW]?@(? i?F}?O&k?ov?b5c?. w?y@Os? YF?vNJ?Y#2]?c^?yKC<?,B'?xm??y&? IB>1KQ ?z6;9?BZ_-?M-Rr& >"/2?$ ?~ D?_i?>(>lj >%jV>rG>1|y>Lr>r?U. ?.Cr>8>҅eZn>`f;:>?+>>与> Tγ>3} >),Nw>;){>wy>x>BI*Z+>|~\SF?'d>^6t>-rl>_SV>dn 2N->ʈr>q]&L>yA6>]>|$S?"W3H"?~Q>?xMu9?.gP9ɓJ?&?m(?A{v?杴K?deH?tv=?/uvD0?H} ?WrZ\"?<8?[v?ښu>Y|ʻ>n|>٦as>H>µ8dȸ>u;w>;[7>=>**>M+PS>2{? P ?Vz ?"SzS?'396?TA?AF(?k Y0?U*G" ?ݤ &5P?d fp?9ªE?W- _?e?Y.?!?Y?z鬻2?'ʒ(`@ X'd-@)"x@(/@^LG@>,ʗ@J- @K,\ @C7@t3?<@ާҜ@%_|@=ֺ!@c@@@X]|@nI;c@@GF@ަ,@\aT @c@EJ@b0@\n^@z'C @#OǝA@3@llJ@ރ?@M0!@/}bD@|nA@V}^S&&?mq?d3'?-~?;I? !?1p+@o&@` @b@7qH@rP'@.@Jϐ0@Z="@8PG>@خ@ ־@{p @!ܩ9@%V)W=' @!@1@&]@[R@9@Ou@_1v@xL@knk@@m`@H.pL @q>Z?b[]?7@Z @@2r @gr@v 9@35V@ =(@7/@?H[3@Fj@^4&=@?@ߌ @¡8@@@()f@䖌1@m@b}C\-@5 @e5@\Xw|&@@U_:Ǔ @ԢJ?bds@kTJ @xަ@aa?pЎ?\,|u??ox;?95?"QT?`9L ?,?~D+i\?N#!?o?戽P?bmI_?zpg?wz-?-i?̡??}]?um0@v?'_?p?{_N'?<5$?0(ȫ?B";4?{j&?ɺ 5?v n1S?8W?d?eA?@[^_>'3>iŋ6w> [|>1>P[k>hq:> ,:[3?GP?9 u ?'!?.J!#?&CKv>h|?M{3)?Y??֌,T1?M3#?b,LI?U;?Q~s:?;U @?zC?*G3.?J34?;4?k;W':?(G?eˏA?s+SV~1?[&!?2QZ>rr+?H?k!?{9? js ?:|d<>>$?~3X$?,?8>e>Y䤾>fF>Nγ>Qjkn>@>r[>s8(>a1v>mc>43JӐO?f.:k>ڣ!>OqQ'>fz>.2>Ϭ[>qec >bj;>x>w* >#'OF?BUlg? F(#?o? qnk&?KA?Z@^?S`}6&?c4?Obj:?+ĔVJ?:k7 4?x[\ \@?mΓP(?{YU?Wb?$"Es?~N2Y7x?KT??>k??+]?Q]OETP? P?]? L?LYo}t??{5u?;gp?L?FM ?(:?/|?yu;?8-΁?ø\?P[ ?=x? ?O?>-*?(/#?He,?R?6%?}^;?3(;?cs?S x?;ߤ\?m3Ko?h?#c]CZ?m'g?dI-rT?P}ə@?t۞T?"EqLF? wU?Z+؄Ci?Ɋj\J? ?j?qT}fSK8?0I:)?MP?ꉤ@?T{>8>in>tQZ>i1QC>L?x,Y&?6Zk>"q>އYjz;>U8>>6*>4xJHb?.DRb> R ?%GuD*?;Q?+P>o_)?_=.?9_A?Լ+?C-?L_#? z:?"a?ꭍG>>37>3|>><>r>̟> J>w{dQO??& uh?UH>Xp?00x, W?OWa?v!{GT?B*ez?ǫ!?I?Zo;]G?Gf?sͶ?mP<ȶ?Q>"u?H“?P1?8;t?u@(3?Oc,?/@'q?/i?"t$?}e1*?}, i@šI?^"4?#73?tŧ?-y%_[)?h'@Y5?š^?<;?-t+?' Ϊ?'?i?pX~?wZJ ?we0_6?f%?s??̉&l?\R={ >X.>QU>'R>O`=MK[+% >F>x>W i>9W Iik>[8Xj>S RK>BH>%E>'zJ;>TI$>Ae!.>v#8>ŠM'C>(p%>o/C3>;D6>mTy;>"RgN>\+>抾?>*01>ƜɢjQ>:UG>h E>&W>7ga>Q_fj>>b"b>.&2W>pe>/ςi>jPRZ>~vdD>~X˩Z>|Kj>H!>D0ν>Hdpc>i>yL>\go>>RS<Ⲗ>5SOߣ>Pxd>&խV>z.F_x>T8T{k>rgt>C8">ح}>Mo>j`;M>yhTy>|u?4>= >Rf>ѱzK>Bhb>r; >&O=i>D(>KB>6ȫ:>埾Aа>L>e`~>iұp>9!"q>;/`>JYDb>Ԉ-̚ V>yN"N>lBIhZ>IEU>$;QQh>1caS>RhE>QsiqK>{T9>, I6>څ.B>ǴeM>>zZ|E>n 8N>bR[(>Gyz0/>Rń}3>?m'>w`0C>rNL:>$N">N V>ÓX=I/'=> z=]Cޯ>6Z >(x>r>!bd, >C\>8Sx>:>Xz(>xbkL>> >">34>K>|= >fd:>?{ֽ>{:3<=CR:4= |>2uDk>HyV=7_G=(7=8V=QW=O=43e=,헃=r=3:g= pz4=1=# #=mԦ0=-u!=W=Oѹ=E=)=~~G=԰ =EZ=o=baЩ=N!9=+(=,T=;[=vc&g=+&{]='&o==ikt=)qہ=vm+ Q=PvC=t&=I=廡\<dE0x(jۻz.'#<1 )m> /~9>OHs>𮪶>PA`>t BF>,ǥO>wwU>y'O>m:>2$t> N52>!ykR2>=w3u(=3/|=)m%=1 z=Bk yw=#"=s=;D =_=T>>Ȋ>춄 ==Ӷ.P>,ӎ= >fT-M>z!z >r>A0#>}iM>Vca(4 >2(V >sF+2,>J.2>HT0>7T*>2%M>Q\[>gc1>tv}A>A_>B>I&0V=ҹ4=q6 =a,ԏ==?du=bD=#==y>=F?X=q4_= gQ =Ue=(9=={=޾ &p=NdON=<=7-Q=ȬdԱ=<=Oc,<>`#Q=|='==#GB=$حP=}dH=׾v=( =LL=@=˿J90=I׼==fL5=ip'5>*4js>#κ">| >=Xį>{k=WI/>ٚ-(.>37J:$>W%>oj5>}9 u9>rݛ=>hL^J3> Ϭ3>5@B>>?G>BJ|B>~inhS>[U>fJd>Tdo>6?J\>P>Q4HYR>8^O>p>.uep>ս_>N I>jC>%w(jH>Yd=>59>JΉvcP>t9_B>f4>;*>*r6e=>WF>JXU>MT*qj>?y`>j>Um>>.*>>^Bq>T p>T >a> fÎj>=@>_Q>7> 6_g>)`L>{L>!>F|ܪ>>VoHA`>mB>?P>ii>I>:>z/Tx>m ~>=^'i>?t>3U>H %Y0>iW A>e8>0泩>G9>1p>&oL'>hL(>7>A>E06>j%>^C>M;*E>I>ݼo2v>,N>/%b>aw>?cq<%laStU{ާs<^)My[.ӂJZܝ<\<>5Kq#;LcI_xv:<<]ό<)<%D38<({jm=#=:答=]wn=m3>y=ܤq=m{tP=,^! C=U:;=izUD=/^>w#=WyHi5=}C=dN;=|lz8n=pk\=Kg!=cs=[6݄=3pt=d'P:=C֖=?^;߱=hS=Ƣ+V=5m=_qUt=6u7X=M31E=ݱ?A=4i=`Wx=B9J=F%=V} >A=I[a=‘=7=,"'!=6 E=G=b >M>> t5> n2>^d1A>ΜwR>Q$3Q>>v;>^`˧>)eq{>g'q>3=p^Fe>t1%w}>d\>~>1 3>,>Kt>Ov~>7{> 鞏i>(I>K텩%> %KK>-@>)v)7> >?'>S|=9&)>Uu2>Dj>#ɽ=^>=I->=rN[2>NZ=Ozv((>R^L> Q/H>_v!,B>jFo8>:i(Ym>Z4Kg>FQt>ty¸>fv>{q>6K.r>DTm>O?ծ>)i@>uV>f,Y>Za>`i>>./P>)"ݧ>1>tͽl>zi>GG>$^U8>~HQ>4.>z >1F@&>\F=]kl(>d#z>)3x$>I=0w=e=adC[p=U m4=*҇=p M=B=#wg%=T(1p=rnh=5n|r=S J=^{/=X81 =P﬏=z = =}ba=)Pl̥=k=+d0s= %,L=F'=ӭn8=̼~]G=k:4=Vx%>/=L(1@=T&LA=gcv=4hRQ=ۥ-h=oP=Hy*)`P=Ʋz='7V=q 5=ݨSv==J\(&=i 9=D]昋B=C& C=K= 6Q=cs\=ͲxY=웈n F=ߦ"h=Aq}="*9r=USl~={=Z,)3*="Nw=SҦi=*{htm=Wke=P~= Et=6e-="cQ=LS9=L}:&=©vy='P=^NÎ=}=T:RB=/1;=\!-=*s=$8h==D R/=KKF=A߹=s=`V=H=NպO=/ׯ=}=(LCA=F吸=q"s=+PYo>8΂!>{>K3/>??>=_> v =L>=)>l4\ >c!>s[f!>0OU9'>Y'}"> ly8&>o k2>wm?>XH>؉I0>><:>] A>1*\G>)!T>a5 qT>Mx,T>];U>Q[>0u V>D>ݱ7> rcC~B>ɨf@5>* I>q5)S>c._> k>Rc>pr>_ m>۸NH7t>"Le#> ΀>,X>Jw>fgmю>l1f>X>+`l>#N>E}a>cܷ®>HJު>Uof>>uka>JA>̵?{>6p>6kX>gݩ >Kɚ1%>پJޣ>|` d>ï> !>Ǻ9g">7S-> Oaޚ>d۰> )ъ>p.=>oT7o>;,Gs>Qf>>6>(ګ=f>d!a>j;ia>CdgVg>/EP s>1 Th>[Эua>%{y[>֒لh>$>;'{1C>Zخ>[lu>v'>o >E"Z>e>ԾD>{Oݐ>n>5l՗>AsN"=b>otN@=; W6@=tO[(=N=f2<:`G7=OƭW=bh=䃒S;`=&ή4S=Egr3=xpf]!=X3=tD=WJ2=U<2=p=/ =vb p G0<o<=X(ZEv<{3Q5E =*k=hN=0`X=\'M=D~=l6= =m`=ƙ+N=3R#ء=Iұ=_˗=Щ"=S۔`p=%v{q=7-v=mWN=OwNIG=wE^`,=̹˃O= ;B-=G4yz=I&= Y*=:ygI=sk=ۗuHX=/V=P.Ea=*ɂJ=MaF=^0=Xn0=*.4O=eC=>al=8W:g=bXpu=''=[ɥ=}G$=m#ʰ= b=&U}=1Ϲx0=_&^v=k}=RD=C=F S=D_wVx=oror=P=sa+=PA4=aw=YGʈ=H.,v=H >!iX>'5>9h>X9C<>eA4fR>l͍1&e>IZ8>z{N\>G@>xI&>}{"HK#>q\=ER>:5>z~>ۢS>"iMd>N)>/>LP>u|lm>,:is>x>: 3>fЩ>t%>С> MNX>{NCm@S.u>+nF>4nui>KYjP>A[E$>Ht{>>}G>lݒ>`>Y>cq]q>bw>S^ϛ;]>֚~>hR8)a>e:@> p(>*"r >DFy>J>x >Ib >>.rLJ>?RA>=y=">'=vAև*>VF>d'qL>ᔀ1QA>^og>8mo>t5I_\>OX&|p>9x^>4a~>g|7>WT8>Xب>h$ >*U>Z#@>N>>-Wy>0X>A4Cd>e(>6!>u>=h> z>s/R>KB,>H0>H%e>c,R>Bk\s>gZ>Vm_>#a>ÿ{Qj> Rv>L{.{> ;>W}>n>Bywv>+~>}>ao>tpbj>Ǻd>1$>n>hzf>H/t>Qs>ߴ>k>,l P"{>݌pb>ʹ ٔ>E*Ȍ>7z>ɾ]>]QBH> ^>&d<>ݥ5>.ܞ>J>Rٞ>I>%l$>R>s>M(Ë@>wᏌ>Uep>ω$9>'O)>>ӛ>I+ s>)|t|>Ljp>u`F&>f;>A!!u|>;π> M> LkX\> ,>1>{>O1W:cm>>F: >%>>ջ >/>4N@H>6T{>M>I'0j"> A]*>U%>PW>l1> 7>G>Q(T>ߢA~X>q4T>O6gD>;gL>0DA>Kt1>u5u2U0>m:i?>rg'G> XR>ѩ6R>#'O>_>[>;Q?>S43>C $>ܿ >`W>{J >Au=Scw>c;> ^>V=BUL6= RG4=*Ȕl=L<+==ea= /I:=9-=y=3|=#yWpp=k{>]=S/=`f,q='=S>u=O;v=7I~6=B($=eIv=xU@=x҂=R1s=0(= )(=rvB= W= ݣ=MR=5{=#n:O=' ?=hvɺ=7;=B!=R=wi=.ءJ=l>1=9=/c==7=WbM.=4-]=D2=wj== =8 ʮ=rMJs= i7r=Wrfp=wY=>OK= |8,%=Hp<=^ĜC=4PЛX6=nDK=rx U=M~ ;R=T=-Y X=uHf[=ZKⶫH=,@=<CSe<=ɆD=>_+5W=/ճrN=qСUh=}]o=Gi=UfNhw=ɿ=+`M=pN==[3%p|=SZiu=E\͂=UQE=}7:)=@)dAD==NK`=ݛ=W@=(Go]=ۦD=(%!=R-o=^3v*ڄ=So=I[Y>y=S=z&EΜ=d=w=f8=wZ>$F>6k>N9J{>=k0=>s(:F?tj?y->ib>^c>C>>I>]>>^*?V?cOd ?X`?ZQ__?NRoɩ?h"ez?+ }(?L"G'%?2j?XШ?Y h% ?8*4?e?pF ?Kn7 ?v '?D(%? ' ?O ?VR?-S??Z?h+T ?oyb$?l[ݞ"?ɖdo?[e}?B6@| ?ꞕ$?l*?2~(?3?83F?fB-4?y|A?I-3 ˙A?=zG?A?YWu4?bg54?9TA .?+0"r_%?ǛW|/?å aQ5?5c0?t+*??06?dȄ64?L>dB?CCвB?)V>sC?IeF?d2?trD( 8?:>?w{j|6 ? ӆ?|fqB?u(k?da8?ЕN?j?d^,u?a0"?Ⱥ&?+Q1?;L2?y%%'?5 2?RS1J?(/l?J'??S#l?% e?`?p2x?/5c?[<0[?} If?K] cY^?4)xW?TpkZyO?p/;H?IDtN?Y遛Y?%%vS?G?ga>P?4_s`?2^U?IrcC?M/3I?j:S m?z%HY? =$ZQ?[(ٍM?(J?t: p,L?3U?)RP?mYpKVH?$$K?&^? Pf?esR?X?]r37o?_ y?AƮ-z?|oIr?ՉOa?BD߉?C\?60 ?MCX|D?2?=Ԕ?}`-?xM?1p"ڰ?w,熚?[Nd+?w{Fvv?9?XL6:?Yw?s? XGɮ?kMWX?,ʽ?% ?t?DRBGa?o˳ou?r?$Rh? jM&[?`a8c?aw_?ޟ3`P?^[U?sdF?6uͳN?ǿgUW?ÂI^?1;A6h?x8GT?6QC?E:ED?0I?4)G0?N=&.?o \+?؂C8?Gv!!?*Ti?Iޭz?ڦ܈ ?;ė??q,?Ċ?L m{?WrS?|:d?LT?pw'$?]"?W!?8ڿ`?hθ?Z3Ż?6Ѥ?ժ ? ?y\?o ?722?߹mm#?P2,?4?{Fι1?j~i*?I%u%?- f(?"R0?3?:6?77?d?9D=?{Q'|A?gkG?VC?g :?p%7?]Aճ?MR4)?Nm[ ?L}?-ٿ_T?Gp?jA<!?_ ؐ?v`Q?!?8]\?S[S?@QE?ץ0u?o^?<$?rT ?wt%>Aegq>0 >0q->yn1Ԯs>z;C>/[>[ g a>@zi>'(<>x>YbAV>Q>?G>Z>926h>s뉾t?\\/?qî>5`>cO?ژC#>In> ZG>`>k>'>.p>/w>cI> G>}l!d>_l}>! >>~'su>Rwid>(>?e$>D?]>ɌW>0j?>}ÿlYX>O+ >HMyy>o$v>>;1I>[})>N>Ӿ>F >T ϴ>涕?>n/>F<2>ƹ@>uk39>": >L>yuS'>oJa>sY>DA|1>=i>3> i> N]O+{?Zs- >.J >xp>c,9>T}>fV>]kGWH>qݽ>q̜Ov> $>Pi x>>g$^>.X>0g?!>$C>q >;/tL>\>HPqk>r|]>є|h>.z>`>&hC>B(>(,YC6> ]>X$>m>1[>ˡ~k>+ ڬ>0e.>hk?>>Q>vi> >YV?O,N}>,Lj,> @6?2cZ.?Іg?R}?7Lk0?/,2?.1F?V&I2?n(e3?gsB?쩹M3?r`Q?Wތ='?82mZ?}M?-d!;?]i{W#?I>G ? S*?\899?LF? '?AB?k6?8;_!?TLJ?7ѻ"s?/f?h1G>HcL4>sxZ>_{>˧pY>H>ZVji>J0k>D>T>&]>Ơͦ>S<L*>faN2>n $>mm>2A.c>|є>Q'i7 ?Q >% rj>ڍ#>W }?>?uK&?=_Y?:O5?!Y3E?9=?&Z00?:7!“3?^rۊw8?DRZ/}?I #?1G?_~(,?}a;@?RqjJ? h:?KV?(g?Q=R?kVL?enj3*V?aL]?篺h8l?iȀ?xLq?=M,x?b/`?$7BA5?m?/?kL?W#\?d1Xߠ?v) ?h #?' ؒ?Uh?K`O?\%5?f"?~?cJ9R?IR?E9E?rpc/? 2s: ?>vD9љ?Ckh?jl?rޟ? ʗu{?Ltn?(s?,#'V?#\d??^?ZDP?>>G?oګ`?5q<g?yay?n~? j? RV?\#M?"4c?JbE?Z*V?!;41o?Xl?xJ6>y?s--|?TL?]<.?xLj!(?ի?$TM(?cȅ2v?/+?ȴO ?4?T3?X֛. ?i^?,!??t?c ?ȲF#S?z-? ?!] g?KT?(Z7?V?>?Fv?'Vcq8?|Y?Pn"?ۿQ?Plͱ?}i?w;?9$$y?<^?i"s?KЀ?6f?˰*?񵛁H?B8l6?dMn?Ա=?(NtUc?~{?6zX??5i?^F?,Ʊy?j?O`ch4?s?  ?/ ?^Q?0@B ?dR??u~,???:1?smf ?Nұ"?[iw?x-?L=?cd??XO$@Uy%@ @@}8@ @J@VGX@}6'eN@6B @yfD @Wy @ʷɱ@#B X@R ,@9$ @U@B tP@08@H3@Y܊5@@@,.2 @S4@J< |@fί F@Oo[@{@v<-B@!{1 @Ȱ@$L@%&@>Tw!@Sir@@]m@H@)q@t_w@h3@;9U@IMX@#}|i8b@@r  @DrK= @ͱL@kxN @ݚ@P@K*ܐ@&@l{|@fu^w@c`@@Wj @~ &S@mg@rIM@OFH@Gzؠ&X@4!@`3cW@=֤Y@SW@jcqY@WrX@*O2j@'m-@H @>fP@O@ڇCA@ui@A@\ń@@ t@+ґ@]qr@SnRn@@j+yԦ @g @mH6@"43?0s`J@ B??+Y6#@Ƨ›?Yӝ:?}~?ON,f?jBg? NF.?e ?c$XT?"Ô?T"Z ?\o)?-B?j'*;w?%垪?'?s ? :M9?3?>X?ad=?8@4Tj@vϙ6gg@iO5 @3}{@T,@Mݣ@N2@YƸ>@sE@!}W@+j6nnt@Q^W @ @vze$@D7@ε"̍M@T/@d7[ @Y/@@)???j^?wK?Aÿ?U?𮐵3?>i?%s{f8?ӻO?BL?T2|խ?:9N?;F?/Y H? ?;V?Dm? ?Ŋ'?׆y?)Gh?$`J%@5Q?я1(?jT?˰m?y ?sY?uW??`5r'?8%?2-?0mo5?8RMB?I7NW?ãcw?A;wd?Q?RV=?hє2?; 5{?:BХ?UH#/?RW=?ѫd[9?$$!!?p<#~?e?l?JGF?~ٞ?e?;.j?Ҭ< L?ZPrf?.UC>?yo?B{?9ޖ??6?_cc΀?r?Xgd?@ ou?GƔw?#2p?m_j?n(g?\x?Q?i-g[?RXK?H^)pH?ML?ooI?H%U? 91R?jS@';N?ޫvY?Uvô5tb?βQ? E?wxF7C?;?*5?:vVR6?1kE?Z@H@?EL8?ŌUHw?dn)]>]bHGG>=~8>O >$sx>2°>mne>M=ș> >u>ҵ >$>I>>w{5i?"eq( ?=D`>y> p 8>?IU?%%Fb?odZ?}2?l^!?Q ?QR?Mr;Lj"?4%?O)?uc3?ce?Ou?ų W" ?)m?$9 ?_H ?_|8_Y?~o?5sD- ?u!lk?Ӛؙ#?[!?.VE?5Lm ?1 5?g-?x&?ۓJ8?NM*?/s_C?jB?@7tF?ju3?2!$w:?}iG@?ф@?[ѾlB?N;=?*to7?(;&C4&?zL+?r۾(?GFp'?O6r3?:>Cn4?(7?xF?VO5=B?=?d~=@?IQXC?}$&^:?3F 7? +&?ipY*?؁=.?K1?$Pb)?SO,1?]؞0?d)t3?0J6?"rI_7?|`8:?-C?Lo7f@?98*x.˻?zqV_?x?4@zd?2+c!? X?륽F#?3H9?4(C ?̤% ?B W{?ʮ%U>I>{>ɵbL3>K+#0> xD<>hG!>~V>Lp>aʤBG>`Dzx>a{1>Gl8>A?`?>p>/ ?£>EE>_k>79I1>!>o%>i@>` ǻs>v >9#z$>x^><>t>.JP4J>T7.Z>1IbB> pTJ>09>#a>)ϙO>}HO>_Q>mab4>vtׄF>fWLy>%*~>V8?PV>WfV>wV>E=RV>j>g6>آ;T!>Wf_>2<92F>F,*С>D >'|mֻ>km>O,@>8>*b%#>`Nf>+C`>JS>/g>x4Ҍ>/4>aW@>c%k> g>Gjw?>fY>{>zT>8>z>KҼ> > ;0><ؖ>mF@>@7`̟?θR ?6at ?)빛 ? #? '#?-?){w?i8!?(`ܰ'? ? lž?;̆?zhH?';ݥ?_?)"47Z ?׊ ?_w?#H6g?]WH%?^H#? T?b ?^y9/?#>0?jI.?`@s(?Ygv2?>?`nC?yq A?w7?xD?vD?G?؉c4?un@?&& :?V4?k:(?kK@#?ஔ%0?@_O,?nNrX:?v >?XNJ?N?̘tP?#l>j?zӱ_X?E}H?v%#nD?)<'P?M"8)V?=U?JK?KL,uI?RsrM?_T6T?AWK?:L?GT?La"bW?{3a?8fqm?Lfah?!l?m<u?$P4n?#[a?r?'C|*t?Sy*?˂]?Q ?~pK?nKzϕ?᥎?s ?Jr]?v6Bz?冟?po;ė??P/?AM?69~?eة?5Շf?2I?9?X-?eӰG?g?8y`AMk?7x 蓛?gg?d N:?E$q ?5W1?k"t9?{Ύ?c??Jރ?) ?غZ?+l_{?S;wj?!Qg?4\t?}9yd?7Jk͈_?#r_?SzT?)I?*zN?Ǥ pKW?ܪZ?Ţ{HB?d,jX?<:%a?EIq>{I>{(>{b>L@r[> Z[>4>t +)>^sɒ>(>>hTFk?Bx>Ct.>+"(>  ->%ڹ>-O|mn>F9R>GN-> XkD>Ua>G ?br?D*@?gR|-? *^?_5`3?=jk ?Ov"%?ʬ16?t-C?6 *5?.6?V3?fv0?$'?PVn ?Y ?;?N9y?s*?Mn>Dζ(> >94>VM>lw>cd>>>L!>fs8 >%&_^>ezZv>B>(v>y= >؜IJ0>2P>.>X,~>vKh4>7J!?Y>ȥ?Rb1?1Q2EG?NL?sW?c Ά?cl?:<k?R[?PpSW?<v=m>?bJ?];_?>Z?$cn?4x?aM!u?kH*t?Zb?n'0`?}X=? +?.҂?e??6?z?富? +sŶ?:?yJ?x ұ?HϪ?w?Ḋ?>A?z[0?qm W?:$z?Wa9?H ?ƭ?$K|?fe?9_[S?>Fm ?p6X$?P0F?ȄT?2(k?TB6? ?}M@{+ R?? Յ?7Љ@v!Ֆ?ΌS$.?J?NY?-?'5?/a?:]@Ur|M?A sm?`|r|?A#t?aW)?ͪ#? ?E?F?B4[?\F?wjp9?!CR?j>X?~~C?s =?}^?a?yY^?T/?liL#?9iJ?f%h?wE?-a?Κ!X?`d^p?]Vhj?&?Wqk7?;&}?3s?:9?!?x*I?CHch&?b`?-sؓ?)b?#E8^n?M :?`D_?\(? Lf@d'@ۋ?y2? ٲ?Ʉ?:k-5?{bI?T9Bx?s7v@sw'@(@ϫˑ@;q߷@ @O@04@;,kN@7S@9@lnS @!Ʈ@oaƱ@0l @BZ@}P@)|@i %@p@DC@i@l DA@:@",P@ tgQ@['@mHu@-@;ե@W}@:K@0/#@)i'@XN @g2hm@3 @qO@[.@\_@[:l@¬y@^F~@ @Ϩf@⥬ @[ @ ^ @im@9|j<@!@S=Y@7}7@g8@5LVvF@@<~4I8>@?g W@߳u$@GQ@Ro @B:K@S&@f̽c=+_=x~=t=v2rz='b=_T=a!= ܑ=,3n=6Qt=P j=<j=9\~ =xK=o=v0w=gʷ=>=_=5cw=lFQ=V$a(=1(|=c=ݴ;)=y=Zp2=r0=ƓQ > x#a=įX=vwY>b*>8%;m>QI>] >HExh>1\>U}p>"J>>D >io>#ZA=i$O=o7=B6= =a6>-Q3q >pI ܝ>SAtΞ>J8Z:> >+:>+[d>$ $d>u31t>2A[ 1i>F%t>X-i>{a>fBvt>\Wj>-ba>@R>LoR>"jC>(I>cA> W(_:>5?>|rF>8;p 9Q>=znEa>p`>Q)O>N>mA>x~ >1#>Tf:g)>J5*OP>^b8 >[>gi!W>E >ڵ\')>[ >l03> [޿85> 3>|UE2>Z9ݽ@>@P)>5 T)>8">{<%>$Pf#>g[ .>P#4>[2> N-8>AZ4>y >@>R={A>=MY{*9>Q s9>S;>StAI>UGf5>7t80>83/>uC<>MD_Eo7>b9>Ygy6>#>>PAg # Q>Ayg@L>X3FB>~RC>i #yF>=)R>E6 S>O>kI>j*T>ӬU?S>,{L b>1wj3]>e>z:ͮk>G[b>=ڕf>%Oc>)|}]>r-W>#a>'ib>`qab>mRZ>j|T>GF͢M>n7!L>BlmH>fxF>[S> 3%Z>b> ӧrEj>fpmli>a`EXr>Cb.cq>-Sy=s>[6>':>F(>EB}t>[5Q>Ӹ=ӫ>rMЙ>3a>WRޒ>)dp>]>-7BTG>r8>rv՟>sA4>ؔ>ke>]i>l&G:>Z>6\.>"`n!>t1#>M.>4>}/p)>P=<˚>O>Fe>sA>}.>P5'>5";`>$s>,>Lى>3 ax>vZA m>*r>Ϡ~g>sXn>ZI*gr>|>zGy>R|'p>ш~p>\@s>ztv> GsJi>fp>9Ms>@{Hyu>Ԫ*n>_/L>1EX{>Y0>J{O>)n>*x>yԉ>&Y>7,Z>%>E Wꋦ>E$>VWu%>69C>yd>rv>d>Vܙ>z͗>/֛AL>4T>Yh_p>t!>̅w>)19ܪ> i+>E?UB>Oӥ> KC>NG~>'}>0 Q> \e>=6?x>$en>Fg>L]y(&>*BiHϬ>&[Pv>z%P;p>ֈ;v>A>8;y>"r>A" n>)l>-h݌fp>4F-]Uc>"5;a>@h:e>Z>Kf dW>K'IZS>pbE]>˩mU>͎8S>_MPW>?qa> c>,J)k>%qj>xr9g>[͚b>ƚΦk> +Dd>|L(D_>w%X W>Np*]>Y{&hR>XW-X>~[>UT>8ص9uI>! Q"H>?"OP>D}àN> V1K>L>ÓߛB>+*Srt@>P]G;;>ELy<>JH>khB>7>'D9>rC2g@>\kdǩ@>SgB>ѠEG><^A>`PC>*-\G> Q>fK>(OwP>ڵ&|K>4b{x8R>$z[L>2HxI>17D>Xn@>CZ`/?>>pw8>_u&bw/>)u@S/>-"1>V_;> ,a56>CZ8>ߔL5>/.>ITw1>4N$> 5>Ixs%>Su,>pt3$>𙤭>|2I>%^>tɄ>Tv>bRpw>d~>`62>6Hs>=9>=%[>^)&>A4>0Y>hnx!>8q>O' >,>;>fւ%>և|>뺗u=">YE| >˘Ng= J>Yg>`>=`O >ǠXȞ>2H>)/1X6>w_ /#>1ا!>c1>z 2>2ej5>^L.*>;Ǹ%>BL->HvV/>">?H`4Y">b wkX'>A >ԖF2Gq>@A>f$eo$>{CM2>*>g&>yӧ5'>ƍ8+>4bJ,> %#x>21>J>>KÀqg>ӽA]l >^8g>`>D:A >Ys>^>ZRɰ> >!>a*=K2=$ =oڪO>.n ==M}=ƈ>5.i >fU>3> pi>. >n6ck>2L\=: UV="ge=%=nk==$,K=a>_=f8c=8=|op=b2&=c`jy=> c=zd@=\ =;^=L}=F|=)B =}= v=3k!S=`=dT=i|=79+_=%A,F(=CD}~=nX}=?B7=Zo.Թ=Uk=fCs("=}? l=bɆ=n {=%w=ABYa=ዷB=I!=oF=H=wc κ=J5X={!m3J=BԹ=DX=u:=ڝ}lV=~%=fC=t=>U =Sz[= m^=1I=Z=%=9[)=C!EZ<=Hn=-Dk=m=^%ͫv='=k={Rݭi=/ Ev=F4=ax=YӹL1=Z[==2=E7"=+*l=EB~=p=o=Be;=#4d=2"ŰJ=)=*=2 3R={=5K =.RĐ=8Z={.=nb"=cV}ڕ=ZN%.=E/Q+p= <^"uj=kOI{^=k' ߃@=#W_S==3=$=]'1=T )=F=PC,eV=ޑ}w=;zl\@stc|s1.|=^ ׈=r=Si?>vͤ>Vbv\>%>ڕ >>6;q>N=d>fcq>n}>*q>Agy>͆}>cL8q>7p9Ob>!ic2l>El^Lh>fe>D~w@<>J5xzB>rO>!R> wVU>T0R>>RviR>$z/;OJ>̗#A>K= E>m6J>m q@> TG'>K6>5>Q`gX.>;P*>:e/>!>ho$>сAY>5l!>eIg>NF">'0ܺ ->Cn=6.p=_=[d=a]=Et=92=Ͻk =XĘK=Jo=C*=': =a:=&3`=r=4x=BFZ=~=;h=F Z6r=NX==xaj= \==`=T7)=8*}wi=&`>7PQU>"Oן=*&=YfQQ<=_hR\m=ܣ={~=dƣp =ӓ="=a[=Ӫ2T=A98=N|#=⧅?=0qC>T2> uj$>,Il>H>`>]N>% W > >??>qS3o|>7TG>8H>z O>~gF >y1 >i\P">O/D(>s[>=>g >l\;> !> Pr">(>^h6*> 7,>w>Z)>2$+>Bȑ4>Ze1>>{?->>{$>u>e k٣>pܼ>  >f|7>,*Q>>̓#>i^{̱>pd>&հ >().>pvO>o0 >@>ʕ]=i[A= >+ =tX[=y Pnf=G4 = =vG]>$a7>x~>'?\>1=i)=6=i5L=IF="' ===K3e=<#!=T=߭W'=At=`*v|=u>}=׼"E=@hr2=Yf<-=6R/= "lC=F=Y-=^dD=6=ō=\SG͢=9I=$hb=b==fC=(='& =)1==@=HPV_=fo=Jk9=Y =5;&=~J5"=kn==sr=3Iq=(.?Z=DF闐=uц=d=kPtv=gm=&CA=fq[=dΩ=iLG=q="6 B=R,=xy5=#=mSc=l^e}=/ZN>%=}DR=et=Ԣ]ˌ=Fϥg=cj`=z~Z^U=T$=C!Bi= wC=h=6-+=pJ U=~[Q=3jY=z=ŀta=s 7='h=L &u=-HN^t=.O)ɔ=M&7_:=^2=u=4Od=0k=r>=e-=ÿ=B:EŶ=D =!kn=pj&=fjL"==|ȏ=4y=@ =_=ޥFF=r{J=Q'uP=QkF =節=h}=0=ӝW^= =3q>]2w>:E;> >l>okP>4 >K >\h>*[H>tӉY >܊=O>$WE>8v>>wX'=m!=5=2>b㨩>:>x>Fڍ>u>`4W>?>t'>/̓#>$->d >(P>Ux^$>` >$fyWKW">' )>| (>F"0>X(#@2>U/4>N~l1>oW4> 7>ÇK^6>S5x\L8>->3΅)>y+U$>P/e1">t]i$>Ӕ'>+I#[:>>&fn-3>} A>m+֜H>$Q/y@>f=ׁ(@>*C>a^aE> &MdQ>ˈFJ>TkD>ş}O>eކK W>jZ _><(Kc>Di(g>?h>Lza`>ZEf>*-l>+|#_> ܥY>'ثv]>xX>3DXW>1PrS>DVW>sF]'X>qag>8$8z.f>TSf>Eu4Ap>HDfpf>2O_>=bV>8PP>F_M>OclI>LHdF>2pjF>h Q> (9&P>zUQP>%5t O>vD>zEG>cWM;>s$Na9>1R,@>cOXB>9Ӆ-A>U5@>֮m7>Vy3}7>)2#k=>&OP>#|L>#9NG>'T C>Q;>0ݙA>d1><o3>WM*GN4>ƫK1>ˠ/>@L0>gf0'>cV2>U¥=>Cc7>eTsB>r?=I>HJ(8>`hq-=>nuGM>5@>T>  R>7 K>68>B>wMgF>HL ~ʘJ>IdzR>9t9[>AXLU> H{H]>Qq抒d>m`>!OzXU>OLHZ>1BJ4;`> c>Gl> i^>* C+[> G@H>zG ҈Q>@#=U>*\V>`v3e>/f>Ws>Pڃ1Po>>pi>)]>NQ><`]>Z`S t>dĚCr>@>e>!v:j>I!gt>S rj>8<e>pm> TJr>׍tv>ͧl!>)G]>q>d-U1>@CJ>F-(>t>؁vO>I!>p(>lR>JhJE2>p/>|$̗>иϺ>~qn>4>XH>Ú>%>M죬X>A>eIr >i9=>&7>f ʘ>G*>>aЌg>OӁƢ>vJɤ> %>U c>3E<7V>VZ>u?]>Ѣh>#>IdZ>FRg>(;~0>1>1Ӕ>)3?>{ )U6>O1u>w.֡v>)TGv>Bbeo>gn >ƒ]>iӏ>X ֥|>xMZ>랃>2aߘ~>Uo>~oB˅u>P!q>߲-\o>Osys>6[v>-mv>OEBfp> R34u>6>lYܒ>kG>8nZBe>+->~U>}n>>7T>\^>(}>Vr`E>g=yx>>i\P>"> 8>[=<>3P>8XH>J0>Iux>܅慁>r>:6>L0X>*J8>@R$y>wT >>O>VX>,>&b>:nGξ>'TQ>Be=>Ϋ>Jcm>O9>b."">:Ǭ+>JR>UC5T>x> #>»k>Ke&>dm>l7>߿g>U ̲>0{>w>n>9z> ޹>T>L]W(>Y >Rkϖ>G6>00˳>(/>R-*>kGIx>T>vt,(>Fb>(Ӹ>.{,A>,@>&>s]>lX>VRM(>=FT>+6> ᤤ>,q-\>|>y>wЗi*>HC>k->3y]>?a >r ;0>1c>(!>E>,Aƽ>ъ_8>}u>SA>O-6>ӺuW>Qrx~^>Wu LfCer|< ++f+fp>^> ¦>v`zS'`=g[qm*=$4=)F=m 3T='l==@<=(LDqvЛ=.161=lp=Wk6y=aA=K) =)Zq='1z>=p%ur=)_8u=#[ =]X"=׉|W6>sו`#>+WH>h0dn4>XM5C>[*gP>9PEvK>Gp>G4">](7>dH0>P4>𖣫:>',Xh>%-&5>tD:>$5!}=RHLp6Yg<^*<ϫc5`=}Zv=.qˀ[=@N]1=Nu+c6=œ=Pa>`_9{ߚ>_Lч3>>,$m̦>=1"n>'|.>hL|No;`>O7p>EoNv>JskERc>NɜK>i<>CS5ؓ>Pnm>ׂ8q>޿>4GɈ=RDD>%k.+/>&D;>1gJ>3bJ!>$(P>u!$~={9t]=_\|7;=eyv =Ybw=u*;<=XQ_D=6%=mP=NB_e=z4c=7go`= O=38Gq= m%6s= GX=7v>Du3 >\@? JϺ> /?Iu"??`?j?Zw?[rM4?F?ʖK>:?,r`;?~ :KI$?{#s>?PD?E(M*N?q~]A?0?z(f$?ӉZ ?A?ۮO,?Y55?>V?.-8M?̞^f? ?hT RW?G&G]\?i"G N?<!C?DL2_?bscI?jo?yk?P+O?lF(R?k-X?QK/>҈m,?l>>V}>췾͡>I>`:N>d>\>AX*>_Y>d<>6-sl>k'>iX>`*vŷ(?9?7R?D?8Jm->Y?wjp?@Ҫ? P\S?F1ؽL?HӖ@-f?ҋT?ЛpJ?/H 2S@e@.N@BW?dNR?}*7?@F@o@4nr@BZP0@Np?qX? oeO?^ˆ@}?xYN\?BS?JRI?'݈D?[NhL?NnbWF?doY?G4Gi?} `?dU?{"N?&s B?*h.?b:?FSr5?A#?K1#?~ ??p_?& 1?Kr>_j?lK<?{{F?]FQx?/֍5?:p F4?O/?V׷-?~? .?^y ?UH?=?? 7>>y/>'>>5|>wd>']jb>Oʹ>׊D>b"3Q>aۣ>*Srg>L6A>A>*,;?b@?sF#?ea/(?P7?iK>U*?1E? 9@3@?E?+͑*4?idE@?6OS?g2?SRe?ڟK?SPDX>ų[ ?|\q?U\?mȳ}o??'?M@0@ؗy@Y2y1 @*@"x"=\툳=Bc=Q,=j^ N=C*>]rn'>X>l>1ޤ>>0TX>u%=>%m)/>'N_W>Kr4>o->}R/(>Wx@>I=_8>@\1>nϖ<>"DcP>X>4b>(gZ>=oNL>åD|>C,ۚ~>hbe]B>M4>fkwGhʈ>EoZVm>x>=>t>\쪡>j8>y>pd;D r>00b}>gHΡ >"|a>K~7>ER]̧>>x>=XUa9>Maj>G~49g>ᑦ¶X>t][% R>Bښnf>5?a>|[>v2E>Nj+@>(8Y=>yu I>gJ>iI>>!(8>ћ[[">pX)!>7C>Hj! >/ >aQb">' ={0K *>x{n> /%> D#>(H>@7>6=9;=-7qL> g>D3>= =I^n=$_r=sz=P=f+T=-k =M/X=XX]+ ?=}ۉx=\k"=XL>d=Uq2=ɪ=aZ|K=x m=fv=Mgw=5 ?-=Xk =u(0os|]>ē'F>ݳr(>wk>iI:=40=1=&W*==LMt ="lc=B>/W=Q2>HF]D%>k'8(>?؃#>&E3>X]rwL>=rF >i# >T W>(T>T1PmP=YY w=:=,O=uIt=ҝLw=ú†)=Z%=غ=/fmT>'hVEY="`=_ko=b$0= f=%- s>qR>r½lb>& R>):b>Gp\C,>7 1>z'&>NME`xA>M48׈N>-g o>`g"a>>@_>O)$_>u$P> \I>g)WlL>ݚ@>R{C D>?^74L3>!fG>>iOR>H"U>ۢ 8Z`>H#\>ʰW^z>N |>]>~>`S3|>(y>U>>! T>OI~>._>%vF}>,L6'>3HJ z>4PLts> &>:B97u>LGNN>AZ>FF>d:x>(M>3F9>e̤<>IbM>kW >>^Z<F=sjZ=ҸX=~o= =?)=C"hWC=+.d>Q=Í^֍>4&͸>۝86>9@,4>y+P>wӵqX>ZdV^j>4v>O>Ǩo>cJ;#>f`> r>oP>Of>;->ăKKss>ta>Q#Y.b>>6/bt>Na>c>?_>DR>ͬȯ>=TMmO>{=Ʊt<< Bm<T=kHd=#g6=I҅3=IZO= kq<$ID|<ޮ<;qKt=4ҺS=S9'I=X<=^dį=UU4=aH=tN=r"Q=W=@==QK=ᶢI=" |=8 F=Ic=(/>*f>/ޥuSI>nAU>t䯒I>1(7>18TY%> ;tA%>6nZ$>U%>VH>s9J>i]chG>Me'b{>&|TF>y7>SSm/w>b9d>zr}>7Օr>p5w$y>V7X>Ɵke> К>k >>(, >&E>ݫ-K>'`>2m8p>x֫_>(26O>\.>/>>Sm\1>|p';,>>Z6">Of$#>{sf>ǁP8>D2O>hգz>f6j>8Fyc>),> p>Rof㓲>0>F9}>]\2Au>?Kv>GWh>bOu@>(Ltl>4c> r>LSId8z>hr_>7ii>;ID=>fX>3>v̶{ש>}'D$>T 0K>ZD#}9>M0$>][jr>%r>)O>C> >2b] >b#:>C,1?>O8>2S.X>I; 1>mRY >#5=p=|r=`m=S .=x=V(:>aAK=Fw =h= o=:ژ;=|}t}=^+Wj]r=%rS;=%`b=õF=hЫE=7v^=W3A=Ա,=蓮օ=/ = =`{=貫v=oj&|=%EtP=e[|j= ?+@+:>XUI>!> >3PL>{eQ>_?׭YMp??$?,F?hs?v*!?L-8Z?D]sO1?޿u:?IIhu4?#)?CJ27?Ը`ȧB?"=r\@?7H8?";%?\e ?O>?o$ ?e? .Ȅ#?^NfC ?*R,?hG -?mM H6?@LQ?c3U?(oa?dQM? Gh'WtS?TK?Rl$Z?Wf?A7_T?jaՃ?SS? Yf?[L?~t;?4L?z;?{=ێ?"r??y?Y7Yw??sč??{hk?CR]t?=Yp?ag?#sR?iLnP?^őW?;J?hiB?$Cd?؎rc\?waH?0&S? y?[+%}?s?ot{?BI?X<Տ?aߚFz?eby?:Эƒ?FKڂ?pЃ?0??Q?]@ ?>[?iF:E_?oݘ?Bǡ/?t5?Ԫ ?P` ?ZA?J]=4?GZO/?3#+?>NqB? o>?XF`A?5!Q=?';l'?-?rA>?&X]5?De*.?uG(.?Amq?)oA??#Y?$?2?C Y$?[\ ?{n`ԃ>Yp>t蜙W>Sg>X0 j?E">!_>΍> >#>)>pm>lԿ>eH>{SC>nr>HKK>J)?-r+)=>mu>x8W>q>S&>$=vх>Hw>Ȕcg>:B/>Bv>ڒ>KǕH>>n?x28?t=? Jou3i>>_vR>o F-%&>mz٪>AU>z >pJ>Ym|2T>3->H>.Uv>(D8O>m%`p>glzϧ>1>j~>d2Nmm>&a?=N%K?(!?Cx^iM)?^Nu^g,@-5Z3@$n;,{@U\1#X @#4@u@4%@ eBC@z҉?@?G? nG?ݽu?>]?I?mpT?¹gc?} ?j$]88?X"?RvD8g?C&aN?A>H?2 ?,?_B?P,#s?Q[z:?-3?.b?O:|?H)d?!Z0AM?6L?~\ ?o?X}%?FfX ?0s@6?ϩn?@^?\-<?-:?"nd?L?3?q?2??C ?sa`H8?s?Nw/?!M?%7\d'?1T y?Ѐ?sss?==?l2?yu_?@ :}k@t!p@zs @cل@v@9 ͢@ @z@՛ @Ava @!V @=}Z@Cu׼@OOj@JBÇ@@y=@l?2@9@J3 ׎N@@3@)#.o@o~E@R޴;ה@%\@! A@Q2@86 @H v@ԙ>@~缱k" @3/Q @A>?^@=f8@@ai|o @]5a@=?@Rf>@jY@y @/>^@$󑂙@5X=l@<'@`>#t @\@}@z.p@6߾?ܶ?w?3?ut?`-?"fU?Mt2k?u81?)?_7 #?cc?YJ?sCH?!i?V?:_?"tp?$TW?d?ENu ?fү?@cW?6Q?mUy׽?HVd ]?5 ?%$H?<?Ii[?تY}?fe ?3 )?GdA,?_ʖl?">?ÕQg?6d&?e? qn5?݊`X?Ю?:w.?(R ?qh/?1\y?!h?8WQ?35??QO6?ax=?cAW?Mu՝?`4cԍ?6?ms?T47t3?=3UB?Y_C@?3Qz|0?tC؋)?{| ?A E?]̡ ? ?H?B)\, ?!c ?d1c ?4| ?OhYE>6>>}3>+GF@>J>;gHl>iXe>Я V ?Qr?{}K??Ȯ҉&?=P?@j1 -?t@?NCYD?$wz 2?N&?:?ha[F?kʘV1?l-?&4?TF?^+X7?ɎK$?;L?&9?llO|?FG%?U.9A?(1tq>ڻ>"Gz>HYӿ>*W> >B5$>205>qX7h8n>>^>4ʳ>KX:U> .Y>\^̢0 >(w">z,>e潿>>Vb.>| )?K ?J*&!?CY? ?JyaK?.B%"?-c W5?T%O=?l O%4:?"1N0?lE:?GV\?|?Ŷd?Z ă??,Bz?'~Yr?nо@8{?`?u$(P?} J?;~U?06bGC?B &T?&>> '>= > wR>6k!]m>D->%J=3[>ڱW> h >n>I%I>ס ? eڕ?ӑP:?lλ2?fA/1,?{GȌ:?^/?3&5?_5GJ3?`N^>?UQ?36>Eai?U />C>ڷ>J5>>n>_>,L>(4g`>L^ ??_h6?Av?Hp$u?'gc"`?d a?cB\R?~O?G%Q?eod?mir?]}? nx?QX\ʑ?qkeoυ?kQX?Nm?m?r?jp~?{TpW?mx?|sX?ܱ?(O?ݎ!EN?(O?٠a?r-h&2:@s֐??V6PK?"?ti'5??"̋ZD?T'p??8g?VZ?Io?':FL?Nj?"Ffޕ?ke#?{Q?ݸ[_?lP?%E ?@7?8Nĥ?/ ?r=*/?#4-?`?w  ?S55u?7Ӑ|8?ē1? Dnb?pW;U4?]?RdE??9?~M%f?3*,?'U@Rٍ0@@Og0>@b=;yR@v@0^D@b!@@@vӢ1@xܞ@p@^x @uS@5@m!@/Fc@f5@tz@\>@"g]>’_>S>㧿C>Kb>2xs>^_%>S6BE>:>(@O>6f>>V3>-c>ER>π>'as7,>:yh>G,v>Z>/P{>}=o>w->G_~>I6.>Am>Kwm>QI ~>WU>;nK&> !M"u>f>au*>PP>mHXu>+d>=1X\>Ocf'X>0:^>|5\k>dd>7U>4]E>XБ Q>s F>->r;>9}| >><\C>,YP>&!}fBG>Z3>|u+> + d>Wmr\'>#I>V>A 1>0W> >cJ >t>B~x0>SjJ/>}it >q$->\][|#>"N!>X߅>3[ H >לˏ=n>`RL>Z_]k=ۙQ$=CPT\@=Oak='d=ڀ=ZIڷ=f}ik=@ Q=(  =O艮=ˊ=Tha=jYM=Z:==F9U=!q+i={QN=mvur=K =LT͛ǚ=ent{=\Ln{=8qrJT=MI= *=j= u]@K

} <]0jb]iCEʾ+O.Z}4EIpd>J<)1>BM;y>.>.kg>Pt˗b>cJ>?BY>A#2O>se;>Kf->|=%>ܵ7>wRJ>Q^=&I=O==+Ew= =;M Y=OW="Oֹ=?[E\+=PC=2޵=*C5= =WEezk=nѢ>gG:>c2>[tu#>08>o4D$>*6?&>iD.>Gw'>_bL> Xnq>s{ք>ۃz&j>H˹>%(2=:Aj>byՉ=G=g=}e==l_=K_K =)ج=u0q=,t>='x~=uڔ=5H=UmYU=Ă=NzP=ewh*=+@84o=(s=-=`{f==2 =Z:=f[SO=I@y^=)䡪д=I|Dp=[e=H3%=Kz>b5>3D >GPv4=sY}>tELw>mH(>T h >rl,>Ӆ:OdK3>XG3l2> \J&H>n=8> J$B>vG>Q>b>^+VT>îJ Y>L,hf>HFV>fvGPM>tN>2m sJ> y˕;>.;>KcCB>>GTJ>uӏq:>>,>7>y E>z/a,zO>ߩ-Z>2=XXd>vX>MPd>o:Jt>G)> Ot>Nkl$ >:{}0P t>nzQ>h4>Vj1\>'v>DO>{|>?C>hCҹ>fiW>YCM>8Plau>aMiC>C =x>=k>)]^Hq>1!#ߌ>5k>$a>g2>V]w>yPK>p&~>l{{>n]><Ϭ8>z/w>㭇>eC>Nȷȼ> 8#x>qĜn>ߧJ>鏬ue>I>qXX>X@>{>a6>à>UZ>t>/>K+>>S/>E+>٥>l%ד)H|BI>\ohs>

mn>vEq>}6.L>4՗YoX>zv[>tة>'T>(>I_>ƿK~`>x (5B>Pf9O8>S3i,==:L==l='?&=;gd=:)S=ml==D`/=<ԗρ>=3{M=.'za=}w={PWه= ͐q=Jh3۠=w֫Ȝ=v=:Ft=V7b=班QG=ȄM=&ԍ=ڨ}=@cp=Sx =Pw=aKEJ=[~=u-u/k->\S#>", >;g?ê.>s0ЉI>2sxo<>(^Z>P12LN>L7-A>6vM׭}Z{>F1;>7[>'eO>wc>E9Ő>n^Ji>[ >H_>&҃-"s>_"t>{9J/xeb>:ySN>L%>BX>m|<7R=&,l=([,L=(<5*f<vυ<%f)1pր$f}Q3$D#>H>u4p>q>pjs~>Ot,>F >S3i>K\}>GOzq>JIaB>ˋ٥T>UB>٢]>_KI>n%e>)J>J >2*8G>;o]>I|h g>H&*ĉz>r>`fepi> ~Rr`>B1>0> g;> <>$˶S>ڿ {>U>,М>i>Xa~t>>2u =#&Jw>gU(>4>#(B>_'X,>X|FI Q>Mxr>d>m, =4"hz=f2\=\M=P=}B=]=B+=< p=O~h5=,3@D= %dBMݓ=Pe=nz&=TA=%šhd=/sa=%t"1=|)8=.Qgk=d!ǰP=ذ<(e=~+*:>=FWDŧ=tt ~=a#=:Ǘ=71*\=z*=\@>P- T>DL2w?!r>_K^?LԾ! ??Zs#?'oD ? ?s?ɫA9* ?k}2n5?"-)?@tl%?85d7?H0uƅA?T^A ;?Km=?lbG9;?j1A?9$jF?5w#4?Ba.*?\%?ZB`?,Y?9}H ?TS8 ?j?('_'?DHO1?Cܟ;? UF?8]R?u;`?YLM?' TH?jUeV?=]l[m?&?!`fv?w?w?u\}?@B:?,3?-s?>nbN?z (`P?W.F?댜D?_ӕ bB?aw2W?qM וWF?TٺQ?"=[Wf?N? Xc{?BV?n>? {(?i+[n?=܄M?A/Y9?QOC??/,?P6b>BLc?|j&?v>?y| ?N)(?-:3?R 8?x5n;?^P0? TkI#?b.(?Vr21?Ҏ(?v]M=2?p_?K<=? ?͂?7`ۊ?Oiv?>#0,>1 ck>46>MbS>z>T %>Yn2>sxΩ>W0> y,>7Ш>C*>R>Nt#>3a>e> L>F|4>>ikW>^>? H_>y>'#W>G_h9>sTuL%?b 1?#QD?_RnYH@?\̯o0?_Y%A?`eL9?i(Ly>2t{>[ɂ\'>->E_x>Dz?eG?4'?#b?Hr?8 z?0j?-E?^}Be?0@5Ǫ?vM?hyj$M? =i2ϰ?Kk3}?T?4F7N?Sq,e?=}m?`hZ?D Ղ?M%u?~_J?EÑ?sS?֞r?6?ڕDs?S nE@Vo??0)}@Ϟ)?LFF+?c!?]3?((?1?zo?*go6k?]ʻ?%f? KH@%;qz@4T@qQ@Dy@]R@e?@Q7@6]b@=}eL@.6 @]i;@j@wT@@SI^c@r*I]@їlunj@44<@+>$P@\@<3@C:v@{t @f,?Soa8?E-V?WcE?D4>mߙ?8d{? f?˜ ?^y?;j?&?}iq?6q?Zt??+@(VoRt@*@Z(@+C@m~j @7XWB@jף2@A@n@0&@Ônp@D{O@;P@8̔@h2G@x@*X1k@*#@@E!1 @@2A@F<-@Z1~@><\@=P^@O2Ms @4{@Y@{9@ # @tHG@pno? {?27r?Ց_@(o3,?3i)? ?< ̷?mÝ?5`?*S*m?2+?"E)?+l?ې?V?ncX?Bfh?y߬?/,V??[?upҾ?5+r@?*RH\`?&@ X?qJ^&O?֤H?'>J?U$ G?i~T? }Z?KXk?,xjd?V}kU;Z&>)y>! >A+@?O$>0t_?DO?T<5?u 4 ?!'!?.0?f!=? -0?}{2?Kݩ.?NrD??RG?)?K6p'?ي 6?e%39C?^챍G?)m8A?A f5?zp %?%~?P ? аR?y`c"?Hsj?˟\>?}_>Kg>cO\>1l.>d!>Id>(%=c{>USG>0;sJ>7И>'wyp>%>:m>b~e>Z>"Q΂>>F >Q_o>9XX?س%?[~?#&5 H"?J ?O6:1E?<#7? (?xg\.?+$B?B?"xVNH:?1j0?*B?k£`?xx?MM?i$yK?QDDAZ?՛br`?-GLhx?╩u4? bb?w&]dV?F5Oǫ?U^?bOig?J#Ls?tzk?Ezg2T?TWƲ0N?q?{|XP?2_l1?C > ?,JZq>Z >Y> >5*>.[>J#/E>_~l$?` ?c @?hqD?#|n'?u:>>>ym9>!>pfI>T{-s>N'C&?Bb?rh}?Eh[x?Yg?~]?Gϥ+.?7ŠK?쇻?y#ZŪ?^?e ?5IHb#6?f P?s?9@N ?k83~?QT|R?o6?>> ?Q\O?fA)-?O?ET@?1[T? @!ް= @n@P@YkU@޽)1@m@Z_;c@k@qYՖ!@aƫ=]."=x?=pAfR=Wn9= 8?="˜S=/fً>k>A=U=z2r>7|>8&>Vr= 5(>~Boډ>Uy-ct>yY>N:>[jW>"^Z&V>2+U\85>^)>;?$s!>Qn8>zRg1>6{v*>OYE&>IB>l4?=>KZA5>ln~<8>XJ>#m*Y>7mET>^O]>vsMf>qnS>'gG>#⿭b>d"y>pun]}>TTZ>*44>E fL>OR>QSK1>->SC>fm_>ʯ%U>+>9Jā>t$ft> bϜj>ތ@Zu>ÑLm>(>}}]8>EZ̬>I!>{ >y:a<>OP$>{>05>h!|>?~> h>\f>\ ^>S>d> ԖSq_>1|2wZ>KL>EB>%I֔A>؜P?> 5;> ׏E>,;zN>{`ڳ)R>fF>>n:6>z`(>.ŷ >ݡx>r>& >bb^X>edf> Ȱ=)K>c {r > d&>i:)>.7!>q8+> ֚& >Em>B>)b=&=IX?D>?487>&q;={ =敢̇=zO=rg=G=H޶H= m=9=q}eAW=)pa=e=uV=3=bc0=f2gD=ٜ&!=9#=t=AU|=;_0p=1=.=_v=8N=]R4c=;l8=݄ڬ=AK=s.< Yjgs<jGZlWAp0@>>,i2ϺJi>G4a>kY>捔2>?MJ>w3_ A>b"u2>~-cu&>f}!>tz:r=b{N= =?=@j=8L=n#=2y=xd>ŬVR=M=ͺ=ד=1)=F%>WYv>0[6:>'?u>52)'>9$>=AJ$> l6>!>J_; >(^K >1>I>bkL&5=L2lj=Wyv` >WV =k#O= Lj=<^=*;=#=&wr =1'=6Fp=7`=jyu=Ɲ=1M!5=URX(=Mi= /'=~v͒ S=q1=K=0/Uf=& =vSg= ط=*Z<=á= QU>فoH>de]>gP>X >ě>P>*2f>(v/>*A(>o+<1>甯+>=S{#>8^;8>\(@>k zTK> !F+R>0W l>~0jd>(h`>¬_>91V><*M>ʞ#K>UF>_U=>)|3eD>zL>j #= 9>v~c8>1 0> A>< yR>]6Z>n=d>ZV>p2 ^>92X{>vՊ1y|>rV| u|>\|>Y'>˨>W>T >zِ>Q 乧>ix>Inp>O#>9kN>^>)~>+̘~>R>j;P{>~{q>6Q>d>^`_>/Y>l9F%>Rp1>,& > I>2(>(YŶ>R1%$>6X(9>+Š >>>%)$>*(>j΄> *7>t >hN>.$h%>{>KQ\<'`\hΓ<ˣ(w7YAת%ZAHH.h/=+nO=o=co8>'w>7![>*R>ZGvv> Hd/K>1Qq>Que|)d>Dy>>yzNb>j҂>+WH@>KʭF>m!'><1= >ٓm>ߍ01>gg)N=dZ>< Ϯ=Yo]>zX>(sȀ->amyi>@Dq>Nn않> 9ǩ>TM~>@8Mut>`i>>{0EV>o$BA>Z?>@;6ـkp>U\>o!9U>`v/>/($7>)L>1d `x=娚&=@@a >*=ip8.=d=?H=\\+~;=m6=[5 u=..Km= YJ?=惤=P-q=EK=YV=Gڇ=ǹZKU=Oca =/cd?=/[@=3uI==&8q=W]==]*KT=g3>6r>I69%>;H>[S>xYh`>RB;Z>q>$6 Fuv>DŽƙ֍>L'>^M>9~p|>Y:t>8R7>Zi>~>>bQ>*3M>dX'>6>T9w>eùa>&pSa>0S`ET>.f>} \峤>iҚ:#> {)<"H=D&/7mE`ƍ=jz<0\<+8a_~p)k =D="lH|ב<4==`-D=@lC=Jjix|=#p [=I&@x:=N6-Q>=@oR=3)=,sGHR=٭JY=4,G`="M(=3oV2=H#+=b%*6=6;cm=MS(O(D=z= =g9lf=X~ף=Z=q]/=SAi=Tt4p=>ao6H>BE-Xa>I>pҩ&>K`g> _e>zXZ>hy68>rB@vq>f v>¤><հ>.^z>}G:[>i>ش*B>&5>?O0>r֖k>eb؃>]u>"߇E>]f>,zӉ">{7,>ubb>j=)> { C>Y01>nI >3>~ZKo4>cX@>yK5q>ev>,,P2JQ>IgQ~Z>Pu>=ʰ>9mo> I>vf>-Xy>+n魴>ua>1tw>>bP>]6+h`>qEg>FY>5Ékfw>oeS>d"_q>Lvj>m$>G{>Z9>bД>>kĠU>yH4TΡ>Qhzc>g#~j>\kx> d3''>فp>-H>|bދ">>Xڇ4|1>b,>, >wyH=D#=ſO=j8==>9= z=BtFs=, dl=]t`=}ho=Ok0k=pN=V`+8Q=MJ=FxC=D6f=XW=aJF=e[Sʃ=&i?=ЈCە= UB=0GqI={LA=װ@Y=[>1(>M؂d>jやm>tC>+^>Hi!?r} ?4s $?bze.#?Ү?UD?T@Ѩx?v?*O? o?$#?j!?I -/?&ap,?R"?/6Mq?..\?l׍?nM4K?[7B+/[?f1(?{D?H?f ; ?!Go.?oL+?9W]u4?}@N?u8y??}7H?.` yRZ?V7'A?=^M?(M? Q E?ADbc?ZPlaf?`*ӝm?e?"–?O)?^;'?Q߀_?u?"7?|?E;*pv?wPVL?]V(D?Sag?*7ꊓ?g_i?~jҙGW?wj?Rlre?ܑ:?'A??$Z6ƘQ?4R5R?1?ŧ?&?=-?-Zh=?k>F%,- ?Z?Gc?FX1?X/%>6?;(>/?LJOn"?wx7t1?Ӓ[Z4?? 7?! $6'?EF %??8?U_%*?&v6,?6@3?料H="?Xq "?"$?7\?[4?X4>vڡ>J#H ?Ӏ?VzP?室=? J?@>?>t> >Fݕ>Ύ>\9C>>>>~x?~T>M͹>"2>ضQ0k>& >)i>s>(>D gԿ>pn>g>I>/8+> >'Y>)nfG>p!f>_0> _[>޹F>M>3>[p6>fqF>4O?ʁ|:?E3?uDjy/?NXk 1@?XN,,#?_`?-Ar4?yT>w>ry57=?al'"2?7羣$?aw?9fLn?}ݷu> SXe ?qE{>t=>Ov> 9C>d>/^=>M'Ң>}4l> >*A>'N>*?~Ԁ-^u? BG?`,? K2N5?puU"?ͥp%?*DD? Vh,xC?2ec? M:?&AR?^^u?mx6h?)3 x?zX?DxGI?ސ+_Qe?$pSxs? I>F? 7Y?7i?㏍??x;?fAI؝?!Iz?9c?Ec;H?.6B?2&?E?P?TIP?̙E?NWz?pr?ۑKX?i)?W?x~I?^pp^?< R\x?y06.T?g(Wf?%yC?WgY?EI&? ֐?+-t?d`? \H٥?$|!d4?x޸?58N\?C.`?~'>M?*|W\?O GZ?Ě|U? p?;P?ef?y5] ?l?58ݮ?dz ?NyR?-iu?Z<(S?u)?8VM?(@a?&dS?jn]b?p]/$?4 x.?2D?DjE>?~?[ϊx?`?|=}BN?6dO?5{?D+?t^?4Xw?th0t?UI~Q?^i? ?]ȄM?)??I$A?U:0Y?'?(h͹??H?ʐD?y5?/;pH!?^?~dJҞ?z?g-?\P?pG?Ǽ!?1`?;d?h$?gLl8?YW?'O2O?oDR?@.?ZH_?͟Ea?F@?E:??h?| J? W J8?$?J{?d8?]W6?$Ci9?〰L?@0vC?hy?5r+?He?&;Ϻ?7?{-?O=-?ԥ?$5B?>D-?U?g:'?ޑ#7?|Zn$F?2 ?f=~8?vMLط?~1<2??Uɗ??l?l.?SEo?$&.Ze?ez,F?Ҁ8?0ar?q{K?;۝?:K?k?`:PF?9A?^?G9"]?j5(?m?8Co?iXIQW? >!?#"A?`B%?cB7?1?z[M?:?(:?ڡ*?|^C??Lj/?rVSH+?]m?n)t ?^a[?L=1? gʅ?5/yC?nj?~B9?Tgz? Qy? >Ta??09T?A?*t4(?g?ҬF?Vx^?xl?fb&:?r?A=2?ow,O?tP1u?AG?s'E? ? 7Y?D悢?eE?M?,*5?~I?M;@?;a?ώ5 ?W-L?gg?}?8]?_]K??T6?j?Dx ?O )lc?V_]*?4dyV&?%Wqkf?|ޝ֌?H>%e"?<?a 7p?=r?Ƹ?W'?*K]nr?U?8bs ?u?ghd?9ߟ?~>?zQP?ٱc ?Zh??gaD?nwT?;^?wLs6ս?eTC?֮}?1{ދ?"?ogٯ?bTS?Y?=M ?r?ϞH!?'G36?+?pKd?"RJS/?&?Iwv?jn ? 謻?jR/?c۝?(bzs?eN}/mX? ƅ??h?[ #??NK?G !a?v2A?2HOD?hAc9?D(^.?k}%!?1?$?묜0?#6?9~?٦mU?tGE?(' ?a|?J6?F ?RK?y.?4E>ٍ}>b>$ >3;>BXu#>sp>`{%A>T=->Ғ>E'>q?xT4?MF?S1>%?hJ< ?(+_?"e}%?Z+QcL?dwe>?|}_0?U0?B&s4?$W8?AwRH#?~V#)?r<)?b(0?x"x?Dh)X>05y>ZI?Îkz?~˗%:>v.0D>D >/zv>b`>w0۹>r%'>z>^t;3i>-mm >u>*J!>e-6*>IKBV>͕,>.E>x`#(>RE>Hk>F٥ >K4>Ʃ>j?X? O?)ˀ?(Ho*?de?9>y*?hM)?/ώ/+0??Z0a??k)?3UH4?kqic?v7I?H@U?@Lae?sfzHk?NK?x?j&HQ?;0C?>jHC?x,HQ?d`@?JCg?A,k? 5h?2c?,A?]M.oV?*?Zw?_Gf?Ͻls??ڰF?rF?_?cְ'}?-`Q? ]I?O Uۣ?bQȡ?gۃ{h?B?(Wr?Sp$z?BJɇk?`+P?32(Ob?ԩ[?zoN?V[?>ScH?,y{>4?pH?WDE;?!kJ?8]?P)Ǥs??#UU^?X5.?I?0  ?&3?.l><>}n>iį>tE:C>T}?jrĊ>g.cH>9+6>>F;@tg>1ˊ> oX>my@>s?cap ?ט?=?gwx> 7m4X ?q&#?ѻH5?0 a!?^A(?"?K@?F&&0?˳A4?t=Oh>ð>W/>=aO>Y>EBW>U>+N>lB?(s?4':\?1ҷb??JbK?pXUʛVT?-H2H?OQn?9F|?d?o*?X\`t?ȶDB?{C?n`?'3V?YJ?KR1$??2?-GX?g3л?bk3?0ǥ?Fc?k}?A{uM? w?x"$?^,?: \>&?:|?:D?r*$? Bv?2u??q?Ie]???ڭ?*λ0t?߽?SЯ0?r0KQ7? V-?Otp?d_?\]?K V?0?&?զ9?CMw?}MH?D^E?9;?J{iP?ǽ?ݕ?Y}%Ź?n?֬7?? P?d?V Da?3zE?.7?R4U?՛J?O%?uCd?~O5?i ^@?sRN?ƊǑ.?޼P?dLn?'aN?d|?< m?4 7==!=AS=!Z =8׀!=>ߍ">Uu4:>sps >?*Gv'>i1>>? ; >g4K>> m> k>#zrNq>9\?o>OXZ>MT>OEc,:[O>~`F[*>p @>4F>0;$FT>?N8>I7aF>jM}J>l&i/O>qI!`>>>Q>ًR>orC>z_d>, [>]ǴiY>rj>6Ik(s>5e"z>_A,tr>ao1i>مuvt>1u>iY)k>0m`W>p9{xe> _$s>sV k<>WuNxǐ> *W>X>癋> .kh0>t>D>IGMK>9&cxP>ޙr>#y>/#>(KՇ>Ѝ LJ>C>`N~n>#eF>yώ>ܬ>5>rGZ>dz2ϴ>0:>s>k >N>$P> gb>;&X">fsy> >݀>:v>ar>F4t>/xDi>P"Ea>?n>,׽Oh>y>☶bf>%<&X>f`>t۸L>6I>hs,T>(8Q>LX>۠kha>d-4:>=TA> 0E> g9>>|S+>g&)&>֘%>|Wt{>i9c>i#6m >(@݈ >$#V(>N0>K@z> D5>oRL>KQ>=%!e > F%>W/}$;>fa?(>H[>& =5>G8F>*nd3l+>㮝%>\+]ٚ.>2ȱ2V>̒_#>e4k=Ν.>1>5X>=OЄ'=r=+>=;룩=L{J=.9S=ZM=-$O=sC=/9P=:jz=Õc=y֮_=|"g\=sH=bNr}=T=G==&}z= ,=|c>Jv-=>H="% :={Y=Y"my=: I=%=(5 D=iԑ =O!9=i{i=T8?=[=jzN=ަL0=S+%=׎M<۝/={%5j9N?=HAm=~#;w=E=R=at=ls=Ak\h=c~K=J#=趲>TP>+{ ̓>mAo t>Vrm+>b^bj>XY9wP>a̰Y>rb>J]>l~I>43/>pT5@>7Q{C>I,4>=a5=94=A0=to=<Ԏ=y T"n=kcdt=)>9 >Y^B>>1>/)\> F >q"(!>W)/%>(ǎ+>L.>g_6>_bX.>l2>疅t`{>b3@>@D>HSOB>g:f =>ˡT'>3jv*>C;,>k=Eu>}OV#>=>Qr'+( >-J9> =䙃 >j@ >&)6Ͷ=![?=*=wU=b=hx=o3Msi$=#~=j_=rT3=GU=?g"=K=W=F0ќ>nj =z,(=}xB>)d> Lc=H=SW=ˤ.= =p݌=j(=1=lЬ]@=q=0k>)Z>Az%&>O6D.>Hq3>!or>Z!">w*`I>I > {@># 55>3Ot6>ofRG>j ]L>IuW3P>}pE>mB"tE>cmU>[2Z>h>U><)6g>Ii>fv> >XXp>S]q[c>4We>04 P>;|~>ݬq>A==e]>zLPV>Xd=\>lVIP>FPM>b>D/U>A8G>=>n)O>5W>Mxsa`>QG@-f>6yVr>mDo>coyv>`M^$z>Ee >>m6? >Ts>g6>gJ>\d؄t>Q)͘>܎>o\>m>q5h(>ߏ\H>mWϡ>>}_)>x >UrE>WN"K>H8/ >O>$ޏ>7Ƥ݆>);N>z>M.#>9>EL2ڕ>z5ɴ>+1>!/>i6>>U l:>Eu >ܩj-i>kGe$>$mǤ>n{>xϤ> >E=\>[>AUH'>Ʊ>?k>c <-TʂJ -<zl$ DNә<<ғEO<8 \{GB=3Ln6=RxV@=Y\@ =7ʊ1=F;?=YY6=ZZ>-Z0>K+>#9> 5# hK>(`vI>h9x>4;>ais>ˆh>چx^>G; u>YĈ>+1>B>(>oꔓ>*Av>,Ŭ]s>]Wib>:vB>+e^ >HsZD>oi&9>n*;r1>vaT> W!>O=w Qb>/$ +>>9pJEf=M>Y&>S== ޘn >ﰷk=ױlf@">aE>IB>r`~G<>e3h|2>W0ie>a$ra>D0_y>D˖>ug^>Z)>:晦L>6=k>>je>7]z> wx>"M>]n܃%>0?KԲ> (!> [O܍>9vS>z͠>[IT6v>d>!b> ZA>72>yJ>`T0&>0 #nn>WP >=MZ7>Y>>.Q..>yUZ=W=#f9ǖ=zUY=B= i=<-Xn=Βg=yeU="Ђ/=w?3h=!R=ΕX=lE%=jϟ=}=Kó=@c=#,;[=>ZIf=oXL`=gno=={F=d㓹R=v4=CI]gC=Vb%w0=zrE*=Bzy==U*֨==3Kr=UMJL=v1d=$WO=S[+L=>%2@]=Sܨ=4=eM_@=bhAc+=Rg^@=7XVI=CG=_)Q=KXW=:9zNc>K>? /(>3 >s =\") =#*>ڨP>̹30 >ے >/{` >1$>;6>^ !>lD,>4c3w8>f4C>1S*>e7 =6>mkȔ<>v,ӋB>/?`P>" -IO>(θN>dO>keCT>TaP> [ s?>ely 2>4j$3<>b0>k.?C>1W~M>X>W>2œc>IRwX]>[ӴEk>Nb٫e>1.m>Cls{>GRx>c0oy>: p>]>d>Z߉>4TjO>D~Q>F$͜>mKqg >>VsT>>im׌>2c_d>v>xɴ>R{G>Ю-t>K>.k#>N>ͳ>H;UY>y=au>h*> q>̘Y>2[7>5_x>E;Z-m>&ϐ>փeN>P gw>iMM`> }Y>Ed(Z>V4ta> G?m>V=n_b>DVۍM[>XtU> ˶c>3x>߃>J>rN>G4%I> mK>w(w8>lX>(>l-:>k2¥>_@N>.>_&=;Nf<1<)E6<ؓP4<ɜm'=Պ=$4=J=~ >a=ƌ4={И=-G=7C=(@|.=T K=(8t<I>=8 /^=SU@o=>]Ve=Z=ѭsN<:=jy'=32 =QM=:=E+9=peAL =spu;~=,<ĐJx< l!1<\,C5<47xxeq<΍<\ߙv(t<<*B=׀%0"<(}wXz8<Ifqq'=?B}yB=Hɂ]d=Ѧ&=_mA=kc=+=dN=' jюf=9 =1}7=}F[@0>e^ >S#S(y5>'K>>^>oq@2>&$>U>uV68>b^>{,e7>y%%(j=]q >;7RE0>d>JM>l6J]>G55?'>H>=qe>"k>sm>c۹9>7d$>5,>BnNR>04}i>fJn>t%>fN`b>Q5>ޑ>Vs>fJ >fm>j'xN>gܨB5>Nah>O $q>95U>XKg\v>}G:5Y> ~R8>%At">-$>[Y>ZhD>3łh>*ok6>$[C>lq9>< v{=Ba5>!|ȋ:=!$>9@>% E>"dO9>p`>{ D>DU>jh>!B V>ڊǍu> x>nLk>?h~>/078>"w>6_I΅>Ib >&n>ϖ̾>Aa>:WNJƱ>1>[,s>\QF>^h>V>Wp~>yH>?|>ѫ{l>TWS>KӦIW>juY>68Skc>p>ƛs>ɕy>ۑz>òq{>'mp>ow,v>X- g>~uc>6*^>C|f>|>1a>}/;cn>+v!l>˼-ux>k;>9K8t>W>a>c@8> ?>rؐ>Qsv>[ iL >>ֲ!>閪>~4t*>ݱ>ٖD>v%>)g>٥ϕ>D耡> Z>(M<O>Y'Q>3Ј>Ee>d3 >T>< y>*z.S>R> ȯu>n*DZy>p!EfI}>'Qj}>qg4y> Q:t>;v6g>^2>`}*> >t+>k3>C_s<>m >欵 >Ky >G4M>:V&>1hI">EW>WP[0>o{4>-rqB>6]P>BrR>qdN>MR2K @>GS еE>&%D:> RO-,>m̍[)>]L8>A>kK>L@ځL>k(-RFG>:4S>Aѭ>vP5V.> f۲Z>32>a>`0>= Ve=9W)>P5 >P>rH=@Έ #S=479=hI5_=*?8=GCNS==,=e=aܱ=$=o3=QV=J)=UA1=%\=+=\=Þz>$=049#=#A`=ˬ=88!g==;a&=kto=ć=%ꎊ=ykD=gT=0g=0= (B= W^J=<}:N=V=GgAb=mޅ=7ſQ=5}-x=Pu=r=BƵX=.PǰK=!ٖh^'=a@=1ˆG=$]?;=P=qZ=w$T=U}X=`=.u]a=|lO=QF_D=nB=L:K=<^=CT=k@X@p=hCu=YKzq=7c2=Ҍ =h6TN=f@=E!=9B0=#-|=9)H={kY=T ;=G>9(=gH=Áh=L*=DJ:»=2=_=Ja9V=Q f]=+Ƶ=j=Ngt=cԇ=˩u'0=@ujȵ=bļ(=$H=d{aKJ=`>xs\:>9>o1y->I몒>W:>pc(|>4W>q>f O>aNi>udB>  >*t*>M1">N>8J?Qи?qI?6v$?ۖ??k2 ?i"??p*??R\?#b8V?wM?2>K>jSA?GC&W?% ?wթx>R?q?`>BX ?k?6?al?/H? ?2?CA?SqeN?A^+ ?B%I?"D !?f l#?lU}5?R:(2?m ~f;?af)?09mm5?ю5?#?t|}*?Dh$?k ?^+?t*?G<Ķ6?Yn6?&aʜ7?g ;?}^&?P-?6y{Mv2?abL1?Bv;?j -5??x1?_Jm(?< #?ٿA1 ?2 (t!?D-&?EnaS+?qf!?f{"? :?t~?Ge%sS ?n4 ?U(?\r ?w22>ٵȫx>]?gsx?$\3?lx#V>"p ?r^?zm ?;@?cJp?zs1;?¿WZ(? ?+7A?(R ?泫????Aц>&?o&?4UȌ?\~3'?A 4F1?Nȴ4?lzT 0?,e+?œ0?,;T0y9?.Ze ;?S/YL?y5@?_kဖC?lph$^Q?R?"4N?8PG?O]TG?k=Y;?5neG?vI)+M?n;;?50J7?TJ Y|C?$%,A?v1r"G?LI?W%X?S?^3d?JG_?k? gfjp?XS?\70a?e .c?HҤi?C'T?(=sq?vz|Ï?u$)E?2@+?R,`?+Oa4?7]?p2]H??J!a?|bv%M?>cD?oA?ᒺD??D+A?DxbI?%_[C?Dw=?Ȋ\@?\;BR?-Y?( ,8F?pM?0%a?^'dJl?$EsKm?9Cd?)\pT?i)=|?\,-?ЀIc?:1ک?Ŷ?&6շS?G`'o? _8?CΠ?M ?Z?0z?pMȀ?W0Ƒ?t?O?'L-6?shї?&X?CB Ks?Bg?u2D!CT?f,PKh?ˮruWq?' :'\?R>} P?ҙvV? @R?C?$<%I?ꅼ;?8V=B?dFhgK?qQ?9T0 \?}DJ 4H?)k7?cZ8?Yl>?!ר$?FJ"?bF6!?M~.?v'ٓכ?| d?Ǹ ? 1?>X>7?0~x?^>l]9?M!m?~P ?u-e?#E?XYB?+!H?MqD,?S-02>^e>a&?^>`x?>ʓG?M ?Cָ ?*^?檥?C"?)?Q`C|"&?m- ?wD?!?. i+m$?tL(?T",?6|-?@2?ɤ5?β N?^1<>$7?7`D>,Kt8>8&??8ŔA ?nY?m^:?{^OO?31S?Zpa?Y?yQ?'9Aƫ?p?`uX#?3>t!T>G2->i>o?DB>M>5=Y>u^< >ݗ*S>胏)=> p!/>4X8ϒ>3kw> NEe`>hA, n>\c>;Qξ > ~>N,`>AB>f_{>r%>d) 8>DaP[>s6><@>΀>[>*R>m>˪J(>u>ckU>Z_>ٮQN>zbq>@>S|Lvٳ>w#5E>Bu'@>Yky̷>zyR>; I> +>  >3 >WC 5>¦j> \Q> FoK>}h">},Wi>d`h>IA6>C>ds>-@ b9E>>&4ih>nI>31>w 4n> aO> [L>1f>&QT>OR>'Tc>,lB>>Q> 7>.\Y> gŽ>_E->XE_>|oU>]ak>Xـ偽>>~D3>{>! >Lb\>`5cSh>3<>=> ܀>>?)>N _\>E>5wD>0Ӏ>&s+>(׆W:>nYZ%>\>߯ze>omϠ4>z+>So>M)> Һc>s(>*N#<>xc)>>e>%)9u> `ޛ>ې>ӳE>M籵?_@LC?:+s?XQ߸<?azW$? uGv'?ǩ;?sC'?#1v(?`6?ُ(??;>?7⋁?re?xB">>̉?? 'ބ?S1w?ȸ"ő ?0F4/?)!;?~"?./p7?U+M_+?Fc?B3?TDQ>?v*> &Jߢ> >F~>SJD>zFI>G,f>!>R>>#5#>ҍ;>wiX>\>2)>ѱϋ>զ>r_>sұ >&O>9>0}?@>GZUg>x&*>'qg>ǣs? ?xզ?f0iw*?cگl9?|4W@2?]jSJB$?]^(?uq.?T%q1?!7)?wm?if?4;,?*>Ɯڠ>&C?$i?u4!?hO4?C??l0?$DJ?/⳻SZ?E?ހ/x?ͩVSe?&niZw?vFnRlo?w~`f?ZŽg^?ٴj+O?|kSU??:zU?w.H? `@RA? !_J?!q0Q?b>`?*LFr?< d?pBk?T>w#tЁ?jI?? hD?9Ѯ?v5??Z{&?57yv?fu?Rl5?Jx „?+?%9A?XcI?$Z4?oax?;E?8nY?nܐ?*"9p?N37?=(&v?*-ѹ?u!x?|1n?&Ena?j!_?`X1J?A? V?s.T:?d/nJ?@ۡ*a?@[s?.!?m Q#?i? [/?6]1?cnP?f肍?]9?jZg%?c ?0g.?7ʬ?JF7կ? ?թQ?( ?Q#ż?+@{G?a>]?Q.?ˡS?- ' ?y)?7r$Z?FL?W;q?SR?`3D?ϭM_?9p?6?a1?Iz?ClU?)n?ˍe?J??sz?"O??zPܹ? 9W^N?i?c;{?L*@?yiq?Lymm?0?TZ?k ? ɥpet? 0%?S9?c?^I+?;as?d?kL}?bU ?"Zƌ?$ 蛁?;CC@?Upi?#1? ?ʫ8?Ln?x?Q:4 ?J*n?aL_?ɰ`9?s?a?E?BgN?^,²?Fa?ܘ?4MbI?2"?;dA?̮)v?m?.M?Z/?Y?R3?wyL?(D?zY?nI?KN/??ݝI?CAg~?)[NN?nK7?iQZM?j.`?+AwLw?>\Bd?N>?Wf*?dJȞ?P|?0"6?l+?4-_@?į?ܟ'<]?)[?+N?VC?abM?!M?s*?yf{ه?豛xf?kǸC?ng?xl?C,V?./A?bo ?:?1q?$}?6Df@?K' ?:?~?6>w?#>At?Զ%d? 2]?Ϗ?? q[f?|Kj?Uڭ"?Q/?iJ-?%QB?ER?#0[~]???)g?ݳ?KK?owԈ?TT'??Ycb!?Ǿ?5.8t?k_*?) n"n?ԑ-?)NB?$:?C2A?BFKo?@b$ͮ?0ް?Gԩp'?B^J?ib$?PuoQ?zTk? !'?_Oߪ?ٟ%?Q7];?F?XQQ?0?<4F?<-6?uH}?Y?6{.?ޚy?[v݋? C2?]Bd?QHǍ?ty?X՜?\?clB?Ί_?OH?bpn?2?uB?"tG?wrK\S?1P?֚?mZ?#?ql? uS?+S$?kCrOi? M ?~,_?j?*?tv -O?`V_?.z?Mz?5د_ ?&-=:?HMt?(e?9f?? nՀ?3Vہ?T+;?2`L|?@v?ql?+7R܋?{7Bi?,gT?඲??F[nfJ?FVHC?GE,?UJM9?\Źf?KmB ?UQ?X ?W ?`zc?y$7(?3Tǝ?/,??z?43? 9?ՈI?pˆ?w"Y?]"i?\&?6?ZDGR?MI,7?Ą$h? X%?׏Պu?N<#J?lc?Ik?'5}E?q[:֡?Y ?UR?.y~-x?%{>?wf ߷?Oe!?g?F?ZV?#~s?Pk++?/l?,Q|]???}L]?FA:?C ?1C>?|\YC?3R? y ?jԄX?f`??x?l-?:?զk?B2?;1l&?yJ?I,zG?wᜭ?m?Ӑu7?60;?X>#?a0[?W5R2?A ?m8?ã؛?=r\p?.wی?9g?gC?9t?!:?8gmD?n;?H?8.&?j.?,?a0r?IyN?p[MO?eZ?r{?F3)?ͬ{m?^?VV?/V5?fH !?L8?@bdI?UK^?aee+?dT?˨0N?"zAq?w ~?iǓ?9h^4?+$7? [M?JȄ.,%?hujt?8hb ?)sA?f?"? ɶ? ?Y??M\??/Y?j5v?讴'?pVC?Rn?kSެ?_(ç?+a'n?YF?1ԙ[?WugK?(?G5 L?]>? a?4 E??2d?c7P=$?%R?=)-:?&6?E'?hHJ}? @h??ܑ4?$'st?^5?}n~?9??5?߫2z?Oh?)0?^i6I?2stEVF?5B?.N?~6U?QvE?U1PGD? &H?.,q,@?nLГ/=?ׂL?G7gA?땒O~E?σOV?[%~X?3]~_g?eDnw?*f?kQ?e?y% \?)NV?U/tl?R*M=?,R%8?F̡H? D?TʜYib #]N?4|M?ק>ẍ>Q˯> `?ӛ?2Z|^?wr?/?I ?&~џZ?O26? MIi?i01c?RA{?/>xt89><&>~cX>9D> N>I>ey>tzV>KQ9>:K>vB>ك>]#>)xn2?>T| 4>Vf^v>f>jb>=g|>i>.t>>_j>uɷ?Ozڎ>*ko$(?[?'Zs?]'?kQ/d? [_?)90?1?@Uv9d>(`+?>۩՟5K?T|N>9?Df? D$z?>Zg_?~WMO?u T%?{;0 5?87??HYHk ?=`?rJ!*?"?Ոf?k(a$Z.?ә5C ? j\18?.L26?b:N;?s$=(?%ڌW0?z >4?0M4? Ж6?4.Cf2?8 -?Y<ս?97ߊ!?B?3?,>z?ySy(? *)?-=,?+O};?0eQ6?@_H2?\-3?wn7?9{]I0?_>ɫ,?I[tL?ojS ??M"?HH&?[?:uy%?Oqf$? uЯ'?K\q,?y,?; m20?okAo7?bͦ/!4??1hȬ\1?ѦO)97?4?8c.?ڴI$?JkŜ?0.T) "? 7(?1.T?[m>?ß?_%??2???A˛_?>?E],1E ?ߚӿ>8Mō4>}?{̬ ?: o4 ?uSc?g婚?o'[ ?ٻu?fb6?Mܝ?wwK?>G;>iy"$>Wњ>/Oupt>ً/lو>>ux>>gke>69Y^(>2o@X>x\>q0>$uB0>bBV/\>*'o>h]5 >>xz>0-R/>p[/>ٟ͋>Q]s> ->;y>t}>fc>b|e>ӱ>bm>8>$tZ.>ԥa4{>nVW">lM?>9%>Ac>HO7>FnƸM>K>al>ED1|_>oB0G>U~>;C%Q>PUe> >N>v6>V>aR;Qz>gG>Jן>g>_>*qDz>>Jv1>rQ񺡸>l:U>2]i%>>7I>6f5>M(.>*1#>BE|̵>k>MF>zl> `9I>bp> >a>}*#>lK><">! n5>1OKP>Q9'%>d!?)M:?26@^?;mS?>LVN?}zc ?km?Yz_?r"?4U?SυN?zw ?\!>=`d{?}-kh>#1?VUQ?o]̡ ?يU?@1?Ӎ?!d=W ?{ZK?_$?yE$? "r3#?8:[?=z'?ɟ;2??W57?3G=Q4?!P.-?iDYt9?tV9?/n9J?Lna?\P|υ??kö?Η+?k3?ﮀ?Eۂ?6L/u?30?/xŇp>'??VBd?>t?]o>!z|x> Pi5u>9>nָ>0' >pvaM>y>Y>D3>էY>'OԺ>1%r>D-B>Eh>W)j>W&>5͸J>m>'P>GyjY>A>!--Aw?>W)>x4>'!?UI?rQdb>Czΰ?T?-㯙?Bd Q?Je8|+?Nuwn7?HZ=0*?Uy]+?`%(?feK$?64K-B?R@?kK@`M?Ku:% ?[D*r?C ?JM>2Ȥ:>&e;>6Mu>>W>ɽ>X>>En3n>;8>X!`;>Woܺ-a>9S?>P >ꟌN>V)w>~2 >6ї`>0fV>L|;n>9c>:(ת?!D}\%?83:e?TXXt\?PI??@Q?L4>?pK}ԩ?kK?t\?߮]̴?4=Ȥ?i'$?kJ?TLȸZ?h?&i`?@4&.?]s?VT[?|?&7|?!vXA?Ɇ~?[cU]?* ?U,P*X|?l˶?J?N8?HrV{?N?"h>?Wv4?ڼQ?N|??LMZ?-[?4M?hu ^?z4,ha? Gp?f4l|p?l%ķ?uyGķ?KR}{s?[(.?BN?Z?/?=mz?6Q?t'?fz?Bc?5? lp??OB?e =?hV?ʫZ?Ry[XC?i?rH?y_%?\e#?}Nu?ٷ?Fk7?>UٺI?@e?m0?7$D?Sk+? m?*_?"8/??NCذ?qA?%fZ =4@]7=69!=r֫y=Ca^q.=Q=h5 =-hd=Ga,܂=MT=/J*j=1=Q=ABsG="8̜=pQx=G#==Do3ݹ:= ô=]>@~JWX>6bq=]g!= ӛ;=dB=,kk=nDžE>Xl3 > _L >>dZ>&C+.0 >U,/>dܶ>\ e;>>&y%>HUE5!>+,>p0>깟ͥ+> D#>jA">eE>>0Ҕ>/1| >K]Ĩy>F,n=97 >$i#M l>Re>2LXކ>]x>鑐>[>N/pJ>NZaz,>ח^S}>``zt> m>dY++xs>*i>_e>XYw><[[0p>%mg>f<ۈ^>ge`>D6 S>"vpW>.yN>%W +E>d_ڇJ>٢HR>i9[>kCqc>`>Äg`;U> R>t[vH>/1> &[33> 5>fe#>2]o->8'#>iX'>hXbۯ2>-[-V;>3$-> lL:B>,F>gC>YsC>7mQ>,Dnl <>ӈ5<>,4>EZJ8>DѱP6> c`A>SP=H>) ݒ=1E>yHC K>-F>0k4Q>2Q+S>&kIL>5!nM>F 82P>B 7F\>=&^ ^I>UAlB>JXA>,pP>1K>s:}CM>8I>4Q>䖏amV>xc>W[VX`>'U>JjV>iTY>/WuRd>,2 e>Gb>e(Tq]>hg>YJf> s>h$o>g_v>A"mKz>Wr>uΗiu>j=s>{׃n>xޠi>UBօp>C1q>ҧ{p>5-i>me>f$`>z(?k\>!Z>W>U#) b>>kkg>ّΖk>!r>Swt>,fE{>}Ol2{>az>N>ĩ2V>As>'?Ѷx>5Ӏ>,[t%S>j˝F>k6>,ed>"Àw>1)u>? >A>t?wh>;˂> я>ʮMt>W0 >@Yx>b>P9>$;>+ޏ-c>o(ɧ>iʡ>kNO>E k>7G>04>..%YƋ>I>D[>6֐ڌ>s= >Z.ۦ>489x> Aߩ|>;t>̬z{>Y>ߜc#@>5?>r~>2Jh/`~>!H1>mۆ>Vy>z>%[{߂>OKvyj$>}Y>CVT^>ˡk'̇>Вې>x谒> b}ӏ>hCЊ>:3g >_XA>!j{ƛ>d.J>F >?Z}>1[>>RD7'>"(>=>>:L*>o>k>p>Q<>7Hj>AZ> #F>}>mUc>VG>ҙ+>D&>Y+>3t>KJ> Iz>V m>`E>v-']>k>>9t7p >Z3p>p=`y>:Dq>>um<Ƃ>b>BBa}>Emf90>ړOu>\s>*a]x>1o>E7% nk>>∟@f>L2p>Ǿ5i>=<2g>2"?Њs>u>'턏e|>=ޛ2|>yry>6GCs>p)u|> ?v>fq>*Wj>vlp>^2e>>tl>]Do>DHg>Y-]>K87\>A%c>>. )b>H}_>RAd`>SU>!lR>uwO>.wP>FXknZ\>90-U>P.J> JM>Ht 9R>׋b6IR>"},T>a/H[>9pT>p?V>.W[>BRle>HV`>*Ccc>{i :de>|3`>xo]>=x|-W>9GS>15Q>-n$K>8o[@>\2@>A<&C>N>jH>Ɠ&K>hG>8.@>6^: ]C>u$6>[0>ˎ6>~D=>5>_o+>-=Tϝ%>tc*>,'1Q>SUa>*4Ԇ>֠+>(0H>e1i >s >.9Fc>a}->=n: 2$>*2K*">R6d&>H 2>J)>GPa0>wP{K(>cU%>kU_>  >HY͊> N9>i}#պ>Q@>VI>hpS>f xoF>2at">к] ">6eW=->,k(+4>2>]4@s-C>r,{D><ٸGGG>Ծf<>Fd7>cg=@>BgA>i,bP4>fڮ3>6]9>i*>sk^$>P@0>C6>]E>H=>ƭ9>Kd:>R$!?>8 ث1>mM/> V5(>:mE\$>;>潲v#>sP)>6 L1>u5S'>I:M">y>c& >3'WY> >?Zeo>^ھ>dӂ>P˺%E>%a32>$F>h7+>rh6q>//rh->EFs/&>P(*>!>>ui_>Z<>K=@0=fѲ=iB:=@P,=e-=+ThN=,h n=n?=>;EJ=ԥL=82=>>zO=9/ =iC/=&="gUPp=<Ɯ=|mFJ=@=;_=|Hw"=H1=YV=]:=ZENdJ='=H<9='B=ͤp޸=7m=]=dz' =C( PT=n4=\w==΅fO=L=ޝs=\å L=*} A= }B^=j[J=='T=YS¶=2 J =Y=NZ':=;=C b=#z<=N!hO=(8=EIo=ya= 4Y߰p= ;QR=xgv=z =c#jD=k[>$I=sm >=G==^=(k=}Ѡ= i=üI8=|j=nB= 2{=eI>GR->[g>X =L],dI>PQ>g}7=[U=盧=Dڜ4=^9G=SXf=IT=]Y=@R9=hK= =/4L1=pc#&J=N.?#=\E^=A\=LT]=z-ƽ=/=Ka/U=M=YJ=K =pD=>K~/x=/s=pf=qccH=uE=~gב =uS.=I9="N =aV<+t<`<=R==S=;x{P=?4b=m? r3'm+O >W R5>\vj>aÔ ҈>A`>D=>mʂ>̾P~q>^z>S (́>ny>d|>9Fds>[Nj>Żlp>}5_k>ZDff>& G>zDI>=;S>̉ k-}X> ]@D^>Hf:_>F$r`>[BX>`W@n&P>WR> }`tT>7L>06>46B}|D>F>IFQ@>FL =>dPWA>L 0>u4>s$x->2c'>-4~/'>k\0>NZ{8>0 =Sp:$=.Yc= ;=;)M==j=SkEF=ӑ#=((={ZKk}=V&=u75o=C^ V?=Q&E=E "=7=?e=W^9==+B(=R=|b=6$7=n|}>ܣe=\c}t=>c3 > "D{>Ь`B>|]T>qb >SB+>EA_8>Q=.Rԏ=a>/=j1!B=JG$=l=LGtD2= ɣE>=NO >-'>V‡>>H}>ٗ-&>-dƇ!>>ՖAu>ej>t-j>|3>>6 >Cy]'><r]z)>8->g))(>݊/է1>/,y2>kA;4>?G:>o- p/+>L.>v#ȕ%>ɱ{,>~c3>"jx.4>u%0>UC=>/ ?>;>PaR=>`gC> /Tb@>5>dR+>(-/>ZF:(>2>c¬Р!>F?">><е>S>?y/%>_3B[<)>i޴G>?)>>0F>,٢>gmͭ2>7r >{A ^>VuQ{>O >Ol` >a"=Ւs  >Ch;u>jW7#>{5K>ˡL>AŻM>8/X >¥3)>CoH=F|UÙ>6(=\:ߝ=0=vӘڼ=K=#cx=_{=Y=U)=NP[=o2>=yfA]=SWF=y\=-=_Cy=Wr==J|9="ˆ~==ވ#/=j(=^?=dj>=" =(F%8=j4Ruf=74'=Աy=u%<=u皕/=sRfy=ߨz=aT=8ʦ=q ==Y M=NT=_[h{=^=vyy-= =S]=vk=9Uԟ=yb&=Z=|=Su(>-=U0=~>jd>"]|+=vB= jO3>/p>3 >>`^a>OX1=(=f:W=弢=Cu1=N= vG=1r=~?=KmQz—=#(=z}=!= ϑ=#Ю==u= }JP=z= if>=0 8=I?=<=lI#=9=(h=3LQQ=p{== k="y =#ȗ=ã7c=~Z-=Gh2=h _=F=fK9 =.[=[r=]Cm>ztDVv8 >'=U^>E=N>yװ>O뵋:# >w7qo >iY{&>ݽX,>QZ*>M#> O-$>'>%F1>wW">2Ž >>i6>Mq%>E> >: >aӃG >l=p >‡C>]|I4>MN$>!!>6 D-$>$~#>p+,>"N 8.> 8>BTn4>@>PK/>vn0>bJK5>xX1>/uIH3>toDj;>$m9> qA>m]C>򀜦F>B dRC>rSUF>Nz9J>RH>6oJ>hв?>o ;>,OIq5>c2>gz5>{<8>Š

\󊷋E>[5OS>? ڰ\>Ն)X>'fOR>DߥIR>^U>pX>TTd>0^>MYW>w܊b>L"k>T'8r>Nu3u>Ɇy>ޑ{>jFOs>Lx>N@}>9፫q>hh6n>G aq>GYl>k>g!Af>1Pbdj>j1k>a{x>CVw>?~Mw>F+y~>~Av>Pz 4q>ɾCc>$| a>Aʵ]> /6Z>x#0 Z>6]d>Sqb>hc>8'r4$b>hW>F[>+lN>,aL>jER>n}TkU>~wS>pfWR>S,J>qJ>V=P>hIb>5W"`>H ]Z>!7ˏn3V>.>DO>lz"T>7 lC>6&F>]T0F>q 7HrC>*A>f:2B>'9> E>߽,0gGP>пc#I>pd_T>][>`%WL>*|P>d6 `>WlPe>+}c>f41,\>PS> \nfV>%hZ>H&|a>0sKf>o\;c>"PJOf>!p>x~+_k>>ke> )% i>wMŌm>uq>}x> 0n>ٛrmuj>H_RC'\>_+}c>˲a*g> 0i>3u> I$uv>p_4>u5g߇|>Sm>sӉ>`Y>>c\}>HI?ŕ}>!4}>nNr>?|u>ƶCz>9l1Ys>jq??o>Gr>pIG@w>Rx>v>k>[2֋> B>yi>73s[{>=d.>`v > >:;m@>p{>`ʸ|>/;ۋ>m ^ϙ>~6 >Msm!>>)2sl>oc>0$W9 >ڨ>@Ҩ> >^{,U>fHڙ>W,>*>7l 6>:Ws>s$Fx>*r>m, >Ŧo->Fr>YPx>W+=2>r3J->Jyx>ʒ>Zq>7>a>ⱹ9>{}鴗>ݘ>׎>}j>%O>e.Vσ>H&Ҋ> %1>[t8>zEpg>x;R)>w,>;#ˊS>aiD>[M<>?/r> Iq>xF}>r0> -'>j{> I>Xdo,->J>w&U]>Xb`>>V>Ed>p^X>)%=>.>`'U>;>A>Nb>>4>GH>N)Z{ַ>O3̺>Uez> >8>19> W>S>]->⎊>6>ђ|_q>-sa>$:>H^>_7!>> ´>E>"M>)и>&x>x >L>)96>hj\>XL#>R)Фz>2>Ӭ>xa>%6>'h*>-K>GE۴>o>1>>y E>. >z"3>>?7&>_MP>-T>>Ԧt>IE!>d *{q>|>CYՑ>Y,x>KFj>W4G&>[>>l>k i>>;Ӥ>E׸V>ۇٌ>x>gi>8l5>PA{qg> >Wqy>˓>B>9G1>o>}>ϡ/;>^ P>jҼ>,!>B zζ>M>@>|[N9>sN$;>)ƩďS>IP>j(@0<XҤ1> :>1M>YpE`=UrIq,=R#9=qĊ)N=nH|\=;s5L=5b"=Q(x=Rm I=?xQx=&S8@l=UH=CTq=Aw=S†>;0$'}>/ >69.1>tR?>>ߔI>cDD>M`I(h>v,L>x>ߙ<>(>ɞ.y`x>e0ɧb>ݼI`s>7>Z=.c<+uq!k<c:<%c!c=hɲ9|={Ta=p:{4=!]ôv<1|ćg%>;hn8>;. (> m>엮> E;>"B.W>Ng>94"p> KW]>\|l>C 6&>o1!>D"m>N@rJ>>jDg]=:|*>C/U5>AD idC>iQ[>EQ($;=ȑ=@ѧ=7=&=ʪfY=g<ݷ=Տe=M= Lv=PA֓ck=@W?f=/\a=BaZT=)-Zw=܀ wTz=Bjr=^>]q>ό>d*Hl>k72>*GV?k$?5h-F?- ?8w1)?*U;?@:0?a QF0? "dp1?sغ?r 2?/VQ9?Z-B?Cw4?OZF$?;j?LN?LYxʧ?X&^!?t+?~K?HA?5@Y?G p?,K?G`P?)B?U 8?Yj[R?'M؟>?0%b??C\wM?0E?"Y.M?A=?.f3?xFh*? zL ??VXz?ӵy>6UJ0 ?tk?\80R>K?&-*?[@4?0h59+?&9_x?v?f5 #?K? ,>aBzP>pX>Oa{>~mP>J k>Q> ?>l>6̿>tGZ>x+>T/|.>LbNg5>t>'?i$Fd?[L9?H@>${2^>fb??K?!@?O%?8?n 2?`Kc?-<]P?1??7 Cn͛?1؇t?e1PO?z's?Ρ ?0?!S?u? 3?MgȦ8?8%%A?YCo;? "N?4>H_]?ϦR?3_I?s'B?4S$6?aCJ#?)eg0?9j4*?$?.ZW. :?܋?z ?>\>ݚY>X ?J?1U ?x ?2L$+?My9)?0$?J/#8"?1@0?@I?&^7@?iP.S9?D̦2?@w'h"?Nt?KB?XoR?b >RFX>ʠ>0RJ>` >+ACO>=d>>#Ќ>sBr> >> >co>LR(>Y?hD ?Y=:?:0?u 60?x1ݹ ?-:?5zyh4?'%1:?R)?s L4?ǖG?[ ,X? `("?#?9=?^??p8$?_ز?BT?s-fL?0y?UN?Ъ'?0 f> [<>] ?0>{%>幠>J}>qa>'i:N>nKf<>aud\>7ѐLG>$ˉ@>m_mJ<>~ʣZS>d L>-D>)0vP>R.c>% {l>J͠ar>2gh>fwp^>0l_*>G> 6F>jf$h>,>f$#Ϝ:>us#`>ȦwQ>Y;ς>KDc|>} a"K>@N\>k,5$e>ާNx>G>sا>YD>M>z .>ܲz|>,?w8y>1ml>j{N6e>{7x>q&)t> ?Ԇfo>^8AX>XCR>L5ݷP>F&]>PmϤ^>2+ג.Q>n*tK>ТOMJ3>҄Xn1>k>9V6d>Ka1H>U_3>a8r>pѷ<>nut,>%K@ڭ$8>qaX0u6>8">$aq c>+;=O >>>E!F== 9=e=N9Va=dB:=41=>$Lᇼ=?56wf=N[ ܴ="fN=!=7u>Ssj=C=.jO=CM=E=2\=ㆀc6=Fǡ< R=9'- =&T=F޹Mխ=0d sj>BfOb>pJCT>pcB:>#=*>= s`==?r=x3=2==њ>'W~>i $Y=9\O)>>8 7>!w:>S4>e<IE>_\0>)o^ɭ>ܤ=3>]Se>up4>d> /="d =wq=Jpe=IjD=+!=%\f=ȝa=Ƹ t>5,0m>=o*$ 6~=^ e=hIq= ^ѐ>(lK(>Fw>eO)>ZLߚ+> ?>APqB>o /7>d*sS>Sa> >i:Ts>8Jdq>Vw9Yq>weP c>(Ӎ^o]>.҂`>Œ/R>sd ')&W>E>&9_P>tmd>:]d>.HX[l>L(l>h>$d>eك>bOT!>]Lv}>"r#>N&I#8>_F>|>"SBʛ>ZuhȠ>~an>[Xb)>شs>>Ӈ>&Պe)>I] N>s >ɮR2>hN\>n)'> ɸ>Jq>?/>>*w4>AMC>VxDpUU_<S82BMWӏF{[KXޒ([6X+[}A<lYnx6lփ<4Yv<m<:iW[<̧HbUZdݖR<g;AÝ$<.2b)zO_<2?' >hW>?CJ'>_;>^*m>$V*> m=q/>B>V̧P>V<=X>ez>0pW>J&>~˙>l 51>c-s>e+^j>ӏ+g>_^Ƅt>Fe>7>6*c;>(>r#X> L;dD>`ot|">ȰF>2Eޘ">-f>X?|>>2@.=2-.E==(=@Z5=5骽=^=Z5p=J=WY5=fg3+=c?=o֕׻h=ŏm1=堥=^lg=)|={q__n= rR=CJן0=Cx:=%)V=Z+Qv.='C+=ݝFE+=Kǭ"W=< =3Qjw=%|hX=%#V=&+=qD"=&#=;1=8Q=c6W=0z=sT<_{=Е8ơ='H=t=G@ԯ===B= (9=u J ft=9L`+=H3R=rkL=Bc=/=r>pAN>_2>W=)>+a2>3(yE2>׆«H>\[OR>Pc>Y`ӧp>hjx>LD&")Ȑ>C΁¨>]nrA>!W3!>J_>,R>eiH>ul>P}%^Z>$D0 \>--yB>{}G5o>{H8nϢ>XB >/-- >|> 9I>'e =>׉=x=Aಘk=o!W|>=r3#=eGo` =f*GWզ2p1y<:IU/5<@(#QA)Z9^ύQ=Z5JY=KN=GВU=`!=mgVi=z-@hI=kYD[=M[lb=vXY=ל(a~gf=sr!Á>!B>V P>yC>qP1>p <$ >0k->r@>ŢP] >zS5 >ʔwC>n,A>s>[>x>%>Z/e>!ƒKu>y9j>M@8r> {iR>#(>2S>&@܉>L >霡>a~w>߄Wa˃>qX>! tg>{^&W>)  G>yֳ&>G)9X>6w >Ɨ(*>V^-%> >K1>Lx`=z2>,lpfG>qs>!c3nc>][>;VU𭏄>j'h>m>>̹!-֟>?>7>`Zة>c^qǁ>t y>-ϔd>ꎴ\> W{k>ms>A:X>yT lc>I 9Հ>en># [>]E>5t>7N>߉j5^>(X>Z~>9բ{r>nLு>/EI>8H=kA#U>PP ,>HDS>]79>2h&03>YL] R>'v)> T>Wd=IO=<~.:=XI==kx=D>,="5I=`̶=PMM= Ӡ=n= h=dHM=V%8K=X%Hd=kx=<ہ=(s=οc="j=Q=`]~=5N}=ww0=Mu@-ƣ=UP>8%T>2͇>9Qg>L >a>4[>G=>T>A`U?PRf? ?!9t ?^4?B˹?õ6&?hBq0?9])?Ii@t ?.],?,(6?y~ !4?8.?_/d?HZA `? cٱ?dd;<`p???2?i<?h!?"e;"?vj<,?_lD? nI?lvT?l/A?i#BG??\?T{ٛ?DU?X?}th?(Ȩ~?wK?`9z?;w_?<Λ? /"IU?"BV&~?Gu؂g?9>c?Q秎![?5<}F? <C?BxK?|??G-6?:O X?eP? c’=? JF?Yol?Lasp?٥f?l(yt?C`Hk?t\uj)?q??` ?ԧ?'j=?Q ?*P#?*BR0!?=}6?T2?5?( 2?y$`?ޭI"?/-8H2?]sL*?t[>"?_tl"? &ve?@z?ץ2X?Ab-U>ol]0?^Bw??̊>U}"q6>Ͳa>S&>]{>KEՒ/>?>d=u}>s_>+ZV>or>]QF>} ~e>|^>˦nP> >n6u<>-G>C> Y[;z9>B>^>XLp>{.#*>ν+Y>Qi>J"b>}ֳo> -Q> >+ f>PA^v>~ ?JF2?!eS1?PZ$ ?H*و?qR3?2%|>/? R 5:0? wm*?/)8Y;?Ȯ?3e5 ?)GB?) >ȗn>54>>PE>U>Y>kܿ>\iy>L>ϩٯ>?.!>UR>/k>< >#O?>ck46 >L>XŇY>#)M(>?~J:%@?;P\?.2?C}1?!?fA?<`\@ ?YL ?E ʬS?ĖI?uUýU^?np?)$i?unG?ӓ P? V?A~W?zҁƝh?h=(l?E_x?ֿjd?~}? S?YŒf??Lx?\??ᘼ`?ዉ%? B>j?U?S3?otd?'b=? *?]AW?"b?:^0d?1?z?rB9?GHT?d?\eah?lRZ?AcX?9? ?r1Z}?aD?p ?d\td?s? O-;9?T4?h aj?U X?oX^0?#?-BrZ?g[?k]?E?-E?Ժ5?P)uֱ?e?0R/?q?|(dEU\?hXzF?3b??p1%?Jx(SC? m?5L5v@?U/ڡ?=pIA?>}?R7N?yNL?]Üb?g>37?QqW?]Hd?%u?'M6?Ѳe?d2i?;H?$1 ;? #N=?nQ9?h"g?l ?Ɋ?/c?/5?wvI?q?UWX\o??=$?*??Z?ɝ? r+?/ya1?)?d~D?DV55?קA?1 ߙ?xŨ;?pυ?7 ?zϽ]?;CK,?Q?O:^??QF?V?-fJ`?!M?VO\a?\G?Cx?7?{S?[yr?jF? x?} O?с?4Դ?1?,npK?/I?&?K =(p?0?vw?d(Q?F7?ܼ?*l?DG?e'ȔC? :d?2Pn?VF?f(b7?䳸*о?R? ?2Pa?E:?z?a? E?*Q܇?ds#3?Y;R?΄?D<?J7 ? A&?C ?4?Qʪ/?[6̱?V~K?G 7?#(y?Oڒ?0j}?0^?IM?/ܷ@>?z'0x?n cs?d/?8E}?ΉQa?!MS?D @E?0N N?):nF? `EU?a)^?r,PIq?[!SB?8tC?_@?;:c2?!;(?Fn6?#3B4?PM$?mku@ ?GT?e L?ٮ? fum?y8>2?ċ?au?_0B>ahy}>A>2ʟF>VO> Cp"I>%>hO>3t2t>s҃ҕ[?9?:w5ep>0J{>NȦ?d[?u\k"?[2f4?L*9?YJ\'?Ƅ ? d 0?pO0;?" %?'p>"?ñ5<)?H:?',?ΐ 2?雍S?V\4>>~f>G{?m!?$Jz>mw>‰>!N>x֢>P8H(}>>BG>ins>d{~>(R$$>G>Ty>ͤ@m>>pRi>KT2>t>ްW>Q?Rd( ?hDjB?;>^1U?, X ?+ڿ??\nW*?Xgؑ]2?+66c/0?{`'#$?O90?~P?aS!X?YT8u?_:3z?qm?Qd?6Yn??yS?'^mC?Ol @?­jI?We7?x7H?_?p5Yy?b(v?0]?Egt7?S( J??b3?Q?tA?D1%K?@H8 '?B܌?n?K?3p?'f즃?~N"y?X?;t?>:w?d}2?dâ?+?T=?m?ۇ?0I-s? עX?gXj?Rrf?ՙT?cSR?bۉ??ηYX^?2h˫?x %>@^>>t]>C>@>p<>r?&>0{]>s >B@N>KK>X >{V(K?3ߐF ? ?>0_ Y^'?HNSU!?L/_0?sjƦR#?Bk*?4fފy(?nF2|2?ov?'+>?Q>."{># $S-R>ꄶ>Su>ŘCk>tA> uC>lqܡ?v}3R\ ?: +?M=i?$}g?kp[9R?S?LHbãF?+ B?;"R1E?yW?qdd?np?YZ{?Hl(?w|aw?*ܰҋ?-\?ӍK?wc#?H7Z-?fᔺ?oNh?j _? Wཡ?>]?x/N?d?Ց߬+?i?kx?@?IDAs?d?t't?9M?#l?Ȉa?iᚆ?#\?Ͱ;?Qfݹ?F?z0?$7?"&گ?4?mX's?K_?1dn?ޗd?ss?0!d?{!?i ?e J? ,? ?Nrd?QR?#{Y ?8>?2Io?.g?pz?jK?ӕ<?dҨ??}3d?OL?!Am6?<,Σ?l? ?&$?5_+I?̫߶x?2_?*t;?tG#?$?Y Pn? ?H={7?D?J?![? .ډԘ?G%n?>?݅`}?̚9?rJ?LN_?}?f?Jzk?f^7j?{Kq?ke7v? qP ?[wE?ٖs4?=5?o_y&??-q&?E3?Hh?&?ݏ;=ϛ =h՛ =%E=?=ݰװv==<2W=-S6> 8)>!s)>rE|&>Ԝ{>j'4g֒>4c=‰'>(y>$uߌkr>z>nK v>g>-i>JѢQ>УX>bEb>+G{&M>!|?8>|E%> Psh7>bv?>N>ϔ"V@>Y2K sC>Ui+vQ>#SAE>5ЀE>47dZ>ӷCS>yj81k>vZg@v>kn>?o>Evd>fHU>Ifcm>y>>~iE?J>0uH+^M>Ҥ&> -D> 0]>/> #j>_>bkvv>V޻Wa>s >:/G}>㱦:>rhׇ>/C:Bږ>Y/a>~ $G>.h.>\>)Cꭞ>Z:W>Ȱ0]a>:E>X|06>#|qew>׮$w>*hj`}p>[@>Jl>_4Ūq>hLo}>;v>S]i>كU X>ܐd>G_Z>=O>L rP>?oϗ4sc>kn$[>[0E> S=>&ܥfP+><$>>~e>!@걫!>,>ʳs> >G)Ϩ>~Wz)>&eA>A><#t1>@>/$g 5>۲w:4>9'+>uT>NQ@@^>߅Հɦ>97ʜ%>ѭihc>vL=XVc= 3:=˻B=WA=.xr:=^=V@=*g0=7K{T=y o=.'S=uԋ=O%= f=!?=u= Vi=~Tk>H6">uH=l6(>d EC =܋ 3=<^U*=Wh|= n3l=Fў~=UBՅ=n ے=S_=ҝS=<ʫ3=׊?n^=#=}xF =lp-Jc鉋F;>h ]>l7Rv> 1>\ᑞo>艨b>lNhN>B1/v-vb>J[>txL>+S@=>G P7>8/A>sI(>Ѯ=QX=k=G=j=g V=K5=ja=ZK==F>`9CN >=K=|=9lZ>ˡ, >(WB!>i5 >_VL>M5>a3a0>v#>.628>{@>?l\Y8>tj0>.)3Z>VKM&>¹Ϲm >Q}>a->7PecQ$>9%<>̵38=y==Zm=ފIC=EҲ==\J=ۀ=xwn+=B1='qt=mQ=8<5>P> ,=9 H-=}K>8M=_1G2y_=&dja=b;Nx=Z="AY=_=t2=."= ًy>@q>[/+>>97Z >-g>j#>n1:>AN1>O$3?>M1 XE>D>V64]0>M,wSkSK>6ԡ%U>ɪ[D\[>ƪc>>ϰ־ u>~+Ch>9'l>Zw>Ai>V8`> IW7a>E^>?h`N>?rO>T>Q]>YۮN>V?>@1!>J>,PW>bbKd_>9=g>@q>5ai>&s>B>7I>✤Ow>b_QZ>gOx|>F m\>x%>s҅>X.1d.>Tx?lh>{ G)X>6$>4d9c>D<>n<2&>Yf>n> >]d}>|<ß>Yr0>|ٝ>>>I5o>bx"Y>S푸hv>Is>B>Qڹ>i)g>Y>\Ұ> ,>*XHD>-!>DfP+>84?q>!>tMd>v#>1>S#>B1&>]*v>Bʎ>:s>X/)om>lЇ>Lµ>t[>A!P{>qCzs,V5S 8Z<tMDqZv<=`CUwW<ԧfba<0qpN;\{.<K4=>ߑ}ga-C>a"\Xk>[Cէ>]Ee>bDF|>U3c>R>bsT>nc>$>W <>asbW>ά|X> RŔ> *I92>r=ע44=IvS=Nh=Io=R!H=gI`=9;aP=rZg=+w(I=SŪ2=ڵmZC=BAT=HXp c=~4=gѩ@=E. y=E=đ j=@4S= \^~=`j=_YP=yz=f[)@=`=pWe=pL=5+=/xe= O_J=s]wp&> .1>Z=oO>ym-+>t#E-C>s6>0DT>(&<պF>6N9>|a>%7f!t>4\3P>>oI>Խd>)Sn>^ >uD>,Q>f^> 3l>ӫZn>v]>x>T8ǖ>1fݨ>~"> 2^<.V=tc €=!LR=-3 <µ<gUd D<lAbM<jf4iQ< -Bk=;<<`S<3?f??br?6Ճ? %?#sf1?p/ϵ:?uXE?<'S?;iB?g.>?JJ?:a?As3w?=ʖr?ҕ]?Ys?=f?X5w?&df?YB?C?/!:?j59? |6?tPK?J,;?CUOE?{ZY?!&3v?H?o? V?x*?lY鎕?'[">#Uޕ?PFM?d.~?Gb?xR'?is.?0?m}1$?Vg~w?L^?|%?؞"b?J0s&? 6?QCE?fR ?éf>~icY>ZL>0>xC%d>kOx> ֿ>_>ђx>kB>l>^RJ>%CL>of>T;D>s`2>E>r>SG>1> >§+>*?В>HV>j>18u>|?x&L%?Hk8?x%3?п$?K%5? 1O ?4/,")>pR>5Ly0>O@p>[x>W>%@N=?1'-?Jӆ:U?ױ 1cMr?.- _m?x ^?HLXa|?4{ ?m s?UZDw?`?^à?v#oWY? -~?3B?6Y?F`?FA&ՙO?#ÆL_?b.0{?<k?V5?@D9?m#V`?b_?LNM?n&@ ?V,?iض?>G\?e [?C?9￯?Bi?CD""?~6?O>A?wߎ??_!&P?#|?Q0?f J?N?b̑?d/?1f?̟?rٙ?b<*?3*n?D?[B?ƟPqN?~3.3?5q,? ?W0?yo?q;q1?ۭ?7;P~?J+X?뿉T?kjԯ|?îb?3f ?I.F"?O?bA?{r[a?f?7iF?`r^"?;/G?5?g?Ƥ 2?kR%?K?`.L?$?pt?9l=? 76S?Z3?{z鴢?8<ڋ#?DiP5?ڏJE?:Ir?=?ER?jT{ ?Gp:? t?y;?trP?iy3L?;K?z@Q?Sdm?<)?|6?[`lh?z?%A?|?i_^?$'S?o?#U?#/?ega?-ѕ?6̪?Av?%b?? Є? ̶?hз?TF?r3(v?a3sy?pxR?V^Fi?,jȗ{?/Tg\8S?Qe*L?'gG C?gi1>?^q%@? Q"?#ju?ìJlY?rG?\ ?km~!?pKi?lHJ=z>0?>}z>h >,e>>c>#>ޫzF ?6ҒD ?*[4c*?Rt͕?%;?>$?ɰ,D2?(A$?z&?#y2S#?8?Xb?:[O?y%h?EA?uD\>[-J%> Օ>>}ML>MZ>(*.8B>>7>!>y>C4p>P]H>b#> ZE >`>_0; >n>3ڴ̿>v>掀7 ? &?2? ?w$:?>ݯ?hON> 7F?VYĻ?N#?BU 7?b!7?wp;0? $?J?7?8CݪS?k?@A?L:@?~:3O? TKyPS?k?)e:kq?W?ڑ?`㣶 ?#!?p+x? ߉Nf?ʛ_?{H?ӾU/B?*๾d?++=D?mڱ%??܈g7>pj?'MD* >+`>++>,;N>:>[")>_ܥH>N;|?@?[4lm4?1n8? t?>D^>g.">,>F>zGBQ>#?ZFsU?^Mp?\5tqk?mH[?J-q?߈?9E5?qOQu?;rOp?*Kd?ԫQ .?\YOþ?c۰؟?bb2a? m%;?fPH]?]n)a?4ԛ?q=??n?gUY:? h %? i?:BG?({m?B_?FN?q?OO? ?O1H?5m?5[8 }z?|3?\Ha=A=*@=Պ=.% >w)9=4}u=>,&>id8&>*>[YI!>B(1F>D>;>}i0Ku>~c> ~fJ>%M&`>R)\~"Z>CK\@>W" 9>u3>]9dJ>pIC>)_:>>bϴI9>'>swP>?H>b@]K>޻59_>*j>7TD@g>-&co>kv>SrUc><X>_cU>3o>~6>xc{>Rp롇>ƳMf>t_+{Ѩ>rHG-I>a>->xW>s$nל>`@>3>$zI>yw>^ E>ID}>c&q#>1>=H~?>Tc:>vA> ƺ>+N!ͫ>b z> <>p>8>Rp{>JM80y>)OLaq>BW,yg> Z\v><I!q>8am>@4`>CU>zEEXT>-KQ>F8`N>S:ZGY>KBr0a>+Je> i]=Y>kfOH>ZY9> "++1>u>' >6gER>˦Xy.>p> I) >BZR > .Z1>k58>Lvy:>HQ2>H,]?>`!2>鍌I@%>eJ P(>y'B >j=kдL>[Xu %>i>]p=r7=yV=NdO=L=بVr=C08=:}:=D=t/Y=dxA=(WF=ӯ=#==I-M=?rN>q2>/,Xj`> 3>ڎ0&=\W=n=KPW6=(J>޲=U][m=V';@B=޴"#=eh=ı*]t^=kxԨ=^a=B^>Pd@P>RvE{>mp>q1,:f>ZH]> FgUq:><|V>`Q>L5cB>i_9>a2>: ݐ=J?쪻=A=y)=1a={3)=:=+1%=9BBW> >qJCN >'\o>qYc4=p{lJ=Yx=J7> G*m$>7^">,(.,>:Z9>GƠN6>B#Fz6> 7I>hBՑ2>[_>>!=->PUC>˾J>BZ>wѡ>~џ=/tw,8=|t=5K=[6l=cx=0y'=G=4znQ@=<=}[=4G=_ >5ep=&M>ҶZp4=Pu=j==³I`=*D>F IvE%>UQw>ennw> sN8*>A9i(>7M@>v}9>J:B>Fq=>CRT34>~D)S>2 G_>wU\De>,yk^~>Uv>ǽr>{q>;֝i> j `>5)w_>ۄ@Y>PkOP>3W>5#^>c`L>КylHK>#B>ھ.pS>F^^b>4zR+h> q>yLh>fGqo>D=n>4u>5ˢ>-?~>KHq?>W[>(Ӗ>])>Y.H=>>7I>Z^: >s>f:U>\WG>NRgԇ>P>H^D>x<0>'ȸx>$F>@Vs>]>gnw;>@Z>eZHs>é6)>;>|[>O.Բ>cv>)w{ך>Z{7ɲ>s5>~GA>R>?9q>ɯ6s>@(>P3|/5>W`>, k>uq~+ -AuغsY=8_MV=T*> mr>x:N?qhl$I?'^@/fR:rFL=_GfV<<F>2Kپg_?dk0?J $?SϚ=?"=?{ yhmD8>I5{\@о. O#?y(w"[dS3ΕQ=%=(M)>αZOq>׹P>,/=O>?uI=l=J8d><IWa< J'B%I\<'pge{y<9"X<:,0dZ<]=^0=`"n)>EMtq>\'IJ>gB+P?1`?>Jg?vI]o?`p;s?YFv?=;y?!oT|? a&~?#Z}Y?L #?=u]?㬶?W;s.?Q_(?_B?j-\$?Q#QZ?%~?CU|?a|͚y?F.ŏv?qsx;s?>]o?7Sg?)p`?Q)P?G>o<|?D/?gfL?*=j?a -?DI/ ?=?6C_.][?Wr1x?7BL?]`f> Qy]x?tPy3[/?v"L?I?!Cj??-Td >? 3[?[˛{x?WG?f7?R1?-P?(9?A?bCY.@>m0Y .<4bI= a=˛<= W=x6[f=u~\=.t|`Q=5/ f=#=jZ>5tK>Io9Đ>,bx>z}i:=Da}1=( =/<՝ᲆ<$n<==˙yL>*j@J>hR>"OH1@?x-X?oc?k??yq?tJtt?b^\(x?X$z?8Y}?eo?{9À?=r?a?FT$?$???r?xsӿÀ?R:-?}?yz?W,x?w:,t? 7kzq?ߍLƣk?Dc?(w0X?/@? >|?T*?Űd5?֡m6S?rs-1r?eFqP=?2'?(fD?H!'c?7>U?~?|f>?8Ϫ ?-5?;S?K/r???98D?E~')c?6<?sb~L?!ї?a?C'?T#s?o}}?45?&E3@"䵷@}?7'?vʭ?[|?[S?o?'@j@9} @ms@fʘ?+o?L|?lР?8kr~?%?@ԧ@xW?g#.?K)?V20?zƈT?,|j@;r @Ѡ@xFmv<'_#G7<{\<]e<GUN͕<׭|<9~VL=(&b=/_w[(2=׎\<.D<ƛ`b͵e>q>`(>TF;>%V>3!1v>k;2>ogrڵ>>>Gf>%FOb?yBF?v^Y%?QM2?.,%:?G7=#Ө߹+Ünǟh>v)§>T&eiID DF8<Ic*#PѼTu Z3 ^<ԍMμV&O"Ihgؽ]"򩼭hj=iE p<5s.üpLy1!(7z: }x';(\d#W /*8IM/2V| 55r5L7F/*9zI:Z;zPd8 ?ҞWd?`> ? m?)*\7?ob V?I|s?HUG?"pdlq@tjALxy'FdZ5 fEb7Q|3Vu\sXODiQ/⚵?Sz=x?֜ ?y?*ֽ?bXi?:?<:l?ǟG?f?*X?Y{?j7?`x?sE?( a[~˿Uۤ ޿S)kuZ xdgn@,k?翍M@^䨿QɬM>&Կ&]tX俰?W`9~ Hęٿɼ>W!>Wѭ1>L)8b^zG>f>M֠_>͂d>D>W7K>qՍh>&4t ?گ?,?S,?zBTo6?W6\ vkJ>~^s>|>X K5R n_ Б̀˼T6= Fo~<4>mh6QC B.(AX[' Ʊ 'ܸ3Š"- ?\1k?a3ʠP<6s]C8C9/b;I=&t<-x؅+='K-=51ҌUI>vD<2>{vq?BI60?4rO?3نm?VWaq?6W6!?|൐c@?ɋư^?w=h| z?^쏕?ο:+ᾦ,ru/࢑?F#F?@d?L>?T5 ?ƈb?Mn~|?=^j?Ƈ;C?z!G:?'P??4n?xaEO?jmKǢw[WjһB%>ѿw9L}ῗ %+ 5$@Qauvl*VJXjƿNJ_Cٿwo9RB4oHXQɿnI356_Fu)&^&>?G>b "i>h[>zG > 5>k>s܄&>ٞmu&>=W'* ? ~O?J6o ?$*c=a|8b>Ҟ*ɠ>I5kӹUbFOiڹ5 1\\ĝKX9NDĹk9]zԯ LX`Z5kֽ&Gqx˭gbB ⠾~<^rؾ~ż޳퐴?JQ?sb$B ?FH؄cbtAwCS2?1)caFa8Naqп'߿{㿌czܿ-?Tp?Kx t띿r(Fÿσ ؿ7Nr{›YXmο~dX)M*7a?vV@?)3s?2m?r:?Mi}?Dq\V ;o.x1V?(0z?zb?u?/WtQY?^/?H_<|<s :`v֗d<ˆ\P<>̲<8 UNf+=dS Z=VpOQ==[#۽= \=)6=FOi=U*>s9R>ך16>QX>[<ٲy>5>Y϶>>=ovt>7;n"k>#Ww>pKq?*Z ?4*?7?y̵d=p=Ha=iCzWC>Zn>+>ڽE/! Թ-Xn>ϹFtMJxQ?֒JI nwIeT%9 *Q_z*vi9G#Wa*=nl̃:DƗ>sϞ ?%&?woaC?Nd`]?fFBs?ԳY0d?215?](h:DQ?f=h?U }?%CپEg7lSԶl&(+cCw6]|&sGE15yDQߑ(\hf}E-7?~0?I(ȋ"tmѽ39Կq^Li8PMiֿb J(?Yr[u?g2\x8̯ ʿڸNۿ%\㿃rF&&/x+?!x g?S)~|?DyJr9?)^q?MLGj?,7e?RF%B9uy0?KTY?{=Ͷ?]l?Dz?X?_:<>`<t3z_MlM*L=LT<ƒ@5>i>ZUC|?|Q?g~??q?Uu?sw?^>>%MFr?940,?\>&9?jH?Z^m>e=-\=t>@?%(!4`?{x|?%{?Tl0U?'m4?/ǯ?>J>>l}>>P ?%8,<?F[?<5<Ϛ8T0'=`j']Q=M5u=Et= K>Ì/r=7됦O=~.<=m ,ǝ=׋5*>)ZDm>Ua>}"۸>7,x>cQ9= ?ea#= nE~'c?hC?4?_П?"ь?T|x)lH?W\e+?jANJ%g?]V4|?oV&?I@(?%#} >i^->[V"a>]pw>B>~`>RlY_>js?gU@d3?KH+?}XG?ĸﰼ]?w1e? C(m?P Pr?pޙau?m/>}x?{[TQ{?K}?Jb,~?f=%$?%8v?7, ā?߂ ?m["?ݥ?(`,?DeE?`]~?.G|?O3y?p2+@3@@컔$h;?1]U/v?Lt ?Y[>D=?/>h)d?>"?>)_M'>۫c>N^>+C?j{?;v?FFbs?ՃKp?Xȏi?{Eca?xni?%)_$?OS?lL0? -?;? 5;[?DoU~w?oZ+?q\?.+?&u%:Q|>V~?<*?2j9?GQ1=$'x%p>H m=5ԧR=j,!@iIb=sANe=#'=]聃=/6N=A]qf>︥> •MGE>69)?H$A?|1K?yG?`?wp?PvS??\ ?R-@~;@wPSأ@JM @1>@uGflq @#PNd?:Y!=@\%l<-I<x#m<1~<,C =PK.N=m:k=PEZ= jރ`=S=Yyne=[T >$ J *>ǑC 3?l,S?@aq?k)5?sa?[E?rw3?eH#:|>8';>Zv=6wq.=l|_=L9D@>|u:dJ`=)-= W;/>e`S>l@V>誣K ?w&ڗ7s".*>es]?Bx?n?N9i?Uz? mD?^Cj'?~c?JL?\ n?T$?Il&^?/>:&;>jzNFDah>q >gLI2>\t}*?R2^~A?+&țv;?b:HMZ?vtb?#H3j?&Ύ3p?DS s?Vw? Yy?{7ַ{?#j?D#?tVʀ?䶽 ?4?}?{wz}|?)5y?pϫ`Z?Kԏ]?"åp>?Mw]߁??*}/>HݙF>MV>O>V>%?)|: w?s? 6p?wo\Wj?<^2c?,7)?賹l5?uyU?S- h??=IF?Dff? Z>c? KĞ?fo1?kn?Թd?3-A?7Ը%>݄>l>>ŌҾ=8iB n=_3Юָ=D\:5=R_Sq=.o|tX>Lɚ>\\>>U36?zV?)ܒ?Bq?c?Ds? {PX?Sاe?;?o@}H&@yE.ũ @!s@u3@*W@@p4@Ӽq@9R >m?CmWh-<ڳd&Oq =`G =jV$u>~T¸=0vC>Y弢>p=oY>J)yx>cP~>L K>HoT_Y?Sc(?X,)???o?\=?-έV|?֦R@+ܠo>?s)/0?8Y?xԲd>B%x>">R] >V< ?(b8Q?:p8?`q?./?-\)F?i?X ?_L9?;87? w&?&?c ?492?g~3L> >v=C(^B >bf.0?6-?)?(D?XA?쭭?pxY???$Jy?EtҒ?z@퉜W@a@i4*?]0@Hl@#W" @ $@nTZ|˜wa ̖AJ<< gDeMĕŤ!~ƍrEƟ_e!48?1 ʣ1?ލ`XP?/?C?UB];?fW5?lV? D)7?|eR>-Hx>O.?ha\Z<9$N=w=ke?=֏JV/>ki\Zs=v>"= v5$ݕ=:T[o=vwN>]uJE|>_ > AmM?x j==ͩ<0%@oޱ<|E󗼨\Z<"(VѨd6Qƛ1xF?e@?i}G?i(?0ܼ 6?:rJ?c?Vt4?ڢ?+dW?sRP?X=G9? 4@2?emo?=56u?+*@V4@*mv?_?@&?,+ @*@?t_|%>RtI>/FQ>X- g>˜ڪ>>v)9j~?ϕU?>sw0?S쮹/? ~PN2*?6yu0U?wRLa?l*~i?+p?19s?I v?:y?m(|?`0?z?(_e?db?cyK?$}?hR׶P{?Ka@/~,@[8+r@:t@H?4P?MV ?y^]K?6Z?J^ >{t5>w}I>c3|U>=@+Je>/Ÿ>m;~>;V?{x?uF_u?PlOr?[;m?R``e?(TO? 6n(?D[?ŎrH?knJ?XF׾!C?d2?4V)3i?b?0 "? ?x$?DȞ?@[Z?xI'?MbK?ԁ4?N%̜?Bz?EF?qCɌɲ?.ʮS>p-Vů>4[HO>/h՟O=qă=db w=9j= Qŧ=Gm^=}/@>+>דrȬ>c>H @P/ ? 7?' 3:?!??7;H?0mi?{Puߦ@?՝mI|?S]?~?IWh? a?g"L?V6?E?lȸ47?4Ad?XѺ1?W?{L @-OY@Yt 5@T;Uu@BcM @snb@/@} @tо@ɑa@@/=@?O% @κ*&@|,"@kB@<xra)%?61XfD?c?H?÷? q?Az~h?VW?kF>m>=v;U=/-/3=R- u=VUi<{A|7<ܷm<}7Ŷ<8`=[΅5?~(?4.?.Ԇ?j6S?~Ȳ5?Wjq?1(?OE۰?s~t?3?}_/?IV%W>&>Mx?D udVB\W>şT?"3D@?|S)]Gu?Ǟaԁ?Y-?>W~?:.cv?f(ܬ?kl?_kz= A,>+?FM-B?C//?C8 ?䤅?Y)?:p_6e?K?Hv?]Z6? g@۞&@@O(M@V@OS@= @$@0 @ ?<^A<4{<ˡ>vN5<xn==%=iM֏Ⱦ~aJwDLP Ģ<OؾZ'Bq-(,s&]@ > žC?zaU>aŪ>zɨ$ ?eN҂>۞l ?2 !?!.RpG>%ZI<$HcShh=X= ֎=c4=L7=H>ެ˱>blÌ7:?t }Y?hwv?P?4?l~?6#s?A> >{U1>.s?R&>R <6"e<3l"= "n"L=Nɺp=r,H=!͑C>7Ԍ=y#HZ}W6YejH$zaǾv澰",s&cBN>UGPa:}<#,bO?,<4BaԳ@;A7Bݽuo  Nꔐڿx ˿yܰ[ؘ_!7{lgCdIP\ % pb?X ΛCw ޿'iͬ& 6%!n^𼌎Fk(Ⱦ9վj( "G_a8u=vo=* e<A9;:>9h7iwJ5>@ l36b0q,.Cz(:WמmMx@udWǖ> ?"="?|T'?)i-?&2? m4?MMӷ?[ 3?'vL?j?C^$?-~ >< E2>azC>U'Α> )f&>lȸO>!p89>`Ü?"h?6?G}8?'o9?!)Q`;?0bq\5<Ǵ>>p ?<?S-=X>?`d=$ 5R==,GI=?|C[ ĽLsYgw?}'.A0(\?z| ,qCz}qe`P'< >ݬLfTӎ&)c 1Jk6fHب"=%ACPZvq%0!?e﫻$?1( *?\ogx*d1?S@N3? C0?0f'?UCaz??*?k |*>ӠcA>0H

x* A>L!>R}jt?]6?|T8?ǎ<8?Mm9?O:?fC )?~4?M,CDZ>GY=ѧw|=6.`=cwcfVO;,z~`ª 5jZSN䷾I5o3eKhݿۏMdȿ{ lK{'Ib8nC8sp{봯ĿY %ӇŪK͝?2N?GIO4?>K?"K<u< <^l#S(`)s; ?ǭ<,=CԳ=YMRy>3'ZUI7\JosؾE ><տ;0\bqm8\Q~> ~|>햋>ec2G?o/rD?n,$?g!b?.7?h|?nVP?soi?t)$r?AF4?>%D>ڰ?#^*'8>RRAX=|[k$@ܾPl5B{࿛5пY2>=s ԚL"-R!8iH焿XZE7->!Q} r88#&6\ "Lf?}Ȏ?}W?++/>c\3?bj+?xp0K?R? Ӑi?Զ1{p?:܊?e)Ni?jWzS?f] ?g?ۅ/ma?6 0N?{$?3?g >wȸq>ԙi={>9m<^n=գD =v[8=r@T'>PRy$l<U XXZڽۺ#_F**hϾFǑBw#d ,zTp \~Ҽz1s( ^ptOV0um<ډ/_2WueEb3$TjXynk#\J<-d- !E{}ʝ?&T\MhP),YkQнܟ:X齗] 7&6:˨TԿo>2'޿\пl!ay`N +E!,Gv.pm{MRR^+1KD4Z48hhܑV-|RKis9RpnbɅXsfv[G=LzfE ֿZlɿ!UL!O_[כV!wUi.MSX\^f3}R!DuIH7I0zf4;*=p0?խl3?|tg?`-G2y?"iZ?CIJ;?{^?7_?GŔp?a?l ?X:t&>Mdʲ9>;;KQ>D Bx]>ˊa5>^gG>X}n>xq"?F.5?Fq[k7?LQ>9?%IcR:?@zP;?4 v/?\O7?=?ı14?\`5.|?-+'`Y?ttR?9 mq?s[x?7.?ϓ?Տ~0?8԰s?ڈ9~??ސah?C?jOά?x\Yx?Lѕ>D6hY>ź>:5 =d$a\v=x=Y== Ԥo1}2OG8([0 h/7twvCW둴9E%X=ȟ$/<>LlM㿐 ٿ Կ Bg/ ſc|)xlƶq勵v\"\}u(@T\Je=z/ <5g'qR=xܾrxQ;1ҿ# tH*}l* RP0R昌*; pv*?#?XQh?8?ek ?-q`7?N?| *Ԏ?iQ7d< ?E;@? s_?zAu#zy?~q1?^6?!+B? m])?cxw>q0 7=klei j;2ͼ~ D<.w/ĺucH^U{ӿƨl_/31GFfOG`5&m1懨/kYEϕXHHASbqqj6ܿ^eһR{ͪv7 |,,pBoN?c?lPT3?!PHC?9kd>_d,nϺ>O*OB?#?rY_?ٹD~?](}.?*D?5\?c/WBb??B|Ek=DZmֵH,6C;+#_&.bӿ`B㭣+wa򢿇Rc3g,SpBK9k6 b_muF^Pt!p ?++vc?|Ѿ?zu?=9<$<o0w<~ jNbI< >-<gt=,|tn='+T¾w$C@Ouvt}>9'~>QAê'>#Դ>m >5# a>F- ?PoUD>]<|*uzp<$:P<)l(-8O<-:Z(@nd?j]d>6^>+>=Cb >($_>is><*ckzmZ=jA=Sx@k=ݏ>N= z=>}yq=ʤ*Л@ -qC[[ a)27jzv[ꦾl#@εRddOм?)tҾ[(3>O>3P>WUJV#>T͖> %>ͫ((1ؿZ@r TԿ8$]ɿ%1Z> Ŭ>HUp0>Y Bރ>zeF>xra>8>T;m>[B.?-!w(>Ae@'>"y>f>>: ?zx?Ԕ">c-->a2q?m3ϻ"?JOa3ȷ>>1i%>ɜ{?2.=|OaS>$ 3=jG=P9xBu4=p6T:c߲!`@$ric"D8/RIQ=~RL8?rTհ?*Uȉه asS%N$s8|xhj -}ݿ9? .??-O3?m(—?4 M{&ڿ]_1 TѿȄQ|=߿ɀ ĖF]DvLiSVƼY0@<ܑ8Q,6<{=@A=q$u=D=_GwŪ=3ˮ} =fM=+b=/ 0>3v=7$?kooA? p2X?tYPl?˦g|?T~sęo?%s+v3>*bڶKt>m%<7jf_"=< FrU=ঢ়0>C}Jc[%>HI:x>4>ȯb]>T uԿxݿAҶ2˿G¿ԺEL >!>d;9>&>҆>k?ka$>$B*><.R?o8?Ng?,;a0 ?lo?ͥe=?窀k?~%?0n/x>?,tZ?|їr?i;Qkzٷ k?E}V?7+ {>#^>&["7_=^Էb=gL\=2}9Q/R}jZBB2޽0tA@^6i#*o"QSF0?tN_?Yqׇ:wfQnP5A@wf᭛9x= ?̉)?rY?c#p?^׿BUAEZѿL˾D߿ Se# AYa6?$.M>nuʷ?l(<]z< u+°=y=2qN偯{&>eҾ>F[d&ؼ󓰼35geL}<m@ ٰdyǼ3}M-`]~?7de# asEL$91 ctpl? =v?@B?|%|QAT?Op?-X2pjLOѾ_q=({߬ 2n Z-⾬q +a:>TN>HMnտa y% ݿD!\ʿpC%`>c_s>`S>^۶>l.K>$NڙM8?JY[U?JmHQ?h qj?X19?$1Cȭm˿[X?x!gN?"?"n>'~>U@pN?Ngg?1>4,Z=ILbnӾGV\ p2qJ?|yG_?0b@EpAh16@@[x"WIRo&#?twVg?ߢeO?915?@#^֢ܿA,IDܿ < `LH= ]^<Q%쵱zDz y??k91>\ j>:F>枸A4<*o=چI=b+1.=!>/ʊjBiF*,Mbk ֽpjSa@v2Ǿ- GcP 43xZw7s#nbxYpyE$o1;羶Sx$eD6%}վz>ϾOp>cXXF>RѾi>&U:>>U\s>pEÿLϿ>ܿ 3޿zpȎ Kҿ7?2"}߿5WϿJ7&oÿԒ3>^9aĕ!>z {֝@>>MN>Bȵc>/?I>0 Ef>s> ?>u&+1>rC_>ʤ`>uK2K>`\ ?N?['>l> m6=1?JE )?>\?1$O|J?d,PC?m\7+_?UBhd?ؙEu? 廉@y?o5C?UE@l"s.orAſ{$}?^2?cx I?iԔ? >~bl$> S>f=+z`s=>gB=a+ 2`hЙY;X&#v0NupƧF xvʭyqXQag6?gU'?. Ĥ?*2(?*9PyVdA}i>=9fǎemLM_uFJ%1HU)tY9c_dʘd ss74z3x8PD w?+?Ь&O,m??@n?_Zs?#I?9B&? xɿ@+ӿ皫࿄ڌ I,]⿷OտR{jؿx޳Tj2o -<zd#Ea? 4?YlO? Pbc?6w? - ,0!B'y?R>lq͜2=4o|tV⽄DS9ϘyؼtU OsFlɼxiz ,x^SPd&?C4oNj}=o>-ffxA!vX& AXrb %?4g?ϫ ?VZ'?VZ?~I5?yM!>h$i4?iGFI? 6IrL?wf?\Z~L>|?SῲwƿFSNr?Hó6?U=z=q:$ ^ϣޝھ8{QLGܸ?wg"?Wx}gͨ^Co%@CZ3}6p?i4?|A%??ތ g?-ĿRaļܿvkF0hٿ:Ջ1;ޗ4(OsJu2^<[}̌{S<bQ uJ/=փ[[<=|Ky=S2i#=a8 =R=￸ >d)> oCRA>MM2>j-nR>z/R>d> F|>PeK%>+/^>p(UB>=0,=JP =>)4Y-=6L= o -1=x3 =q=@6WV=ލm=_|m?6^=lN=!==}e3="C]{=׷@=R%=I7PY=SA`H~E`=+=1h^5m=^Pki5=5sʥ =9v =4;uz>0>0=ᅮ>7X>T>MJC4;>6z=fU=jJK> EB>f,}|>$ݡį>7FH> >Pxb|>nڬ> R=1:=r1>3 >+%b*>HJH<>[YM^>0>M`:s_>I n]> tjŌ>kpyɁ>S>}Z3i.O>r(%>&.>jzt>m R>.X>@Z8y>\1B>4u7>Z>h"hM&>7>h QO>5G>{R>]?.Gt>tVD>{L>E8\ >f`l>Xl?X_l'?BN$?>5/j]fH?o˽L?~6?Fq=^?4JG?C`n&?`Nt#?n>)'!?͟M\wH> :f?_?n">OS}>tDe>>f_◣>ū>Ȑ=f`>@F5w> .V>F>tOB>d'Vmx>iVf@>vu>?>+>,RC?2QW U> O(>0Rk=> _0'|?;Ų?.? $?"+(?/Hw?̀Vʔ\,?oFMD>ih)?*?axu?tƗR?Z?tG? m?eb?=݅?ns, ?˔?` N~?g;V?!~? #t?r?r~ ?%yW?>7'y?sHo?Q&N54t?~!ᮝpv?=? =ZF?wR ?,M6$?;զ?Ɣ?^? V>?aՊ[?Q(G>M?-Q^?UXy?ŋR?)| ?v^B?m>Sx:;>=A@>\\b>R #>odF>+alu>B+@x>c&&>>):>s05D>FtcT>;>)c>mYK>(Q+ɬ->X=i=R% >l%fP>|?9>=q 4>֓=G'S[#X >rl\=2Xv=G>58e=i jŀ=R~J[=27A&S=!L8uo=jҠF=%5rG=߉۳)=R rL= `)=A !:b=hi8/m=Z c=ؚ)>ok__=tbn=bխ=hO>g=M͙Y >qA>vp>c?B]>α7>sW u>QDV>`4RN>q_>i>%a|8# >+z>ͦbǎ>i&>w=Gh>ɗ,b><{}V>1$6Ga>R5P>o҃2> 3gk>'u[>5bUÄ>*5 >> G >o~FM>`>d=ڭo=:npב=lְ=o~-1=rwQCv=l~YO=E8V=VL{= Cp=yH=Q煮=н'P=@imh+=WR3=^ Y"=.`*<m=3;M/=Ȫ QR=J{=Y9Ծs=6 h?=WȜ<0sPr=ߒXO=o M_=E{{a*=N= f<װS뀣;3#>k =>cB=BTY=s=XܶN(=Qq v=.1H=T=2<=c>>aU5p!=~Z(=Pd==~$>+0/> -ys>pȸt>f%=+ҚI'd>ggb> >h 嫝>K(Vw8>0ov>qAk>$Or>ƻ>̣ԸC>| >!?B&4?>e0T.>#mx(?>RtI%>ms>p$O;>* H>- Rg>aKj o>AW1>7HU]dl>R y>OwV1>dμ]P>&8,R>`ʀ >aw>;]>)m==C(^=8DE=}C=@.=G&x3=.v>'q'7=3b=< >tC}>ja/>>} B>*GR>+T [<>pBZs>%E狐t>н]{ѩ>3-!n>fT&aO>VE"}Q>)kf><7D>Gsa">J鰯 >S\>撆0>!C^>AZI>No2>o{>ũV>ZFuO>?V)7>B8!2P>/{T>MZѼ>>n<5?3/>ti|] >2?l>?5>+(&\֢>Q}>'{=? m ?>C"F#?bBQ?8n?2zk?F-:?C98^I?%?ϟq?Mo ?C,v+?{"Y]F?c)̏o?T'W?;:!r?@-3)+?_Tۯt?}?_v$?{?` g?,9ll?EY?"Q!K>"R?ѵ+u>.|S>Y(E: ?`ĚOƪZ'?QNE?I&;?} m?k]xǼ?= ?v&{?ZQ?$}@?>?!?L1D?g?T?5?enP ?R?rZt?zW3?@5?c< ?Lx?Fc#?c ?,8Y?wP+ ?{j"?H1'? ѩ?9=?s8?l?MPIw!?`pݍ?~B#G8?w?ޝp`Ψ?}aƋ?"fhn?Xb?MO(m?tiZ?MgE?jKnZ?~qYOQ?wgQ? S^?Dcs?{|u?E+q7Y?J?mꤍB?=?%}K?8n c?ӷ#h?p?mu$$G?U|@/ա?4z?H%?R5)e?aBy?Gur?.< j?yN? I?)tO?ݗ6?K}>?EY0?K0?Gl!?ұҊ'?7|?t?prY;9?L@6"? i?)`?mjW? ?iD?bÜ4?A݃'?jX?>>?0de7?y ܾ=&?jL)/?1%QX?7[?|o~HU?%iV? F?@=TyIV?FF>l?5Qw?l+&f?5 x?;9?47o?҃bd?ħZ?ҏ c?ׯNm?.ce?@Ֆn? ?bG5?apa?H/?)H?n^AK?oŝ8pO?s|,?Um/ܾ?Ԫ?e $?xE?w?a**{?gAOX2?#?͠?k8=)m?U%?E?.?u$?7 ֻx?3{?#&?:i *]?R??ϸ$?,ė}?;UW8f? ^s?ޢlJ q?Q]?t?9ys@?O}nB?g9>u&@'?UW,A뻈?#293>n\J/?sF ?f&z(>eb 2>hl>\Z>WHj}h>]km>Ai%`V>T!>U>B{mw>C5>M1E ?l>*^>qplM>Ϛ>nQv>ڀ'Z>08t>`LY>Qµ2l>p6B>Re>)W&FRlr>? >=>w Wy>ra+c܈>[d|z>⋨sP>E0(H>'h[>{Z2>Ҕ>d~>Dw~8>wAw>zٛ>n3я>= >} h>Ҏ!Z>Ps> >6>ڛ>b>P$;?3D>8ŎP>kF)>yљ> GY?eya>A>fJ>ˢ>Ch>h֌>RB1> O>$#W>HO?$GX. ?v@?\FpJ>v]ya?'RN ?Qs?^v$?-m?< ?4?lzK/?MY2#?OM[A?cʒ^F?%0PT?:-W?DDM:M?}cm=?sB?JR ??/!3?E3"U?t(C? /P?m?h"*3?eBu(?u\<&5?Q}J?OI?FYW?ab?Z?SǢR?2 5+̛P?'u8H?cYD?d!rZ3?;t+l;?fJ?X2rI?yqT?P[?Vok?єrJp?dIWi?^Twf?Jc"a?Y@f? @ _U?"„`?%,e?ӓn?'3g? mba?o#z^?9vbZ\?Wwl?!]`v?kX`ơs?Bqp?d; y?c>5Et?ms;P\r?O%.t? Ky?(]z?rt?\Xs?NBh?.43Nt?Ҫ1 )h?YrW[?=-vY?cj_?:`d?GhH9Id?-l?-j?`e?HC[@Q?fOQG?ؘzIE?HaIxE?K9?C]? b:[?oVk?X$ xv?xx ݳt?v>fK;p?Fvfyf?榯mn?y:g?aKe?(z u?~z?po୧p?Sݫx?Tbt?C{?nČ y?WÏRv?|}a5q?yʥt?@o?fr`q?z{^j?[]Z0s?I j?\oZd?y]?orMd?Ɩ_?'^f?EHuU?7'q?}d{yh?7?`?{GZ?'P?vS??gH?k{0@? */H?%LQbbT?o_[L?LLTL?6%KN1?Ub+5i3?)i$:?#C?I@>?IiTF3?\WӄĨ/?kmc@?4XA?=?^O^>?zC>?ZiA?y\9?U"lY>lJ?h\?**vT?Q{N?A?rzF߬G?,>+bQ?kTR?l5^1j1A?ƍ+Y@?\bSF?AK?D!I?qY?.k?3 i? o`q?p@YRS?9?B2t9_?y/H?2y?EX?Z].q?+j?UTJd?$#}?[π?;7?mPA5?ky?/9k-? (H4?&D?ǻa;ܑ?hMXE?G^1$?%kS?XM?\?UmB=?d2?~˼?B=z?{c?Ul1 ?+&?9D ?Kq?4n2?B;? P?"&y??9?EO\?g?уO?A9Ϡ?:DyQ?.KÒ?^ mR?q?S Ɣ?ौ?NXL?92B?v?S-?9 ?*>@?]9?Es?;Nx?i |?wh?ϘN?~D?2.?Mh?ݳiu]?9?ylʧRn?k UKh?x:u?y?#?nn'? $?6su?÷?3T0?MK/T?u`?@pXn? ߚJ4? [@ɶ?Uq]?zC^I?NC?>fX?WP?v?iHئ?CK=?îX?$7?|iS?Sg<0q?2p? d]?g\T?@ el4>Evd.>Y]?ICϢ?ؤEM>N"ǚ>(q>\j> KC>DH >v9>pգ>A6>)>">~.!>էD5>(j>Mo ?Onq?in?RXk',?W#@!?A+2/?;K)$?(B>"VA&?!t|;?4>?/aA?׀Ɓ ?~5c?> o>Lf>T'p'>G5Cþ>:2>6֞ >#Cą>_=%>!t>GrY^>I>Y?Hʒ }?]f '>']>>bU>LLBs>x?->Dm>@al>LV,|>?W~Pe>̰s>Uj) w>v++%>,bP4`>Bj?>:WJP>"PMM>Bz>!$n >-^JCG>0?{>>I̠K>%A>{<>㉫j>R\>;9V>%4>m>=,vɌ?E:>$ek? i8> 2>M@i">9>ޔ톲>eG?$6k9>~w:p?q1?3m X/?E;2?ep%? %?@ n*?F?Q{d1:?z *?O,?/Tb ? Ol?pnQQ?Ͼ^?n?,iS ?lv>s"?/6CǑ3?J;G#?m\ ?420X*?r+`)$?ڠeo0?\XA H?; Nq4?IдL=?lu9NZ?8a P?kSW?ĺ(T?ggC?cț 9? *zB?̸&gH?lBL?pwA`?Ewhib?BTe? -^U?ًs`?/{upTl?V2L!s\?uQ?m*T?3H?[lے>?ktflY?RIj?x y?yt^"f?`7?{&iN?@0/?jö/?zx?fl?ѠS?p4׬?%DW7Ұ?KI?z?LE?hP]?#zs?ɔ?US&?_?U% ?) a;?g%i??9M}v?/w.?F?E2\\?`9?jO?S~\?olJ?]6c?WO"?i$\?J*t?oE%4?E{?j?ep?@*  @ %@Vš ? %@oB @N޺&?|$d?U@@'4!@+jm&@[@E#@kyh'@J*V@J\@d@_ɴ @o@h@M+?J *N&?bJ@~?L @7: ?[q0^?{0?ُ~o(??$%?W"X?9Sˍ?HA?][m4?1}Gdd?7.? ׂ?Y[?ܐ \D>">feu$I>(n$1> Z{^> OT= S(>6Pe>1ҙyE=;lE=Eʜ=,/>\tg>M*'U?^!?PUQ?2 2?HY? Zz[J?WG$>- M"?+UZ?RJW@yC?K?3'k?aV? ?Q%?Оl?jqH? ?di?t?n=Dw? jC?fdh?vjpx?,G`a?se?Lj?ӭq?O21?p}?Z?\OC?C[!?:`?) q?Zֆ?o? r%?S?I ?,pCY?f$J?ç#ca?帶?n@?|a³?$L?3?.n?}? p?3iA?Qf?q.V?a^-{?cI޳?V?{yL??NpF ?V;zM9?Nގè{?/g?s F0v?ܓ?q?KƞM?B-?b?8A8+g?~_bs?F+=8AS?*ˎzu?v| 9?5H?H`?P$!?oB?d?كwnЕ?fpH?mE?IoZ߂?w?NaU?Oa?ઃRm? r?i[k?{{ds?MŒ?? @"?%3?`-?,L?ŴSw?[?)?z i?qg @?bz ?_?ݦ?(_?!~ ?+? K!?uP'?&3`?ϝ8f?2yTu? ?:mvI?: @;@@ԙk:B?mw?S@~"[uB@7@4"?ڪf??N5>?9 mD?x/˨?s^? ?1c?L '?k3O?Q@B ?,;4?gBB?vĸ@U|n@0HM.j @ߏ6@ @.V:@TEh)?))@T`r @huՊ@PTB@Ȣ[@(}d>2 @lǿ@ndnI @TՉj@lC;"@m5.@w !@]"@xa%@~@@[? @-靀y@Ժo/@eC@v@ĤE@eADa"@M @#y&@c`by&@鞻"@IoZ5 @%&#@ t&C @M@n @0NJ!@BѬE%@''@@UZ A2֭,&}8~pʷxq`"ϔp<:X<ur.<K䐙yTd<lni <"}ol={D1(> i>=r= >vgk.Y=a Y(=ȭ=7 >^j3>:!>2pʏC>g:P>yeB'i>a%C>,a>^\(>ynZ>9ϚccGl>8a;3>O>@|2>f#a=7\ >WJ=-=l;e[=*>71)g=r)=M1*ʖ=*as=A /)Uِ=g\bZ=;0~=LSqӝ=M!d=\x=t=Qr\=(Žz\==d? =%IUl!=ZM:b}>{T=. >a >*?>.e9I>\-=e >/E1=Ҽ(8A]>};>s 5>uF>֣ u>,I">c.Y>;k>2P>A>ntE ><>XW< >0=^k=* b=, Y=R`NW>U_K=f*=H7=*ζc.>=PD>Č* >孎i,f3>6`->L:T*<>Q9l.>5G>KsD>`|5>< ^> jφ>V}]>_Dˡ>PD>}a >W>d/͞;>1>x>Q3>:\>ȃp>kVW>(`,QIF>Uz(`>bת?>(4HSD>⤔<v>r~z_o>snoU>Rgx>>>hV>$ؐ>9>䉖>e@J?Y3Ž>,O_7*>جp[>[[]r^>=j9>,php>{D]H>uwʑ>ӂw8>N#u >%=?PQo?0 ?ok]a>rА~e"?E(2?BZmz?R?`??sg_U?ٗC4QQ?AJ+X?hiFB?~uT?U#&S?Zcb7?nWs0?ڋ:%? urT} ?ݽ](>j?S ?b/?7"a0?"+B?*vE/,?T?enL>,*K>S>z[E>V05>/[ >Q6]T>GW>Xa>#0Mm>sDz>y-K>b=*cj>/k@Kz>Lj>%q>Mx>fY>|+u#g>@u`>( 2>|a*>c|P>ԭ9\k>` \Ưk>?8댄>C)>&uF#>h>S-G:>)t2S>f>l><~>$)cϜ>J>\+>V>^w>O> M+GA>>f >I>amD>R|7_>xY>]S>S>?1"W?0gy ?~4&&?1~p\?/<>&?ֿr?bZ~#?]?=b%*?b$?/9-?ZY7?Y5%Ab>KR>jش2>tFFl>tW ?%Jb>%?F7#?RZ@?ҨBS.?xl4?a8?y{&? ?FDz$?D(A?ݩG?A,_MY?ͮdQz?ye?C?rXOa r?0 ޷p?&Zj?,eO^?v#Vt?N e?9j?|c!)P?CtTq`?P?˄V?P)b?B? G?oS8?0}%/?c*?N\$?2?ͩ؊)?DP|@?'yN?3bS?RXb?YڻM^?KYVF?zZP??ne?Bel?YT~?\Ftp?] h?f+z?>l=?uM{R?1@` ? jm?wIΠ?ٳ(0?ZGy?*"]?.JOm?+˓@ڎ?d65)?‹?E{ݧ?{2?n61?@_׀? 5?BL?DAq ˑ?s^3?r-s?\gM}'?T/Wv?O;|?O5,W?ͺT"b?YTVg?46Xi?=fLW?zp?R]?}6~ys?佰x?7?lU=?,Wꕨt?tij_`?VKu_?6tnp?͝1o?ܨz[i?5Lv?Q!Ao?m.q?CǫM}?{/?4ނjw?]?cb?yE?ÃS]?G$`?nu0?hí0?Pb??H? c?@?*?okݩ?X0?Oė?+pW?}y?BH%?/:LU? 㢅r?7=\?/D0??MyA?jI???1&?MgZ?BtV?1?8^GWC ?jlxv$?ؿ?a7E?2'L$??ͨ?҄L߀*?k*'?%?h[?@{?Nv?~h0Zϲ>lU>}a3Q>b8 ? u>2iW>>>l'ڋ>;nTra>\p>oOl>h4*s6>QYh>/U.k>DPe> ꕶ$>sZ;>]q> Y?mp$>vs>~azYD>>i1=>L->Dg> P90>TI>BdI>\ͨZ>IeG~G`>k" z>",>ߣ]n>ou>,~<>kZHP>k#*n9>+%>, \=?݀i >=z<= =c=K>ޜFD>WxXP>S > +j}> SI>qQV>'7ή>O ?Cf>G!9>Ͻ5>5 o5+>0l <=J =S i=!#}o =I~ӧӧ='U0=o5|==1^=nO=v=ݵ=,=>t=3JU= ]t=w8='SZa=m{yG=l5i=gN`=YBήۈ|=+=D=/{P=Z-@<]@=^,=w> ='R)8=0i_ˈ= 9O=Jdf.=`7vG= FW O=Ty=exZ=Ji7=S*v=#8!=q:>_$">zMt%8%>:ۘX=XvKD=>a8F= Ň=[i=[7==ズk==P=e ?( >Ѥ1 >L6T>l2K>Is@ׅ>P1w5>v(p>ΒUjY> @p>uLG>;e>~|b*U> "b2>ȴ l>umfe>.>~X{x5>k2S> aB>ʒ>_T>@K >@텤\>?uL> D> g*68>q.?~g ?,.>c_>rcX>K j?į?q> k>=+c>ī>D#ԋ>=E˨>"R|>i I> *fA>+>Iۄ>PR>>h{Fr>q>&k*;>dq>fgˉ,6>}.dr>|m0>74v,=>m2)>0b =T"S=jwj`=SLk=`YֱD=Q* Z=Mؚn==Z̆=2)=Zv =:L=K\R=A(k]V=鯘)=={4=Cմ=*S.=(٘>=_͏5= `= `Z=Fy&q=&MܛW=y;;=.=N./=(=~= 6=t'| =hFë)=S-<<w@_%1<&osu<*ee2=r-<'Ŕ/=ȫ=$@=sZ=I]:KI=="ުX=8l+=hz=QĬ$T=C3=cd듐%= &ַ<.'=6U c=8%Q=vT=] }q=͙_8<I8E̓u.<{G[i!,0>z_ >H[*{G>rܕ.u=f=f]p=~O=z{S=Z0g6n9=`i[9=S|L==׸w=au=H =5.$D=MJ2Y>1D)1=4#D= *y=j9=y *m=A~0=E1 = =bN}=KAb%N=})>8>= %>I>&f>+}@>%?R>j">5X!->NՈ>)>f>nK [Q>3Jf>=-> bj>/" >5^4>3/d!>ԡT>nnc>|N>g@>@`#>gG>rccV.>%C ?E|5>n\> /"?p?E%g>&D>6.5 />TQ>>>&;š>3e>jے^>S_l>㶯P>9>3b>(IY f>c`sa>>7A>pD>>WQ>#Fb>!#P>L y><>~ܯ6>Κu#>OԲ=6r=elAo=/nKJ>(qh >8"=*=I)U =z%Yv=uNc=9=v= vMc=),=V~a=7S[=c >=NK&]=%7-L> ²'=(=D2I=}';=|=5o=vo>>ėhm6> J>qHY>c>BKr>jKOE>R}RDN> AS>yg#Aa> xAUm>.kT>=ePp|>sN|>Unŗ> JW> cZ|>+71c>}^>P>vέŢ>>MS\>">\,I>/$: >?Hv>f>d`#>~O !>kx,>%I@K>z- >Yf+,>9^>D{> ^h>Z"QC>xJd>x>!3EOh>.|p>U >H\c>,>)/ȵ> }P?A>>f늚B>c>qn@?C?R{>v3vkE>gVƬ>FJӈ>*s!>y_@>֚IL> Y>ؙY>I[Is>u/>1mZ?eX>d!?M>E%?T2N?63?["??/R|`?# E[?w/G?!7?pa ?a>M3)? ޠ/?j.??]w8?$$nLrE?`0?? 8:c?çl2O?mp?-6!RSu?$CAq?ᜊ乹x?@x?݂?`7ߑ}?co`?Uw?J?f {o?9nzNd?ds?1ʚFu?7?2\?N?eJ@?gaAx?^s?xIV,?`IAH?T۱eզ?sv ?}x~?Dy?O4I?#D `?+?* 3?\_E?-^?=;1*?D?ѵ?XgpY?Ӊsޘ?O?bR?H.?2W۠?W1?'=?*?`2 ?%?LriY?dw [?O{ ?gFJj?tˮB?I>'?O!?I3I?O .W?4ح?Ct?ϧ)W?z1,?؛r,y?;?W\uR"?]{ҹ?a!ͤ?㶾?d?M?ٽ? _?P#g?V!z?.t?X-St?I%A_{?TCw?ǡʀ?gѰ9?2/kȬ?.[ >?. ?ZD֐?)@5H??踱h!?}?*S?l3?mC՝?-dږ?S?ͻlJ?ZyY?Xs?q, w{?9Ap$?@]d~n?ɸqLu?o'y"[?DVX?+pj?(\*=u?;t؀?@[V?F5?,GB?lB =?Ȁ-uaI? qFvH? Ed?ŽTZ&e?$m:_?晽^X?9 v [?WRg?p ɏo?p1 Sy?G=5v?\ϑ? VMs? h?bV?Z@a?WW?rw,p?Y3`?[qPOe?Up`?rE'P?}ˉP?:.V'B?QӔs)?GG!?_QF:?1bP6?tW:G?=zR?<B?{#?D(?-!->\ BǸ>x> >輬k>ƶ7!>q C9vP>^0>rg> .C>}>Ph>K5xu>Ԇ醢>z I>ʣ>PH>gt$> ?;ë?}5U ?}Սƭ?}ZQ.?qS??[{Q9?ժ z<.?%,! ?|bk?Z(Kx$?~~l"*?-'?YA8?nM??|W+?P?.g ?5po?Z`?U?$/n?mrA?eMb ?0*?[ C`?'?-\ʮ?ՑB?D- ?ԗ\?0V=0?}֤?E_5<;?Yj`?p?9AYFH?NyB?x'=? &{T?rXQ?v>?K?Iz"?3>8?mID$?tk?ma?ۆkB???0L5?c?ȥa? ?G ?>b?.ᶬ?@?TJ4?EH_>?#=?s V`?3hm?.X?b?$be?|n4G?$AU? z"\?鮔7\?#\U?50I?(׾W?tch?uHo p?sr?6a*a\?)N?)'H? F?.R?ˊC?32ED?utNY?Ar~+eR?o}Uwc?P?jQi?NJA%|?ȧm? (`??_?/p-?D?g2?d?=!?薗w3m?ZE)?~.Z;?o|?ވ?Vg!ȗ?Q}?Dn|p?ݔ?܁?u?ox?!f }?Dg?#»o?ruk?VM]f?s\?Me\X?u?z.p?ۋWhKU?=C?ദ)R?+a?6wj?>0bL? DD?/mUG? |M?TN֪/:?5?:?Z{-?׾2?%x%?vtW7?t;?ua1?!Ɛ6!?Ɛ֟?>bT-?3/^!? %d(?ϩJ?o ?Z' ?Mt ?Ș??($sJ/?";mI7?Vl}I?[^?mF?0ER?=T 0N?{KaX?gP?AӱR?.:GC?gDң@?%4&0?Y%_0?`eE}T2?9a̸"6? E?AXiD??@Q?'\Z?;P?u>;?dY$I?b|0P? 9d;CU?\IL?x9(D?P?Ĥ(V?0-XW`?GG_? Q)a?C_?>S W?tw[? ěr?$&r?Wʇi? \{ q?pp?(V?2L+݊?(q$P~?LqFж}?ǭw?(v?b;m?MF'o?x#d? Os h?/f?pb?5gjzӵ`?r4Ma?rW[?Vv/T?>ZS?lY?Wd^?mRj_?FQd?z! j?c?(ex7?Tfĉ?/<\ə?tsap?# Op?~?. ?!xЭq?xrKk? ݕ?%.C??1V?^#?&A硾?RΘ?! ?0?[\|?Oo?o ?6SpХ? 0?YF?A2aE?%CŲ?mvz?αlR?m{ ?hn?!ǙCk?h*q!?vbH?ݱ?Dz J?;s6C?i֝ ?yXT? l?Csk?F}ulÓ?&?_^ ?7abg2o"?'hRBC?VF M?I'4?&%?E4 2?B?N>4?hv(?,UH?@kg M?j?3~b>ጭ >%K?H%z?v65!?䔝kO?Y D>)}ѕ>4X6>x(_(>/&<3>eN$>8zQ>E><ګ}*n>傩:ɹ>op z>m>3U>XGKB>(>WU$>":>A{DA>^!\>Y">,4FPH>[F >MG{>X[-7l>%rh>Iȿ{>,y&YV>' |b>b<>Q(,>qF E>(F,0>= qD?>A;Y>1g"K>49Av>f>@|Ao>|?\M>k6b>7{`>C|>5HJDn>e>xWu>>7$؂>S ,> P>vr>sJ͎>8>)At>Y >Acn>5,ҥ>#JO> gȫ>t&>#l:s>L3L>u>( >o?#>Jx8>j>$>6i6>9VH>uo>H>"P>遳%>|6>I>p>fZ$h>a٣{>*u>Yaj>ԪN/Ã>|KWV>2"5u>v*> U>;>w9>>3i>CjN=>:e>@>KH>Kf8XR>Q?yb]h>H1C>8a>?>ݗV>|ߦ >O/>q>| 7>#{>Kk&7>:>yz>#$o>LU5v>_W_d>|aC>hZW>X;>lZZ>{u>\J>(=_(>Id> ]>g ?͖4f?4n6$?u6!?^`sw?c} ? ~ˊl?:,#?V.(>&>>=s>9T?'N> $ ?O&p(S?)y?XC?k l ?]5?V=ή)?~ +|?Gh?jH6!?7 2?Ѝ]t{(?]D\3jZI?8YB? K?C[B?2-1?#J0?^#? ;?r=>?co*?^&4?7U2#?f?]Ń ?23F?Ǩ%?9"?G (?g9$c,??vlc ?:H!?:eω)?^E?5+V>^HyF>g&B>ķ2?bd% ? ?NG8&)?,?1|`źK?q=%0?E85'?m4?ϸfOo9?,әy/?>]0?\r( ?>Rԣ 8?*Xw-?̏,1?̝R*?i):?}C?9H?.wC?wusJ?0XM?~͔V?|Ơb?|{5^Y?A AչV?0hnCNL?-[{LF?AJ?}G?_d 7?!g ?YB?6x" oU?9l^?m_c?U@i?f `f?ILd?(bs? 0Fr?Aiu?3o^-v? p٥y?nQz?s?1ghz?pits?/|?w|?Oy?"nt?G_w?ה "o{?wx?[Lqw?澈Co?ơh?Lhd? ֍e?tZϝ^?N2d?AtP!d? t\?G_?w=R? 4:G?{HG?$ B?^o1?dL?nQ?UUH?'?|>?LeQYf:?2QC'6?rF> r6?67:?Y)L>?U7)C?(-;?2'9?n@zB? E{??v=?>D?$yA?cSrfD?߀@?5)3A?xR'oD?f?%E?Mɏ&L?dDE?^͝:J?'=ҖqT?-5!AW?JgE`?W6z5;U?չ&I^?cSl?~k?'×p?q':w?9s?S>u?%eo?-8d?)b?6'|j?bkj?,C5c?z'qFe? Ųf?kLo?̝p?Ljs?'x?r3}@u?|Wq?W}0y?x^K00W|?Rv{?֙h&?[Bb@|?O\?$ V?]?$:~?i蔹h?TWEv?t|?d{?̄Jq}?,@~?N}?>AR~?_UV{?0 y?i'*~?wg]z? F,t?/-ڛo?Ŝt-ne?)e?#qXwY`?X~;Ld?v?}lL!o|?`8c}?Z |?Bz?y#Bx?]Kٛey?g}}w?ifr?op}v?&3x?#tv?8Q/r?ħR~cl?-(2n?C]r?ʚRn?DU6kg?Qd?.e8?U#]:?'+Hd6J?>,~=?oZl9?J!B&?$W4?m2(&2?!Ȋ3?N+?`?Q?^?tE?':%?>{0?W*?M8?)Vo2?TU8?L<40??!?#'I6@?g1|-bx?kbw?͔7?O~b? 亘?"+? T:??QH!?4=<٪??GS?l(?jB?&F?G?Z?($?3'Q?jY@?FNc?|<R?A+lH?)6t?W ?2?㗹R?9u&?f+?p? '?$xY?[!?5oa`?2hd?!? xPw?+}IL?kTl:*?A/TV?WL?# ?M ? [S[?jO?E^G?g;(E?LS?IwZ?uq~T?O6t?vŻ?%lT?pɇ?Vo?W?H7?]]:?k+#Ί?&!t?;" ?^먒 8?츀e?@r?C R? vG?X,o?>i?se[?Y5K?4A?XT.?vWs ?0=İZ_?q?h䛚P?LJ,$?t?Ke"/?~^R?o?ò??(y?X9?,洿?p?ښa?׬p?V ?fqT?Vʰ?!}?d?H,J?a8??"i?r? E?uM@f?ZO]?5?.xEĬ?mآX?y͊?;z5?l4fؽ?ɉEe?yXƴ?hJг?THLƔ)?YSl?R|V?_{?I{?L(LR?=k?~?^?H斣'?p?g+a?u7?޽ٟ1? ?DL.%??P?vq?J?x ?zg9?w?^^r~?N?-Ʋ?x2em?;yem?&|y?diB?l?eu;L?C?7U^?"n?ƕ:?Ckn3??R?%_?[??J ?&3Tv?}߲?ot@ ?Lz]2?7K?U5?H?BO+ʼn?+jNy?l.x?3?) w?TIj?4cv*K?z\Omћ?J޲?? ?GG?>(GҔ?BV;Sp?gPپՐ??+ a?H[u?KPTo?h(X?c7?~fv?Uv?SKrp?%i]d?3[ Q?m3_?`JSg?@v?`ktt%BX?]fR?$LxG?q%o@?zL?gVQ?bv8W?n T?mg[?.f Mc?>I`?e3$Ԍb?>9_f?~h?LK#v?!P?ISҎ?SrYw?GD{?pT>x?W r?:|.5q?^m? qXzX?M%d?7Pm^?pƛ&|?'&T!h?_nBDe? xa?)/q^?6[_?:O? H?4hA?x H?L?V?a-T?Uo2#]P?zzS?fHm9%E?1 tMA?aAܸ6D?Xp*=?QƤΫ/?% =72?(X:+;?\W3?( ?x?fjUI?,~ _D?*b)TE6?33GCP?pRtJ?7?F?O R?n'Y?(_+OU?Zw1xd?Y b =k?{=i?)(\?td?@;p?B,?d%w?u|c,y?=fV|? [k(?u}icߍ?}կ!?8%fZ?\o?^YH b?MGۑk?CpzS?9^OW?ἣ+ "Z?Y_6`?@1UK?"rij2?§"@?@[3?y5yB?F&\?S> %N?M2M4?ZJG@3?RqI$?PPq)?ds8X ?Rw%?-e ?LА'?4j^-C?9?\)(?Pӟ%?nlC ?? ?vfE2l>[>ZgL/#?$^ydm>o{->cØ?>P~mF>w;>N><E>R*xk>vl>wv >zEK>;\>J}F->uJ>bO/]>wf> K>8v>]H>2^> ?><Ѕ?0ZP@?>BSL?]Z _>56t?/jg%?^5?B%o?/)H&?hF`0?,r8?}ɖ6?48)?VfR?z$v>&8 ?]d?8 :%?9;?y0?8i05?M{7?}agJ?miG?qD?mk#B?0mM M6?R?|[?YBw@?j V@?)?uC*)?t<> ?wUW?|ϫ?\3s?uϖ>*vB>L ?Qʷ>!^>36>~D>,:.ӥ0>)F%`>$u>cjv >fJ>Wt>2/>Bi#@R>dB?o>k>73Yi#>ݿ>mpx> 7>U^>M>@>8 č>uL2d€>֒bz>kN>4yL>KU >bbQޯ>FDF>'ׯ3>a?S>SuM>yԍgܗ>F>SL !q>dKu>e=>3%ׁ> >;I>ue>S>_F>4&i>a>ق0LV> ܔ6><@>j)>"IZ>9~o>pda>m)}>s> k1Gj>Kb ƶ>DƑki>tw4>&I>l> ܚ٘>#`u>Kô>~>6'Y>K^>兂,>oBzh>jxp>6>K>'ڧ>vsB>צ@_>&P">h7>n7>cq[t>ta p>V>/E&zH?>u{ cN>&. >5Rp@>CyK>9H`>v4R>-6v>|ո>4 >jw>#[S>φϼ>䜉?Tem>0?<+Wݍ?f?$_c>9q&ڤ?Q\u>]V?fb %?l?jt\ ?L0&?c0?*?Uxj,?THY?kx{X!?y GJ0?a,D%/?,oʕ7?2nB?zY3? U)2E ??B?uAj2?N7?*$?Bj?F2]?Yq?ԗd?}N?p ?0F>f: j?a9 ?)L?3?H[&%?z!? }0?k+? |b}?8o ?}>Epb?0W ?W ?7ot?7%?1 >?'?eq ?"rR8?EBX)?8 G)?!GX,?S<4?$H@?5BTȋ2?FYD?-ZH9N?K;bE?NNT?xe ?S? dV?溱\Q?pdYG?]E? ؁2?G);?vp>?^Ť+?VmiE?֝ÂwQ?prT?` [?iza?5?8c?$eX?C`?9Td?}ȈOe?Yj?vJI_Z?9a`?f:_'Y?`??b?lխ[f?~*xl?wbsp?$](j? w?΁?0o??D?L ?ejߌ?(ZE$X?B?oL?pN+?FZ?N[o?E >?[?,z?ႚ‚P? ?5q-{p?0F@,?L| ?a ?0)?ʔkW?nXFs?{GD?KßӸ?>??Ⱦ ?b ?=dt^-?_fU?W?ײ?=;?6Q1? E@L|?F+xW?av?-P&e5?8QM/g`?(q?ה?)?7?X;?-*o?~?lra?j]?sah?o1?(?sS?~J? = ?8\?܅?).?ZI`?j 5g?@,(?}A?;?t?ҳ%?*?saX?/_\?Gީ?9{?#.p?%,=?x2J?-?ש?U?1.J?{gu?)H?/@{g@AN@}E{l @~@eN@?nZ@L*@D;?+! @&w@ux0@]1 ?H/ʒ?9?:{?w?y?vh? f_?? +. o?[#w?WΡC@\5*Qʠ@P?F@xlN@#'߳ @)@K @+&@ljTT}@j+@j@u'>[ @+Ǝ @7u@DO@@;}V @"a@.b@bb,Zz@q@\ @W=@@@h.E@%_@#眱@$18@>8@,uy@}/;@݊t@6`I@/5g@x P@i>Bp@KPF@ʒ@IP@@d,@biZ@-@M_cd @JB@> rb @4@ iA @0Ϭ!@@Xz@vMO@O얬F@Mގ?@w@ch5# @.劣@(j@mF@r @ڙ m@Uh@oO@k+@'D$?@Ij*b@@R'ɉ@mNVGO@?xߴ?Ee8?m? #[?9oy?Ϋ=O??G)l?W.tEJ?.\?f5?q2XG?x?2ӲQh?fK?ŖJ?eO ?z:%?Iú?>ǫ?tPU?Z?ϽtE?̳A?ꔞ8?'k?%?Rű?qҐ|?hP?u)y?gOh?1~?r$jV?D;?f?7I/?=Bn?'R?Fn!?չH?к?IT?n?L9O-?"xd'?![?+p?Ee??!?1zm?FiVR?] _x?&IJ??BN ?=ďjC?!Һ?lyv?).?u?ҎC?@j9?e?ݦ?#M˴?Z1?'P B?LAO?ؕ?9!cSޤ?kTA? 4?6v߾?| {])?馘(? ?߿?X? ¬? &?e5?>Dz?M%g3?fzIc?\){?,5jF?Z?OPŋj?φѷFSs?CP[?Tݳ+c?n l?lκc[?^_KyQ?(u!V?nc"b?"rоmc?ț P?e| J?Km&GV?MZ3`?1Sf?FTd?씳1|?JP7l?v~|m?SY ^i?YaFk?LX),Ps?D;{?Xx?u?l^W06?j%g?~v?ik-?#ppN?k~)ܐ?U[?4O*:?v?lǬ2V?n8?|?Bta?aq6?Re9?b ?]az?Pol?r2Ϡ6l? >vl?ȴez?6dx?]f?JW<]? %$R?>iYT?} ϕ$G?{JW?~^cպ!?G^+?~tm&Q?;->2?BHp.3?h6? ?ڬێ? FX>$zT>f9>3'N>٪I^>2>9U>~Xp݁>k>SӁ}|>f >$eeK=???\(D@?x:QJ=%V>߬>jWx*>Wf*h>x'E>7m=WL=Iߓ=]T'=Wՠ=$= J0=$=ǩsk=9(4=`=k]=ല[ =-U=;=ېZ=2=W3C>B&2>Dy=br:>c;=ռa*>%z<>tܮ3A>PtBr>S\1=>ʴL8>2"j>ד{Dv>N⮮V>h=.N>Hƈ>iK8@>d>0_*>#k.c/>'7?YH ?\kpf&?i@?F1?*M)?- @?c4QO?~x#@?c+J?p>)*?)e7>S?'G&'?;tp|!2?ve&?M4?p?o5n? ?]Z5?9#?B?x!?l+0?]L?XaT?unB~?N3d4?l?C ?ͲE?4|b/?$Fr?sQh?/|?^V T?5Hp?8q?cG?+q?1? ?qe?/+ld?)3x:?z?^&?U?j?aQO?>? Wy?h``q:?[?8w?tת?Acy"?)?g?X(7?av?R}p?5g|U?zl3AC?-W\?2]c?Z_?dcs?6obg?Bz?@^f~@h?I.t]?RMi?qf? Wa0p?r1ws?FV7 {? S?76T΃?&].q~?ŷw?]kʂ?z ?IB]j,?&ܲy?eܭm?)K?^q9's?\i?t?+lq?&PC?V?=MM$?sI^ ?ȗ?7 ?dQ$}?4]ZG?W)?klО?;`F!?US?]-F?XER ? s?lZSn?#m0 ?h$ڍ?pIX(? ԰?me ϳ?f$?5^R*?.5?|?44#ܾ? ?0b ?5cK9?ɘui?Yp?!sj;?4c)<+?xB>u?v'?\Cr?T'Â?NnT/?:Aw?W/ ?UO y?jc?+}?ip?OSM??J ? Ja?βZ?< U?`x1?Y>v?ϗ, ?.c47|?3&?i[?|?0L'?fL 7 ?E40&???BPצ?񉽯?e]t?x]m?θxQ?ȋ?$ ?ȅ۟?ģ?m?6bOY?LV? ˩?4Q?j p͝??M?i?hUY?.x?<Ι?U @^B?s?Qj?sv? Bs?Xa-|?|#l?PDSs?*Ґu??Yp?s/]c?uw3n?|' ei?hT?"x"J?xcsG?MnzW?0JRB?&R0e?j+p?1mh?m,m?b? sD&W?3aE?'b?#HV?sE?K_?AAҐa?V5p? xt?:ܦ.?qѠtYx?Rɤ~?\N_ g+t?*:Uu?Hk{?Ay?WY5?d?9i?l;h?e:Y?fP*?v|bֲ?Ohx?24HG?q+fA?}dea?51z?d??J!4?;U~?zfg?9]?@W|? "rV?ޯ?^?j?'GQ؍? ?̘\Ӫ ? )?΍H?ߴ,?#kj ?S?)aO:-?Fկ?V˘ ? ^? )~?0z 56? ?:?@v t@F @כ> @r2 @S#Qz@;; @P@r~vh@gҫ1J@5j@ii@@ @鶐~?,@{a5@heqb @ EXTE @ @ l?@  @'^@k#?V˷?Y$M@]G@7+,u?cD|?#M@2k(A?=4@5|@h/@~Nm} @GTB @D)S@l}@SRgZ@ @DH2@Z@:,@Jc.@.t6j@wU @u@9b@q@)Ho @nE@?@/s=@b@ ]@@SB@(Eς]@Ʒuۅ@Bu?J @룆/@s@5H@K)K@ @Խ"@x!@Xf6$@iE@|sy@>@N@@QTb@g@:+~@W@1@A5@7Zc@t.u@YTfm@HxW@C&i@ t@Z?#@. NH@"@Ǹ @`唔!@*1A"@ig=a"&@;:녡%@r` Ī&@Uʳ#@ִr'@R3~,'@c9ZQ&@j>&@, &@9$@,Z<$@vcU'@d0o"@xi@I(-@K @-I:"@.G!@6X#@v>K!@v*@$;%aL$@D:&@;'@#HZ'@Ds&@W$1%@d+P'%@)R=&@56G#@ς"8 @uԣg~$@/"@k= @-"h%@$@I+$@_ff\U#@"|"@Y"@1BPZ!@,)!@j+| @E@Ǣ|@"@N)柳@$5@Q/@B_@X@rDE#@Ȏh@v@0 v@CD\@q-@j&/@'6?@oq@ҮW @w゠<#-peD=JjQ*> ;Oo>,'>]Rw;>Mn`mh>L?Ϝc?AJ%e?BHtL>&u>SJ >&py>(9@<>401e?U!?XX@C?o˚{I?? ¨?/q7 ?zB> ,?_ ?V[?&ƅVi?S6*`?&x0D?r )@=9^u=ڀ==#9n>]6?7>8Mz?lRd(>im> cl=7khOL>SCG@r ?J&F8T>=48>MpCt>:vDD?3q?FoY *|?MO{?NW{?|oRn? }Ƣ?4C炕?-?@9?Q?1"g??X?z6?QED2j?fwb]|?#7%U?:|% ?=$/$?7w%g? t[>YO_>S#w? )? d)/? ??j[?ta?wqF?g?ژ-Z?2`I?p6? 7N?DY?ߛd,?]0UG?nӴ?&yH?0f?'ߗ?QU?CIJ?Yкt?%b?Ϥ??5?CWf?BNrO?X[?]?R'#do?C,?9t^?A*T?v&@?^ ?w?)3d?RSb?AA=G.t]?g|FA?Zp*?Gk G?A;JW?8AK?\ M?_I?∜NHI?_xm+B?܂g?O9l?a?4 k?\4\Q?`GMe?z{%w?WÒ{y?lwK? Kp3?' Ce?kM?kѭ}?lK? C#۝?c ?fc?K|/?7e?|2{{?B?lK?ۂ?1yy|{?J"`?L/xb?o0qS?v֔n?|Kq"?SPy>n5|>7eP>j As>>E%([>z4?6?9L?1rU? ֕VF?e*? ?&b\\?Ea?y͞_?5HыS?Kt.O?eG?d f,? 7|?tHz?3`Tw?X.gJB?OJ7?PDoH?REzv5{~?gM w?/;0ѐ?4Z腘?ۡ?=|? ̸?_?iu?n?xG?ECW6?^ ?wz?Fp?vA?cª^Y?!-?J/?}qQ ?T?]?ִ?|n?,?H9?A? ?:/??,?N?X;CL?cZO?;i}?j\x?DOL?+襬? 4+KLW?P?{4?(['W+?5|P?%z~g?],8]?|Sxc?5D|MI??ogJ?%lR?[u? L?ŏם?/ƥ?zsDg?mW6?׏?`@]ȧ?@׮?y?mTU?c*!?>?6sk?]m]?<>ߞ?,l׏x??d`;1? biS?3!@5_3n)@H̠Ҋ?=E?3v @2SC@\~,@/@mb@½=ĝ@@VB1U@vqF@٥1@y @׏@ڄ=5@c¯@1"@tC0#@E %@UNZ}&@.V!%@OF@G:@| @"9@܅?o?4Δ @oN@sJ@>>ϊ/?`l?_G4?#c"?~QMx?Q?e?3߹H?' ? ?NkW?ϹJ;?<'9?1'Q&?D9:R?6уE??)7?7 P?~$z?T?P?D 8?X?T87D?H QMZ?/@?+Xw?4*b??^?qhc? ۮP?;$QS?U P:H?t[Ÿr?u=?U?gF?|s?J~&zR?t{7KF?]"(et?tu`?JÃ$K? ->g%F .9>nk~`>D O{>VƲC?*pJ?(l@-?bO}|A?A?8/?a$k?Kx?8I?%м'1R? uu?#{e=Xm?Å?y?PS?:4?M99_?ۮ?:??V9?](a?<?*?q!&N??r?U lv?nk? ym?pC\?pgc)i?I#$WT?e ĭi?Z$?x t?}ȟ?73q?PRQ?Օ?A~?&I0b?wv~[?u8.?1@%?yy?).#?8d.ڿ?#l?Ke?[y[?F6?׍5?B4P?@TO;@TR8$@-iX@Uu?;8"i?ǥ> ??8?"dø? |!?@qL?Mvp?F?G4c@Zw@X@`B$ @=@w;W@`N-\@>7@K[Ċ{@6@&4̼$@(l%@]"@ = "@_B`@G&@Q[ %@b&Yk @F@ht @$YDy@dWJ<5=?[3>0#>uܺ ->2^,r>FCs%k>TRhsU>$]A>/+>0>Z0v>++$=d2h=S>;-=yZۯ=)w6=/7r=Ic=Yq==HM²q̾="4=r_W=wg#=ҘB2A=љ2Gt=^P=踽(>wVvҸn)>j?<='h03>.>*4,>-c>kAc>xE,>o__>5N`=1:v=#&=Ԁ=B=jBF>T-$>T@p M>q6>j͸p>-'F>JW(%>b'"Qt>i!Wp>$ %6>->'>w>F4Li>øu>ğT>%?A>Do>1wE.>;Y$3I>}p>55]i>vp>kK:>Jri>%w, >Qщż>a_m>oz[>ћ7?>O4> 9i#> >_?Sld$?Sߕ"0?đIg?TR1?'_7?6 8?lݮr J?ΧbH@?І&5?ve?.hj,?>TI7"?ZVU?,F^)9?r z?)r?h>h>Pv>~>΂wG?>L;h`>6\>iRF=>P m_>b=͐>ԩP!>1l>j>,O>!,>N`S.>sjC>>8g[>*v>a1>݁>(ۿ>˅SN>`>dCLQ>G0Om>x6zr>O>">@:e?GIy?I ?OsB8?dV?.ʳLC?Kb6(??m(|>aDx>0@v?2#?-<]rC,?ݵLP?lWf?TM?xku? @8?D|?^4]??iܾ? .Tt?!̽3?"a?B`rh?BuO?jz`l?Pq(9h?6/iy?YT ?l?FG?V6?!7g?]O%'C?ij?B˴>c?j}?'<Ő?ׄf?&?xԧt?o}?i&?u>z_zH>sHZ>ef>2|6>0:;Hԡ>mekV>3dd>/u> h.k,>T,?{*>aV>G"v)>7E1C>hzFp>a*,l>n2)ҡ>aѰV>_)x<,%>4>n.'>@( =rqO=9k >nE+}>Dr->bҮ,>c[4>eny>)ܢPp>J.R>S>I*>͖1 >8Y7L=aQHҡ=$yM='=ZO=/=0[O˛=A_%-=Q,ɓV`=!v;^=n6=mO =vρGZ=o^=[~h=Ʌ-Ըu= UW3= @=3`=^PBI=;"B(ch=Q[A1>`+v>Y79=ڵa=='Պ8w=q9^=Q}=0\H0>]U>^/>|3)>S_ؠw>(b>X8pa>m%c&>=V])>蝼4>w8@>t?z>t>mNʒ>}%/> kI>fdP>d>Q n>%\o>0a>ۥ9N>JRw>ʑ>f0|>V q>Ւ9>[ټ+>ʱ8R>pʤ8>A.= P=WadG=~Ś٥V= 7QУ=_gg=I;g=8G_U=9C=z ="N#=;P?qd=Ϳ}=#MUzlJ=(h=\0R=TM"7=K }8.<@Er=dY _=(TCv=5"e== 49=$3·< n=A=k"1='h4=-<$v֜ D!< -)Th5<0DD}=BeG<\ S>_TTC>0/ӬQ>`=#H=x˛=>>@Kn=T(pC= {*k=@]Zf}=侾lJ=jI/=9V=]=\| #=3=ys >.C!ΔiF>bt>6=>n0=O>Eqp5H>)J>$qn>{>罊>fp0>l W>%0?5Q?, ?ӭ>iRx>D{]>U>q G_>y;S,>dg4C>{=:6>j1>cG> d*Zq>׍&>gٰl>Dn&l>Mdj>?PD>7>s>Qpq=;r >A{='C=ws 珆=7% =Ce= |_r=u.o=8"vK=Yۭ|=/>zY75=V?_!+=|A=ɶJ#>-/>˺n%>9_m6>}܀T5>HeR>mjY>l>jp>Sn>˖>K9T>{uڢ\a> ɞ7>G938>\F~ztI>Wi>wx.>ڼ&=%MCdL>86>ȧ./D>+ P>l}ÌF>jΚ3q>0Vw#U>ټp>3N">vJИ>*',,>O^g>d >K>)Fy>$$?U'a>F?`U>017e>d>;.>'. )>Sn>nN0T>5SqM>R? a#* ?@;?/r59?Ex7?3?f1[?UPXR?|ؐA?%?8 )?0?t!ׇ#?KcU1?UZ?P? Ďv?AlGG?!_b?Qw =m?^ ک)}??b.6?>"?u_c?m?(oA?e?hY?]0?0?h?‘z?ԇ6ч?@s?|Ƣ? F2?PƆ?'3?c|HGR]?<4Hn?I,M?nѠm/?OLP? R?qlLi?DP.Վ? lxY?q Uk?kjۊM?`.?ag5?B9O}??u$˹>W?;\>UՇe6>k>1ΈX(?MC?>'Z!?y G?8?Z elV? X/L? n?{|و?x*,0?Cb(U>?Z#?cf??UY<%?%w?WH ?*zo?Qz|O?p DnDM?I~^?S?v?w E?ݺq?p33e?Qb)?P A?o#/`?o#0?=HxaC?t$hS?$ҿ?wRg?p-$!?T??P#??S6 ?ߐ )? >=?~3?;O'?ߞm]?F?>q暡?1ԁ?u1J?yr&?^S1?V~^?հO-y?uZ|? H|oJc?&(-P?c?P>Q?9Aމ\?uQƳD3f? P؉i?'Mb=g?۸G\T?rf@?mT@K?(D]C?Q)|JV?zǐ_? h/0s?JWKN?+\* ?ԖY?v*5?8x%?ڮ󲐑?>"[&?O>p?BZ/z?ont?a?1K?ރ.V?HFo?I Y?A?0'@?)fvJ3? )\&?d'Ul4?Bެ.?%k &?@^rj?-V}(?+79?;x?v+E?%M?+51??$? {k.q>$>^}i2> ZM>#ķ>~|%>>jԲ> wLɳ>C0`>\>-/>m;ǯ> k.>;1:oۏ>zz"G>x=L>->\A>Zi>$g>iAi>ٮ?*D>-F4>KψrPK>i3L8g>Y_xX>ky>;9,b>^n>f>WO C>[`'>4Xex>0px͗>5y'>>:DKMP>*CP>bF>/.>$W>a M%>p0>ӏ>x0[>R}>o2>) >WODӟ>\o>%>/>j>T]^>{bZ7>I0>6i>F>aܮm?ౘ\,>ṙ>c *>F坖>wټ>w&>W҉>R >Vꓠ>:> )>Q-?t` Hv?z)SA?9?d,V>ߵV3>i33? 5f?$v ?b ?;Θ?.?ɂ!$?L;Z?Zw|)?1j7?̕\C?{*aD?K+k6FV?tP?gR?w St@@?*H>;?%@yNB9?7ZG?>6M?Ι.eG?أ$MN?25v>?iƪ4?3"?*_F?=@%?q3,?ZaR?s 7w?K?H?l !?2?s*x?yV_O?gj?x^g>g t?z#RD5)?&{|H?UNaMb#?n=?&xJA?B4?6/72['?Q5_c 5?f_//?^>?jKD?m\?R?nxGQ? ۲C^?iU?,y}Q?|j_ԇS?_L?9? S?@\M2X?1 U[?{ <`?-f?'E cn? m?95j?)KSh?V.f#d? \?ZK"X?{_?Ub?Ik?Մɍ[?[d:Z\`?j[}]?/]+c?D1q?%Ss?qTr?() o?8u?A+&x?JI"E{?9|?ew?K'ku?*'iw?&/)}?Ǫd1J|?Thw?@/v?`[x?s%w p?8b(p?Cp?!qfb?G&b?jd?;sj? )'iap?_6Qp?ִѡk?Ya?O? hW?=F?[ݿ@?6tJ)?8f9?8@]$??D8K*"?d*,?B$b1?&+5?0&?[a:.??n3@?߫I?ѱkB?F?C?O` -@?K.B?f+v AL?DAP?ә!I?YvbF?]`eT?ȇT"^T?Ya `[?_+Db?gs+Yf?)sbh?Nm?Ie|s?٫"y?iq?@m?ŏc?'V @g?,l?1tyZqi?ZT p?',v?BYs?  q?hv?nZNŶ{?Ҍ6+~? g fL?1˴-y?m }?ry}?Ѻ͗~?j? 6x?7w?`/q?.zT{f?q!gd?P@c?~P]r?ؐq?`ano?uj?L8^z*k?HfwRa? y"xr?utlw? (\Tt?l>w? Z$|?O}?W/3~?-z?}6b~?SVny?}[!}Lt?1z?ZhE{? \x?onZHu?w?gX{p?57i?~rj?-t?ō\Hscp?Vj?Ž ;Zd?ha?m<]? : `?~dfp?$l?^6ǡl?N0kc?- tc?Ⳡ0W?fQ?n iE?#EjA?>)H?gZKP?)*$O?V8`=nT?=17X?S?E]D?GA?@B?4ti@?b[30?'-D3?\ (#?[Xۀv!?_!=?d4?h~#?@h8 .?i5]*?`teN =?hK@?wς7?Ty]2?yMG/?eyh^6?}KǖH6?).>?qBC?D`B?ӭX;?/q,=?y+^A?E?ʨC?BI]U?N?4AdK?_l)?[\%??2?YM3??Aк?$eƿ?dIO?|>e? 5z?E`u?}6?K}?uc/n?%k?ݧp?pbF?\=e?BbR?~˹M?e!?M?Wk??.Z?_z?}NR?g0?Nj:?W(*P?I=?D,?R7s?QGn?3dNǦ?s\?Ʉ+?ݽM`?d?oβ;?v)z?C >u?Aw?eRM#?.) ?}sk&?!ȟ? 4?O6\?w?\_[ ?6Fjb?,HY_?HhR?d{. E?!>?95?Q0ͯ?${??1x?3v?]c?F?F?SEt?}q d?CZ?uh?TIqH?0nV?1^?ܖť`?y/Ds?%'W?fn:j?xLk?LLZ?oOQ?L?4w8? j(8?'?eH?U!ӫ"?}<-*?xCGB:?nLA?vbcN?-\O?<㨫]?h*u?:s?iz;?p~>R*af>#?Q>.+Fd>Gn}>VX>.\=>->yJ>]:>o Ux>r_K>g>s2e >RW>X,e>.U"(?D;>qjFm?}#i/8?g?4Ӄ&?b?j4~CW?4q?1=ΰ0?3Z:oG?`02?aH?}?9?gG"?T&H>xOc>O->M<>{Cz >ju(K>חJѽ>tӸm>?>G'> [->`s>#g>s*>ꆑUі>@2M+>=C#>kh>P墑>}ƲF>vv(>`C^H{>S Gi>|>ɔq>QdcP>b<>7ZwN>GwTRa> 1p>֏p>%ϫ>9: >l8>({]>(:V&>d`%>btg>|ai>z_> $>)q>faݝ>|&%8(>oN0>J>J@_3>Qd>Eo4>On9;> >o]">FS{?UߟG ?QۚBv ?j%?k'?LpP$?|^1?2ś(? T?ˮ?}i.%?/H=?ElA?$d*?ׂbI2?0 K ?8??L;:> ?wdH`?]0kd>=t?I/ ?=<%?4*?/ "? ?-%Q?}7#?Lu?Nչ?STpzM-?@B2?^??㘞D2C?\*8?<8L?7; Q?L?C[ C?$^J]G6?(q(:2?sk9?xGJ?@O-#M[?Es\?f;.Ad?>ۋa?w PYX?6Z?O1_?aoYj?.n?3Qf?F*9=r?9NaMt?Lʄct?tu?2hq?jm?U/ʼi?Cam?䙒 "g?]Yh?fvSH^{n? hf?c`?7힤%Z?t'i1_?v٩!Z?8\5uP?|Y P?sXW\N?u˵C?+T?J P?x'4C?YD??8[7?j*[ ?;1?q9?#,,#W?B(]`M?KC?X `O?Ɠ{a?v wh?K8?'r?ن$|?a?ka Y?AC?)l?ȋWW?:/?Ş_?2 o?Io?nc? @?L9?02!?B g]?9x[}?}Fݨ?@ZR?a?m^?_sA9??T?K>Fd?vmb?~P=C?8b?بR;?T*"ҥ?mL1p?;*?&T>g>d">N>} >T0?>&>;O3?)8=U=hɧ=~C=ѹe=UEk}t=]=Jܷ=  =33g+=W;Ƙ=V|}vx= =١馞>aYI>9@bW>K7fo>=\>,>1O(>KyHM>ٟw>hyO ?vG?Ue79?R:?ЀR?XJ\6?)Ki ?!?:g ?H?y˴?`1@(5?ҙQ?]sN@s>?*8Kb?Di^?8ȟ?)E͛?n.?1)?zS??@I?L?1c5m?L6iR?d5Y?N]Ik?B%Q`? wh]v?jڏ?j2H??$dI?ʸ?(E4h?St3C?bRƠ?]Xf}+? 5,^?3?ѱ{,?fH>?*#,?k?F?3e?$+?wϧ?b" /?zy3?[v?X?|G?': ާ@?9c{?^M?9jOo? x?ϓF;f? tNXP?$^QQ?[?>6:o?sZ?eo?H9?-!8/O{?yN?s?d?y_S>?b?/Ad?ُ0 b?^w^p?򥮥f?ܛI`O?"[*Sc?8I z?8?Y̠đ?8=Ѻ?w0 ?UH ?C/Ю??<?ˤOs!R?*FL??Ww?پ?Q?_ظ?`M?n^A?-ܫk??yD-@ 1x ?r @ON @fU=$?ߦ*?Y]?%8Z.M??4L?7]?]kz?EVv/?~* ?qs•C?X7w?pβ??M?g@~o6?v@8!k@OZj@> ?@%_+U@e @/;@!۾o@_zG@}G#@!c;C@('@tdN#@b@/bE@(@IK_(@@t?v/@o #@T\TX @ł"@ .R$@bA$@vh.'@0@h@%>t@8$@f9!@pT@J @bR@m%@~@ @S~&sU<@VMm0@ĻcU%@Z v1<&@p֘"@VDZ#@j0- @- >y@FԀ~@?tn@XW"k@n{@o9ir@֝T @? @&ۮdd<`7 1<,H<ܑgsN=>܄?>'`>蠟tR>%[|)= *C=j}l=xɠZ/=Re-@-P2>yX\>hv> r3!>jE϶d=}-86i>* N> >{,>S`'M>F*Doo>/'>:s,>ca>ٞ٩>1g>|O>Uv9 ?g7^?#?!J@T?PQ([5?A0">Z$D>25d#3>J3>pMEA>?vR>}qtކ>IV>8>Y3m>ߕa$>Ft>4Q0?Ár6&?B ?Q C?2svbF?vCR??UR??=:?0CWϝ>Yre%?ל<0?L(?Ø?p.dd?M 'n?GA?/[[?!ZTo?8"x?γn?b>_T?;q ?w?>?<6aS~?b9m?ŚKz?i濾?Sn?F0cl?b ?bgܤ?HF?"?2w??=`?R9!q?!?os?Y@:z.??*]x>*>Y25#>sY>UTv(l>ίH>7'!>oN)F>Ir =R4=]dzg{=sE='r =Y=\e=F4=?5=L=њUơ=c0hC.>QIv>IN>XwB>_n@>5>A@p>~Ă>3s~F><TX>'a>O=+>pp=3f[={=9q(=$J=@_\.>4=`Fq=5O=ɼP>Nj=Ցc~D>pR(wS>ǩP>+ >a!>>9ƀ\>b ~>oH?^*>E0>?Aί>^8W>Hl>i| =t)Ƨ>òe=<#V=)y=1Xi>i.>ˠ*>)tXv>҄Ė>2 '>П3>Og{>aF)n"Ϊ>ޤ>mw>I_>LL:0]>v`(F>,m°>FF>9eq?]6?:I6?»_N~M?O;2? 8v?,-)~?wȡv?of?Y-jt?h.?{b? ?;趝?Boб?R$N?1l@?S?֬ZJp?~S? &"?T9@?e?lR?I.\Ax?QQ?Jv?ZŻ?(rMG?>p?q>Pc??I, r?Q?a?4h2 K?lW?!m^g4Tb?VT?ja3?X]?9ev?j GQj?4ZbxjS?!>38J?NȖ2?)6A?+뇈0?J\+?Y稻 ?CϏe?5*|>c#>aI>&e" ?;> LF?(o$? 3vO?)%?EQB=X7?9?| / ?n?lPLU?XR]?i;\3? |ё?v?Έw?1f_?iH??O?7 uy!?ƴ&?bԽ?h8?G?^߽ը?^Vh8?ܾ vv?|aٶ?cU?Wf:Z?&@ Ű?WW??p+?W^?x(?Xt?$R?C>K?k\W?rU?ꂆT6>?[)x?9 ?Zjoi?Lq?ֳ&b?e<{?>yYk?k]Pg?xI\l]?E/a?XB? d?3PNz0?;(呇X$?@?'-=?yDI?%-8pK?}L?(P?9~E?Zuc?U(8g?"]?:f?2r`Ygu?-Cadۇ?$^i?x2`?g-%Sx?06 ?֞9?) 9?k[ p?ID=K?M̆?߭[?K?;Г?{RX?QLpV?HV?IG?`&7?V(:?GCy?-0S! ?I$?sާT?ޜ|?hPj ?Im/?㒷p?T^?[Y ?l/?;$?DĂ?{j?r?{?+*}v?HwZ?߱]g?bt??&v5?yS[ ?)0?bq'?B?N4~Zu>QC`h]>ᢁ@6>(h>V@>=[>rzu>uaQT>eB]@>"4ZO>(D,x>hCګ>"e >0e[>s1vz>]>E|>^E>Fm>6jD>Ii>t!>]>k>u >>J~>߽? v[? p:j?;D> l?+Q"?=? z&?5X,?2? Z߫V?'7B?#B?j5S?/?r .Z?㟁?KޫT?QAM%?G"h>%#?Z.0^?![t8?ܗ?9?Aw`>S?F JJ!]?{#rN?F@?P[|]C? .P?@\?"D@c?dr?Dum?pC,Z?BAe?QS 8Y?gC.i?^ 7r?2 ~Zq?nFx?kJv?L?v?]UQs?;s?%9)b?C"b?|h?ϓY?@HRK? ;?3v3?Jc1?m\ 2?FsOF?+t]?y$@?[y8M?4P=?P5{@?:3` A?,]?<^?Qx]fr?Q4u?Nb)v?5;Es?ULh?- i?-d?gXp?lw?m5]~?&:?K"?w\z?6?\Z_{?Ovby?.\i?- a?GAd!a?b?U[Vl?F ]u?z*Rz?etAx9?xVy? Wr??0F҆ެ?v~?EC"? ?\FqE?#RI?J?z7&? ML޵?+ ?Dw?)AkZ?Ƨ?e ?h,?t%%?Jj}*oT? Y?AteV?C^\?*bΤ?v\ը?A?@c?~ r?Hzs$j?^?ǦG??U4?M*{?H1??]!I?uC?@e:\?'r`%X?.ezgd??-?:զtg?PϨPcr?Q_U?@e@?SlJ?mWseR?}(3?Le$?~eϬ;?Fk|U?quf?:yk?=Fn|?Q nzb?_2r +E?*щ3?}X?z k?s{?p>N>qsN>Xѵ>+ >mpb?sNz?`S!?rZh1?B^??uT"ZC?w{?;_!?>cmm>vt >55Į>f5o>$=3>WQ>ܮ>]'v>nq̚>uuw}>jm/k>@B>b?W>n);,>-W ve>n>\%̣>>gu>k@->~`>uM7>\|?M>bq%> ?~?+C*6?4hö"? 6,G?;,-1$?je^^R?SO=Ɔ&?0s?<:`3?Zz6?yYZP?D=G?Q??5F??,1#V?(9^?*‘\?JYs?4p?.jF+k?I$)dX?QPd?tt) 0?X/;?}sM?K挢^?Uolj4q?i< v҉?n%_?c50?np}|?A˹A? 6O??b?6XKt?;lD?)T?頻]mj?qy?a??t?NGx?-!k?ȪW?z$?{Vg?DN(? D&?S:6*?7Rݓ?j<6q? *r?n_q?5"D ?}ը?*!K,L?+(_n?̷g5?3 ? @Hl@i@9g?Tˑ=?`7?D @ܘ~;A@/G@b a@d*'u@ټ"@}P}@U5z2w@8$b@nAA@?| @wVً@$M} @Wu@qd@~+@.E@@7Vd@'"@m.[*#@ 9@$D'2$@pO(F&@Zqu&@ަ},62 @ @`@S/6@( @G@iX%?g7' @ȥ *B@ @Z[B6?um^w?'?UGƛ? |B?l=?#5b?qj&B ?^?ft?:C?M U?$?]Eভ?Ύt?KI?|xa?i?iO~?g?/Пo?$3[2?j.;?Mj|&?IL/?Dko?ߢG? )&?euys?)D\6?'J׺?3?ϋ ?ƿОE?XBL??K?q7Jjy?>M`?$ X?:VMc?<`Tk?Yw5RY?ظ$nY?P3߬N?H)q?и1a^x?׈?i??}⎗?={>?8 G?c?)"s?<+Ɗi?ńTS?f`'E?zi?>'>ps*e4>zH>"PZx!>Ep">Σ)=W"|[ >^G>a`5>[ՓF?&)T!?`q_6?c$r?npG?]9ƭ ?q?u d?-?&as?L?O ?$YG? U? .$b?܈&O?f2PYn?dc?Tlu?HW?Y|kL~?LE5?#mNj3?_?'ǵv?":H0?<@Lr?ta7?رU?ݶ0g װ?i!5K1?f*?F ?BXPv?I>/?|gО?0_(H?PԪ?uhz?naXL?ۃy?j?5;N?ũ@da ?7cu?"-3N?ZҴх?HW?Me:`?, `?G*7p?88I?jFe?D}`nh?&ٛzA?  ?hoz?k!&%?t/ D?Qݝ?u}ґ?Ԗ&?eiw?,iy!g??x"ך?HҦ?l|?3$Fxk?*~.@?cC8?Sv?򝷼E?"\?;9?ҕh?P@H@Iu1@At@n!@ۯd\ @HEeWO@|W g @d,@} Ñ @P@a@3yS@/kji @%N#@<a@زf@R@r @ܩt@v@)f$@gM c%@+%@tApA$@=I&@0wL@Dt@:aF!@} @L6}'@sGB@|X@YTA#@f%@g#1#@-)8"@7atux@y=#@R@l@Pۇz@q°@I<ǪĄi>=9 z=i =O82=0{%=JSEx=44Ѐ=L>=_;='8=NO=:> a&>g' >>T`/>ӟ¶>|AA *P>ˇۀ>Ɩzw>/ +z">6Y>>I@>LV|=Khk=%?[8=>;>nSe=T߳aò=Z/N=W2=He=fS]T=f1$k={(}\=O&L={=sq[}a2=NǾ=Á_q,==|؋$=r~=ў]=y,&=࿲l=u J3=G.D=-H#r=ov,=)ST=?E8c>v:>˹-R>N'6>z:=A7WF>!Ũ=>#T8v>t!,I<>K1.C>T9y>Q2,<x >]P\>P=Ctׁ=B_%+>G7v>,хa.$>i4>5wU>}&)>6)=W>}dU> >tt+uy>S@>`#_t>98W{> LF!{>fLt>}N GK>A|R>Ԫzj>W|>6fW>B~z?>N$Ԥ>)Vܾ>Z,v>ɿY>E#>=>-g>"x!>#}QT;>n,>deb ?e ڪ ???ePa> u@?>PE?3ir&0?Ww:V?;9A?ˀ!?4D?x>1jJP?s5?,1?g'>8>H }>]x? Z>R6q°>K^7H> Ӟ>5vrb&&>i.8>ky[>?&,s>qcՖR>C sB>t(?>_c(t> />A&̐>)_b>l@>&]ΈG ?>]>㬇gMH>w?> E? 5d(?"Q?7>q7$??0?+/~'? 2 6? >#"}".?_h,_?ְ>}'>qqOW?Dg ?6p?nc@qM?jm]U? B?^Xf?E_]?EV?f&?૿‡?H,i?3egb?-?,Uin??C1k?6T@?3bhP?4q?WD+ e?lgl?bWp?*q+Nݖ?O?"?- mD?4T^f ?Tdu?ҋ@g?YC"?C?p$?M2?r|`7 ?mJIܶ?J4*S?PxKa>c璬1>q8v>-< ʑ>ݜ&>%>Ҙ/>&]½>};0r>>? >DZ!>ýYrQ>6"˷>܂A_>DEG>g)g(>C#Eb=>=T:>@l7hG>޿3>^/>)>3=N$b=LeQX=7R_)z=pWI0m=O_=❰l=GZҲ|=z&xC=8lg,$=p5D=d T@=[=Ajh܌f='f,q=JfNE>d PX[Ƥf%CsܒqX`IM{|¾^PRAG-Moi c 3Dܐh+vX ȱ)]-AP4鯓U<}4aSξKr$37d,XSnѱū־{T}@rnX%Wis9z &>U#TyKF3Hu90uomؽل)0ݽ^U{sf,g/\VMs>@'Iangcuϸ`16=>'Ͻ8_JI AhoGS XD%o(_11ze_ϼ7QZva6!ǩc3j0%tuPzy6-r(֊>*n)#{_Q I+c8M MdNi, du0]/AsXQq'J- HM2G#0w@0dxLĐvg2Y󮹴?]qsO4t%/cýR|@)2k[\H(gK IG1g#R3,!9bq ٽ 0A[krx'9 f팽MJ]ǽ~4',,iZg9ӽ_ztܽ1=s+uppz2ccyJRraSHq] `yZ} ߽57.½oh_adΎ!dd-䳠BVD<ӽk)|矌9pCQ(şSH(=8РM`B6VwmHƢnd6#'ɡfZGv+pbJN=ga YNVo,!z)~iT9)MݗU& Pzdl*}+ Κ*'ͧ,_޼4pMDc&eտN̾w(o8Bξ FҾ )(Zvrwq䳜§<־;09 I"hԹiY~JepI K6\f<"cm2B&W! p:5vY{]W"/?%fLLPlUGiˁ3hKo~)v^ƒ۟F4`tͮH3WBz%wˣ瑿槳ЗYPUZ"=bM+I.jT4nh4HZ3ԷW¿^pȿ;\\~oɿM{ڶXi_Xk*~ўmD}卌!?A-Q ls+b_5"Hzr#?[ f'f'gs`~u,:TޕcZA!wx ̓խ塍ѹ!De(31c,SA ?Fl@ǿпPOŽҥɳc-ĪzӅ8ෘ2ɂ,1EjHD޿:;zkR?Ew dqL#@8.kֆdGmsl[]v{TjʺXf  S)NXlTpE6+-bqK,bϟ@fo\e1<:{ψ;7-:f>۾NgZSB9[ZȾ}@9I9yp/DM ŷ%Qniיy)n` ⷾtCϾo-[J(] qLK:ۡkEٚ `d m+@({QIk PV`DqNAvC-cZd9fy…쀡WQMjn8C}u5G6cr1h4kĝy<<3(Щ'~0ߊ8_upsfˠzž -_=oྔ:03$ʾVїZ;<ԾvΕ͛۾̈́HҾ\&F[ž*EȾ78˾ b6Yվ,h达̾+O{+NֿžY̿оOޤR־Y%- ߾M(G뾅[꾊j@] M~B 3/_EA,bgxQ3-q,^c V+N |<µ$V- g^?4^ osz"(t羏8UL>ܬɾFd뾰w'{>־\8v[꾻Phw2>oq־qHIntk>ÊK>:o/$ݾ4%?:;EMr <7 7 H Dgm)NeN ˞kNBv4y5ؾ&pȥB?m ?vX)>>nY">v؏t>v;">qx'?h* ?0ߙ?2\o> ?(z$?ql+?`{?ɧ ?{%iX?@K?-(?."?Uq$?~4".?ÍMc1?ʠi3?zp,?k0(?iL!?k.&?osD ?n<_=V,?^y%? ;#?<{ ?K]m?+˗{?g %?6` ?s{?i ?Vu>?#Ť?cPn+> Ȉ>? K!P>leTX>( P?9p ?+zx@?Xu7 ?U!>` *>*>ό%XK>֓Y>1m>Jn> \">yg>y>oǹ?.K>R1te>v>7>䭅R?H, ?v^/?-K?!T'x?H$>[iF>GL?r9S>0]? g7>\9>]j>B]>T>JK.>g>ʰ=g>e唴 ?re?Z`e>vx?tJ>_Yk4>?9S{6?U43?rg8?&.A?y=*?yE)`?R:6C3?>YQ?/6p?0M?\~?Ƴ6j?B|_?@UH?j?s|?̐?εx?ejEc?GVp?O?!O@?dو?Ųqy?ۘ m`?UqZ?Dd ?h?GȲy?믈'?>B"H?#h,R?>\b?[irbe?ʮw?L?R.O1?ar>?G^!5?MU#!?hᶔ9?U%?X=lU?N[?b\ ?Z>Rxb>\Ri>:I V>1o>I$%>Lo}>;r>w >pEk>JX}H>*M>yXE>#A>5<>˫9/?>\Î>0?>`>H0R> w7>>>k|;>kkĿ>O?nҫuY?|w?B>;12w?`t#? tO?F<>)qɦ?_t1?]?X4@G?"N Bh?k%~>)>mk>V>qxs#>&5ˠ>`|w>q\֕>732 ]>> !ji9>nx>*8;?vZr>^\>̳ ԕ>@[>ߟpd>SC>{ }>0N,\a>wשRn>J{z>;j>[ Uwn>pn~>keU>tH3 8>B~\F>AjNHQw>'W>QT>fҩ>I+w>!PE>3ԧD>SM>u[1>r#Xر>,xz@>'EC>udڵ{>0qί>_Vf>.J>\Swb͹>_8>A p!>Vy>8:k>A;>>"Ō> ?Eiªk"?衵9?l?w? >OCe;>0E1?M>TJ$<>h9>\Of>q >_\>2+X>_PS >X2+>D>;B> !>*DWK?轊>cV 7?ә0|?cY+?]b^;-T?@?)W ?&)β?}R i?H?%$ˈ?ul0?P.?ns4?^$?Qma&?K0P0?'?(#?`n/?5Ͻ]85?Q4? )0?Jȴ<4?d[|G7?FL?8?4?;tW+?Cj)?BP+?%4?%]<&4?d7?v@$ȋ.?o??q nK?F42BY?xP@?j}޲}e?Vҏ8z?AkI|kr? r?k0?[?ٮ? }ux,?ʪa?TRE?b3F@6?=?2gb??uL1?vs?zAڰ?3 {1NC ?Y)k?058?pH?TRrMсΙ?WV?ìqGڱ?#= ݵ?v+O:?4l;ׄ? WM?hpE:?:|l?l4?ƜȒ?ܽz%E?7|?:?Ma?XcA y?'?t?S??iFS2w?_jf%?5huVU?%M6?zBgwz;?N ^3O?!}gj?Ii\?+Sh[?;d?=qoop?><6"x?6 o?#c?Py?%?.vA?ft ?<+`?( ?@a?}?ٷ^?z?[JZq?Щb?!1A\߈?>:sh?>9^ǖW?7?g=?> ']?0N7Q?Om`b`?pZ]?Go&[?mNC?аe92OA?Y ?>P{@?3$>-?qğ) ?ǘ?  &d"?aK!?8#5?^^ +2?G9?AlQ`?MMS@?tz*?!!# ?GLNl ?a>ɰ:>K'X>W,r>΀@p>%>I&gYʀ '#uAsnf>/r==LLq">b =*l{r@v=?ຒ=Rf=ŋxuUAKܽơvfžAV¾(Lވ- Y -?A mϯ$"Nw连f9࿎(ڿhwglԿÿrWɿo9f п8óɿ?g;?jW^;XYi.$/kh`RbBr~! Ar\O̿A Or[Fn/]Cy fHh3M/u(wG@)eމ%|* Y6x˱"2"(nڞ햿8DL.)}&"5Ț{z_FliCW-i꨿2#㡿"iڗѢn~6?KƐBeRdt呚qx\k*MSvgHXhk2`Bp`K"sv4;&kyULQwg?S{sFh+C O>_"Qoi4Ti1,EnǝP\ *|AxKr\04o\7~=gUNG;v'(i` %_倫rۖ+>ǘ7F1@ܠa3V=!$JnJ1~G,hʈcsWHq\Gy Qpl☿!V(9sܞÓddoqq$8 u?>HT?؉j1Qjrt׊*:$MuJx:Z7̿y/h$\@~v2| %ҿZֿ:οk) ѵB3,y+-M)RÿfHē\:Tϥ\+I2Ŀoȿ}t*$ο(F0ٿUrgӿIٿ`/ν1ٿeiHKf;- @Jڿ2%+'pO ڿ|:zhWԝxJ+?%1C!`<H홨6#7ܓ.)AYel1ܿtey_ʿ76Uÿ4^VYԿaZ&`~"|Ԛտ[eԿj2ֿkKտ`Lw$4!𿠎L6pO[-[9򿪄/u?:eɜo?gK?֓w|Un?eڰ*FT?Z9g?Ā?s`V?@9T?H0?7=pѱ<5uv۰7W<&U!VGa>o>Ī=FDgJ=6v.`=fA= T^1>Gos>\֔6A>މسIyM>.7Rif>V'SA>uE>X:>-[V>%^>@?]h>50>|K>@3/>j=3?u>88>q=0=ޠ= 2o>3)W=# =`,[X=,*=m(+=Tn3m3$X=" {= ^q=&nֵ=Ej=[xEar=,IZ="•;=|:=S3zt- =B.a2 >K";B=F^>.Y>5v|9>vD>h^>\==nC>|p>(/gg6>\K1>euB>` p>^C>G"AS>.e>ajJ>Q>GCw>W3w6>Ua++.>Q=J =)cU=L)}M=i^A, >=X@=m=SlR|q'>9t8%[>T>#joh->@ܣ}&>I;4>d{k'>m><_F7<>.S>>2s)/> ZV>;b>t@PU>V?iKz>vN^> *>h]Ys>\>>X:>[4  >r>>U>,b h>EYQ>o4T@>8 Y>5|L7>D?>o&bq>1gp>+-=7|>vg> b(>Jh>%ij>fb>[,>&Q>Uk~ț>*dg>u>>nP2w>۸~>W2>X'>i@hA>. jB>!O.> ^u>՘>R˭G??hN1c>ud> ?)?.|J?ITg6?ʉ9N?̄_HG?QQ?:?x=lN?Y0 M?Ƕm1?n)'Z(?=!A?ɨ?#d>=9:?,hK (?E(?ɝZme!y}>(>>.9>M!>:C;>Du;A>>ދk>JF>%CB|>|(*2>gL&F>cHbOe>ĈU8:u>n{S>Q8V S>lGgt>Ut>vb>w;oZ>z.>s&>L>>f>ឋqYg>ÊGk>>.*>t}>0c>^_>n9>QS>(ڬ> =Yz>dܮ>6kӷ> FW'L>nʄ½>򷻄>D+@>Nm>O>/>%\>c\p> >xCl >IO!>F?>.H!?UOZ3?&$0"?1N*?O2>׎uEd?opJ|?V4?i?W%?d7 ? `'?%2?B1?;I4?-K-O?6RI?_t(?J?%P2?z\E ?ϱ ?8F>xL?g{G >fu>1>>{{7>O?t > ??}>Jtѵ(>V? 0烑?,(?[q߈0?i@3?i d>T"? ?P]A?B ز;?HT1C?lYT?Kt?bz?Ex?Zjk?[&j?Tsd?# @X?¡݌o? m7UCa?)2De?xˑI?&/$>Z?dPOaJ?JQ?Bt]?xm\x=? NB?NF}3?y#? ?=YC ?Z0?2-?WZ$?Bim.:?H7G?d?X$N?\?h[PW?*CTA?xjI?\d+ufH`? 'e?%9w?X-xei?Pvpb?by[t?[Wm(?FZ?+EF?h+S?s|?`?G?#xA?Jdد{?σ?6'K?*"\?(dR'?kna͡?H\?m?Ω?HJam??0?v L?潜Z?}Ơ?.J5?j1ܣ7 ?g ?k? z$—?$1/v*EM>b\E>gci>}V \*C>HJ>x2>9i>L]ͺ>UGQ>Rq:r>Sl/>Wod&>>= />Bt>HS>5lPt9>ew>?>XMY> ֠>"T#}>>ʵ7h|>>r嗧d>oA˥>Ɨ>\A7\>)/ךv>WB>yfS˹>bq>YJ7>.BK>lcH 6>6u>虷%G=q ڈ=^Ju\=[=:P|>0:.=>b1DQ}I>&yc>cj$w>>^UX~>9i?x^>0ڵ&1>0BϬ+>~a[>!{}N=4nb]:=uqG=i5=bLjx=ǡ<_=2[u=Jj;=(LDvϸ=54=b=9B0= Ak =fxC;=:+91r=8ѻ̕=CAC{]_=-E= Svf=yi\=p^v=/ЧC=؋<=G_$iI=}]mF= QP>x\9X>].=S:O@Y\)o%HŜ:( <WZ8,hԽn+)UF`ISH  *x湾J|ؾU "/zy遾.ezY>| m[' H9%K)r,J6bcf*_fxݳ\1S_LZ `6}/vP}KwFuA %(Ss?d5p_ݾUt׾h6X¢1v/G O.%"ƾ"̿3/o['޿6%Py&g`7B S&ƋKM־wk*¾Ss@34þ6JCzښ7Y_þ&3N-ܰ+ȚM :o~y?2>7a=:A;3tAFk.Jo`T,Itܽ/n[  U'RrdIJ\jϽS½{RJ:BkVe9/S9Т{Xlͫ6켽4˽}$ P齢.̹h%EfB̀5k oW7Er0\q+47S.m2iړ$gS߼@&mۈ{a( .SS_>G?h\ż!_HH*Y;ѡW=DdzgAqdyԼdh&PĔ 3,(\X:ZkmV tH+sBU\?tqN!r|&% uC?Ͽi-$~v`HOf~ݎ'Y)} Ϭlza^:h޽y!W#ԽC%-G{ݪ!73,tWiUWfE޽Xl-Iܸ0"$# Ľx R&8b q$"Wլ&@ͦISB}v(佀(:.gW潎 2 8½ڻ­KXiV wνb{3ZYEΐ53ku&aw"?]ʈc1>t=+"ɜP %| u4_LE'<&h|c+1N>9c=Ɉ.◾~.g$#FvZ¨ ,p˷]ľ" &wqA…id+SVɨAվݾiMO+${߬;8 6 ?7U$="ؾ6ƶbܾԨͲ)lG-g~zi(x"̌ua.)3-S|]$rg.-ʧ^xG/ooxrbOР[pD<=!8+LOB ^y~J4+t#-+7LUn2^ځ Z?н?8= r?|G ~w0н?[ ؽ뽢Kg{\Ҡ֟@6Iv`6t ;ց!čԢPBl[eؙz< ʽuLwȽx@Zؽ㹅KcϷay?-r1ʼ(sD_#Z '|~h[+4*4AM!_H5O2)@hg愾%gE󉾎Ԯ慮Q޾jdѾT|>6X@ྂ1@~2оtahY$*W4 CD]z(2_oqMt±]JtM.Ffa= cWΊ9' ;¾ ώAGa,qy->©xXS%]!A$S ]1&oDNe@ê"g}6&  ΌH Pt;1Nm,>}q|M6W#G\s"(.FV4hgzK>mh$qNPĶ|a"TBz-]/hxtBտzA5qKhyxEKfE?\lzlʜJoi(C4~jjP)p|\_yPo^quƒl+T-(pɝ$پw#˒x]qbȐXF+XV}ﰭyQW#>5׆e*؜7DѲ ,m1}**- ^aKΰMΑZ_=R$;SNʫw+'){Z)u%o%5ϩpvxS%>F˂Ŀ]UY[9c`k @oI¿>V2FLͿS.Baǿ  oֿ!ɿ󩕃ƿ %;ŭѿX οMÿu>X+۽ɿ A"ÿoe[" 'u04Ŀ\wL@ޞ瑿.M;%s{|;DuerIryF@kMeၿ;CNohP5Zh&ԩg2)]YTL*ya됿Jpz#3աw)3GlLnvbt [Yf^5)o[/1SǕ tRH2d߰AMpn|yO)wJgq]w޻+cldأDe%wBS9HXwOg<I42Tg"@s77!,1ruj=4Q]7#C܊ "JCe#a R`en5aڛOWXp=-R53iU_Ӌ~by4h2*skS,*q:ifn_Tkn&2cJ\QI=\k S'֙&jw*kZ؂:DazfcoھS<оW侯og:M~L_ЦQXֆk5$lt6:Oؾ Y׾n}#(ns[ yR2㯜4f( u1a9[$;H4ؾ:(YD ']b's \lo%’ҭ" e3]?4+1SBvT Ul1C!̨?22Ze1;CNQ"l8$([% K"Mȧ.FWhQݿQx+:忑^ziῇ ڿ=\юѿ\ֿtY(ȿ*YyͿ%W-ٿA?kjKؿ%oTݿX~E57޿\^;]Җt鿕]u8^-ݵ6#2ֿ9[Կvz п6S5ÿ PͿ$QK 1ƿߵ곿l:bſb6_(ǿk+~eп Կ3Ϳ}Aɿ;eI ƿhu὿*/SĿ$辿܄M˱ߍe\fpzRK]LPO&a[lcԩ S͈wdHiĉ*ɪ_99m2 F?ܻ̎VsG`Aؑd=C8<}It^t1@%f./$-.3GGYrMmH/ ZFLMwGOqkDYV [\h`fL ,7@0tڐ3Iō)9˞rCO 9$97ԦE8% omJu>aCU(-¿27~AǿZʿfSF)ο%Yÿ.(ʿk=CῶWon߿FɃiPտ/OȸֿfӿnV2ʿxv(%Ŀ>Uο!?Vhaݾ);BdXC;ſ|TP"У"X~  ".Ysᢦ$Qp0ǂ6\Y-8fO9.NSJU?WpI-Yn7@CdEbIGQ6Gk;GcUtU#g7D>]hKbſ1P?qc!,eOY@(uzb M}qA䃿B|ဿO,F<(~ tkS ?x?@ǹx]"EB/r8D8ve7anfRj8 [v]e0(VY}{p4UvqRɵ~\!?" ;@D. ՕPK}M>"G$h< Kr9+ HPeV \'C&=;5?"F9Nh 70{L@BS";(BSP#:.j[Y(@u0fwj Y*1rap!|(&*=Ax[tݥ4[,;hF8mZh]UXPD(|]/hr ǀ&R{+Xq {zo}`L*d뒿jNj<i.lw_"y I>t *:&uN8v\ w`Z?MNo!p:$xp<9iqlBG oW`<5L9`FyN] W.gUL7fdG ^2ve9U^C2-O,B@.oNH79FXnD6+370 1pW-3p)~~1j'"͊ e`q:ȝDzo{ .7x%foh KVo̽!YqUBeL%꾯d{w ! ^@j0R~v%LJ-9;o:7~gB dO?-6 Jvh ArDgD \5n1^1[L~f!]+= HQE$Odf)ǁ7L;^67/k>-E3 t;O L DyTZ0tc>buEܒDaJ(lCBBnay\@ aбXí8e\ F?+[3ڠ9VSBbTr1OEG᭨5Fe ZMpPIdn$rQJWAB@ ]/[3U?'b#c{zq73` cfa9LDk[zjk^{$=`q|DR|eV;%z#5sv plswĩfqH~}*腿_ 1]=̲'X-WQF<Nj: hjP„}2*_򀿄GB\3^J:g``S뒿%s>ߘguei錪[&@6u[ N{@(/(ʫ|:)Rsc1VX:ά{p΢˒uArlˆ'p?^|w825(zY%~e?!>≿%mHYXK/C,Ygߕdq~rΛD(,gru4FӶ )=g)wDÄL/@$}˞藦jnrw[2Qpאk}Oӆr=(ſl ~ÿwMBп|Lzտ5)wRYw켿LL{* ſ=ƌʿ'HϿ2)ۿ[BfؿuP@հiaqmc@ !9d16)4r9"TvHj3O70\jsrZf3eƑ;UC ]_ Yv:4i|EًFE}[@č[Xx×f.&}Wj|>N^ż491\`T5(rsݟ Xx\5_!x7q&[}q|Db~zJu v==܃?t39cA\Wbu)YB\LOh-)jP ^O10Dzm YZH5pM'}l[r\FP仢tV t~a1GSbi:hO CoJ Jpӈrw:BsmY_N]H`SNhHq&UETlB@}51y#q|mY@ DY9Vw]/9"@ACK>&B*q:eۗa'R8h7LiI )ZA/ m II/ Xi2B&T#ȡ;;rоپ2Bg>iL|q_xھI+ξ#˾qse対R-ȾǰVS1k6ͥlgzžՑ.JܾOC_9ھo̼ N(qþVi9b᩾GPXΟOemKM36>lFP FNuZ6`~^)sv5/1O[10Yhe56<'>t$W=C;P(BF!C@P[Ib.ɕeI$ZW73Hb[\9ÓBlό3D X/<{q7uC@?)nu>HnDR^uh=r|~o2򞾟P鐾˗i~uX!:G &8оl|Ap)վ-j[þ",(ZѾr8*/~浾őCep0o]Gzu$R-G׾h־O ̾ӯZƾ J)Ⱦ;Ծ¾S=ľ'#Z;f\žtlʶ#15>>6Y踾T𻾽vʾa'xVȾvJ}{HӾa-CϾDѾw#Ny1}# T"MȾr<\W9aT徬֭A+źcU`˪烍;t,ǣپku%AؾJ-@D B&|gvOUIYewߦCW{͞徺֯n[oھkgmܾ9(=Ō^݌I}}˥dx'W[`Wk; Mwml4bʳj$ ЩB urkЧrO?т#]8fTr/ HXCip"aܒ ޿rH%:$'(m(3.|"f0Np2E?B)>&܈R&"/֗T 9%D?6S'%& _N4my*~fh26,:9u<8=iA;&ZZ;%d3)b:Zv391$4N4-8TfG9a`4cZ7u7\+ˣ8xM7wa7e61?3>ݕSy)2L P3jW>16)1b5S[2MFg-llbf"Eݠ!͒7Q$P|#3_cg/6-hz.-J)n&e';9$'1Ї :DPfEhҶ5s%ts.k(# 0o+3t75",˕~m2~"4nLmK5pʼ 7v 97[Br6`' 59$2D)ȍ.T%1<;e*bK.}&{)X#Jѣό V#V$:Y?=)_n1-rfĿ( )cTH1i(D@fm hs^r oqբT1ɗIw!<c@By;&Q`,"8I)$K(cfhC#PU Wp;!&4T'Si*d~' TTz ui7x]&gS1"Gh$/>j+"l0x=sHQ8( (?d\򾧱Xܰby[P[j_QFmzo3-+)ݧ(wE{Ah!dLH*c@YIyZr&pt}g=Y30]8pA<Pw+9*d7&+ 7A@5 nbۘ7q?\՟z_r`l]jLV2d 'yo %^rG ݀|F? TIB=/v柆 aЋah},5d}lsا7FÙihtN>$Ҿa{پ;|來ׄ>\%fھI'־Ti^tߺ-v4X q;+W^>U/TKGо4,+Ⱦvr/C%rY?|X\(AMPHh1夾3s P_MgT mA=iy ;}wI ZR^ h`2Wl q %H˩"?F*=*!͙e3$]`9ϐsp94xXI( 8;Bl Q:Z] ?+? yo!d?% ?U ">~.K3>s>օX>)=>t\3EľJ݀i>;J>YM>#Щd>ļ5p?ok ?e"p>'7.? 4[? ?Rt? l:?Ӎ{? :? m?b@?P/??z(R?aO]?2<'"?6c>#?lE#?N?q$?#aJL?}r?>@&?g94#?e6\t*?E5E'?a묈,?#0?s`7s0?D"61? 4?l@2?ۨԼ2? r,?NT:˿0?UbEm?,?jo)?#7z>%?/Ec\P!?ɓճ#?\z)?e`}%?z3$?[[3 ?mWmr"?~P?*Y0?(H7 ?i!?B?To ?eCx[@?<?J? &?t ?e=?Kw>y]R?V>=$d">8VN?ז_4=?<1 ?0c: ?Jy?wKɞ?|ʤ_?ʽ+>h>^? G>-> )t>"b>Fv>1>OjN >2Y >pa3>K%>9}>m?.y11-?e8d>AYr>_ Z<>@(AO(>-_`s>a>J>D ??U?Xe?@/?9^?H_ ?)C?2|?Iv?CZ1>R>?ٚ>==S>`?>`>[VV >7>Gu{+?q'e>v?>s u>?XDh>rr1>Uz>w=<>r>nRg>8 ,>HbtBK>{A♎p$>ASF>MuP> dU&>68M>*S>1l?\)_W?PLD. ?J\H?˞V%?n[y(?Mcw~;?JF1UO(?:/?NF?!z|?M83?pc'?!]"?$?%ᲁ+:?~2?_U#>?\UX?>+ ;?)V8?lDT?$c?hp?ڱ3`?ΕV?2\?y@Ze?퍯j?xZt{H}?zs?/W?Koށ?? %?a92?v=zY?\n? N5R_|?'tu?̟:O?Po9?Kl`?,?Cz>?i'tnz?߆ř׊?d.?NH*p?u^Yq?u]s'_?aZ3VH?XR?z.F?D9 C?3??۝yW?]sm? uh?5t? zӴ p?yXp#|?G?.p@-?;)?]#{?]Fu?(Vf]b?4f##a?Xq?oC!?I'L?n5 Il?˯B?hU??bi?Xͱt?G1b?lsŖ?e3? G?9 ʺ&?sl ?6Eٗ?ٶzk?\v-^d?!c?Wg?90?2.?\#ᨫ?#?!"US?mc?Lܻ?fp?w~qJ#?h}7w?d"$(?pb?tVnt?5Q\z?~++?W4?t7??"+FTz?3h(?x &?Q]R?ZH_յ?ⶡ #?@"qy?xw=?|0yX?Z?϶b?DѰ?d[\cU?'3޼?v?E2?q9?:~F?NK?Hs?՝?4?1u&I?`eh?Ic? >[?,)?Mh?_xo&?:+O?{/?Чx?R+oeu?hPC?HLbo?Œ8?@l?,d?@`8??;l?SzRP?iX?AB ?Lzj?UR?N_\?}m ?dEq?_2$?;?G0?g?MIpӛ?J2S?+?p{Cp?d ?w%?5o?_"?g˅&?!{J?:Y; ?sj?D ƍf ?'pC? TvYa?q1H?NM?b$?\?fdh?y2N*?4B:"E?R(?r+?WE$?%ɤ? O?-7?AuΔ?▶W؈? [?$?A9 w?| ẃ?h]ӆ?j=@?i?xp+5?X0Kf?k:?n? 5db)?=)2d?14?3t[~?Vdž?.N@?n4u?s?RNr?d?@K%,b?kd;a?~q?iw?-xw?Wy?s ?焚v)?eߒs?5Eė|?;"6z?e?됬-?srǙ?]qSғ?#a?P6`?G%O?]e?eE z?z^?LU?c*?U?ݑE?@?श+ ?8]!i?Zs?\Ce?_H?#?כW?夐?•,&E?5Z `g?/?gD7?ˆ1>?ݒSP?B͑±?ofH?Q{ԡ?Wl?Vpd4?6k?T 8p?ﶘoK?y@?l8 ƨ?M[e??y(L? (6?w??_Q"?2X?"Pզ?zc8?&z% ??K??7Vq?Xh 1.?6uN?>dRGA?v~?_((`? _8?s{o?d"؞?6o ,?ѓ+?ycp?&0?p?^1? =o?f%?)?LnG?drӬ?O]?(E) ܢ?6Ԍ?1?a ?Bґ?CO?A\R/m?'Y|e?!•~?_?}Io? "x2n?T|Af?I P\?kf93G?3kT?ze-^?R2}Yn?2%f?Џ=ne?Ž[vW?$`? g@_Wd?^&P? D G?H?Q?9vN? QPG?ҿrS[?jcW?]s OS?Q?}eFR?c+7A?0L;?C3?4د\8?3 D?aP~J?F?mAV?=;4v]?E__*Z?$0M?3U?d\}Ja?94g?#0"i?^']k?Wwt?vƻ9{?!io?SYBbt?0HcJ\?/ogP?&IfW?ei>?ݸ@D?G?6=#=O?j9?{AZ?H2D)?tHdB??T-?-EC?~c tU5?>e !?2hF?!nZ ?Nչ?\*~>! ?[3?cf؅5?F>@0Pa> T5> *>:> (>`P U> ܰQ>L>>\\>LFT>VS'>a٩>;h#>\W>>t㵳>=onv>;L*\>wz>yet> >ꚩ>٦>Ob51&>Q>%>>8)>>F*]?>N >I {u>w r><>G>9! >Zo|>pT>Qu?{Öu?v}?, ?Ra?{6#?ش n-?&s*+?? ?m^iF>co>aNM? 1 ?-5?1?ķY%?\1k*?fkNJ -?3$@? X :>?ֺj;?q~8?iStV.?-bH?0@S?!c6? }!6?#S ?iMDM!?r?rQ ?s*S?!> ' O3>'`Gp]>RG?f >*,}>~3lz>oR6I>m~t$>]UJ`>>> lդ>~ C1>U&>>4C>29>*](p>:4X> I>hac>.WF޹> ~cewm>ބ@.$q>C>}.Nr>ZP|uJp>p񝛐>1JF>!C>w>N;I;>j>%>fS>' $>%X^|>:g><}l>2>3+z>FbTv>A[>¦ I>n$@>_?`>ЎiX>]䢍O>zMN2> &c8> ->.R~BQ>{(h_Y>n>0Sn>yzHv>H[xKO>C>V̟}>[TP蛀>Nqd>λp>r>Iim>E7>囊RR>&ݑ$X>wBhT>(oi>(f>Ay>*n\>Xc;y>nR>{o>uAr>]^+>)f>D>d>qP>{>!z9>4$Q>x!*ݽ>r>%zI>3X>!&yb>wN+>x,SQ>V =ϖ>6X>пl>t >Hi g>c.>;4 >]I$>FjF ?g AN?ۻ7$?a|Y!?)`3???o3 ?۝(C?tU?b=?3@? s?&e|>M`1 ?"WV ?Au3?{m_!?{jK?'y b?ֳ?mKe?Bk?Ui>pe,>`5z>t ->g^>O*$>W>GS>i>6]>@vI>(l >f>e.>p5>ڑW>Zu$>K(>:>J,Ԡ>kX>o,>9%Y>m>G`1>^R>tZG>ȍ6>c?>I{>H >ɨj%>0N'??>\}X?5ԗz ?z`?a:/u?z%?Br ? ?-fޘ?r?,hܘ?+$?_ ?v?>nu>?uv?ǚ0F ?f-%-?f/?ش.2?Z &?mmv*?,9e-+?=/?Zw0?T!?!4%?:q~? Q?jp j#?@2%?@x'@+?" (-?/,?]%?B"+?Y5?r6S3?02?r>;D5?Bi46?.8?N2?{y4?í7?!O1?͓5?J")J26? 2n8?%WQ3?F(0?l y*?T ?ǟo60$?[Ǚ(?G(?9Փ"?wd+"?U40?FFxO2? =4?1'0?h.?`NW ?Ϊ,?$,?(16?1H뜁:?}!8?Ys+*:?ϟp:?s?5 9?))0?z+?0Ng?dp?nbT? > G?nd?&@3I?4Me|Ȥ? w?[?䏁o??ʌ-?8? cIf?}'v?E[P?jm?QVl[?ƴ?0)B?hH.E?_#BbC?_3h?w7\?N̲?}ѣ Բ?jKG ?^v?-t*F?^{S{h?Ib2?4Y1@Fz ?օgB?xƆ?E)P?}d6?(œ&?xXeV?~?55?hh?A9?r $??Z=?&]D-?18%?i{?1f~?swxJ?׹"1?m??,Ltl?BX&2? ?Rzl=?4hnR?*"t?*Ȓq?詃?$)4? .QSF?FZ&"s? ?}Uh?.1J?4?걚cRI?9?e2qV~?α-?F q?vYP?e])? /V?`9%?L[?Rf?m?2]eh? yL?Uǩ?I 8?QX"?z?f`?ޓZs?h4հ"?! Ky?az8i?ا:?Qx>?eiѦ?7I?,?hPl?@w>nT?j7??ϙ?M[?禍t t? ?c-?R(S?փ?c?y9~8 ?ȁ>?KVE?-N?F8?!\1?'e?E?º?$jP?jP?bV?8?`?ꞖN? ֊~?Sܧ3?hWW/?u,+?V׻?*e??')YU]?]a}?Z1?Zs?2|pV?`?j ?gw?>Uy.?ㆉ?bS?4?ʒ)?j#ȋ?7њB?YX4M?)2يs??%?y'?Ō?!Uy)r? `0B?fj?NV6/??˳7??X{@f?ۭ%?)?o?#>?5J?#'}9Y ?':?}hf{u)U?2W9E?Ζ5Y?8NQ?!~-n?6@#g?V_b?[ji? .Zq? ꎁ?1Tx?~Y_s?.i?29 g? -p?"$x?fV ?VYdi{?ě&>?U?;L3s? k?Yg[?B#*a?EZ?#~Q?+Л??xO:?˂D?jrJ~F?X?dV?{TR`?zˆ9\Z?SE@a?!R?ғf?Yd?k\_?=Vb?$JT?1D\?nV?,_KMI?Jq5-/I? 5xB?crC[K?轻|7H?\HUo:?͗+'?T$|:?j&B?|77?U{L})?N(?-=+L?߻ ?n<?t&?O8?FA0@?~ii$?a*?% 5?K'"?hA^?Z=n?'N{i#?y䂵J!?7# ?FV}*f??;M(m7?4 <?D?p0?h0/ֳ%?HT)?җe(?Qꃏ-?EkS4?!??+axj?|:e%?/:? 'Ei?a(>I>MY>z>vD>7m>0s:>l+k ? >{g>.v>z~?>6B>{Bp>UAa>J^2>[$e>&GeأO. CoiD>ٰPKY>%qpߦ>8 >!Wyf?MYc?3hv?,X=Tχȥ=X-M#=6 >,ڄm/>(xة>jc=-q::=v=K.?g=O ?}=@|>=j{0fh=I=Le =]=ҾlBgm=K|o=rlɅsz[̄ƨb>NvS#F\J*1 ̽/fRqXV6m8:=Ow=RT< ͏xO$>xR+FoGƧE˅a|&d~zOX,BcNwMphťі1SjJPNKI1v>ְJFLE ȾSbϾ][ae۾J , پNUT^6k-1o$>'G+ӯ\ž5'U JH|ᄡ .L3P簆9/~~y/mKd濋Nj㿉:uUw-3{z߿EGnֿk,ųۿ%1vn5ΥݿG\ׄxݿFڿHOAԿ췮׿MM?Կx5t GҿoF-;؛vƿ.ɿ.Ϳԝ3̿].̿:HǿdbxUĿ!7ƿH`uȴĤJtKn׸Kdg<DB<>ٟ&S\;.@:m+{%C_85Ga;={X*Cx:|٫O+SV8e>? BoƝ8lҸOKDA#]U THII(BCQ JQqIu뮗PeQ͹M4X T_OndnG0c\v Tö\pa^b=u\fsiFpHBpBB}u͋pdvJ|q1zuv ["lwCT5WzsxpmGNq^f9ؾhfp4u =uGI-lEc~b'''vfNJmoCz((_t靕_G~ƩX^@S0(K_i0jJm\S0/OݜKrHސ? Pg^=Rz^|ޖFwP.\dYN%k ݂3ҙםcx7[/xHvH|/6kfo>F[PZ:epdhy_uԈO-Ai8􏿶]g#-uCY}`삿\Fz&%w%zuPzrQs%xq^oOJ&d, a{md p6s;גm7 jYd=!coN@wu]쇿ݩx&$ {SvA&8vxv}q"MdDjv2d_nc${P.xW.(EXk&c"䈗VecnJ]je$:1ZLHm%J+G.9}AhBWD)dJA=4E-PW Y WQsۼ R͡SWCnYbd\$_'.f}OpT?YݽV.][ UHpGrʧSqYe kUU4MiulYHpK J \Xg;7?3N3?+7V]>KYs?BZ+~8XS3ȖB?-L:61 VmOSKsѪ|5D(;2N+ػs @2!:o6d,Ih0|>c"iϤY!U<#-ذZ"4}Y2a\¾ < F꾩t{t3/:|)'3?B8eg!4nԾ 2nt<u1z=hY0Կke[usѿ @̿ }$ÿ™&5d!񇸿O^mRt(O{gAtY 01Ҵ'F F&?%5cr 3DNZC4ӚhH:n4pbe-쎖lNLto ¿O#,\jاpuX1=崿Sk`X:# լw߭vXlYo7;"?\-XlK+⻿?BY xbbYĿ< t〷J$wƿuMAe˿e3i0y˿sEQ|ƿI$'=Ŀ ƿ}̿1#B$ҿ+~пhdҿ!'ֿC=cԿ;Ͽ(Sgvѿ,&z"Կ|)jԿ}ٿL0/ҿe_ѿTVgȌſE-{pɿ׆GpȿPqӿ QҿOݿm7?ؿ3>Z5:VHŋrDzrk⼙߿>޿fֿQE#ڿVs^߿ pVٿ|$lֿ C݊ ڿ>aݿݿ-͝20[⿷$X(BI{ 4gLO ߿A=|ȡq&&\\n)>23O\CPZ؜Sیv]꿼Ejn%I ]԰I'_%*z \3i?澃 `A/LS)=%dQ c濣Vq§" (V;St @JR5@鿥Nd῁Vq῍NTceI)L翨Tn翃t{㿔'>P߿L$$ۿǒcIMٿhPֿ ·~п ؿ>#ܿ_tXٿYֿ g-5ǿ%hʿR lƿ*ҿYR4ѿTTɿR ;m'ĿDSٹo¿6z:٣?]S¨E"eÿPűhkP򊿑̆ο?=8ѿ(OWݿ#>5NؿAIӿٿʿT1HƿZ}1ǿ5q7CտP }`/6}'v=h [%>h>/.>c@4>TMb>\6 \?iF>]^?q-٘>>}I56>P>1dF>1 ?0ͪ?, ??xu1,D?$?P7!?{ >_2'?F' ??lMc?uѸHY?'|"4-@?lʡ6?&~Q?BSf.a?cep?m v?To"?A?Q?y|?^xPFk?a 3w?[]?ij}?;w*?yJ?QR ?=ӹ?6W<:?j?b>%=K)xS="CѢ4ɽen4 Ezun&ywžũؒYU0BP9?Ip-9oN*!v"J\s$=+' ylk~FXh3JUl"r #q)޿E˿xȿ hHq{߿E/p=-s`fu $NڔtVϊǜD{?0B-&72w ^jha`UP&3tD;uƋ]vXAɅ;hJ$)?5>: ?fDzQ ?EP%PW?f+Knv?Fڑ{?Il=?r8??/?\2|?qgqCW?|`C]?cn?J?Zd 4p?3_z2?4pNW?@t֧?Y+>?(Ʈy? ?L?D?V?t=9R?Em5?|pbpP?j J?o!-q?Jn0b?>7K?- ?9?J *?pp˜B?${A#?`"ᩏC?gS?{*)n1?M2.?豵>CW>Uz6`B?槌0?B8>KC> 1V(?NFX;?^7o6?UNE?&?gi} 1?ֺ0?nEP?DFMwj?8?0@?NQDWF?yH?DI?_+Q?] ?EWip?fV?ZX05?2Hz?lQL?1L6?g?ێQy?QPyp?-QJ??m D?r>4K?Q%Y ?qt?Au~ԵP?I(R ?.oʟ?#>?2#?Qeed?+[?j3?>P?m? :+?.>GA?ĺN?'.ZB?֭r+x9U?\M(g?Ʀ5h~e:6?E3?ڹD?7y@?#lMk?lo1 Q?2U޼t?7)B-?Xy?@#wj?g?H,o?Qq}?.TOJ?>@E?K!SP?[ծS?,5,1?şjw2?6͛'?<? $A?g}8 >EpA(?jM?D@CG?É?'?_T+ Hdqp Q ?F]1o>ZOx>ϻ=74Ar*1LVPc&DqvQv5{O[} g~+տ0VuпJĿY޸}_ߡI(1{,O,Q-dyiEVfd]g jSsu :?]n2 (};rR(~:mЋVӋEaӀ O|}wVaEY,ڡȿ@c,`ϿYsQ+Կ!kпQ{,c$߿P CFߴ?ARV ξ?Y\5P?-s3??BOFa^?}tQ>]]=>M7{=>3V}>jGX)>e噯> -)G>}7ǃ>iY>g>Kh> pSg>2">DBI>bFq4(>ni0)>g@>Lr>Ԫ~W>|/Mr>+>|֑I4>29$r>[V>?rJ;>d{>uK\>EI> >ȂlC>Tq>cI,h?.Z ?JOO?z->3?vQ,AR?f΍:??cSѦ]$?Dw! ? >ٽ؈>?_m? x7?V!'?K?V-3G? S?o?Ks?V#F?j_0?{c&?5)|J?݁Wa? gJF?QP!p?W%ǎ?{̝?U"3]?U4?mǦ?3r'?i$x?z+`a?  ʃ?<(&vd?e^ia?!j}g; r?^qzy?tĻX?]scؖ?oT?/Zxߤ?a0I,?V3{p?jD?a@a>?u݄e?K8?/I#V?E's?te=?܀?2r>_0@>lP>|Ηo> RM>/`6ݖ>b#>!r>`Ġ>(&P>9\s>-<>>>}.@>R4gl>pjbh>Vqp>$NS>+KH">|ӻ+ 2>91Hf>?tx&=;=6u>N >W@>r(!%>b0>ec,s>E1g>l؅Z|G>2- >MFZ>,JI=Hz=~@=9ƻ=)5U="z=p11[=Jв=֌=^*=\=g'X=.^G%2=ޜJ=tɎT=*V=>xFa=To=-iѷ-=fuH:= )!Y=9N /=$d=z" K'>Ŷ>m3f[ !yt %Oqv3g콪L9%_Ƀ+^q\%}lC[[Ŭ0V(AJ)j"k3.#:{<s[3p78fN쪾VuY91ɾL@z޾)giIB֓t LM7G=;L}ΰGE}:VxI:bi5Y|B23 0k0O=g3о ~1}vȱ=z@AʾKp8rlgܾ (n#G4j6c]I'uQݾ% پQ6TԾ{E"tʟ+CEL}U}:#9*Kn%wl6M"~­)gig.hDL}f7l5LAVgnCn3|~N+ ,YeBQXrrVwQбŽ zeU1,w)+dq 7[eԽN?ҽi\%fJս1ؾ16MMMzQT;iRj!+_g߇qB`wI)fi[1Y{D4/2 Bs2} CBR7+m:e:6we<뽑Ha+1E>V=u'i /rl@ih|r OG\|>hՑo؀b=8q[`J,amgFԾƼȈ~vܾqx>ݾ*W G81}*k!6ľ6k*ϾټþkR@zVv ͚4󕝤3=cF13n TwJ},v9fO^m ![ (CDFzb( bRFZFƍ2H pC~/N"dZJf^Qeü[uLN%}сWwZ֭8xY7߉ʖ#ȡsfYP\Rvo5ҿ@Ϳ,R.AHڿOzп@YRY73VUGtvA@وBrSnR: aՃ'V" gnF7(y1JxJߧQM,Mrch5xUkTſ8e2w$G`eĩ(S@1nczN , ˾np>?<ع⾌KAWCvWC\$?aI:?z+ q?3B=@R`Sh3GYxylIo)-|./M8lAFNfa%J#翐l]߀Ͽ!k|տCAH>Q=ݿ~R7cFv׿OĿ{@Ts-MӠ۲&ʹcSާwn8eBdAE륿ruG0E 4|/uj%C7ҿraoؿ ͿSQ?T?(׭ȿHx? ΄xL)[[Zp5'"GؕeUF[wbщ+ʑ`^/'lЂwPkbl,1>+0 An+w;b-qIQ!U%k2әT8+#EjHG])J(1 =pZD,64#w<@nCg@+"ZfoSd 6pFwc`'G|xގDdcTZ">]38gw%yee]RZJ84"ylrB^ WPV$C+'I{$L[$S bjaR l[9Yi-E9c$:v[c8/_! K@Lږpyo`& @U_-& 0F$cB-4^6^46M1DFºz͉5h4uQ-Q&hTF糗aO(gOgjwuP\$ RزExjoaRלZ2q%U*e+⹜ki6<^bv"z+ `|vu&#< LfzGNuͣVmBgzF;4监f.%^ LLf-U?щLЖ2ʿf*.ƿVJew;T'cJ-<6t_H쵥%ː*4Q` d~~J䃿DC(EPHO u~O8Z}ƂpVdgb]yFSOX Ieg5d$kn%%]N³:x~7''=B{7&K h-p14Ǻщލ_hK΍en{|[ݾ:8 澷-ξРƾ$.-ʬ46E2¾U=~1G]/~"˾Y7bؾsYג$辛޿ #<+оiZԅB0H*7zl~:jg_a.<^j1O:9.rCs:]3N3AP\;7 o[ڲVaL3{wVXvy3Ar 4m\G3]F7fׇAZi_?jp+̾-vcqLX/Ӿ)!6ΡTȾ(ʾV.)%fųόוBآξpH2ɾ?ҾdҾH/4Ͼm)¾3Րʾⴾ~:\`\#ľ\)Lh*0e޾} ~ɾ,=/۾@6QX~l 1Ҹ Zi3.$<\Ծprdݾ椕LվR=3#M|羄װULbf޾a kVT4^oU;-ܑx@.CŧPzFc/Nڟ#ŦAA^]fxS!)-#+[|}XQGg1TT/@w<1Osltge)TD>WYUl-x"X<ݾ.3NV* uqneo76.e0RڵyWGc`?+\!=XwEØ#Ç:-lyoGS $||w-sߜ3Მd%eH'Jmv1O8XD΀/.׿ &b٬!UO2w/Evz5+@EWE89_!:]Bc;!8ZlH5L5N6$S?:ZW9Z>Lk6p065^+Xkd0*E*hB $g u&]!<Š%6/#&"M-*_782{ 2n3vI7G;׏ 5! 2xhq2DO0* *n.2Hm)jL$ 3C"1%*0O+#Ϛ^"f{a K?q+֦6jz @C .\nY'c V*K>/&Xv c(fNzy 7lvDxAAXfIJ3タ2ض0v t +ccnE]nMv}ǏT]N ݯ3VDE6WXaUv]c" ffT]j ( P -}9oҐYH* 1sYx v] 9`rZ߾9W>Aqݾ2ĉؘn >!,|aϏ@](o; {IvzW>jUmk _wҷ 9Z yܪm<>p%]?vD?if& ?'>Zj>D>>2\>\>y·&?p>-}`H ?f%W ?n?=Zn?Lr}?nr9?e& ?#+?;-$?Դ!?~! ?['?N'?x(?DtO&?0?|͂2? Lf5?mpN0?Vćp.?qQ,$?YYQߌT?|u"?s"&S*?s$O(?B9r'?Au?sq?ދ2D?g?I ?iD?x"_??9Q? (.?]L?Y>4a6> z?~ѳQ?M7??7+?x/?AT??n2>u(>V!V%>nT$>P۳4>ECFz>0l$>Ac>w?J>$1">G>/>D%> )Xx?eѯ'?:jp?L:[?틳?m;u+?.f9?|(?N;[>uTrlU>qR>3cpq>{=>~/->nR>*`>>Ӊ/>W]>f'>3>ϐK>v@ >a> u>*M? P>^<8?vwCZ?aH3.?yP ?^E}!)?ƃg?5?h"ZݹG?StP?dmhB?r֔H? =h?]5{vnq?.X?dp?W֛b?~Mo?}k?gLjWM? Hy?p?WR]?J]s0?{ܟ?Vj?PԞk?ְ[&???DP!?砽ꖵ?Û S?,GC?1k|a?F页?o45?7$H ?į,?+?W_+?uL%?~ ݶ?,x ?pu?)j?6ẗ?hGMe*?&S1?zG ?)"?eg?Z>o?qt?,(؛?.Ñ?ˌ|@?2V?wܒ!?N~ ?"p?9 YN?hi /?oiMeb?JE?H@io?cS;N?tK]?VO)?޸a/?W 䃃??!@?gP?( 3Qd?S-~?hEa@(r?XWo[? xI??hXzlr?7?4oC?pPG$?/jB"? Ȣ:%?9.)?\9h?}J ?t?|9?)$\#> LoX>}n於>>FݏA>۱ >poo!>D>~,Iu>ˆ>ˎ3XU>ϟc>i>Z3O >@Dƹ>CX>I`C.>@-D>'N>Vp>ؕ w>iXb>` [>p#>F\>_ ?(N?[??}zF?ʰ??^w?d%?w=?%S)?Pjx@?K0?D}7;>%Qw?b1h> `c8>!( >k>f. ٲ>]>}"2>vM ҹ>G->O3:>Z?>њ>a V/>,?>GpB>^m*m>zngr>AYʋ^>o뀑>lsO> ;>b圃r>]P(ya>Lu>}5f>{FF>ˠ~ A5>F>'U>b>5P|>h1WД>^m+>$ [>r\|u>Iz>ԪA>>B>|= >܂(q>@br>ZAr,>>6~u>UL>>m()>vk\Y;>sА˜+>c>>s+j>E>>&1=>3R>j,>?C?<,N!?6$N?+#$?_ ?.,0?*ń>ԁd?__6П&?1>$?5?}Q ?-tn>0Np>T =6>|H J>Rd>}˂>-k6>c_ҭm>u~}s>7Mm>I@i>c>PLK>*>L5o>Ot>y> s?e(?d 6>A=P?u?3X?)>???.W2?`?H9$?NN?3w?K;2e?l7e??x[H'?As>?:́?]JP?}r^b?z?حU(?HB0?r?D##?2F?-?ķH?|{y?gH?/#?~z8?Pkރ?$.?\)|T?SV?`?n|f_%?/ T?gu?1Bl ?F*s?MP?V^?E3J?*dʴ?:x!?Z~? ?N9+?hW?-{z??ޱ?}?)8G?,+C0?ZZG?KV3z`?5qxe?њe?xÿG!g?$ʂskp?Wr곀 ? ?NP]?. H Q?h\M?3ON??8mnp?:[]?hn?_SPw?ʤ0p?m?E@rc?9jB?nր8v3T?FW?aWfRc?:LƮU?_8I?*̜ś(? $9?ɞ'2?"2"?36?2?Pm./ב?j?=P?N>yr*+? +{.?d@?S!BY?Lvl8O R?0:DQ??)hD>?~E SW?-`?r"t??lQ?E1>з>Oo$>U\ޝ>>Xk7s>"ԄhO>yo2-rX>Ko6>Q;o?v>G ^,/:s>tQU?3.{=Y=C_Y'M=*:}=4=dZ=--cN}=[CE|5sW ,6`ܽ_vCtB!0Q;kk'GX^Yu^O/YOCž24N 0.٩W x7+792$\Vn˾UzzϾBvRپ޲(#`a忷袽Z#' ῂ=ؿB=)K``׿4h!y}Ͽp?XÿWĩпG Cʿq)c~Kճ4usC%ꚺUW]f&ZHO(;ySBD9ۛG|DA!KYrUVc: v)cMLͭh .s[;G}gl͏&w#ʇw}+ؐY0M 9۞߄=Z>0q9훞;opQkp"D1%ښ#$?<<xzԁ8إj ߹^pS 2pTqD!V:|PQoKL;ߗ9S)y12#',D9Hw6[5azlCeIDcK0]7`pUG`ayKRw&O"b1S<=:"C4(uf']oB&[o߾iV1ۡZBo`O+eAvr/XɆ 06Jqqob $]WWAZcTn>Ogr-7X基oz=%2#;Ec%rb%XY?AEjТ)D Ö%poDwƪaeZhϿU g~ƿw+{.0MҶ{ 襫4xg<;nxHxdxr¿*?9㨘f v{bw[¿e6ClɿƟ<_ҿYֿtװ3Ͽ֡>ԿCܿ`T|vݿ]+ݥSӆy#߿CAZ꿏`m(00j]v/t7O￁xsɆ}$iz fwP"0sQDOԿkο|%,zϿ c%ф[@wڴW@OԿ_-GzrL'Ov?ysؿ+7'8'UU,awe܎H"U-뜁yinZ@!v$?܍?7{ "?&y ?P?Yi{?c~Έ?0u?ZL?~]?=#n? sr?,×H?I|?me)?ZR<O(<-A=rZMn=4PX_=:<=Y=eD= 9>u ;>o\>:O>-Aj@=Sl%=Y/j= '-=,.ۼSl-3->֪&V>FHq>H>g,O=/yGX0=֭oF>=ny>jm&>-`VE>ω3f>٨@>3V!>|4>,{N>wt>hdl"> }H?"U?(:?AK ?8 C?Hn>H>-$?>L Eק><>˝ N>`>}>5><8 >Ǒ>P)W>Dw?}I!?b"ep?ÙM??^)B?a9?4i?1ɰD?p!1%>gW?0!?Eh/+?;@'l?K"׺?P_??]];?xdxU? d|g?cpr?Gx(|?T?8ֈ?w- ?5hK.+p?hl@v?upe?Ks?ܙ}?c<f?e{c?gi5'uy?f?f":]?\!$?KXӪ?|O?E"F(?$?Uo??ō?@N߰?Emt?cbom>T.>JX>D9?e>0/I^g> @1#iC>Kw>b>oIn^>׉7= ==ō,A{=WUx=#/ET=o `=F=Q$;=OBrEz%%ۛ*#l;ľ;jv1s+9En68 &H#jl"zꃾpO VTg ?Y.lEuKUVͼ/VDսCO;)życ#DUb7r z! Wx[.g#vpy~wG*CKu񼬧 JۑE< b0aa1P,6)1рcnE* Jdo,D`nuyt4hozXoҀƛ9nrJ L垔S'Jn`.Jե-@朿7_JVE1Q}k.j5tP˿ 2RӿηPcwĿ\@r̩3x~I87ɞ#ш"U7i[ |Xkr5TX[I[cE!Rp W?\ sr{N~[BW%nQqCell7+O*κ"D'/- ,Cȷ*)e{B_{E)IF. /vо;;gX n"@f· -I"մ!7u2jr64 8ch\X^Կ]Yѿ؀1Yq3k Iʦu԰;)0&_&C/CNQ  o0_EzXsd ؽzmi=R``Wk K܆--( &=D>{1#5ARӯs'wpFYT}g8ع߼WHcþXqI +3lpGL"a|8bޫF32'l_:(HureGGpPժ%Ғ#iاsv^f¾O?sȾ_оD'¾ +P@о=оcy!¼#E Ծ½ FKHq󾡳K.ht!PmX۾ϖ{Ԝ2nket=ν?Ou.V7Ds - be;h57@*It.y64.ʕF#XbH0$:q@;tk8W/8 5>'W(C- ,#|K&|Y0Pd$sA }F+#>W[qr#7Q<_ _cJ>TʏӭUϷ32c&i:4{\m򾮊@`ɾj g;kcno>0tr_+_3 V[*Be!O|б6p&> "0?B ?;aj:??g?Sv?l(S{T,?g0A'?xnI^?c~(?7Su??[/#?mp?HcI?"i>9|.G>ܜ? ?w 6>.> I> JG>d\@o>=U?>*>J}>8X>Ŧ<>Hiy>Wg>84??J28?2湻EJ?)l(?kg50?_"I?_ <9x?۰XQy?bo?uJo8?kE?lJ2H0? uT?J}?.<8)`?^KZ?TK@e?; _v?}~?84t?V5bm?N?< ,M??M\qg?.z7F?$U\;?zk^?p~E?ˈ?.{P?܀*k? ? :?@6?9b)Ǒ?]5?;)F?$s?WVVǵ?VF?Lob?e??r.?pw?MO?ڵ_?Hݞ?{i?F!?b\%?Ǝ ?/{Ƨ,?DGjނ?}vWy?#M p@p?^l? Hr?1ޟ~??֞]?! R;?H[;?q _?zVhl?$vo?~?߽vȃ?%cS?ڍFq?M'q? (V?w2S_p?^45?OMw?)ƈkv?֤?sI=(?3z_?lo?yΝ\?CIB?LvN?_?]#qą??=$X8?-6Q?(p)bM?Y?ϝeLt?w2w?Η=[?fLe?PntH?ʈdq2?eh>?W F?&?d+f?KQ*?xtlZG?ۋ\"X?}L'Z?K)!Wh?}e/dM?c2?qlxX ?ŋt?ܝ!>1>.ۜ:>&q<>~BR>gH>.d[> \'>Дzc?3?gn7&? †V3?ڣM ?$t ?< > g>$JA>$r0>udђ>Õ Šs>iՒ8>(Ҝ>K_'kw>[u>}e,>6/s>x7Pa>#dV<>@JO>U2'>Qي{Y>+MY>(VTuy>eA> J>fXG>( >[G ] >w紉Z>> Pj> {C^C>rײ>7Bze?lGa`?/zI?K4%W>Ɂ'!>*]޺>{Ya>BA> h)?äi?&Q*z ?=E3s?|,'?sM&?/J6$ ?= 7?"fς6? G8?)6"4?,5?Q:%?='2?Rh1?X\& H?VM?Ya?L ?"Adl?l+# q?ӧ?KmЄ?G?pE5?۰S(Z?p6h?C5:?q,<{?h?"B?C?<9?t?H<:?.n?݆1?u»?8'آ<ѳ?9X K?d¤?J ?wi?'Fh"?pdF>?D@!?^&?W?>s?O x?i }_?ߘ^V?sS? ?u[i?5c?p ?.6i?:f?5 S*?J?x ?IF*?u?y8 ?2?#?CV?vV?n?UMG1~?H&9?µ ~?OO "|?Q??M`?AQ#?j?G?Uܧ ?z?0׹a􅿇u~qJ?=?(FC?h ?w4?D!8ը?n+?7i&C#?+?J w'>Өw> [r>`N7>3q&>=$rJtsQގ| d#jAz|i{ȯ!)Qf3o 㿯1N^6*H~׿$ٷZҿ̿ιﶿ:kÁ@ǿfܐWM,dcs.roVer2LG2+:+J~V?iL^-UC窩c]s/qx50eM>e>QA1>3Zf7X%>I:s>qc,E>~*s>*kLj>ϣ.6>22K>g?K2>' B=@^0=VR-8=>| c=Ѽ25+=R֠d=i#{=tw=o2l_G=qCsJ`=Nv|UR=`!B=ӵ0p=m쑿&=ٮz7{=y0=Yg+=+Hiq=&O=1yq=ry]=y>J'=Ke=po=9=}>=`MV=wb8t>'= -7t>n$$>4=s)!O1>^$XS(>6Wa>9'>&$+>eCܺ`>=:y=J0C=ȱf=ݩP˨>o=ȁ  >Nᩱ`>PdAM1>Nd >7WC8>G+?3>]a>>NS>u \cU݀>F-6ik>ij,o_Z>eUC>1/>=#ExA8>,,b>X,>"~è>kv>=N>է>C>*>J>!Q5D>a(ʅ>,>m.t>H]=>f1>5:=#S>收#'>JEܐ>Kw3V oT?P̙nI?9Ik#?Ȱh/?;U)>0-ڂ>"Z->,9>Gd?R~̼/?yx> } >'iI> ">Y?h!>1h>XL Cœ>/r>3˰͉>Y(O{>O+J>* `>˭?>?RS1> A0>=ySad>xdpZ>Y'F|g>.2>/TpѦ>o">#d>Bۣ>Ъ~a>KFӔ~>҃I7?BqAh>*?*y&v ?D,lJ?Kfe*?83>ƁSުs!?>1>,}>&jw ? pjx?=tV?)V88? xO=C?O,?QAK? =?xC?RT?e@m? @*a?Y-oig?C!U?G{B?#x)4?~i!? _H.7>ޏpa!#`ߤ&hq7&i=j$>_/2Wݐ'͆Z&8lW'bii_m@x cEcIuES"7S?qM?CA|b?p6Ƕz&f獿.O*ôr`ns[>iBr+>w>Ȉq>;v2>_+ Z>n_3>3?'>JN>R`G~>` >a6>jG>>/xH>?(ۥ> VTW>=W@>5">|=&СU4=\j=}B>\W.>RoB$>}]n_=>>>kUS=@(E=;N=[dwt=ܟ0u='/=)IOe=zl#Ov=w8?= W==C @=ʳGi{=WH#DV=ii[6b=A= x=KTeb*P` :Χ'5kJ|&J|5GrL0BY'C7d<(L\?rBR`2Q+L  E mvt!QMoyap,[JAp[v8' 0L>K hXUhY^o[G<@Խ 6ͽ'!X3vNk٧޿*]ϔ սS.\bZ2S9E]R7NR|`/$'r52W!.r*RYOKi]1pGfND)v-K~/ˁm(E.18Tx꽿m/H "K ~c#3z)q l!L1 haP*[w W8%bR^SZ0ɧsBeꈌ -6,'9d>UoHt_Þf \ݾH|7V_lbqj*FҠyR&ӴS`ԾXU򾒹pԾU7!J298qP:Dz\)B7cuѾ&gŷ+M->'>q #?N{zO중'1?7Ư0 @?Y% &TnA8Jh5tBSMx0CC?+/}]P?L_#UzY?TI߇;a?r-b?NmD? >]?r#?L ?: L)?ЉɁ?ݦf? Bz?(ㇷma:_3$Pq1W͂bZlgB HuH ,"O88VY1άz0&yξfP<:*''k*^Js!xGwn T]\6ϾI/̋?ľwGr?v^9߾? g?V( [?6W?6(l޿?C?Si"?XU?kU5=?;k?Ot? 1?TXn?wj}?}/` ?Y /?:nq?ӝB? -?qeM%ŝ?Qe΁?i|Y?S̙ܜ?f ?8cۻ?;B̓?#Zqۜ?:֪?N|R?x?i?(f?RBSJ?&O0?ܙ塢?Pd$C?6X|Yz)9?4d?Փ^? W i?8Co?WW0x?nS?@CY2FD?]0r! D=?\ >\>u80?"CE?Wͭ?T!?%3?oMy??,9W#?HˬB?g '[%>B>#Z0?Vۂ3?..FV?>?ɥPe?Ds?dNRQP?CBk`?}37?9CQ?~EH?ȮZgA?%] ?pZ?<L?_x¬>4l|?lqf>E+ks>?[>(D>GR >ve>/m޺?h+Q>j>Pï܅>CSyŤ>^ 2>}d=ͬ?o?E ;>u lW,?K ?̤?t$`>KK>‘)?oy.?˜L$?vTr#?ȈI ?5_Y$?bPyA?f__M?]o7?8FJ?"j:CY?5ID?Z'7?߯9.?17 8?GR=B?R_W]?Ϯ)F(C?<-f?N+Qt?# f?Fgo?:8rq?_.?Gh?ܯXO? d|_?7Τm?6@Z?s~pq{?s?JOe?P]w?7Iz)s?͛x)u?(6ů3?_!hq*?8=ՠ?o $?g.n?FdE?Bmݰ?c?w,m?+,;?J{?8Z?%o?ӧ(R?s^?& QsL?^*P?^>N٨a?=Ebi?s$z_?WqR'h?Eκ ɄM?LA0?/K< D@?%F{q>?Z8Q8Gq?fgT:?v?F>~>ֈsgfkq> kRn?ݑ>P!>4n#Ɓ>;˕+_0>;ZNd>iuDy>\k%&Yw7>IMR'[>7RE>pp\j' <_+^_4ZqW[ MkYtpOVqQ*AUL &x8 l> ~_j}Ap@DT)IAA]-yH"=%+E(tq&foPZZnN kӇY ~ @SxwKNe)Lg"hYeh<{y>aƚ(rKK~0,J3 d,w喟=xgAZۭ\rߢ{[ ;tqԡM(ξ&u Hu%qIFO✖Pk-þ$G9ɾ0Y)ChާFN"xB R¾o_E{H ˔EløXq̵g> u#R><,!)>ڲؗ>CD9v>E+>Q>L>8>9`˲>ZXVh.?׺ztdYюDǾaѾ'x;+1mN[ݾ{ξD=W5-#:N ICnQK**7.Id{=龉2O_9`g¾ ο)K?+ڊ;̾E |ھˎ)پIɄ޾j8ˎھYg뾨CjӾG"Ac྿zo5!! Cf:T%1EG -"ѱ.0ӴM0/z^V_*$b  ڗEd0Vm i Fᭈ&>ӎ|l/XMDuMu }AwAT-x7:Vhl\ kS3  8 ,F ^ Zz-B o$S q2s 4 }$Z>pԵrEJv\DiMA6Z2ىqd_?)#?&78}A>@+>zNOH*zY[)ȑCb><ߠ2VC &5p6-xgX2Ć5co=d3h쾉wt!g@ YپxqrrᾇD$jf\iԾ (yӱ4A)ȾAlƾ`>X`>u.d>V{.о͘ý㾆oo%ϾEr1$*U "g̾*`n&&?>7a,Ҿ58ue>vK>8A?> (fb>d9[> .>8>NG{iX؅w> x+;>Fz0G6BƯZ1_پ\A̾WftēuFFݫ>pΪ{{&hݾ<'xƾ2>N>>7Ծ񛶾Z<⾀Lo3De:SY_1gj$XbP}om]* fVnf#xa LAAE;z9|>Whƛ>@>m9>Uҫ>7>衫P>. )>,(r>awwu>brup>m>k3;|>RH >/Um>')>Ie>q>1@w>y/w?6X{X>J>m0? ~Q?fm,7? ?Cy)?=$Ê?/iW?j?xL?D>;:+f>szy>Cp>ץ Z>!<>F>&D{>vF5>>AӴ>k:5>cF>W"&ݟ>s>r>ِ]h>8>QON>W1>kYmw>>L ;>_>{4\߼>-o(>va[k'@оikP̪etݔ>*[c>(Mo@Rݾ̋6U-0G5:gudxO-ʾkH˾喾|>|۾ ka>{JM>"{D>+2>QQ帾a;=&>Eّ>yeZ3>}H5i6ھk8&ϊG־gCQ侠sگ"(#z.Oj)aW*++WDJ]R)+j&K>țYd ^}kS)tVaO9\h4$. *\P >#/gtia'<&lAHq\ rs٤8Aʼt4!+a2STjT}}t8bK<})_cU~uf[Yh@Z1;|?y3s!0 'FIS[5BOc/b50ubAj@5/IH ýhI)M3^>(7E^(<ֲ^B)I@.pI$6^ũv|+1L;$lAFk%X-N˘ξltLؾ%0 _ux, ֊4yH@e&Ow}V bmq2/QeUho"Za]E;!!EBweo@־ETH1i Hڽ὾}܎ʾ@V>ZKD>{^'>cWvn >hm>2>i>4"zS>Ƽ:>܋ x4>NE Rmȱ=Y>R_}y>ԪZܳcqk$?r>ivif> `]DV>8 #BMM2X{о$w M=徃薶 غEվݾcwu徘ʯN݊ᾚh8dþAQU/ȳ>\i>n$ڂ \tac9E+y> Q>~>i>k0>ʁq>Cifm>[gk`>1<B^>.܎a^8޼1e$Ѳ NΛwCX?`>9IEZ>xUpbG>v.Z={fqV>nк9>ᑬT>˘ڕP>zGn@>rA>^#רP>JІ.>tB>9t">5"b>:ǭ>Mz>B/Z&>'5ei>:s>xDj>7>$1G>*幢>ŶB>OAǑ>G >"}y>l>%>H+Bwک>I#>䚂>T3 >;^>0$>'[f>^{( ?Al}?>a>I[>&_o>#>A&I? >.>Xo> >R:^>gH>A>cwC>P?->ԓ>3@G>WV>tXǥe+>B_,o>o#NW.>E }>'_>Џd>i>>y8?fs?W#`p>+7>T.T>N?Y6ŭ>T ?g8U ?s:S ?h0?+M?ϗK ?3 " ??Bf? K? ?f?V ?xKL] ?<2?;R=e ?zm?Ͱ;y ?meZ@ ?即up ?!!_.?F.?nXBS?ӛ?GjCж/?(H$,8?kZcoC?}*+?w0|K?osa?ߪJ%T?!m?&Y?&sp?Gs?͠;iw?0lr?3a}=qLK"9ɿ X ʙn0K3uv؏Vxkq50調RO.op:F.4F : v}ʿjSͿa ƿX +W3"5R#2+h/Rÿbl 2$Rćz? p *x?+hPi{ǁh ֯j>,6^(?Bhv(1K1 K?KH,P?8}X?O:i?HK{ؠp?,FQ$n?i!_s?j} m?yse?x:sc?R?"d_ΛR?,Kn?jړ6?jN?%$h[?# ,%X?B Q?2ib&kh0?b?ݴ2fF2?V/?SD?d4?w[VCr?vrk?Nuun?6GSl)a?^UwRQ?cC?a8ͳmub?kKH?sI0(9?Ǟ;?1U#?UY@?k:5?YJ4B?=ßA?ٻ}#A?`*?]"+&?q ??z?fH4I>PYJ?}?y>;+{y?YSU?´?jtp @?_"3"?yin?u?ZI>l>&[ڜ>o?Ջ ?Y"e>WazT>𚿁>V@i>UPPߜt>tʛ>aA!P)# x b>Ȏd=i2=/>׹䋵=* _p=i==@[Q?DQoֽaZǾֽ< PqۈR"7>Tp46J>{־`"r3]P=Z׾~ P4)?}mV?&H:?a?y Ǫ?c&wz?.1mjʞ tu!ՒTVYtv`Bޖ.bE=҉_O~zSQbJKܻ/71x枟mX-N6N*s7p9eKCF򭖋N W,/_e9GhѸa\ڲR:rGwiҡby 8^qkq˿t7d xfOo#ss5,Ac{]wUqx?D]WsqFwl:EbLi#hڽS@.QsG[m@dRO+NH9Jk@u 9BN`(V7{AGMbq o64QԪ7e;s-:a+R^%VR^shnܤwq! K+J $lV(.){8=1>w.<1Dq vo=('1?!W;1q}# [4c^6a]ϩDnpn'F݆"W5 m>c^M! h>I@1^NGl_qaU^ UEc@ 38^EMLgvTnЈ^_ wc&wiQFX/f91+bN CZE?Y>? ;SK\i9hv~UN??Xݦ?3aVmuodp'Z<]?Ns?;rZC`N?>K/wZov`_dh rT%u /ax"|& q}Q՞}e&U(6Ɓ_X\M~OxL+5fe/?9A|t?| #?F?ݽ?4??bETӿ?ak?40wˬ?Eڬ˺? Rw#)?>F?^ǹ? ظ8?lbZ??I#Yd ?z W?wv`&?ي4?jB?9U?0gq@?핶G?*O?2[o?z:E?(`}b?Z"lO?ѿ k?v޼A?^S?Mu{#?q`P1?1?9C|'׃?=?.,?]/ ? -0?zd8?G7ѿjO_ ZSvtlƿ/hǖҿ<`Wڿü ٚҿ>׿P7TdܿY!Կ )A<,<$z'2~<=z"={eo<ޛԻjXL= 3j=-[({=YP=_WV=o{$ =$G # 3=o/,<`>|{=j4<<#c>"M=j28B=MnE=l^LG=EsF0Y=IN|=ޒf=$!e=OF0zB= oJ'v=T_=`=F@=}/= N i=NrE=J-k5=%H=0}=o>ŘJ+>P >_e=l5=f =y-=w똻%>q*&>У>_6>4^PC>qg֛>\>NwS5>Co! s>2԰>{ևK>)T"Q>]Z>F#">N#<>Zd!>SrmS={Wz=9z}#=i=p_-Z=MJ>lp=s-l=X٬u=_I<-=U=wfL=u~2p=STX= 7=H=-Gf=leAP=vNx1=4J>=^(|;=Hb=Lp={*eP=.޲)L=ri=(o=(M°=.R=r=T_r=ɪ =H@tz=5# =]ʳH=b=$f1=R 'RL=M}#E=݇l=Pۼ >U&> )^2>M,=#$=s`q->t H=nWz">Vg">+rE B->l*%Y>Ŀ>(Y<>B%L>41>==:=G>B]>DWl=4Vp=S]b=$|=N=צ4x ==Cx |=mx=c5A>GvsB=hPk?.={2?>W >؞D>,e >yC,`=v( >a>mNW>E]5>YߓZ>U&D2>d"R>I*`>!a>cmrtm>Wg΃>W>5|f><8q>mX?p>~&x9>Ř@I>3Iy3>18m#>eܲ @>cP3!>6<%>jʍET>yQ>8e[Ra>k>!Du>E> (IH>EBF>B浅]H>'!>2 WZ_> v>"/>޿<9>P4j>+cN->;?(x>(Buy>ݘP]!>Lӡ>X 8h>#_k*>;u>>/h >Eڤq> I>4L}m9ܾc?}>.\+`پ5G~ ?B2?(?J6!?7qD ?Cn">a>H-$>>Ǧ)%>M sӤ ?O>?봵?/^ ?S Iǖ>>>>*z;ؽ>$u>/v>S Z>z >QC.S> 6l|>UIYI>zc>uWq>2>8lVQ>6ѐ Ca>_0>@A>*jc>歧]C>ƅW=P>} H>Q̈>?=>=>yV>TWW>vr>&>4Pq>H1b>>73Ɗ0>fҌY>=1ܨ>Xwm>EY>M >+<,>+ʱ>䑚[>N>e >9`7s>g>=D>[<\>b}a>?4> أSF>gq->K$[?zu ?ir[5?|<?5cU>wL>I&>z?,A?y4z?<?^HZ?rs#?Nm~"?yt%?&->?zx1b?> >Z(>"l>` v.>>e>GދY>^> /@H?#fY,?Ď+L+?([#?L (?pY?`?덵?`@x0?3,6?ZYUqF?,0^?-b?2`^?"Q?@-jS?eL?RꁥC?kX?;PBwN?`S?djA8?EcFH?8=z8?>?"I?y'?뢍r.?j "?ljJZ?S]&>Zc ?<9?/q ?YCIy!?X:2?t>6?ڽoA?m|%V:?s_%?)%)? ;j ;?>ND?Aq yP?&&I?cRD?.,}iW??|a?3^n?Eh?`jbr?6Rt?Rn?)tr}g?hT U?zۈ [?iY?t5c?QVmg?8,s?T[k?r6q? 0t$em?tM$e?M6W_?.R? ˧I?}\8?JYl׎R?lqE?99XG?] (?Vh7"/?A'rF0?UX+? ",ܣ9?,兵;?'0뇈5?Jŧ*,?]!(?GUSTN[z?N?ar?e>/bx{nYl6p$@lc5V"&i' Ri5/ 0GfhA#KXu" Z3~PgPFuOHɆ?_Rs/_&$ڊhſg\U8pvTs)sXXḱ&jnpZd|MT u|"q[K1.ߍBmEDf()A R4?ygG?rL?:]R?&"vQ?K)۾e:YR?ݾ]?j~h?m ŜMa7x/|36 ̝f]ϸh蜋m t9jєE":5bb䫿d~q? =>:&boF>DDΨA>ZZOKd>:s>~ >+;z>HB\[>x>GU3R>.x>,6>d$8|>ԓ$j>`Oc2>Mk>)زп>>Qx>dyKz>=/,s6,>;.L>ʀʖ>>c>k}>9 [ >1J#ל>!a>\g{R>#87m>ڑcS]>.'E˱>gi>߹!j1>/F C>u:.>ݯz@=!,=O =*gNT[=VaV=j/=z '47>6(UC>&7 >2).q>dL>FJ>t踟>W>r&n+>ѤIg}%>TU>mC6L=ò.G=nQ\(=3=Щ=I2=K 8uq=>c=7a7t=Ug_Ѹ=d=a=u í7=۲=mrU=sD#_k==nW=u-|@=Q?a=&V=~\r=0tI=¡=ճ"D=L" <$3="G!=2Ԩ'+ =`W-=;}=hkC=5Cz=Зj?==jWC=Aif.Rp=Cԓz=ֹF}=Pnq]=ȗ ==Cz3 > ^ѿF>lkPoGR:Wʥ{(z-|;>hU{d61н@|c8*؛FjNqbSl0m䩳@1ҾΥUgtxi/_{3+jc`#07 T ~6E C~|# 0\]Wrn ~|*#'F/ҭ.v녾6o$HWPSpbs.M3΋lVuվ̖r ȄѾAΚ}k.I t׌V뾥k7zj g'm`!~1!;U<:.ξ摨mg&y ܾo`쇍狑XkFdCG&A4RdӜ!|W0eMԋ4jΙ+3f$J,sֽժ8Iy)z꽼UB?ƽzi!rX슽9;.=TC8`Q8^xB3X}phueڣOvDž0IBĽIc5 佛;]콁 ?X =нҮSDw-½^qSmwD4*O~0c7k۲L) /k0X\te") +,e~ "!Lݼ<лDҼ@ (5vbUGk%/&DL쁽 ܉:x6MGQk4;5ϺK;*]tMv=T>ռ n, TSXX.'9 훽IH bAƼ^Xɨf]ƻx~B(ּR4Իh׮NN g֕uqѼ%N fyb0 {@D)U̖b#FF"DG?B'ySH^Rh__H]V݆s p.O' >$=20bբ*ӱԼ`&׸ rxǼO=?bgI _';L'䣚%yH# mZ .L6dVԽ8k.~D R2GH$CIeA׽)Ook½/񎇻X/3S2ƭ-z'kv5p|&r]/W*4ݤ47"%|D }زC(\)Lۥ5y.W8' YPf{˝qSwW<=S9LX}?;6+9 gBl9[~O3-pV#yGPw>m*_Nڴ#TC`օ9)>VWE2@3MfGK0u[;[e{0.X;C^:O┰Z=DN^Akr S] Xe/]j28d&^PLfXЮ)V4]7h&5ϾTm>e"!K/;ū9ޜIvQo{O;6钾LJľְľX LӦCBfԾmޓg dmR#"8i*{7qGo.!n|cR OUDh6tmpʾǏ\#+vľd#ľx̍a>  }d??b0K {? t|e*?*?# 8?<>A?aI8?y*?b5HG+?P7B?_ܣpupÏN$.>a&Ѣ7kBٺL L/ɝ8*+-)|zM hR€?ףlnI?~P*?o`P ?t Ph?JT{?G3\ǁ?6b? [?U៑? P?B}vvM?^?YFog_?(j?\?d^1?}5rZ?,d?!2y?$‡~?DCu?g?l?xb?b_3Zu?`ree*( ]_#=lVX'R4Yz)e֪w]Jͼ\@dfjE.Cgp%|~WcuERk7=q%\mhvdu_v_ʂ e_b>\>}N.]1&PEAeE/S6̖41! .> !8<0 {eJ꣩UEH;g7CgPSGQ!4pJ.hxQ)”,7=iB՝{^%dZ+0 -k-meF \؝FTV@!`9Y*8 pFIz5Ne({|Yes$U'8%YOpU=1QLdQK:mrYE @dJ3Tl_FnV}N:7Hר98r5'[7(/2)gzT>0r Sl= "CP) I.8p_75;(&Z 3")C Mz!Oj>lD: ?G\KD76Mk(X^eRW`ƟggR [x#k[NqǾrv&¾kʰ 29ľξ@Wi"þuM׾y_G}wԾUku$ܾܾ$q/龐zWy0־P;5;̾XmKվ]REALbjůeo~6 ^OBK(~)+%J%U鼅ߊK]{ k06]/hݛfLzM"PC.3/}"ú21w.pF׷;6՟%4=pD$+Kx0x(OSNx/%zn) fzU1^=c"3mz* Z-t?G5?Ž "?T ?y9v?/Z? nN?<D_?#g$?*d?+8@5?XX?g?Ǧ?3zȭ?9Pz?!p49QF?tg;?Wj?IS?C?26?ķw#?eNo?_fj?ދn(?I$i?f$?.tͧ?Jm?j|}P?O5?Fnr?;@'˽?'?WtT?9Qۻ?i?ut?+/?I?͂q?T.?*6Ë\?x?|(R?$k?6ݹ?dpyl?- )y?-Lb?8B- 8?wYQ?0/j?mWdLǧ?ɛӾޙ?I~?|9lЈ?;1IrԒ?No?۝?m+{4Nj?m.DYy?uJ*Vx?A]w?mVJ8?OT?^1;ke?OZhW?%K'Y?!0/p-y?_L>?v}&d?5nj?)ba??t?HV'^p? Ih;:L>k0e>uh?劰 ?3t?B)?oh*?"_+'? M(/??6#?o?Am?.K!? 3u?Sٚf3?\Җ![ ?믨B(? ̭W?Ϟ0?dƂS? ; i8?H?S_?>l h?e?`?\XS Oh?,xp?l{?ֶ9?By?9 m?|r?(Au|?OҪo?2%a?q`? Pq?[H>g@a?.엚C?bhYX?3ZX?nXW?x"'Q?'T?>\.]=?XD?A( B?4pp?e};??wN?63:?S.t?QLy>CjS~>x>:UOd?uD?6O9>\dQm>0Ӫz>Z1>u>#>mQ>.^l,>-:F$>|6> e?yu>$s?W>?Azu?,l#%?l! !?MQ,?-?!?_ԕ$?Qt)>D85!?ӓ}51?dw?$U ?n"?1l,?٨B*e ? &7??X!z5v?b$?l|?*l ?Z̾?`\em@$??-? l[/?\S%\2?_i /?GX'?ݗ~,?uxF?EDQXF?,%7;?v A?3]A?'{WU?۬Y}a?Ա~aS?` LS?U_ׂL?VfM?ƚ\B?]([C?4 r8?L4melb?eI3b?&[53t?(^b?pfZ?a|?!wU?e1K`?l+j?Wmf??2p?2,x?pEp?M d?$D ?2.s?Q=\v? 3Ԉpq? -Zg?Jo?f}{?9ځ?x(n҇?Z"({?$?o{?}RbT?eȐĕ?[|כt?PxȊ?gas/?PP0}?zVB?g=C*?LYuP?ߺܓJ?dny? Nxv?&朶x?S*q?:pr?Czhm?RVPl?Re?GFk?+6̓d?9Ӟ`?W[s?^n?\l?ZC=p?P`=2Hv?X9?κv?ͼSt?Fú#|? }S?؟'-}?@Gӆ?vO??D?p(D?}W3?zC ?дkP ?s1?%l*~*?8]?}?Y^2?q 0?ᩎk7?ǵȹB?@@?=?eGC?<޲%$?<ިL)??+Ѫ?g?s?Pw3>V=ݚ>l>\s<.>Uq^>Ww3w?r$,g?4 gف>\k8 n>&i>{*?R^<?}1-"> L]> r>M,n^>#]>롭/Ţ>Ih z>ޛW&>9>a+^> ȚO)^& > >{Tǩ>Wiˬ>CbE=N>6f>h0-&ʔW]TT.af cV] mI.eQꈾ7%)\ R~eoӆ7ͽv3~`d/m+rak]^SPAXEn44}}G}(v:R;1)Ń(@A2Wl "5&H|ō **u ~4*a+" <կm354r6J :oYH7 AR!.FOLiRN|Sǀ9O TgU1 DI3PXDqH>;:SrP%Xv9Ef^eQ9XXGS"_KRhc^!8l*FFyS[hW +`ksk#2'xȜV{rnHx~!`Gs9rfkQM`(\h0I+poҩ~}'Kݐ#@9a9 v>):ϫ>mh>^[>. >b-/E>+ >,s>O>> >EK>F2:>z=>4>Z,݇>Or9<:$<;y>t|m>V39LGoID;ﵾkvZ þvQH͋izžOce:ľk<;T`ӾH sEվY)eD>վY=I(`y&Hf^irFȪiº[HStBfc#v+)v5DW $sYCc* F0:Sz[A1|Jڃ@Fv)@5!/-ڶ^[i-zHG {psVO\ɅӾ}[@>ھ=V~ աھ3K!Ծ:(ƾiR_ƾ 6tF.ԾbI^ S꾑bmqԤ߾wxaپ0Tܾ `jӾ G^Ѿ0Ⱦ \.J˾C|*>5,WݾG{.Tw}F뾧y@f]Hx 0.ZNadT=/C̒9$r9ɾnZ8d&ͨ̕#FXU"k/8p2,^ܴvAxFXA 4 З('A @&J=}Mp 0K9 e l. TOYw_3c.W @м jiҜ )YWy 0m;)§͋ Y>9 G9{ W!B7w.aKk]٬- 6)O* yEt ch@I.Ue y+i| KlwwwC^J*WY Ag- Af c8 rz' @PȡP r!y Ln ag)"p6J*8u?(P:[KQ l0 cK*5*Z1&r\:{w Ȱ7vIκ(lS{pQ ` ]'n"giVjߗ {Ůf~yjs_(qVX4g~%0yS& q6nכ0gL]!?T+?cg.w>P=G餢qǧ#i__P6rsfhgB͗<F:/Sgvy#֞3gv>Ψ"xU.WkBF SZA9>)r&'Ƕ]]5䆴jn'㾇l[Vྻ|8V{lu@ ׾rFHھE]3̾ g"*E04BqE=>\>Aކ| Ҿ0V^ʾs9E׾wA]8>b>.cI2>;>lu>0xk>4 >3<5>,ןY?rW_>ȵx*оSu$̾2eTXw뾶~Xz&,5Pװ`򾛎Ė&pRf5$XRLaQy㾵9$QSmؾ >8wꩾe dpSj`)[1оBs97۾=}׾%i9sm>E`,> {>S>a>gʻ'8>lI >0|}i> ː>q`55>98'>.>Rԁ >0Ǿ+><<8>;C/@>nj8ڞ`&ɤcS>I짾QsξlP+(wž$ШXqB>/ԾO`ȱz@5򧾋u:ʾp)j6ݾZe+sQ̊b:0k٢Pվ_)d྘,GokuEȼ}6>K>0\=I>Be)>sN>ù>Uy\E>pf >/ot)XV'>''fUw>jޙ?>h.'>UJ >6>W9>l`C2>t=>>Q7>RS)|>ģ>SnH>zyT>W2>}>@H>>~>g|>%p>`X >>!D3Pf>3a> bt>o=>6>3ʵ>0A5J;>պH>ʽ>՜pTq>p޹b>T?#O7A?黵?&$s?ɪA?,)?f?nȺy ???#H ?pZA6? >9>z*>4/BK6>Шoy>IϹ;>-9>P>}q{c>c# >i#>U>5ϻ>k[`>lH{>$eBM>G>7-S,>kN>חc->j6>OHR>3s>MQw>.J> ~8{>ʑ{j> ߄^>iuz>&jim>oz>Q`>nm}o>V/z>xeP\>r¹\Ӗ˾49¾ꋗᅠ&7 ܾWR~6>a=qN>d1R8I> Gt$>5=y>&ȾP<4 㾻~4vR_(o徙 ˋ ? `n[ɖ T7Ӿ$~.ѾT7f7$]ȾnhȾ%>jB`%я>amo>WR%>̓f>w \>g>FRr!A>+9>ʹ{>=f>29ۤ>|V>EB>VN]>9QJ92PXp>F4p>2a5В꘾Gv̾vGC&G(^Q 4iRɧjRǓ XE?5+&D`&<e89RwB/XTN2I,S3i@ Yhhۿ"18%I8C؋#p#݅NAY2sQak\/lL[-AFA")R0Eo=^y Q 8D VN{Ygb^mQ'lkO/lpMZtvk||jB924E E.K/-wGd/]] WI(Sd[.i`m`'eldSpϠRyH0]s=l>Yt^dpSD JR;v|TQ7ܪ,b?Z^W}zWUפ|N0JU>HQ'悿^%Hblik◿p"ee.0!z{RaY `Ūa5q&HY@G\zɑ6=K`.h蛿MUtCJvxTAsp⩿8;T(bWN͹M٫SI BmN`i p-a8ںMw<eqFsV _G{yѿտYǿ Dȿ:5wӿsgҿQ)DпFr%iÿ(7KՌ=ƿT d1Cީaqd;I){SB㝿)>頻ɡaڅ?)򠼿cٿK¿ʅ=տiZ.ؿ駨ٿ_ Q׿ NI ĿI|>/}2׿W8ptпaտt;&2ȿ?lƿ1ؑ"ο1Icÿ6Ƃ9\C»!#HU ƺeVWʬD骿3kfdYzg0ŜǪmfݝ:Nq2L(K3&/ E,۱q-HD>_uſ?t~.ؼ_9)п#ɿ#T0Ŀ&3(<@9@KTϴocuQXYxv񖤿 91( ״;ZO}K3,fruܛ㓿؍f!#u}0smjv2XrCkݙq? @uo5򋿃豶\{5n|9tkD4Nt!W%p5/ki ԅpfvڧbZetU4qܬNf';]`Čb[XX&WI FյcРDjzFUCWo8]ٔT%e|Kaz5tXWB>pBQo+5aKiC^5>#mh{l8CrqMړ6ylׁ-r!i4CY򦖿壹8甿{3 q } ΓN}ft ?縩̻v ،'9̻A5͙oYYuق\>ŜG[ 5ղ6lgkS bе. ;)Z1\U¿/'ƿfhH(|RGLދ氿󵿺q\8ٖw1X4}К8? ʘuVA䧿Q.FH^#״e䣎Ԑk**&&\&O8J1{6nGv ,!ZKĕlrHBŸ'ihSh tBԐSFg9#|^`>lmWeyu^YdJ5RC4H*AZJ֨DOX7bGpZ.B]ngF:5vAsxL*y]$oYzo#\nv_eISnZ?{t:4i2$78-Gٌ($٬+vWLo&U?C%%#i$=y=c Au*3e'.$l#2gB -5D1v52Z5ye9ԩEeHf:`|\@LpdƠ MLhR}O^x\9FY =Cwi9-Akfe0*ZP@8b0vDмqR8;P=E^p :Gi{5%%1?cW2#i !XbY w o:Kx( (&1c&쟩Hx"WCG e} =*FJ@6 rxOE)"LR6 ?M!,qb]lede)qW O`C$h5d ڿ@؉Bo#D}*,xY-*X3!X.˛% S**7l+6R 34(r?L`5侹gѾvp(y1Tc*߾S}4<˾$,aľroC>?>EXu Rn)w>r?]v2v >PP~>(`_>׆"z>pUM>EPΩ>>l >>پ >pr>mjϚ.7 iy>)嬪b6w>QIc>1cc)A^>kڃlq>"\>-DM_>=SIpZ= aNJK eOi*ە&Mƾ#Og/noB_ L v%پ'=ܾ86޾Џ^!/=yLD\rߗ1''-j¾\tC,L˾eӾEZ=*-E?56MV= Wr}d(Bj"4GAA]Ш5ZOUh 0Q$'xqv{FѾ[c f060+B˺>P,DQ!dоMEJ=d!<>nrߛ+]ciI>IV>b> ^>HS>ms>Pv>gy>Ee>qMa>b&Y>,pnc>=?\iu}?[J,:脾m=] ~jPlZ>p-x4\> 2X@P>8bR>kbdJ>tzB>'V>}v9N>dkL |\>k2o]>x֥b>dp6`>u{k_v>g3_>&&7]>anOjP>X"` A>6Kn@>a*R>uc[(J>1˻F>lG3>xI%>{'=5Z>hf5>$R31>Pa# l(>>Ýi>N>'p-.>X?@>F>o\[>Iُ(`>oG9e_i> "mk]>6GR7~>gA|>&!0o>e(_ck> 0![>Dld>"~LHr>/xNp>U(d>i'YYl>t,4|2>Z >r^`ę>E8>}<>F"X<>h F9>m.>ޱuxz>Avl>:~K>{9=>Cjײ>nq>alH>v&QF>3MD> h y>U>j>v>6lг>퀦e>-Y>(2>1D>\br>@Ⱥ>K$->(Q>_NV>6%+>۲_>?qO>O???\&Ԫ> F@>B[Ub*?n2m?>_,1>W;nC> N8>Br{o>vr>M?,?pV>9>rba>zv>7>-S+_>мo>g}>C> B">0U]>\6>1"[v>;bQ>"Bf>[>Tp>Ue>&*>m>(>̥e>5'٭>[?.>)|J>}:v >D>x/(G(>յ^ݪ>fN5xn>ez>kkH>1>=N6>켜n>J kZV>9:>_bLS>'/D>A0>v >\J$>I># XWA? ]C? c>@ֈ'>>>˻`>)M>NF>jR>D^?>?f ?~W2G ?$9 0M?@e? ?bϛ ?f ?Q" ?3]W(?SI-V?2(}^?-|?$ڙe?fE4? i?u?vX ?M ?]? ?I^?yG ?<? ڌ:>noy֫>}>+U ?B~hL ? #?"̽: ?CާK ?H# ?JV$?%SF>JG?d?UwC?p\?Y ?% ,yi ?5j 7? 1a"?$Gà ?\sRD??:6r- ?^ ?hA?nj?< o?bs ??J6=?D S=F?EqÍB?3F?s$$DG?YI ~#K?[R?C1q|P?XV?I8[?y="Z?jAg? _?6⫤]?QޕX"pq?Kk?'h?*7q?iSn?T3cu?(]y?5$lw?Gq?IEEs?Pnvu?Vzt?N,:sp?LZr? ]v+t?еui?І fy?4gy?Uq^~?5 ! ¿=oO%IDi|PLKFьv1h~oiF ےQd#tDY2LGr4w6K1owaeP}1 l?Vi?=N Âd?}Lz?ǟՁ?|D??t{nM݂? .\| ?ݱKVp?Hp44@w?} {?=e?ohB?D D0@??%"?$Juˀ?9FjV?D@9?oS |?lg:ٌ?ٶ΁?(~~? ?N Y?"?Z?[?N, 8e~?t?7z?WMS{?[x?8&D{?{f L??O'+?ώ?i?V0?'߯p5?uP?҇?L;?ցY}?rvB)}?i"$z?1x?u69{?v?vz?< ~?D{ ?jd6}?#s?-s?ڒy?ʍK~?I:ʑq? Sbs?0jΪ7?v Χ{Q3ե܅s$o #}mS{<d?Q׆t( ~d_5kSl&o?!>z?ZO){y?g*u~?Qv7k~? 0zg?VֵSareK Ks$SH!~a?2ȿ r 潎[ 8ǿZ4АaҿEpοH/yοi?Fƿ༣QZ m:DÿjſͿEkFÿ&rX̿ˋz)ʿz̶ſ6HQ4q});MI>Ǭ࿄[VtUw+ؽ$#2jViv>$ї?ЎȕV`?gi̖xI#I/a+R'U~ 3BC\ +D8(PN쀿>m{\0$zyWmHlZaE@bP&0$` BzCuns3v2'`ٕM?EEr?ZG?{Z ,?r(Թ*?L?eЯ`?Bkf?1,^b?͈!n0+?,V3)p߳pMz%3-sK`C^tpS6U-FxsG^B-?6Ȫk?OIF? t_ar?@X^g?xc^?́MQm?} o?u#t?ZiQr?jU4u?v?PDx?ǵx?q?icr?V+,m?q?VBGn?xoi?sre?d?xk]?=5VM2S?$]?6 j?÷\0i?Xli?mbl?{ [Gi?BKZ?L38v[?nyP?d6?):wQ?)CP)D?a#G?R7?hN?Wov@?FBjFvJ?V6U?FgXa Z?9$̈qa?TcEa?ݰ[UX?Yo,G T?H-^Q?It|sP?Zg`h-?8gø?.1?7%?(7?Ί0?H?{UC?Zv'=?* W~yB?U*8L?2Q5Y?eTo3S?cO?'W>>?581 *V?:*_P?({nP? u0T?W{J?5RH?%32P?Nz"V?^WR4M[?LAM"]W?%c?; '[?ll0XQ?6K?|2(=?nZczA?i&s?eyC?X6?B.G?E(:+G?7L\=B?nr9#E?ǥVųبN ?cB|,?V0s>&>U:n >P?Qp?EȀz?:J?З'/ ?۽?A x? .?ߝg?mVq ?{??iX&?1?-4?46?Y#x~+?5{6?xU=?%?*8(?om4; ?~0G?8%?=ˉT?]M?Fԭo?TEE?n<??."MZ4?O@{+? &?t?5 ?6V>:,0JԾ4T>>ng=?7 ?Q?r2>'z&l>9оG&> nlV>`>'i ?Ӎ/>;> v*>B+I>M>TnD~>qDt.Om{>I0>w>ؿJ>?h>#TH>GKU{>}84ts>Č9>6:>{w>3[o8Q>Cs6)sɇN7>{oeT>u_ǟ>Tä>'_[Z-> l >q> >͋= =JR 7j/= >]eA(>$>g% =-c}=XF=?I,x=ɯWs=3¦=޿g^F=~n=m]%ؓ=b=&ȝ,\j=jw=`nqul!IPՅM[H-MEsM5 WJخ$9WQ#ȽXH =K4A=61=TxE9K>KLxl;IH@w3D@_=wZuz5vVnסНD[5'X=ٽSm>t>tž#9;F+FE׾AȾdgw0zXf侏ˇ羂j?R <8Ο׾QJ$7gC6(־3_*۾sQو@K/^׺#Q1A&M?_{QQ5`?b*F?˂z;ݧ?P?Rp?1?ktxG6?⁙I?1K͟w?2ʯI?4Ī?&w ?`?¡Қ?q̀?z;z?v|͉?a]{"?>^# )qz_r"Gn a 8l5O(in}9^{;CXz4qm02Ays'7ޞ <W:hDI òRN6&L+7E%S@e?sw|CQ RHg^NN{.iRe~e~ Re%W˭_$feOgJJY)(eN-eU_kS/օ^VXiVQ ҪfU# \${N^m.Z6cn;z qnsh jT'yN(Au~C~yHq_sum45qa.KnhhUnF:2NkTkQOqnUs@Y"^vU|auLJ5w1*vu\YojyA,Op _]Ur/(5d]9ch:LTl 'Vpc+s,q6gxðr+u{tZpdBȑS'tLirjGHpjt h{abcM'+f9 eg n8Tl` _+{^NT*Xa.U֖<_i`aR(3͊VQ\?:rSO N"ca^=DgM nRz&MX*ȬJ|)BɭG1ypP"_J4T+̛?cr!]'Y g^8tV{#R?7H?搙`M,rXB醹6`iC4=^ >͗cFS;o AzUv,>2hx% hE1 og1l㑤1Ҵ^#+E$<07uz{>Gx,=)Q׽n=%ju%L=<:dzc(< ) V)a,YHff90 u+~P:oVpFɃ!lC(tI1&r'ln*~ |$B yD*d0)*g [39&: ={5lmu6;MC(}?}8M.F]6&@8ȞR>ĈԩJyB>#Ѿ{Qھ2rA5 "Yf8'K?#.Ug x %Q'Fљ)Jq>%Cm oȟ#![)m>AЍ0e$Z9kCeiPxէMuI9EBo=w6+di+f; c>`2AG@D~&wP?!2$Bw8DmP¤&>H#TXV S^WQ:I$0]0RyS9[$#Ymd.UfYTa4b `T81dRf(?GԝH??"]?b\2:ĕ2Z?d x?4YfQQa2"%J!L'sXoCfaV 'map -m1)i qj?yB3xl?V%5 r?ͯ}?ny|nPq"#:rϗ"Rev|>HbVu?hQB Y5| 5}@puDa?;_T[jVZk?{?-x?(r[}ch*C?n$t?1w|?lO?{gXXa?YaAB?b/h3}67@¾?Iٌ?sϊ2G?D3?i;?/?j>?t۹{gī?/7?R4?x?ʺNO?$t4?clM?ĉ? LjB?pH[tc?hI?Bx,?tj)`?'Wa?>ٿ~iʿͿ{KпT п# Կϕ%Ͽ+>ѿ7zuտQ}myڿB+׬ܿ@1v:ۿNӪ޿v ؿ@i/ڿAH`Ylx!pݿI ڿ MLҿ7sUؿݕ5uڿ$3ֿD0޿m'Hؿ)G-GտT4iWѿ,vտ&Ǽfz~4f%<'!)<'0ʼJ=0-Ǘ= b>ο,r=:`v>ТQ>S= j->h*E>^wzW}?C@i>ny>X>Wq}f>_4* >S &>NO ?C.?hX6?v“K?k^?3>Y^?Rp^>4o$d?S1O?Hm4B?ӛ-?`S#?˃6?D57?7SJ?H;]Q2U?un?e=`?Ё P?0Ox%;?1vʸ1?iv8|dCEog>F'1qLej دBK?LO2ۡ{ 員%>|®=Nx=$󱒭Ľo`Lٗ循YN5,|2[`];W>if60d@@A0/tl,;&j@[\00#p?c?VM>~?hx <ї?*GLBɄ?Y?1eOlS_AP/TgqWfbjT͙Q;=t[}@ /%Ha2Y<ʊ/.!%V&dZ) + 栕_H.IH$<龟"۾j:i]R5XK=zyby}?;2o14?5_Qh??7P8X?4;I?Ev ?hv?iθ?跅0;?ieMy?Yx\?xIy?HyÄ?C$m?F.?z8?"7]v?\h?=r?9vKc?fș??")t ǐ秐 ?؋kBN"yO?icq|?CU[?E-*?|Ȱj?XˈV5k?cWEa?XKW?s8?vľ6?oJq00?tM ?^2(%>v3? +?.tmA?j0?-v7m8?[?&&o ?\A y6?I#9@?Eݡ3?'R?X?(s9? O?xa^Q?*܂fZ?oHt?v~Xr?ƒ8?9z?lȀk?t?0 s/_a?9j,?]@Դ=?ڗ-P?+BY?4ʘ?E1z?n2TdV?һdtE?D*?OK^w%?Z?ʁC4?xSiu>{/r p>nQ"2ݒ>n⼬%>1\m%]3` (d2. A*p^ 꾃N#Deپ orx pXL̓VmAԔ XBnp(${ȱ5=G->Kϸ>8m%?RЖW>?g[؅}Y5' D=̍bUWf~oOƄ>/$P>L .݊>Շ>IR>H?BxJ ?*L%T ?t)N1d ??5?OTF% ?6? wR?рm?9tbg?JE{Lb?FT)|?dÿ AbϿ(?OпuNſؚc_QMqǗ("?֒y~uB/f\3Ŀ.yq,W/&łe<椿[l?>[v5?<0P&<-'$)b?z`q189_#a?2|yvӨt?Nm8Hn?[ Lۧe?=hc?ÄGe$c%,tA(@9X?o(J?P@ ҡ#51?M1b}A?tMka?r3?28s0N`?;{e?G 2o?KY"*u?Y5rd?±9]GX? L?\^KJ?E;zN?byZY?R$̝/?9WQ)?YH 3?`; +'7?޵??XD?k`B?rbo;>#{N>Q \ ?T0?(?jZct_> ݑ ?$_6;>8> }JSx>4y =6nUz#Q}޾RwtDF8ijL{ώ5a?{5`?߁>sj!^OppyX*]^!ɫ7ב5?Rܳ>WVQX*B.ZN`V#udǷ>OV98Rp*!7?qM@|*qvL=kzip–Nc "a].0Yr:IF~R&ÎdI(LI;Vt0Nm dδ?Kl=W]>f0S=B& zq >r bT>=D|!>]^W*e>bd!?]>utE>vx0>Z0 >2>9 ==ܙ=6JaL+=nz{=/R= !=T@ә=s Gb=F:us=UC=hz=+AFL=`S4D=gBh4=SG.{=RC>EDא=F?>>WgR贞H>c4lˮD>c֚L>ǵ;D7=*]!U=%GZ=ݔ=;=aYB=51m=BeC|>n&> =z=i5=>!g>WEtI>RA>A^ÿu>Io>:ps>//rwnN>ZǓS3>Q e!>(A]N>DE`>&at> %?>Jp> o>yP>rN>ݨ>Z -ϐ>xb]>!Mog>Df&>2>|w4>EÍ1>L6p>^?Y._>n> >NʓIگ>N>9?B[m?6^>4 ? >+M>Pa?>ӑK!>mV]r#-?M`O?e §k>X>75U>Q[$>DvR>JJݪ>h[ܠ>ݧtsF>5q >ZH%jl>(yұD>u>D'F>C]hU>.-Un>، +~7>{?/>04xE>̩v0>$p>|Ԫ0H>?PEc>rv;Q=>5>%K_j>Pؾ>B/c>6dBH>AtIي>@۬>1=S&>H~>n!0Y@>>1<@>ʶG ?F"?baϳB?6{8؏1? A9?!z>+<(>z>VA?z5ͦ?]w,?x wu?= oy? 9v ;?7&>?!I?h?նi_?Y=hN3?މ/.?x0 ?D(Y2?yЫF?m2*? `d(SQ?>#r?$У}z?Tz[?V/@hea?@|?yjoX[?hnA? 1P$?QV,+? h&?Ә(Ow+5zq!P\N c,OxYVp>ԯbHk/?t&W?b`^a?#^LgnBZG *I~5bF}5-눽"1nv?U֐>/8>JMPOJ>Sz>m>Ȉ>pFz7,>p*>GdO>5\n/>Mà>][(>*J{ >C)>dOkd|6>t1c>". Aa>B`y>}L>aY>y)>kz=҇=9= ǃ>57>>lu#>yZ~ >((>(dvm>Lytb> B>"th/r> >޶j_=Wd=P(M=,3'===M5ٗ=M=k=ZA%=SV=3A#S=Oqx3,=;<ϮnP=G%R=`^7R\= i=@(= \^"5=XΝU={ު=U=%">rr>R-/APkVdzgtH'nN<ީѲT潊eb !2tB'q8ت~aGwbп fT|uQ=;ZrSεmJ;Xy'! 38tmZh1ʱ-N+\)¾]%zܾMվ :vp렾G)ȩ:2-rþPؾíO4C -sfvIoY.cѠ1ˬ=/*"qN!!WFd4!&g/|55]@~"^N:.3v+_^nl/7 {ĽdBf1(Ue^Pյ䥱Kb;DS@/_5]{sN+|4h] P.0'ݼ(u¼JJJWQ9< 1 :&I^3n֛Aի}d9m 4eL/ V&b8O?!7ᩚ&f*MN*{⼕4Bb{I)gBnKsҼ95!AǼey?O~t(Լ1,1cm7?hbXyioE~k2$dG2abZF>Bj {ߋռ* 7c7FMfBjyKuS 솽8o_pSx`?GY&óyνCl\RdYF2I Ӯ@ѽ5PW'`ĽS6㜽4ψb'h8_aeEaYRQqgSΘiߠ&½C2&մxž?^lοFFT8Ҷ$QV0)T7/`7Bhӽ1Z2.eV1OO2gRz .mLAÖ~/`8D&TS7\k(P~q$zagQsb{i )˘l0С},ex ɾYZS֔`}y<*\ޒ{xn_!O86!9^-־K0jR|k[EJ aww%/1K Be)t ۾DrɞN^ DþTjҾ1LL.?*3>rgm2?9U%? sBQ'4p9<62u5fA ?m1oZJx֥J2UcG[?]S??WU"n? {$$8?wڇ?Q ?3sYbCM?Aaf?xS?9p*r?sl?kw?m?4vU?2T]?ki?l2?F.(6?3A?;$h?>ř9?t.?1;I?ܱY\׆?;~X?m4~?]*?HB-@?TJ?YR/?߄ a.?'sjq? V?:|o'?Mk?Z?x,Փᆽ? ˾"-Dk) ɕ?2T'[?bڤeK?jb7?K̓J? H0p?Ƕkts?x-x?ћm?_Q?;?iRŢ-?zH>{8P>RHw?ZI{1 ?m4B?k^#?w 0?V2?XKj?> Z=J?%?q{$?l:,?5WiD?HQ?] E]?6v?It?Wd?3zu(}i?_h?FÂpD?Pm%Q?dһ9BL?S5?nbG9?8Ɲb(? gqA?O0/j*?x ?8{ʄ?-{u/>Qxbp>nͨZ?o|>e*Ér>܅5>3eT6N> .6>T>:.VPD>ݢ9>߬]>&y>\~?u?램+"?GTv ? |Xb>[w>5"m;?t#?Gg?[Z'&?U.?0nA?RD?9ǐB\Y? Q=?%+nm1?pȳ$?e,3?Q3_>?) I?K "N? l\?8CkK0c?y܌Lw?*x? 0n?+z?-n]?X Z?5B~?\*$??1"Hr o?Sg?D;&z?{??3ネ?zcg[?5w"?lԗó? N?9,D?-M?T[?sqEp?x?/Na?P?Lh!R?Oה\?Hl?M#fty>%=lP%>W"2>aL>hX}?ϧ>;r(K>T>ԍ>Ⅹgd>##\_>rnD>uq$|>!Nc>cZ#%_"_jY?dcYi{r G}OvYtԘ+|%S򓾮WWd֠pbԮnNfp9 OT1c4hU;SA9XǻĒK$M+B"$!jG4Խ2 i_=IBD,t?ZaNC< H>uByNTǒ iQs,7 9_h Jf{^^7aO gmV) pSTCötG畍u}oVY!J4Rs.2P#܉ ,l y¾50T"uۃvŰ-;t%+a2!\Ю\b(pDė1y#9Hh6Qzs4{?zBg>0Ğpl>?'Gb>3LaW>՝yu>̔ac>Y-I>"ۥ9>4> K>'|>!l> څ@xk7]vXAS*ZXZƾT>Ӿ3hAоPV!ݾ9|U|侓0(_ ~=eG ?UhF %?n%Ač,]CBYYlBnWN"#=P>~Ea.(W1⾿G3ջӾᰃmjØ о*{%˾,8A[}ؾݜ}Ҿu{zBy辻jg!(ϾGz"׾,l$ alL,<Ǽ9794tLkS|U%goh8f=_+UUs R6Hb| [n\N"!.A.SHU^ ϓ )s X I? Ym' 9o\,b rH)ǘ2a;,v־r,R׾r}B">Ǿ{=d>KǤ>H>YY>e\\~\BbZD۾.c8ھ,z#!\o11辈C \l Evѫ;۾<|ľ8[ 7ѾQD"wYpN>i>ZL>˝{H>2b?6>6>b>3Gm+>%>K ?>D3:xì>$]%v}:P2Pr/=Gw|4wԾDƾL{}>BxާоC{Z_6W>0s:Ӿ=.ؾ;F1Hy>oS~>q 5->BҮm>V4P>ogmx>C"N>#R>7`>e7 >Ri>{>&I>0,>?)> xIu>uX>J΁f>f>VyΌI>,B>Ad>V4+>_r-P>cI=?"Ռ>'EN`,>8l >VYQ??@Ұ?+:*?SC>?XfO?nL?U? *?٢?֎==6>hw>$H >2P^rQ>@U\>*; >=%R6W>gr>V pP.>U/4>XL"0>WNt>ˇ J>=>9;.(>c&>]>>={>>~>^>ެO>>&xf>^L*>5HTydv>t=ܗ|yVӾQrþ^|>uԎ>oV\>S5`ɾJz;<+Ծ13ZPY!ݾ{h\PSX; 5FVL{> >Vi<>^x>$%>>t>ߩ)ӝ8i>~\> ;Ħ>dJѼ&y8 y*|YHо4JvD-޾x1'+TwApC!9eUrseOſT431#*JW:]L,3t?Taj\>n2-yn^_puuk]"-WY7V9j-YslN|bΨuH0za)PRĆfTR~%/ J ÿb .˿KKſe0ֿFYƿ*V4B`I r+׿MҿvYܿIչDȿrPdƿYLο:ɿ=9s\Bg13,CUſ+ Ͽ Q.8fJ;ƴ)Bꊿǒ uX]͏(5/,9`Cq5k}|p|p3 pԒùL%O!Bi6XdfـfHg6 | 󖑿8ݩEN-RܘmcOW]1&5oũʐcK&tBS{Uc7rm\\ZF>CiQ qR`K}_ M}D؂> BHV\45i($r $G=07,@O.pԻ Fk US>JjAo-FC5$"*x>FgQmDz>GF;*Ӿ\uAwujV ="*RY{b_ , ߞ1+'Lf\[H D ez>'%Ryv&WByL.Si+ 7ZTQJtѫ:߾0J[eҾľ뵓>f )5$qƾ*탵9>;x5Q&y>!qb>$#2G>#>tɻ>>,IR=`vr쒾ߠ>%R>}X7oP>ȗl>aWwb>*H>kW{HvVV"hKzdlҾXxaHD2Ӿ#1Lᅠ߾4+BʾOžOö^ N.AH0Ӧ徇#-Q 21CҰ>reԾZtv> #[>z>n8vlv>ˆKT}r>(Cyi>=бc>F )iw:対Ă]rD0>G !^>V7yV>*&nT>VqlE>bzW+<\>8V>F~_m>aɁ^>I8G>< ύ8>"/G>q;>Ϩ(}">N~)>C\1,>X8w6>CJ~FM>XO>Յ>?q>k%yr>4E_Nwe>dYd> Ng>Lv>1wȂ>ZD>)a P>[ kƠ>kRh(>+->]N>>M+ENs>'l>KN2"->7|3K>bl[>LiVt>`8>m2i>YJ>;Gy> >}n7?O\B>X>XN>?lys>6͆R>g[ >羀<>|W>~W[c>5->G:> *>샒>5;*>g^>s=v>?o>7?[>$ī>Q>HCd>g>E >Z>[`=^>pY> >!>Bʎ>%/>r/>j@>,&p> mgU>ho>p8Ϲ>}e?+ ? % ? ?pH]l ? {?k t?NT? ?6 ?Z ?#~?C?3[?'>oXԌ?;zb ?%tD ?/ͩ ?\m ?FV"g. ? >E\?m\ ?1L?Cy?ͷI ??l׳ ?~go?-(?Q+? ?}l/]?B&E ?_ ??^Zp?֏* ?jq' ?mPe?tq?JED?E.?r}6?|k2?. K?h {:da?Y/^S?QXX4O?f?hϐa?Ulr?pCv>u?r`w?N5%Yn?MJmm?e85w?Ԏ,|?SCaSG k+~'@K22;' ?QPSB s?>P@}c!CQӁ?;)Ɇ?"{r{?J7?-a0?O0?&ǹ?VN@~?ތ ?_ Oz?Sj$]r? %|?k-~?<>h?ga<EyI~h$Pl?;^Ґ?8Ph>ڍס`*$[¿$̿p;(̿cR)彿CH0gף?,!r*(NY䊿 tkϿR^Ҏ,b:/FӞj*%湿 (z|ȿ*ɿ?!,`Rdų_g2Fl壡?"a?m=/Z<M2)hm/?ϔU?רBP?uyiCe`fԆ'ѐo?[r?vép?S2w?Zbui?i塧_?1w$Q]?h?>+@?[?R?VS?3tOo"?|[]??d{(=|&?Y3;?A9=@<[@?+ B?¾ F?T5L?@[?$ [E_?72ܜg?۹ph&mk?Бr?[P)s?EUKv?9t)kj?\ b?Z H7O?+ -5U?$Q^?`SC?Ð%? 6?! ?)C)%s?c%n?bж?Ts}#?j;}ը9?E2?g!?#x<?;;P>{%J>X*[>VDf?' >8vǧ>鹁>JzW>5>_nLz>\ .I>3>jtT>p=<>7p>4f`>{f9ǚ>(6>N=K㵽~=}k1k=l`e_=J4P=DDhJaIU= (4䗉\=V2,경16eКU`q!P[}ʟj׽ϸJM=/>Uώ(|}ҭ 2Š7b@ӗ&\bkXHxvw #2~ଧpV3ξc|f ܾ!'ᄅMILh.b f(FvJ4fR%M=C)4yJ5!F62.0$S[d2to_~}=ʞ g׆/ʖ4'-60^4A혔XAƈ410b˟3WC%JA:le 6ڽ+Gt=Ӿ<)?.0侊8riѾO0_Vy'"o5{ETBK9N_:F: K^NHb:ȝ]F$jƹ cΑ2Tœ:NZ)?*SFXKAW`?6 I3?ՎPa mHe|24v?ho'̗F]xyR*tQ8cocyܵl^}1d:twy*-Н}GX3|p6Q|ݫPRF uwZZ?AN{;b?خkYQIy~? :Cv?MaXֿA~O6ҿ&at֣ܿտQVA҆L`-<7]h<+=T| ={bTp7=rn>c=sNk=2<=83 =#<=I.>ђ1>k(R>w=A>ٯ=ƻ=yx`=S "=|MCFKB >W|A>C⇕X>>s AM=mMU=R!Y}(>N29=QEE>U{+%>PrRre:C>h}x>d_>j >Kg>N">P>o@ >3ݾ}n>~&>  >g> }Z<>o+Ft>ɼd>x-3*>nz_1=>ve>R蘜>C4>'>HG>g'6_>ǃk??#9y?Ŭ.? _2?pFW+?z-I ?NNwx>nQ> Էw?lE%&!?iw鍔 ?{h? ( =H?S"S?/((? =t=?sŢSA?=P?M7q]?p%u?mV?__f?z~U\?|KHE?c"=(:?>f3?I)!?Ӥ?kfB~)B. ' '1r G`PS(QumpL/X5?~* YA[i?\d?gmL Ď()Rf> FFQ>+b37Vx>art>?#`>I'=>?D>PAx>GO=p=lUo=dDfu=@=o sP=`aZ=ՠx{=ֹ=/QȪA8z#8Ѧ`Zqb~NuVj3]xI1(~YUOc\U s@zSDzLC3c)#)jݽ--fBQ rױO$нS:>*R*贾Fw PZOݤIP% G{ʁ7PneҭB*37!r(-6k(K:*8rNBlW۶wp&mI ?º⠾jxiُg۾w8z྘1ݎxE@0$Jھkl}K!DWS,syptvd**NXXJzpRNJ@Y9ΚGWfNCqِ6D㾄ba龋)7|ޓoH5ik%4ؾт\6_#?u+X:9? ?)'*?k i<1+PF!_5bqCO$"e!,Cb?dN`?V[?):gl*[q?N|]?%y3s{?^?IN:? Һ5?HBgv?Qn+9DV&H{[Z%PvN^ihY[N1dv|X",`~.lo `5 'Mc$H_NRO(LJk>oþBPFK9;AXX4R1 ?[(?[½?+Ѭ?.?^(k?gnЮ?Vn?sӠw,?\#3Л?d?Vf?h:?6DT?Z?I0>p??؍|?'?S`Ť?\?ZRFP?٨z?xn?y_B5c?O`={=R!AW?D9 ({d?^ ?cD.Y?b?gTyQy?7<?r)r?=Q?Ƕ*9?LѾ#v>ꕎ{?TL?Bٔ ?mI?z?Ԥir?ȺJh?@J[?{JS?seA?5{.>/>W ? ύe?r?sUq?+UYfp?lmoMd?aDR1?)7?:/?#= -9?鼆H? x a`?>d{TDJ??a|3?}sP?xkU?Y?ب:Sg?-)?75y?kl? y?l'?‘\Dž?xQ$"x?wp?:ͩCk?C>? ߖؑ?o:?k^?t(?,?f?-?T4K?S??Ĕy\}?O=@t?KZF?p`?[]-O?U_`?\NY?aEZqI>Z(OgS>> %y?w>ħ';>6}SCM._ .e3#`u\Y ఆ'zw@V]%"ԍ)gz)~ `ZO5]]sʵ {tv;T|h\)orײuS2(.D B|ai/1(F>9`j6>i2>9>OV!µ>{Ʀ> ~'.\Ⱦi|ʾ/ ׾Z 㽂ܴu M;>MMx~hġ\mc20jOܾ ,2KǾ^@>־dv˾ Ƥ3zԾt򾇉~4~ P0X!*\1 dI` 0U.Vߺ9:14ʸ(9Ml4Y Z|ϳ gl$ @껇, yF%Z q>`n>3kM@KByp /U{:P!\ [Hur\q[+$PgN3;)6ݾJ]G7d۾KҠYWz>Jӆ۾4%>m5RپHX> 6S 5>l]{>/ӾĪKcϾHwq>C)[۾VFUgᾸccs#8辢C?z$ErC6jp0޾5sؾtHcVZ>UPuP>B>曺>hS> :a>%>W>B7z{>i!I>ƒ>-}>ha?n,? 2aU?q>ӑ,92>ikQ?>0\7 >e!<>rwyZ>p d>8V>h>V>¾Ⱦ3`5%B,#F^]L¾'~ >LD>w`~.>1iѾ%9B߾`N龱*%ML 6٢gF`TzOG3Q()fFMddl?YOd|򂔤rȯ/"qOKkTHMc$O iI/rU@:cfrnHwTlEf>z;{( 3 5;1_12C?{u;ſ'R@5B)̿`hLҝgDKԿ\l&E*̿r!oοs~ӿo^/ſO04X]ݙoGnpx+Sſ_o*˫Q\ KN{ raѓW势oLߩt>tz]hhbVBHpeLYdk.b^VpeR:S_eHV,ݠ{(QxD9*\zFBsnS"Wp0"PA0NJV.qlRAok 9 $ffM@_ ʼnob b%rdb3vgl :/lk/`+W(qh4ublRMXX/q;2H}GQK(([ޣUwN<" A;Ӹ))$9 V²k(Vn U$g>>%>o] ' !Hi>҅mi>A8_1ǣJƾNc!jqƑ[>HC>ܴ-&>*G>2pi;l>lR>,8LM)]`>MT9[>"LU>P>;**\G>E -6>R >yqk'>Uy>>6A>P>Ĵs>տ>> ]y>2(9>.=ϊ>R>/I}>eY=>wf>r>"^~)@>/)L?Cn>.2?O3>9(>4F> ρa>v> >t^|>|PWx>~ C>gc>j` ?$te$?DYEN?sӺ?)(x?HiG?dx?b,o` ?' ?iǾ:?1'Q"?KN 9?C37?[ߺ E?mL;i?4fV?5U?7q6ha?gd?$RWͅp?P,z?Ő6"z?Lv|p?$~?@OEH#42WE?[ A?#ocSi?='?lh0?}?eU? 2?h|?*:w?S]?=*Rx?L =z? IHu?Ǝ_k|?eH P?-3ks? 1;&]ei6Mj?}cYY~?J㾂Y= c m@O@x#¿]}>&'ͿK?}ɿ%A= I󻿵S6[ʿiÿ$ l4Vr Ce_鐿/ӕ/TXdK {;)Jǿ. MڵG%ګpY I9};E0(ʌcJY򏓿jܒAaRXL'aAbY?੶c)hUǸA_|H?Dcnd?W4q?(f r?Vu?b j? v`?"M֨ d?;jnc?va&Pe>:n Q?gI?Hx+1,?u2?֐0b/?Ь#?Dvr+?_Z? 9>o0-Y>.=žq&a>B'>龍v>'l>>**F >01|=,=/WxXp"Gֳ|r`F8}Z3`27|~s9PBb)4PN=d4ؒ H%g~R-( _4Gta_yfciaSt4ņ9X7U"Jk0 }ZkuݤK~jLr00!t&u~iro7ԅs1Vg=:{Q[U5`MNh(G#ɽ+K`N%7>nW8V|{HLڂ(s"gt1&F* 12Zј02-B}633p0r& V(BF!9n'x d-R`gl*ނ9pw 4? sݦ#%#GNx2NC @]I{F@>X6nRd$>])`N4k`,FWkBgRmz3;3(Bl@RtbWe+j^L\2Y?|pOX?Vj&?sC ?o#jyyWZCuA=&Iq Wj=_ v{WI|]Zz)cπZʩ}7me݀s~uoq rYS?W (ۆ?{hk f8?Cڪ?,+?w#r?]u?٬a?z ?8(?\]?]g#!?0Ie,?eL?C? { ?Lħ=?ƙ'?pN?=m?#y??tky?B?#Hp?q\?L]Ɔ? ?ZhMo?~CMZ#MFz? I??e ?$@?![gl2?_ߎ4Dlq'ȿ8sҿ!oAԿifGԿڿzUT/BٿYzaӿE 4ۿuq~+H^-Au}MbZ˽<y5~y*>1dF'>ѢSFs>dk>'ۡ^??{Y-}-Z"+G6t1>0h4"њN>{"վʸ;V>5px_&&@(1k5u:U >E/a2&>J,1Ҭ?\yzD,%x<.)K<@ɱ˫<h!ql|<"%ڗGT2p<2ORӦ<3͆֟k}?F-x ?)W?h֛?:Ef ?'#? |<%? &?js;(?1J`)?ds;*?ON*?x7*?H`*?x5*?$hCڵb)?f3<(?OKJ&?0i%?#?ZҼs ?n ?G]m'X?Bc[?[E?OB>[?b5>0={GFg>Ơ- >7֭>ED$54>"t7uY>Mfd{v>PŔ>A~ Ǹ>Yg>K14>lA6M>s{g>%>ЎqL>#b8>HUv>]qݚÔ>e;>lP.Bd>wT>5^D ?Ɠ?h,?:,7i5?vQ);?,rip>?BS&>/{?{q?%?b1?:8?`o-=?p%(??>L ?b?WM[,?k5?!P.;?a[ol>? RWȥ>8)?|w$?!py}$TN=Vi9ʄ=. )= ?|7 >Y*8-(<╼R<}1<zJśR4>{O ܢ@ˮ(?WB}]ei<8W's<%P ~<ξ4<>Il >c8 >z?˔ ?Nɻ?C=?kT?0A!?y?) $?%?&LZ'?(?JD1e)?Rr61*?mz*?B*?~*?f)?Vl(?t'?CHi%?/ >J $?+y!? $?gT?aԵ6?j$ ?,?lG`w>7ZR,+> @ @>3#R>Ip>$ x>uINJ>гl>^^2ga>cE`&>ຜ>k?>/Z>e;#+>NC%Yew@>T&EY>+Gp>>>l8G>ʫn>Y z.>? >Oq儹>n]=3>29@p>7_Ў>]p?"?1b`Pt0?mw67?Ѱ>b?Q?{j>?j@ڃ_?tMgN)?L^ܱ3?3:?ē=? +4m]??Op>,]yQ >Yl?"?c0?!L7?R?2E2l>~?Nu_?f`)?=U{3?Jv:?_&Mj*=?jS,ɛ]??AV}'nRh!lY>;d?>>v(n >-_t~?(gp:?R=H`?!ߥ? >Hߠ?\^즼?X4Hӊ?uE+|?%b}@@{\a@afC$@t^&] \&=Eߦ%=O$N.k# !\(>#9 j"|\Gkod(OMpDCPAX\5C?M|1g@?UK@fC@,|ef@C:\@C: 8 @!!@^֟j#@І$@#ﯟ%@OO\&@LJo_&@;VG-%>BB>@a>2X:5> }j> <(e> LRR>a37GÅq>; >2(>kEwh>h?HQ%$:ĜPBߧ? ma`GX1bCؘkXڽAu݉q__8.EdȾXJ0>3$?L%,2p?[=k#?bz*?&*?olI!?6̩>v_Nz>y]?x2V?@j'?0m<+?glQ'?eV"?8() p87l#$Ez*POo*0&E!_D@uR zcDbJbVhrϳl'1W`+&R'`z*HG@|L#cOm5n< ▴ap1إ<ƍ<ԤonENjq+Ҿ4y <9DHMuU饼*!< /<=Ӄ=ԇ(Y={4O>ZBCħ)G(-¼l W<30Wc6>D]=>d׭=Ir>o>Sؘ>'+bF>r&?rڠ,M?-0!q?3Ap?œXލ?%cbD?{?~W` ?B@Ӥ"@Hڎ>d!@ hM&@y:|& lw&KYd( &4;3/%P$I"J#*!o,D ]`ȉa/8f=オnf _)HdyԒw?ʢ?7F` @;@"/v.@S@btX19@$r"!@n"@<0rU$@i.%@j3y&@%>Ú&@&@8'-o>5W3>L+J>WBa4i>m>w Kť>mߠoS> Y>Tzx>.؂>"2>S4E*>SC44mRcrib|D퇾]ĥkU¾'Pxrnc232*о)b?$>Ϝ)>ה ?]E?;9܁%?M~:r+?e7z)??>ćȅ?M?mK!?.wY9ziWw#L0;`5j97Lj!4)Pu!9 p9^XN,c95C9Q? >G|1Ǽ~v'|JêWC#V(*Vٽ >4RqקL |R>=VD>E?zW>T+w">!OAF ?1~Dy0?:RS?-${s?#մLّ?|4?Vq?k ?c3_?lw? K?@C?`a&a >+\;>!X¬cX>kuсbu>|O`>FsA>#Q4J> k>g>Kf>afaޜ>69>)'/XX}9:ktXHƭduSYa䐾dRH^`G@ghe`i]yڜ\ Ay%Є/>$7'%?uG  Ō0FVt?ki$3;>hܺd>s־{1Ϟ_ o6b(9j*_+P`þqL6>7l0ھ>h ?qOBP2?kp4z?.$?sq>c>%3a?RQ.? i?@?㰁24L҃@< XP4[k̶t|9/D@\ B&Ľe>\:=!,5mzjH|p.ɾ Ƽ 5 "H|+ByOc)(zcD,OiַLn0οXYP( #-/n~ls<+b>m"9Y9 ʥ"kwk_c]YCYP94 T9e9>0s9aq9$lS9 "u"-c5X2$fU\gw%6\\~kW%duň{ GLǀ&|t|Z"=V/;5>Y.S~j>aiO>ň>%Vi˳>L ?\SB?J)c?žq? H ?\۷?pO??)?]e0?vՌ?? y"?e&>t9>->O|&7C>ƾa>OO]}>p\ADW>pƃC>0KR>syro>Cx>Z.>f1>Yd .YJչ2aUY}e>NuWPu?eonCf剾&SbIy#>߷k>>Hž#MߨE:1DsdKpjM>N>("5 Cc z K?oh'* to¾:*>a>-?ҕ?tq?/_>=Mg? =¾0ȯ+:P>- ?qwd?q+?=g?!xk/5>8hd6Đ|Q-TIC*<3m>JJͧ>`$?&?]$R(?7iW(?I(?k+<>.b9E\>͏>a&e>u˯M3s>p뻙Ĩ>3?62=/ /hI|BxSy>BiiCN>+YiY>񺎾 >]>u핯?1?G:>@/=n>~k}D>m?>/dՍ4u0<)<}H":攼Ev><P<_=e=-/=V,*>㝁=339='?o1D>-З">mq >B胺>+Q>3Pd>s2K>n7? (2?/7?(݌'?4snpD=KV=Ŧ>,K!>wאb>E)dQw>Fk$&>c4: > x>T>n]($->/%?71?-M?( >?M?*HD2"?v ]G$?o&?Pmc_&?k/¡'?BM)?1SI*?iEl1*?I.0*?*s*?N<&;T)?<7(?2N~b9&?$ƃ8%?qF#?V:?r#8?wU7?e y-?q'?_ks==*(=ax]2>>TR>CZP r>J>l)y>G>Ϭ?~3!?6){U?."y?&? /t ?̘xp>e,'> R}>H_>?|.>Rt>Ih>eqm>OcuV螱>Ry> K?pF)3&?a(?v8b+>.䂺=w)=3.yEcR>WE[`c>9G7r>V4='=/g=2UuhNb>N,L!1?h C%?<?>?7> ތߛ>hc>> K?\RIJ?K܂?? - F?`H4.I?JF?4#@5?w7@?xU֓2<&t{F$އ}<2v4EGnm>!вA>PV{l>E &>3G(>11C ?7>D/>L=s<_Na =h;>k<{*AZ숼&jyebf~lK<ܚF9>dHa>uR~>ݫΐa>Bق>5k?4?S"0?92?f>#?>@"A=Fv=p;, >a/*n&>g'g>6 />=>VF ?rS(xJ ?ܶg?K&f? ?=M%!?8H#? s$?ޯ3(?{~[)?)tr(? Yx '?f%?w#%?MUG#?d`C6?8rm4?]3?T#?{#we"?WE=򸱒 =0j==Η>>>>G>˩U!!?ti?BY?٪?UK ?#8>r/w>m&>PA.>=>]5 I͠>a#=e>Bkv>IWC?p1.? IS?&P6X>_d>=#F*6> 1u@=-<ā¤t1p>N2?1[;*?A|?,>$3}>¬(S>z&q?>k&>R?+ R?À4!yC?TWM?'T=UQ?dPiN?.UQ>l9,K>~].J>װ>Ҿ!~?9\?@( >dT,>Ҏ&M>j$ Ѓ<}nj'>Bg>SlR>A'jz>+`> е+/-9?fɀ/?ߡD6?w8?("$O%?j-=1D>e >z>H])˯>Ã>cIF'?i}(?c/.*?L*?^)?e%:?}U7?E+3?v%?}Ӷ4 >,=!>B>rd>HBezD> .Š>m"r>)m><:>^g>=e#? X2?h뙛?a> .I>PX>ʨVUHl>\3=m|E<&+u@=g@!;>9޺wf>`}%?|frg> ԌTw>lXѲ>1 9>V1!9IJ?0^lG?ؖ<}A?l6?J? 2H?ȐD?]">?ԁO1}jFA<>UY.CR^X?:<)ZUm>N',z=n8= BNG8>~c<8Ky<ΆHӍPʾ~k=VdF;;R>͊l`;>^k>Q >HV$ue>e>U3>q> Ss>Ye0l>TX̑>͹ oЯ>\ʾ8?PU28?;J-?( 4?O "U5?ݔn8?xCa8?W*?&W"?M#s=e)v=cre=*7@=vG>1kS>uS>\ >M&uȿ>rzq>E>%܃>GF?S ?T^?sZ~7?kʎΠX?W Z!?dxt%G#?xf6)%?qs)?-n*?m)? kز(?\g |'?R͕&?|_] dG$?hx:?.gӷn:? f8?Xtm48? 646?+Y%*?{Bk4?؃b(?N|$?e=b~l!=W w?*= ?=DeIvU>7.W*>~2>y($ޟ >0"?t?a=?O?A<?C>R>x 3>#Y?"8>!'~w>3oo|>>vQk> ؞v>6r"SH>YkY2>JIs>JbZ>t >G&?L~?ɆV(*?M睐/? ?uȇ?n>9ws+>rKN=H!>ai=S=OT7}s =mq<[嚃)?C>BbEW>QIs>*9b|-?k)?Eb !?; {?σ?U4 ?\J?>:P>2JVA>> ӈ뢅>-h3:>y%ӹ>Jg>-_<$>Ң>>~WJ?tJ?KI?-*H?^8#C?io9?ׯyPvr$B?WI~ӣ<цw(_>NNL~>8삝>xDxk>">5sڀ?o3?<]>;##>-ʬt>,M->D> PDaap>}zM4e>5U>x 8w>xe>6?(e3?"!1?b(yG ? >(h><>&*y>T<>0$$A>EP)K>~XY%?(F#O5?=?9>"-ѠQ{>^R*?QV/3!?Hx ?@Vosk>QPT'ҟ>}JL>orî>@((>8s_R?#P?McH? V(Z??i{_R?./}xP?fCJ?:I߀}B?`C{hsL<Hc +>fe9jk!<+$={2lteX<}̌<0H?%?%rq@}!]@.>}-? %޿jT'{kwt}1)>n306.>(4F>׹!aZ>oպ=)JCAWr%1zp<0s dhɲO%7_q<ҋNb.s<"A&< }z N |>I0ذ>~]A> fz&>p?pmI >+yĞ>bHf= >:N >>;6>Pe|<9G`<:rG"٩LMrq⬼7<q^}=Xqv=jŠ/E>f ir~>FH> E|fءngWD龣MFEEҾ2њD ʹIgSKH}A_[tO{e%hx~j&/M"uo&OJ>0`?.3XU?𐔉v??J8=?=~n?~vE @*"@&@Ț&@|T&@4%@JGSf$@`Na#@ c>^"@;=` @IA@@LXn@^@:P@p(?bw??Kmпr&  VI] Bli%o֬lGȶ̩i4>DP?A.'?-J!?$n.kg?'ʙD¾v,_8C1zav*)\[ ¿D^ ٿ5n'C47!--#"A$-.%}x%Pv=$2-pYޓ&'"&:2 l%2e>kP>$Fo>j3z>Jx??bu?=Fr>oh>V=dW-=~?L'> K[B>3)T>bz =ƶ=?tS< J$ݼ.cd:vI-:ZAHvn|1c2ӾG {KCi#&O+Q_-][!?m+?5pcv%?t,?meCؠh׃V]!]yU=iz)UБ,b ^EVt> m'>3ީV>d[Iix>| %4?+{>d7n"H=y&=]{>< Ɛpa|Ko>r1z.d>x\egq]GwjϾc⊙9~bx]\{[R9zm kpG"Pq 3d-9n>rNb>@@8bJ?suV\m?o{?PAg @NT`!@5-&@U%@z$@/#@4"@vF"@ݭ` @@Q~@Zq9@* vb@jB@4& Ip*H,3A !~#:$>N6?2>$?QKI?,\b%?`SCǾ+oH `[D'0a5^ƿTE0߿\|N C吋"i,"Qܐ$g#m$ѹ: T2?%QE&>bXk>{u>^ԧ>{3d3>ɠk ?%$?W1>67>|H-c=*=m&=;?!,*O.^!?Ҁ+?|u@'?;o .?FysƯK2<+Sݬ<̱j%< ^>6I}>>MRAt>>ve{?T#?NA> !> iE>+^Iw6tdO<8=zTTq4IhzMGn&1|,陆ǾJZG|2u>۰r~Bc#w&:tt_P]!?dQ?Ʀ?]}?? NI@[(;@T@?+Xa&_>̡0>G !>g˓>s!,? '#?MG?]j>${td,>ߠ'3>PhdL>I"!r=Y,)%@ > #?ʩmS-?Ӆd+?c֖3MCLF<_w7&n~d>ـd>@%> kĢ>(?E<>(c#>ؘfA>dy>S;6>I2?QH ?#4L?.l>ƶ-8>r=B/[O=6> 0>Z)~<zPԸ?T`< g)a=4]ƞ<;񤼹{=żvH|ɀl 14~<ʽӁJfK,CŢ<އH,\rF5J,e=x+>d7?wtc>+\>H'dSbM0 nq<;y7$7/[nfؾ\HE&!¾9* k fi%Gu[d5+n.f΋â_;Yǟ!#i_W"YJ"'B'J8z]!j.L8">Xi>2 4?1q/B?opMe?R?W"?jX?A@x%F@@;CF@Jx%@&@a%@EQ[!%@k#@K(v@#@r Ǔ!@XI@L/@-< @4n c@1(tYvcz`9@rA,sjh9H?ZuJ?Plbc!?;r)˄#?.(?b_ ?ɦ7(?ො?K#2y? Зؾ]h4 SH10YA3w"gϿA֋֗ btE *iy`"1q2a#AL$#Y%wry%["϶^&m{&Pru>*h]n>M%pDV>+Ns>HsU>]}Z>sJzC>'xNt@>>+0f>.DG ?绋?{V]>9&>za>d7<_=#>\O A=\< :Tž$̾:q llC1I'ĊZ18*D-H(-_*y-w?9hPy?:'?*\$)?7C-?`]Gc4x>SĄ>%>K>Cg>;*n0L?%>4>>2(vseZӼoL!SgỼ*g}[!r<8LBǤ<~.f_=  ( 𾒑P[۾`c,9q VYiƌ^)b$#js;s㤾rOta]b6#.|ŞIڗdٲ70?t o?'p?d)i)@Q?" ?%$?߼0?^ʕ8 Hπ#/Gq{>.\>Vۥؗ>>!>b?iI9~5Z"?QOeC?wDE)>M:qi<,ؠIRf`!6l\VG"ȭWe Yv5`Xu'gܾA<@ŋ?EgYmEAϨoK~¾@ZnQ, 9A.id'iRȸx ?_Š%?5}.?M6I+?Q=ۂ[;<F#<><u$>lT)d}<`"^}y4> "~H>咕ps=0D?_bE.Թ޾t>x Q>"rmՋ>)az>XNZ㾊Y>j^= cX{=T6>R5>ͩ0>bK~%<_"P<Nܻcqz"[@>.A?< v>%->#OZg>@1>{;s~)5uFϠjy rO* UOݚ,FxV?LkC?qN ?9Q/?v[ә>Fx~x>Wɖ(iI?Gj?bqX?#6?l;?\L?K9F?߰Dt?%`?E<7?uYt?`.?P?VV@?2?CՄ?%d?xWo?޹Rc?+c.? |j??XZrX̏**cI}"Ͽ9@ SӿMأWt̿:пRg6'V0cmC*")!,SPDDfR-;gv$Hr܁nPQ>/yN 9ǿVL"[|Dn뿰ӏҿ Q+Կڼ\b=Y-t۾ c:6߿U?_.ܿ0* ϑ[>=}u>$U> ă>L$e\,Wf]&b>9*+0>ZX3q=@t=~>pp5>*JrF>=G2f<= Xvs: feyTr\?ʣ{ڵ>L7>?$¦ ?8wv?.Td|#,anU 6?c9)"T<> 2+#<7<8;@ϱ<`dv,̅&)QlE .Ql z>RX_j>dGAf6>u^>P_ؾť>*=tx;=^S<I#%Ռ8g>w5q> a>_+3X>^ﷲ Y+%@Ǐn>n/֋R\uCD]? L?r?3>A?eXq>2<>< u@?ZZa?u?[??K'?Ι7p2?'?U]?Ӧm?vd?FQ^q?)h?tU->?B?*ܣ|?d"?B;̿mٿLi]|랠ٿk֭ݿm|".4M➣o (%{{yYCP  STN]Ǽ茵e6@)˿@k" ῀_Ŕ@ ) O9O?nt Mu{D0"ùR`>rv>ғ>1.8>϶@ 3]>`JP>(ē>fwFJ=:=t$$=UnD9tzS< n"r>9og"m䪲bչ>faR`??6X ?;Ͳ幄~ 2G b(?=}J{ۮ, $<AkK9dgLT>QE r>Tꌋ>q\d>߈BJgP>]$ykv/ ޕ2> >R4(?> yMTK ĮRsxjC]c.M{??۱i?!>ɬ? w?v}?OZ %?8h'2?/WQF? H\j?1u?j?ge ?Sp>?8vh?wc<>v#4`j |<^]HD=^&}z2a$[ܿP 9r>ŢQnS>gle>(У>G_|L>r2澷>(>Z >O~%>a?>o"hj=> kv % +jC{D>!kXI>=㗒q KdGOxHf[q\!xEދ?0Ճ?m"5?*\X< ?OeGB%SIf+"wmh< @bՒ&f e\>씝UJx>@G/&>R#_>'E\>&@۫>s[p >iP>'>L`_˾i0ؾtw>KE>sd|=nǻ=R_'>SVN়UP;Is)޸Z=6s#8,I$i}\>ٮv˿ޕ>]s>>[4>nG>Z hԻP9Q|9Loc&wGwJx`ͼUcpr]ƣq^(~]5֜s=?ˁ3?hD ?#dD?,}~?48ډ-?? > ?./gy>P$+>xc?>J/)?"T?aPO?"X!?59)i?("?n?4!~?BQ$X?ꉶn?/9\?y̦?R4=li?V"`9?Z~Z?~U{?zHy?hR@H˿vwѿoIUʿuFrWοy3%cڶ; j^ =GU9u ~c\yu h1оUhi1ju&b %-6EPH$ %,;1Nѿbѿq hӿb@ċr(࿲зAῚIz 8; E޿׹|ܿy)j>dc>BL>cw%ڃ>R Xj}>{̗>%Z5ߞ>w>hFw>7*˾Ețھ-fDsU>(5v >p\ >4'|>Y7l=BF8=O!==;"3<ڌ]V<܆4!3 2%q"8:ּoǤ<_ acNBՀy b2Uv#蜊b,W"~RIBV?;8>瑈>7 >u7ЙiL`Y]DEV}4;ӊqZ!jkc'ǁN#lߞۅH~Rb!؍>Xu'> ?"=?/\o?;Ke!?boO?.#??Wm?9'N(~oBmyv4/ )M~x'|v*3YP>Qn>t*YC>b0]>Gb>(9wy6?‹J4>`e(> 薼+d)ʼ-Cb, "<]GCgw{LB<ȹN]v[VF|dU{z"`K qeHr9!?b ?K<[ K?Ѣ>D2o>_-7J$?:z&?pΉ9?b滲?c= HiiQuI$ xu==Jo>8eO>#eQ><[/'>ݯV(>؜޾06Ff> dD>֜颒<"EZ)URqDuNKENf>@I>up;6V︾:S/Sā|Gu`WZ㓾.+J \f4= ?8?n~?X& ?Tşqz`ʹǶ,N#3<&u *6w<@F!,X)<+|Dk8rϨ~|fk<ܜCxڒ֚;-*R\<7$!1 =!Cd= 4=le =zYX=W9!c=@=#QNtQ=Hft=f/=N=nwg{= O<=atT==4=&ir=aL=QAA=KE$=8LV<+·7j=sY=c= v=w*1=Nbp=r =)|x=_i=ݧU5='V(=Oe=*t=K1P=cV=@4S%&=h=@ =tҝ+.=cP >8=F9gk6>yb=MZy=!>,\Gk :>M$/+>=;!jk\ >kF*W >( O2>W\M>J*xa> =,B>ǣ4>rG>舺>hq>sT >8|> @Η*a>S'\>Ɛe'>,^&Y>ez0Zku>%hp> ;>dN$>v=>bNT>2=#>r!C= E*U =!Ur=1{ #=ŏ=`㮨ј=dϡ=ڈ =]=ubw{=a= p=V=?e% >+=&cK>,ﰴ$>~YN=))I>RK>+^/Lf>hJ\8>} ֙b>&<}V>z5BEe>㫍:u>~* ;>1l>lXC>(ˉ*> ##>S>G>Ys,>"v>q >` ȁ>9[>Wy>rI;Oc>5q>o>dR*a>֌^0=>{ >X1/>]prq%>c>>v_Ёز>2Y>"$L}E>tMа>: >yo>DO >0 T>xڅK>9>`H>'>#MS>d*>sd>I(]>Bs>ё?Yl*=\ڣEԡt=Ǟ=n=/Ha>?z=Jm=k=B=A>SF$>K+>nE,th=H [=~{m==uJOG=L l]Df=3"=sI;x0=8pѕ?=Y)=sKf[s= Aen=AhD6=4OAE=Kؔ=˻G=ep|5)=/c+= "|Es=r,, >9GH'=Nq=uLtUϴ=-l&N=pF=\ t=kiS=ٶm[}4X=ze(=d)= >T*>eP*=Aސ==JrG =tjR>zE= ==W=::'=jeX.X=D޴E=,U,=KT=:n =Mb?M=xq@<q6<\<<}wd5T~X>4)M=j,l=~.=0о%>;w2>VU>-n> <6>4wDn/>ڌA:Yb>Z>ANZ>gM9>=qk=V0=xSً=nI=p<6=Y=J=iDz=:!i=_EB.=:6ˋ=} FY=3~c%=SUO=g;aR=Ng=[|=7@(=s4Cu=6_=v=r-]=hM==Mz=0`w:=)i]B=!+8[=hz'Y= ~&K֖=7hݘhp=R==8=µ=%+|=6=Pv=&9>2>;=ǵ0>J"z->1;u+? >uR> >ӳ>G=x=JD?=tSp>5=/v<>ZA\(#X>6UU3>eb\]> >s,a5>yTY>^s>@h_>^`>U6T> B3ҮE>.TTd>n_L>)̤>_q̑>#۫>Դv>Y\}>%yz>)Q>y !>2nMI>R'>jv?>tQ0>@bN%? <CF>TY>g%)̧>, > 54>JC>XЕ?O+v ?\bj^p ?,">oDU>~Y$><ND>H֣> eX>zML>W5D> /A>rra>\>"-1{>*4m1=>2>=\>6`$\>S>{t>݇!.=>VB~>ޫحf>qXp>0XP>d2Y>?>ýxg>_z";>7N*>șH>YWX>"&n l>^Bpڐb>r[>Tei>Zr=X>_m2?|e'?q9?گN?8m? ëbM!?ΐ?3?\֒ H>)ک>\ ?DX!?:|i{Z?=֍>z/>`e~V>P.Ě >Oq}>.V->t>tw>!KC>i3`q>3Yb>hF?U$>j2>wA?&$'??{l?o? 2<"?6>9+?VM#?:!??AV%? 37?DI?m{>6 >I> 9>b?>" >$T>~>DDT>>>?3>y%> x>CpU>0x>5X #>hQ>WBڳ>KZ->2#f۬>|o0>OT>Y>PƱ>A{8> ;+>fϚu>:Op>vŻ ݽ>_F_>t># >XV[> ~ >|>5"d=>.>]>-?> (M^>MTZ>-3>k W>&a>Au>#E>Qx>|D>r,>|3YO> > 3੫>>_̹>jA>sK6Prw> O>ލǠ>mx{>zR&]>u+Zxz>m>*x>?%:n>+k>/\պ>@)5(>_ >JY >Z홅>{c>dB꼥>њ@>20H %>afl>bFƽ>3Lԧ>pKq1>I6Ѕ`>Y۵b#>.=>,r>hA>™Al9>}ڜ>>bWn >}̱2>N2>+@%zm>eYb>m0|e>Će>3]U >ecG>>g܏> " >Oͣ>=&>>o-T>A{]>Xf>VUMpn%>n>p>EJǧ>Q ?5 B>?=uP>>u?*C>c>hB/y> }U>>xDBh|>]G8/>qy`>G>$(p&>f(>.v4>Oq,t>Q;>us>XHYŕ>->h x>³konU>׮=d.>q0db>L~9ޢu>US>҅)\>C>ֳ֑O>OFd1> 7hL>+$R#S>>W>Jtu77>B>>{>0>qץ>zƒߒ>h_> =, >pT>h'>P C>=Y2= >% rO=t=,F=c=z.m=o]q=He=,"4=")m,>rд>/$>E5;n> >p\Z= 47>C[>(64> K>?5#p>kf>@r޿o> ۢH>m`>U$6C>x"M+b>7yuӀ> Brq>; >yts>_|>PD>rZ y>?K8>3ysRtq>:hS>AuW>f>v,>֜\VS>>}!#$с>p:u>\ZL{W>_'Z>Zy(N>˚bc>f怂>Q]_>C:>eq>ѓ0\`>`Df>/k>EЯ9>2>.BS>͜ *ĵ>֖>0L >3d9>C:v}>#hڴ:>YLXR>>C >ht>й2G}>T?:H>8I^>\);>vW>P@ >qr??cw>|9Z>_V>J0>C{S>ʐ>=>=>Z2u!$t>K$@>ܹm>RR>v>\Q;mh>o>Rڲ>K*N>>+ެ@X>LWP> Z/6>ow>zb? ! ?ٚ? @>~9׆λ>Me >8,N>ұF>\Vs!>v/ d>ʒD6>Ttk> ?֐!?fD<?2f?X?iGb| ?pw g?>5^Ó?{?k}?řt?bk ?[м?}xءf?mNUS?-}- ?j\l? To?64%"?/ Z?cAlA?6㪁l?5vQ"?P;h#?\㘦^?])C?uKn?!,?칣S8?hq:?O٭?8`l>/l0r>,> aj>>j> [?>hT>tN>0@S>,Ns>5(>`e?>)#>Yyn>7>0C᪊>SMy>хW?" ?O<`>ul>g>>@b>,\;`0s>bݼV>Hr;Io>O*n>QUi>tLw>L˩J>:6m58>2!r>3rd~>$> ֟>j̢?Ku-?3?ʛ4< ?GYz ?9E?QO|p?&(-??Kޡ?Z$Z4 ?j_"?l;P?;/-"?hg?ڳm\?_>j?7M ?S*?A*˔?HN ?!?\#?NB1&?)0Z+S&?"e&?5D*$?(U`f ?א$?kY#?TI*?8b?n?= ?2L?md?mtH?Rv?-߸_?s??1 ??l#?j؝?ЉmD"?&?aQ8$?6ܖ"?y*z ?k?5Lk?2;nn?'SS?[j7?ލ?ppu?>}9?8? ?A?V-*?zM)>xs(q?R_=?p?[?9Y[>Al>->IA:>l" M>dD/ >IJ>L >\>+> [> l!>ldn>އBf>漒3>n3o>m6>h>wfvq>3Z>>`> kb>/y>6 1H>Ħ>Yv?>JhȖ>uMa7> ~>nY>!>ᕁj5?5y@FI<>>ouL>l)>FNlg >B(>9H>=[0D>.d>(ҹ>)'>*G#K>*9>z >24[>#>_<~>̖H( >LdF٫>B;>7I E'í>ʪͯ>0>nG>>ySF>2й>dAۖ>1>\[>'>m1>F>PWӉC> g>DZ~ >'h9)'???Oԧs>wY.?ǝ^=>E II>,9 W??GS?J(Pێ?ʺ)$?AH<++?w%?#.,/?MT ?%S?-,?ϝPbU?l1rK_?Ajo?-'x'?3`k!?n *?̄ԴIMe&>V_>WU'?rM3!?~>N4]| ?5B/>9,}?eg>_<>mo>3n>ܽ>x><,c>_͈>+'e>\4>S^(t>&ag>Qc&>=j?)>72?>o>"|>͗>; >Wln>gb>?5^>p ?س{@?K$ ?Wb?W۩ >`ι>_>ĥu?Vq>.oŧ$?"1ܹJf>^~r>FK>r ? n>I\ >c>]Ođ>_T Fn>t>iP7ړ>*>- aoN>ʁ>eBMx> /<>,0<->a >;:klή> .>y}2>PCV>6'bk|>߻>Ahk>jd@p>OaW ->"2{y>?w>u5x>l>ę?3>9"Ϛ>7꠫> γN>>>>XW>B>vS8>;&C>9ġ>7E>((m> FV>5OD>wsM^ >P^>q֣>)Y>H>i+s>Y>%8>H@a,>A7͑> $*F>(9r>UD>^Cls>;X>Cd>ZArPV>0 Q>oe3Z>O<E>NZ62>_[I>K.aL@>-}NN\>+d_p>7k`>#Ch>}S>b+$i>_>~G]C>_&P`>X駫t>GpV>kU>}0C>a%:>O~1&>->Wȿ&>^S[]=CJޯ= W} >H >iN_=l5>IJHҲ>zt;">AuI>bkD>_4>s->XYU>R>|bd >( >z %J=\Dgs=.[ 2=<^Uļ=^%_ =AMK= [=ԧ=(=B_}->`>IWE>XwS>ͅ!>~ zH>GVbB>3Nc>Jq>}q>`IQ଄>,p>8p>?>J ٕ>\lY>ؿ>Ve>?9>HX>jK{> Z$(>U> q>ɯ7ɽZ>O$OX>fJ>aH>Q+Wv>…>0 >r3h|>9EY>i7~ >U7d>TDd>ZZSEE>Lcz-k>ҡ1#>f>wjzon>~J>H)(O >b[9>r>F>i2>I(>i1o=>lH.[>%>͢@?6A>}D TR? >k>Lhͽڛ>ud{>.)(>}b> *3rX ?Кe ?,~?Cp[ 0>w?'6?%xp*?Cz ?ƃC?u:??`BM(?JR?R@6?łؒ?sOR?msu0>9?9>`҂sl>8"-(> "U>4>=@)>T3淣>3 /8>?Qu>q>Y^G>:D>һ>G>> 'd|>U6? :> pu>߸S>E57?ŷ7?y6Q%?hu'4?Qs1.?5&١%?D]?X(?!T>p ?x?M?5!?̾?8?\ .?W[?񰼎.?v ?V[k!?P}?WD0rA2?~+4*?"I,'?d>6?j2:j@?xwED?0>?dDB85?׍"??#2c??4+ȗ6?Re}\%?&K.?}9?pG?{D?F?ZsF?uI?/+HO? Q?|!hR?f{_T?DMP?I>e>>̶>1>rO^0V>-3S)]>JQ> 饚>8 >s9>Vk5^>Sz>b>>0`N>^P>|C ?/p>蔨1>sdZ?U?a>*>va)h>m G+>Tg4y>Ds&>Rn>(c>.)>H-i>Ƃ͕a>>q~5T>Bmx6>V8&>V)tCT>RGT>n">@Z>ru>j>F3>x>WdL>GƠ>m`^+D>tT>)!6r>U#&>W~>:P&J>ܗnp>֛>(8޺>0T8>>4>##Ԕ>nj}>G.Nf>FwgPUL>unX> )&>;.E> H=f !=*͹=*4Z=a=Ct@b=M|="=YLd> 8>Z>ფƊ>e-Yl>Y0>L?Ń>qs-4>A--\>.ř{'ՑgW ?Y?f'V?D<>v`>AD=>(>‰G>Tԃ K>-Zĵ> U{>hf8>p>"]>f><>Uض>m:ABd>>>-vl>z=?OWqQ>;? +ˡ>hb?J&?W?N= ?ε{0>7w>d7>&>PÁ[>$>042k>gz8>K>Ab>S,$j>6cϠ>Ed>at>W{>7υ>=QЛ>yeT>nzҟ>B>Ś.>})>r<>@`>D>p>M#>IuM>M[>/t(Hjk>5+x>zE7O>Tز>t!z>*~|>_I1z>H0E>,>b9>lAv>>>ﳸ]>e^y>M?ȵ>:P>;>ܾ _>ۍ?⯳A?7z?);?I>?c?WC)V?&Z?}$?\y` `)?c&$?6>wv5?Nr7?S~D?m5I?=Ǧ1=?71?3?N3H?-"pG?0 nX=?!AI,?nЂ%?z*?vrU??/QD?NqbX;?uakeTF?<[W:?AyxB?P3<;?Q~8F?qI?w 'K?d%V?VKY?SSY9\?M`?$V(W?DjIT?G[Y?z[qSU?s^Q?S)Q?YZG?u?TO?i%t[?{IkX?'$6a?ذ`?4[?X=Y?\?%VX?sU?M눗R?c=Y?f:SBQH`?7b:@a?iR^_?B]?| W?ۆuw[?DZZ?]~NQ?+S?u<YD.=F <7=QU14U2=e6$=' b7{ J=LE =_H=miU<ݝf=לucR=7F=m޾Im=+g=!Ru=&U[h=q3X=OɌ=>; =)n~=aW0=z- =g =?=aoX=߇<=$Q=!t$>#DK>Y>gLe>;J?>:-vR=/'b4=U27M="P>=\ >`gN=ߐY>v !>v\j>؃)>'6F>NV>Oz!?>"3>A5[>0m]k>U] >z[=w>J:3>A~>]S]>媄Nd{>c[>HYg>Ugq>N h>4ٌ0_>FA> #z)>L?~?>g>@kh>ggB-|>=!e> }G>5Xx7>!c> >IIfg>_l>/?0>e@G@ >x =KT=)$===7Gi~a=d?uyɣ=2Zx7ڷ=TkC=;"=J$j={ӳ=mDZ=R]&=':1k={c=,M= b=h9ä=bӾ=En=-R4=#s=jX-k=o] >ƃ5 >~ ۨ2=ph%=J1I?c=3%)Z>_n/>5odq>5yþ">b?*>Xg:lE4>xf'/>.V/>2S^m >w½f3>V,4>Y::S>*پ3Y>w08Q>:6><>|B>iJf?>c>]>7J%S>Dsc>,rG_>_.<*f>q> l]p>E0Kr>-V= >Nnqʇ> Df>qJhX>4e6dq>!9I>́^>7"a:>%:E>k5>Vj]">q5o >3>_ B>}Wdh4>B%;>xYQ]>XrĮXV>m0f>D_5jn> * Ir>',a>G!>Y>8N>zy>xRց>Xf8k>>u&^Q>Lވ>u>T> £>lp $ >Y->؉۶tN>jPY >ӶF =>Lm>l?ň>E'vL>3l>M@:/|>$CSH>or>Y |icW>~SHJ>_>!qk>a~\&c>^)>y>>>A n>ޛ>rI7>m>^n>4*S$>Ss>YQ->4~>0p>tD>] 4>y>!8 .> <>r0ǟ2>1>?>>VdI҈>D9.>v6 >xY>-%>?>/>|uS>$P|S<>Ķ>lX>>ધc>fXOu>z˭>fѾ>h>UO>Hq>j<c绡>&>~>^eH>j+Nv>^}>2h٭>A[>Deg>{f1%h>{>G>7{>L>[>_*> o>qɸ>Ϫ>Ӝ>P'_e>k>>RT>}>(Ay>:<~>5>({->~&m}>>kkAJ>D#N>*>-¿[>őw`>*>b@ y|>*6>B< >GWmְ>6z>]>sۄ> >nŎŹ>b腸Jm>/bJ>H>*_>q/>E>`>\;˓?">$>8X~%?cnT?Vr.b>*>-O?~<?~x5?K6I?2ZNC?S?+9=D ӛ==- ?E=5m-~=ݱa=޷=vJ>|<'*>peP=eU~k*= >+#=2[ڭ=lg7;/=3B: >y0+>'dn;>Q34>CfD80>pp >Q8A==/$ >g%>w >C3C=^ I=xzü=d_l=;o=F=$-=,-=Ou=,n=s=}A=Q}N&=Y=t8j^'=|Y z0=s x@=3]m~= = Q=a͵==`6=޷@,=\7=hk*s=Í2p=;+haQ=1_2"=={עϽ!>:߽/=O\H=8xy=$ /=nֺq>=`}ρ=_ @i=Q85=ѫ1N=\l= /=_EVY=sYQ=J_p=n1Q=8+g=|g2=*ST=3=_Ho=r=SGʀ>i-l]>>VG>>j>C>I0'4>);^>a;f3>Mzz{ :>Y"JAA>T;0>p˿=tw=#qKB=WM>Qa\?>4#>ϰgw>\r=8n6>WJ1=H =3Wk=0T=`t=yMJ=3GYp= =ih=1d=%u@=U?=;p/={d =ZO7@ud<7NGA<90kv.wKuԗs),W+fu` =fv=`۞6p=?xP3SE>#ME>>p(4>+ +0->rS[>*>J>"&HD>PN P > "oN >A=cJ=Q)$T=hiS=/W{=nږe=n =Xk=ω4 =Z÷v=ࡣc=/fS=CW ="1ky=TQNv=odKT=2J i= &5=QNDz=m"u=Mq=ڼf0]=iuI0=0 =`r4R!=F^K4L=nY=7!-=Z>!b7=4,J =AIa@S=![(=qyA2{=ltjE= a%[=oIAٜ=1p$l=U"=F=)t}=UtW=6ik=X>=-rf=9*ֵ=y=8zD>uP ,>h!!>%şA>YAݗ>̣iq=כa=`)P>$l'B=BiD=NF=  =d{`$>eK;)>-àl$>+J>q*1>LSZ>$DRw`> -r">#m>hd+>\>C>@jp>Xg->2 &q>>"-QY>5~4>& 1\c>:g>+vB>0M>̈́r>oj> M.w>5D̶ɝ>R.}`>(d6>F>ک>pC> Fҫ>-Z'C>ʣ6>+N>77>e)'>80>%m>dd>Jm#>m#׾>O>{ʕ>?cڹ>^EN->˝>m;>X, >E>aj>r>8>&e,>>iJ>xC>7>F>?4>͆x&>J!>{`>{HLX>fT~>]1>n>P>N(>Mq>m#>^)>edd>GmB>׋p&>a״>ϗ-彺?D>*G_>n׫>'Gw?}8s6?ď&?*g|?+J?@o.5 ?K#Nٯ?/7>c[qS?,ק1a+?Тϓ?OW ?;^p?,>C>8_`D>}?B*8.>=Љ8>DM’>Ǥ>Jڴ>J±>'gC->QV>5]>g,`Y> „>V8R?>&Vas>?4l>9U>9K[jIC>>>۾ \>Y/!>;>oϓ)>X&>g+>;h뒖>$nW>‰ڦ>L>CIV>BN>>c X{2>'8ׯ>q^B>> r΢>Lhx^>:Cˤ>M[>^ǮT>:ۢ>t@~>(Q'v>2op>\{|>ev>q.,>|W>X\a>Tx>e7j>E>32բX>Z>B?F>><>>p3Ϧ>ȭ>HA>_Zh>N(ɐ>17KԚ>.>=gL>`, e>!P>RO>-?>g:><>d:{>]dc>.]Y>oq t>V-p>D3_1L>L|X>;W|>Ͽsm%8]>9'֏u>qzt>];h>*CO>D<c>8ːwZ>[m5@>˜FR>v=ta>d(f>|;U>q8O>T>)cuBK>MCC>g '<>#gg|>ˈ>2=8>vo>Qb >@Ҵ">$!>/l&>{~2>$wM4>E裎!>m,>o%>V3>Yڇ~2>wB>.I>@E>RT>P3 Af>ō–~w>Hr>u2tf> p7uX>izrP>*q"x^>c>JPDa> :r>2}>UK]p>Dɀ>d2m>> Jׁ>STeq>

)$y>CVa>̈I.7F>(R>_HRu]>C d>Ha>:7l>BβY>uS8!?+?IV$?`Cc=?Bh?(W81?ac3t? t?n2%?kp ?jmZPB!?&~A=%?t T$?/Szaq-?ޟ2?׉2?Q4!0?ru"2"?:!?lY?w? ܨi?V3z>?Mؙ?.x96I?h<?8?@8S?HR?N˄ѫ?_?T^M?w}j?2c ?c{\?0j(6I? {y?C?1k)>Y~}9>ߐn>9>.>( >²άt?^k>b(B>$>I6>>> ݆>Zn#>*>K!j> j->;۶>3B>K屣>e>!^f>5>Y9I*?4>43l>("ѓ>vqΐ>ޛe>,>y h>ׄ>(ؔy>5 8?2D#>P>Y]G>/>:$,N>n>$%Y??wZI ?󗋯?N$4 ?}ʒ6?rݏ>+?ֵt?x?;C?CL>r ?08?`7[?O?wT!h0?iK81?pjom'?zǗ&?O!j'?&]4?` k)?,o?^#?fZ?ºo?Ȃ/`?/E#?DD1,?ٻA\,?cT(?+`!?l7 ?lt `?X ?4ȷ ?S/T= ?̩?'w?R>o>u9N?K#>ܼF5>>,>0|X>DS@> >Sa)>N|$:> ]K>`*>Z9>0x>K(D> e>Up>nl>kÅ >>>vp<$>⏎>E[(o>^Y|F>LJ0>;x> X9>0›F#>VU>]U>KA>VsA>FABE>a>2ǵ>(]ڲ>+^> @%\>)>X>,䅾Q>쟭>3DZ>77>54ş%>1Hβ>jS>$zV>j>+̯g>pڮ>2 5X>.>&B>X>2>,>:\&>9b>u}/2V> \Ke>pp`(>>xq@>Yj8>G >A#j>}ǚn>Srn>e>h` >Ry>C㩲<>"b> ;>-rp>TlM²>dBҞ>h,0C!>F>BV>Ya.>*j>:v9>C΍>U֨>ۻ;>(ކH>zY:> s>ϵ$m>{Iڙ>)mM>y"> F1/>q|>T^>nD>BK8>\۩Aȳ>l6ً>: #>$H>--f>~4;>Tnۦ>ak܌>Yc>ާ>:i&>yrxk>@$]x>#>:҇>:>kP>GI,>gZ>I+6> H>X/>1ka> wF>B{~><(s>;bw>\cr>'0ֺr>&u>F8>Ε 0>^~`>Nߝf>a5v> m+ >X>VQr>{` ">[cJ~>hz>88!>I\>z>pP>}V>n qd>疙Ӕ>aۨ߫>l\7>T>>>Dq>TƎʺ>T{>>OIQB>Em)V>Y[L=>k>|:xx>CF>>o 3>ftV>m%@>.ae1>;+͔> >!UY>(;}>[{>Xn>Lj6>e:񸒩>-=R>ylj>9>[]p۫>InS$>@R>ԓ8$>G>׿A>i '>;ᕋ>wW+N>x*K>\_;rl>Jm~I>+]>Pjz>}!>xfk>M _>!b>Z_S>K^S=v>:S.D>>>V3 >?҃[p>8`;>Bu>;slxx>έ5Q>qdPQ>2#>kܬ5>YliA>FT^S?M>@>,%>_>!;[?uc>>Yj>v_Z$>K>{,ed>[8'>4s>wzv>8E>4ȫ>|L>4D>r.>con>oĽ> }>av> Q>x>1P> cwd>% W>U;l>*x>$1>>t>N>rWL3>>CK>RYV>_Dn%>.>tob>טV>(>O92>2!>1l>^?[ >jYY ?T|h0H?d? me?=on?{SE<?VӇ? ?뵹{ ?Xf?̉$x?ޓ1/C?>>1tg܈> [ >Di6r>b>.R"[>Q+;>,V>zc>]QTL>ݒ<0>&3>&z6f>Nuf ->)D>q">՟>{C>@c>3b>^B>(4ڸ>cj>5>S >2>Ei]e>_ 9>'hY>5ӻ>2K>?XHڱ>9G՞>*Q$>6"D>5|kS>Ş:>ɤ>G>\g}b>7X g>>N.>QLb,>ֵ?6s>\B>[}P>(>썣> ä>Ӧ%>;~Vx>p> >PXf> xS>ed~>i >X.T}">a2>eesnD>)f>JS>j(v)M> q42>onN\>l|>H_ą>Vo>^,`>7 ,l>Ќh|>N;tp>ǠBd>3PY>w>P>@(W>YZH>}BO9>$K5P>!*27T>7Z> rnT*T>"12>1*>h8,>+ņ<>3_8>wf!"@>nճ%>Y6>rݬ&>o[C>u >/!L>lvt=`1 >W >ЁL'>yΊi7>Τ|>=~==/D>8r=kU?!=T =3A=r1{=%&Nʲ=ag=Dʑ=5=~g=0̜=yHt=(ik=d= N=1b=5#=GeCW=3K>&@>d >n+r:D> хr>K>4U>]f5:>,ì>sP>rOf==*N=hV=(qk>1Fl>gS>D*>|n 5>qk԰(>@hB>]KS>`*@>-^Īt>D> a>VĂ"p> N YGe>8iY.U>]=oxJ>l7yw?A>>|(>^|<>GV_&>+*>ye >–zߡ">Z_M6>ҲQ>9njH>@"W>_ۖՎh>X@[($x>=>Ņ>*RAc>-`>֊ȭ>F P>KEz>pwHXh>MVy>@,'( >z)莃><>Љ>FF>1c8e՚>;Ӳ>([Ԯ>;>AԸ>Һ$Ƴ!>{>)F k>xv=R>r}o>]"?=`>,Qh>/cJ>KAUY>SdAT>j46HG>ŶhX>Te[Q`>n7>elr>кIy>Avg>C]U>SqV>3c>g"c>Qf>6}@hp>7\DuK>>rBh4>$E9>ig}Xu>bMޓ>ȓ>}>g=&>ڼȯ>=&p>qW^>: f>5̸>W 0>w_%c`> !P/>N{u y>>>>sv>S[>֎Z>pM쯒>>SYkY`>E5bC>{1-Lp> |>{2>eq># Y>X|B>sU> hS>{x >7>lZ3>s>O|>LTƗ6>5֟nv>.T>CoF>/>>ID3>:{(x>N5q>mOA>3 ><_]>1>VԚ>_5e>3^ظ>>]; >'!|z>vRY>ع/v>Hvj l>ֽAy>)eA>ޑ>yO~>5h>jE L>0tn>mtZ#>e>rV>N?9>"D7>@>-#>d{l>9eJ>g/^>|'>_'I>r>B >њ>}>I0>\D>I@[>+ܱ>">?2>י?T ?g:?֘z?)s^>UG,>z(v?>La+>ÝZ(>FoT>Gb`>۲>ƶL>HyyR>X> k>:j >^ >%V?>ezf7?lN?^3!h?s\d?)R?sgl?3K0/?;? >Q`j?x\?sRj0?zʓf<?;?|3?! b|~?>HT?7x?b^?t4?1a?JH'% ?Qs>c)Z>Sc_@?Pn!?M[? 0 ?k/6?o?Yш*?ng ?k?ėQ?)}?[Fp?;UZ? ň?%xr?D {?|iʫ?@<_:?%1?P6 ?%I/?7u@@?Sn ?_ #?w_?3[#?*BNG?5NP$?;c<%? 4*#?)^??e20P!?*U$?k~&"?g(F!?ʸ3+'?, @?ߌl>8Mzv?Ӗl>&1 p> LIa>&*>c8>²{k><{sgG>nD>Qm%\>~o>@pK >ğ >BCm>Y{by[>eɇ>*lC~>ɕ>At>:)>|>u'=>s–>D[z/>n t>:>xJ>J`g>\>_ y>Q%2>M̀_>E>.mFdr>-1>S?k|.?p#qp>V ?I|*i> W?zL??7s>S,N>IM*@;>#d2>7}>=>gO|>c:P^>ף>J>[ _>YR>Yp>lC8!>нµ>BҶ>ZB {> p<>tl><>m>Fiv>RT>/3>K{.$>u>:T~>>F>++>ZYn? w1q?~ >K 0?[P?3>sx?=\g?/R'!?V3{?{l^ ?hd?}؋D ?m ?:{y`?ݥ7?bwk[> ?aXM?ao?+؝|?ת?KN?$/<"? Ql?Xf?:"?fX؁$?,$?W'?a2M8%?E?e69(?2(?Ƕΰ'?qӢ&?mhF(?P ?cM(J%?4$?4I%?rzXU>&?4^%?VS&?? j$?0Q"?=B퍓&?+#?zc?%G?/:^?Ę /?'v?>6 ?8jo?3rns?o? ,ooW?/ ?Pp)M"?[h?k|n4?dvRMER?uu~`<?CK?tU?Ǫ| ?|%?T]?%?N]$? ]#?yB"?>{< #?֜!?heQ??4ꚱ ?Kv !?pe ?j?}p?jkxc?@?k~?[a?jXފ#? n ?E<?Z2?xԛ?%;vT?jn?z-?j/O?v(}? \?ăB ?N ?:<]>Oq>Z>\w]>u]lJs>` `>mm">wʍ>Ρ>%LJ?(%֤>-kN)>,>r b>(3>w>^w>"+7>Im9>X>߀x>4k>PW%>PX6Q> 8K=> w>a B>q`Lo>t{Fe>D+>&>&ّ'@e>Bm>,\>N!C&>Rٽ=>B~>WE8>j~>̈́>'asj>y+>܋I>?k >Y >iؗZ>!?>O9>>m(;i>J">+2r"!o>P?>&a?;{ ?c >)?Eu_->Mqg>^X>4>j->b\*>GoVٙg?lQm?F!>ׇ@v>v Vx>6XW.<>I λ>%>#hع>ӟ)(>|zr>0De> yd> r>WAQ>}69>_(>CRe@5>d6vn;>WdN>I7kו>l@>!\ >ʲ>"~ >~Qi>9DxW>/$>ܱ>E5>n^ʫ>̌`ܳ>GAdSx>(K>]f>5iܫ>~Be>U5;>0ս>6W>j2 L>6>>ݲfo> h<> I^a>k7>QG<> >Ndˊ>4>I_D->'no>VՍEH>I|ntp4>>A>Dy>M"w>T43>;>A~[>QuaJ>u>n"+.>Ln>Շ>64K>PMA=Xp>bis>F_0>G8>.M>3rj>IQ>hMFܷ>Is>>h>L~/3>"LeV>@/)3Q>B\?t IO>Cc ?i}Ǘ ?bK*{ ?c?(H?p)>ȵ i:>>YR3> K ? ֋?h>.>S׭>eD`>u`S?S >M϶F ?t(~I ?D ?Uu??ҒPJ?QS!?s$?ZNLv(!?3j?6~4?.f?.?_y ?5 S?0?e=G`=]'?fa&?ciZu0?ڽE)5?3Be1?P!Sut)?r{2?G>a-f*?~c?i?&?b-?h1`?mXH%?)6/?$3?, l2?D.̨?k3.?s6 80?T2?XDHO/?@?,?+pi? ~(/?PϚ'? -?!?2I ?3a%?r"+>?Z8mrt?98?S.D?]Wp?wro ?fj_G?G.s?59?R]F?Awn>2>-t^#>N> UTyf? h-?iC ?z*?|?##2?8%(?z ?Jb%?Y8!? 4?f0w?7/?0ͺG?:?%55s?졑$?vo?!I$>@ n>r?*EJ>Bww?|Sj{ >pق>!Z2>y>M>L&>C:>@>]>HoB>u= >y~a>¾||><:@>\]>>'OF)o>>ճ>3<>e>1>|,Q)>=> 3U<>:|>HNc>~4>m(*>=w>lW>yO>~8Mb>y1>jօ>A+p)>Y6P>5>0>@/>[=1> 9<#/>S >%>Ct4 V>]o7J>O`O!> 'v>7/>o~Z?>>KqB>>ߋ > |B>p5>0x*'>}@>+>T:Ez>_ %>qs>f2x>x?>g>(f) >]5>s׷>Ad> #03P?(䇴?t?[Q'>a]>-B>j'?`F?\18֭?%$6`?dܻ?e?{$? cI; ?n yu2?)v?lPAOP?+PA"??fZ>,".>eq_Z>X/O>f7H?$t I ?bLͲ?^,>>*>/>nQx>I>.M4>|>5j# Y>P>Ӧ?@Z>d>?5X>d8>F\>*W >98˞>rRw8> aJ>F\>P{>m>vG웢>طl>>s>gd)>|)>E䴠>^bVm>+0>vz>z6>JRe>Pv>[]>y| 麧>U>%>D>~[ʎް>]20#>g+aDD>v`QS>b_>ox>O3>LNѩ>6M>v~>CZ> >st>^>$I>4>{xJY>Zuu>'l_y>\t>O>IXPq>neM>׮>0h)>뢇z> sJ>r*>W-~>N(\ >}Y$X> T >Eޱ>= E޴>A.>F &>F|˩>L_h>Vލ>'->$d>cƈ3>qQ> '>INp>geWLCN>lB(>qEv;>U'ՏL>`V["}>`o>d>' A>yn>gR!ڈ>֌>˶G>Wuz>>;w>/Xm># rq>L]x>td{>j͡t>w>QY>7 >kJ> =>vK~gN>1)Z>,#pu>\>c[>t7)5e>uд>0 'dj>.p]>c>\a>OS>RkI>oԵ>#ጿ>^et> O>0pshj>zgʱ>lZ4 >bTja>&K>w$ӗ>Ѭϗ>uJ;䉚>*.+>>{E\՞> ?>7=>JJ>{6K><,iA>¹>~_lkq>T`7(Ÿ>>Nďw>Qo(q>#ڐ> >+İѩ>ܶH>?8\>H Ă1>*D}>l>7G{F>X >ա0q6>Y)>ٛ>BF>D%+ >d"EI>$p>``>SAVTx>F">&r>Yb,r>G0iìe>ŭX>^1lߜf>NT}Z>/1[aR>?.N>ZG>G/Fy;>eIK D>7C?oM>JEWT>Nu@>zNrY>a> Ia>j3 &>E \Yn>J*.+2s>zrAg>jSSf>)RxY>sjVe>cOFЩj> ol*s>.HGȩ|q>3d>c@qI>c{cB>TQL>j/HMQ>jfk`>N u>e"i>Bt8p>BOr>HHΨ>5⩕>`|>K6{>s0+q>.X,>嗖>̭#x>}x>Ab>QEϦb>,D>M>G U>UAA>U &~(>i'uR*>+@xF>ߏw5>(Wh.>H j+&>ZΨ}>}\6e=;2Y>8,|B >}ۅ[e=򹣤c>&K>S+[2>FK">*36@>ۯEY5>Ib#]+>?_l<>C8>']&&L'>1P">)τ2#,>`>ѵ|1 >fXl= *=`F=Bm}BN >3n2>}2-'=۬=3B=E=_N=΢6=-Vl)=!H%=f==jTO=7t=g=/F=ms;=P=ء=vN?_`=5"={yi>='t=,^=4==ֿ]*+ >->\(ӂ> 8`>,'M>n]B>318>438;>~21&>wLf7>?Z>M>Mf1E>湗7V>Jsq>mc>ި\>d'h>ݶh>0q>p<*>l>Zj>}{ŏz>sO>V%z>R}o>l+h[>{1+ɢ>g(3Z>=9>nسE>,>Py~>~?2s>Uyv1><6lg>[z}Zb> Rs>&>>1FfJ>MѢ>t$Ӟ>>Ù>nNo>=能>/2>}թ> `,)> ݪѶ>9Л>?> ڕ]>I3T> ,!>:5>>XL>CW m>Cjy(>e5>5>>ǐ>/>N>0p[ ><>KnGQ>1^m>H'>]W>3G>S0^>e5>W1>'N>'Z>W5 =>+c]@> ̭>D Ƴ>@>ҁwI>Tb)A>PX>p%>nTm>+> Oɥ>K-W}>aK9g9>3s@ #>U.!0>/>]*:>nd/>{>Z;>u>o>C >W\!>̣H>NJB>?Z>֠Y>rE;>I$">K0H>kNX?!>h>6B>uB>̲ f>$=(>39>\hR>]Z>_>&l%?7KZ ? B9 ?~m?0랮3?'<?)ô?.Òr?Q4?a\" ?FǪ?{??q< ?AEc?o4? Afc|?3vĸp?47?R[? EJ? ^d<?h̏? ?P?=[LW?.ᲊ?M$?<-?COWU?x0?9^?D?P9E?>"J* ?x"%??B?S=:J ?I{? 3T ?? +Qۘ>:")H>&tV>>R>H>\4U>">!wR>X>٤O2>ݳW>0rC>جg>R$>:ꍙ>}h[3><$ &>vЯ>8).?V>B>|d>c>#>՗"W>@ة>;%>s.Ι>}uB}n>4}Gﭫ>bA} >H`t>]g>R`>cλ)߱>FhI>ad>] {>+簻t0> >>f0>sc>r>[>% YD>C >WQn>W>-@7>!?{>h/>Y{^>EFGA>gE>vaF>By}>lB ?;pL>,]QF>*,ל>, >`T>~K>hOL>N.>@>%4>8$U>*-aG>ݱNUL9>[ >Ws>-fmR?s ?Vu@>x?%q?RB?E(F?i?r6 ?v g ?h?*ۮ)?b?OT+? Cf4?~,I?Jǐ$?XΕ'?~, ?B!?{?m[2&?O"?)?%QQ?=ND?@$u?0.W?GvS?Lc?c5?v] ? w粔%?+1J2?E$Xn.?@.$?d$?j'?5 L2?À!\2?uhw0?Nw+? 5?.`)4?<,b)@?PJ֟;?$3IB?|D?@>?ˬvA?cP>?!:9?g_6?֕:?np"j$:?Yn8?g[4?QF2?~ݨ,?l\&(?F̲U'?a#?F6-?!1*1? 1?IJ 7?Ј5wP?`D \]? }oZ?MOX?W?$kRW?(OsZ?M$rX?y1 HY?@|0n]?qe^?_?M``?߭=`?Hlua?A A_?n^?w_q,\?i5y(Y?b7,V?H7WT?;+nU?VQ V?*T?lfKP?"p(J? 1P?LdQ?MAN?PJQKwJ?"ZsS@I?VL?>_C?2LܐA?ZVOQE?|?XI ʱ7?*Qqp5?O{9?%U@yA?S,C?L/_H?-G?~WjE?ƜTu[A?VG?b3>B?S"U>? ]s8? %?1jiJ"??>oV ?Ώ?*mA?R?>H#F*?/E%?ʫ:Q?$?Yqb?AWZ׆?>o>a?C?Ac>B˞N?ȣ\ ?l?Lk|t*>Bk;>K >;V> qkVQ>OM؝>׆X>؏{>W>;+ vs>OQ>2\>,.>Wm9>^B\}L>"x(?U1_n>JzY->Û>ȱF> >Ϛ]>sk*>r>Fn>={,?vi>_>wf>=9>R>l{>#q>¤'g ?W[?\C1>?d/W?N?N ?WcT?Ϣ=ٞ?ū?#Fj?Fi?($?_5>,:>%\n>!?dܮ?)._F ?j"2~? . ??GLu?o>2>LN˘b>+u>{K">ho>cUL>Q!Lq?B0>W;K>H->c />Ĵ+>^LW>K>;Hb>OHL>p>hA>֘J4>Ff>@^M#}>i.&>,z>Ao>ĔU! >5D8>!k<5>3F>AO>sA{>ũp>SPlѢ>>X>f B>⚇>C>>z'>>1]3>َG>ܯY>ts>t~{c>UÙ8>{ѿ>[sg>_B:˰>U.=> 4/+>Ss>y@Ŝ>W !>+)7n>X>mGФ>ܘǕ>_+X>r$>'~>Ȍg>8^>;;>ħ/Y>Fk>d<>+,w>ڡ >1>=|Fx>fƙ>麁+5>b~y%>,N> >h>"(-df>_I>\)>}k>>ً۹>Sxӥ>G[Ӯe>ƍ۠Au>Ezn>[m>iH-m>MФ)>8~&th>-8>8 [>ԉV>qܯMt>GI>„>6d}>u>#X->_dEo^>]W:>$F >i4h>1L>*/WmZ>:>ieTJy1>=>j׬'>3i> >IhP>+ V>z. >g%#ɳ>zY>g}R)>9Y>4U4>ws>wư>Օ>B&e>vɊ>WnU\>u a>1W~u>ԾXW> 9gKd>l߮擊>NN^k>a$m>\S0 ɐp>w&D>|Q._^@>_{q2>n >.Fm>Vf=}2=h>;=g ~к=Jm:=4.>V߆>_1Fu>FEw>y>1N$=Cd==R=`Fc={j=iI&v=xLBN0=iJ}d= =y<F<>5<2KÊ|= S?k=# E =OS=$I1=\yTc=3ىtu=Zny=;~= =Ih|n='=z(=xo`=֧WB&=x#=ȶ,+2>z<3=Rq (>zJ>$I>Hd5B>,j2N5`> ԑby>ABj>W`/c>{x>F}> 57x>$ur>&&`}1>7c>Q!U(>'`U> 1X}^a>\ZUu>#%= t>; >x>$4k>TGd<`>ddo>⟔X4?yl"7?,m63?aӺˡ0?8o7?b!7?zr3?ꌂ/?GN'?sOau-?4?(z4[2?C0C1?~;o1?e881?}0?9#d])?b#?jv<?O(p?,';?)G?l<#?iȷ'?+?ҥuF$?!v?8Ͷ?8!$?ڥ:Y?_@?ycX?~?!xY?PQ ?-?\?[?TOJ>M> jJ>E9?\OLɰ>8>σ?V>VT {|>B>z >#Z_ᮗ>*->$D>qIƱ>_0>z%>\h8>J->>g>qˁ3>C!G>

5=A6?o%6?3+?J1?+\)?c ?=?T!?5j}?, ?~}?}I? 0ڇ>ilæ>(a>58[>M&!A>C}}>ϲ >w >C|FC>yY0>"Zc>Kǻd>[>h H>sG@>sSVc>yg>RQq>} Ӯ?h?3k?tr? {?cL-R>634q>Zg$^> v?>:>)4">}>lz>>+tC>BEX>1=>-S>Rh>JqD>F[DS>ĮQ> &g>ĢG>X`X>,(e>{ᩂe>\F'>^r{0>cU3۱>#/Y>6P@q>pi'>̻7-ġ>ûٖ>179>BJ5>m>CbdY>ZM> E>J>l)*j>loBh>h\?!^f?Zw?t $ ?' ?D#?v`s."?RX -?tcw3?'-I?U2C?(t@?w^_+??d#ng7?[h4C/?=RVԓ-? P3\(?9 ܄ ?\af&?e ,?[;!"?%?r`ħ9?,Dv"?{d/?+3?!Є8?[@Rw55?ʏά:?o;#cK?>Y]G?~??LD9?W"C?)'KI?]rNC?u3k??']g!$C?ODR?$eCS?~gFc6V?nEA`Y?&o\?P?<(|<};CB<|s!+6~ȷ=U3t=sHsF=+L=5.$S[==N=ViSx= 0b<&=3ٿ1=dW*q I=HdT.$=i : vEE2VI;c8Փ`PqE=9d^"xAT<~Vļ@OSټUdEmpnVB#$ ֖)`uOֽv c!2jyHF;gn&(RcR|i\qZA&WP2XxGo|26_PH@>&Í> \xy>1DQ>QS>w>;S>Mp>?:j>'5>+ >w\f>9v |UP>nd=c+= =D;`Ľ8Y= =N=X= @t!Yaks= Fv= #f=࣏>k=Y="em>>]f=oyE>^) !> QDl=[X>s $F>Ъ!KIb>˃Ui4>Y3%^R^>в0R>U~MBa>Cg0q>QtH`M6>R#n=g>Z+=@>2%&>#n>K\O>@8C>,.>{f >1 >;{>@L6>. >?!xf>L>cݭ(> 0(> cV>Ǥ#>ϥ>9%>,cI>atv}A>xOKp(?Vw*(>n>w>(J6> Ӎ><=^>1_>&v>>y?>GT?O>?9 p>Cj!4>h>jXko>1M[?wy=z%ij==#=ڂ=q1/=3=18$=X;R=p̈$M==MJ+ >81==DI=>=jsҷ? =${r=#82B=YD!U< ;<دSԼ^_/7/5hl>:֝4Iƻ {1>׼=joL0d &7"MO-T)vyQ'AAr&fS!&5Bѽ Iҽ54ol*'oAm?Y^׸@ .i.eQg@]gNhv*i1 2B'P D\{큳B>߽Wu*ͽ*=,j` >y=p`?=_`=t8p=S]П=#,#}:u`TGlB=g@|W=kF/=R''I=O\d=Yutl=օ_3=S>=DDCC=DU =\ԍ6S=) =+b=O=Gq& >ؐ8=3W=f=.A>);kI> xU>ȀNp>=WzW>Xt4>ލ.u >/Vj>Mmx&>vԈF>!g>Ę>!4;> ;D>;[1zod>~lh>ob׭v>*%>#e`c>Df\>o-G+v>`g)%>OZ}>kQ>3wUr>HGy/>M&KdG7>eB">!Vi/>n F*C>Oo]G~N#<"gU!SaGkooN2gi{`r>v'h!O>VU}4>Q >ŷM\>?T>TdA>¹>L9>IaC>'›>a6%z|)о{(M@ݾ%eʾxJ]7꾼s!qnAھDv37^)'þ濌ξA ߾ٮld<7r$~={&I}7.TTwƾlZ{rI۶R%^BC׾n|%dT~/MTelm[u(Xb *w(ؘ Ist@dNY@ s=x[,FHbʖFEjomOKn>TxʯNH"{E6O&F8DocC tSNL3p0q׀ !=glNuH^\jV漱eTiS|o!/kܕF;`qlg?ʾmŮ}Bh`$\ \Y?s} ?n;>lJ>$R>i;]?.OA?r ?NBd?q~.r?bT7?" k (?V6~0?b?a+.?3˯6*? i?zFEA?IF)k?"y?pGa>U'WG>))3?\$1@"j$n 6)n=bzItu"d|'voIur,TFj>~Y%9>@V>Zڃ ?W,>H Rq꾗y{k ?rm?@.?6?'Z[1?۩w1HR?A?¨,X?7?"Bc?'P̥~?B֮?EՅϾ?>_^~?*ld?qe?[@?$S},?7-?@=ago?_-{?Оr?$T?[d1k?/U^F?M8?װ2V?PlK:?~h?ggI?nPG?8pF?``{g?8G}?a?%Q?dj,?ї?gW'?ŤzԢ?{#?K{6Y?.s ?i>uCL?H`3?ŨVI(?@ƪt)8?7::?*1=?űz:*?rU_+?N4? c?C2O+?$l@+?¦UO1?b> ?,!#?4:?+t|?Is=. d?kbW>V,>>| ?~?Bp= ?'l^} ?P>)Ft>H>${wھ)O >1K^Wt>&=>? >>e+3H:菈4ɽ~' T݃ ߾C) ƾGx'm|@Jj>dwB۸>K>EGu>CCS>.|>[b>(>%Ξ>ހ4>{;}Y> (4>>4Z%>9Ee3>ŧ>Rn>?<0(="?@s@?JyF=?i!, M?(fk2?|H)?!n?m ' ?We#$?}M?B?{\K=5?v$?&?R(V ?"Zh?Xw>E`=(>Gm->?sxA>A^>6lC> Lj7>0+>]_>ZQ-> z?.1 g7#??1SZ?bW??! zIH?A{ʌF0?j)7?qX?1i^w;U?Nv?'o2H-L?]EPd?\I?!iA|?7֘Jv?zBhm?K]?ͻ`y?`3?述? ? Pa?&?Y )?MO?m,oɋ?7jL"l?~?#e̻?=?F“s?>t1?˖<*?'??bX?It_?ij?.c i?6mCZ?6̉tn?\`?CUS&d?ZXp#v?pP5Q?(9Qf?ه?F8 ?b|Q?Jt'޵?s3% ?v!?r ?Awq?ԑ4j8?xX}?Df?]D?Xc >i?=/[?@Ղ@4cQ?~?Q?X?+?!;~@$O_Fv?fF@v(?|P?I?9`tx?hF3?y?* /?x?rD?{;??(T5?WFք@ g? W@~RZ?C?mЅm?/@4)@ @g@_{ @oq@ @tF@G6^@<@ؘ! @!a @ @s`}U%@2v$@LL-"@sL"@bu& @:@@u6$@@H8"z. @,"@qc,G@ bb@ g< @кR;~@3iiU@yV@=x@-<1h@Iaf@uGB @\@;@AP=@x.@>+@wNE @1g @s2g@g@K}@L/q#P@D @xb?iIG?9 ? 2%@*Ud@=I @g:j @P@܀4 @Qp,?1Mu0?o?Y?8v~x?M^?V{Cgh?äC^/?5A? ?W4?M`e?GI?+Z?nRbjܶ?YC?bd?oz­#? > f?1`UK?l+uԭ6? A~?5o@P ?b?+^e '?t9?('Ն?vjr?+e(?Xv+#?i)W?b&?k?u<?JTr?9`~?G0#?m{?v]S@*!{?/ӂ@=ږ?i.ǒ@F3jީ?ۺ|)[l ?Ȇ;8Rտ詞t?ѿ,ۿt翛Yg6S-p0쿄lU~jsWm bѣ>*PBQZ/l y)+HrAX,>Z4 4) t | ^(XZ OACͣK0v H *T'A'.AS 23%3^D K'}!J v5ߊuGkWhd`㿦!Z!ٿd9<^ƛSxBy:BDU"BSݿqؿqE")̿']ͿClǶ,"ֱq$0rk游?~ -4lƿr x˿<׿6WlMʿ)\]<+2= ;~>OkoK ƿޯ}sAjҿ)E&zUp).ۿ]E ˿oGTY ĸ]nTƿwYe&?Dޯ~؞Uxe=ؑR|Kpn#kOs0 -vߤn`p! [UL<* vǡ I|vU5yATcVPR; 2< z08zIC@w?/M:M?"d4؃$'ipBw1lIAk$/ G"<&,ⵘ:m ?o*<ď Hzr SVjpY>f>d[EG?X?^>Ekk?0ʞ>({c>j'?%Q?tG?rz+T ?^m?{Z56U?;u?j'>cz˾Ymo>{=2ub@ #d: Vm?u?/#$>ǝHp̭A(#u>n?VC?Mzy>UG\>6>\? 0t7>;yao])K5C JWZ~:> ,>$ľfؾxB1H_%?6klbM[^GxOQ3_ʦ<'P,e'M`#U*_4zTrF?*#yq9=PWz!AZeIRTHFc|NQ@? }iR:8׆̆:Mo+jk!>,iwĭk'*ILbB(&~t0ŕG\#S!P'<]b,@ 2㙐e#e38iubi7ܤ ӼB?d)V* Q3|2d8m_ iwspo>|U_ֈ^mԁΡ=Zjt)E˹Y sK)xxW=|.i`K7=m&:FvCS)|R(ۤW}B;vBӱ\5oz.,|ҾJkMO K-wءj;9%F;vlB̵S݃vvZ瞷iKM0%#ޯh[sx-n &28 #FNI?2]cp 4ꊖ*;-GBh[xa-%lc1MJ}޾tֆѝ< ھ?$(" ⾘`!#DԾ7jUc[&1΀p*qΡv5v7f0 ` KMgu5[Nc>?ro= \5kLDQδJ e5s;PUDKſ3䢿;¿ZfG Eկ;,$NI.kѿ{ɃӘ s慽AT#J1wӵۿ ~>ܿ͘LoL㿜@aE>k,;my@Im+nT=rl@7ҵ!E?PR&](.t)j"[_??K^t `M*%' +vea+gR`BZ~+"fo/#C9 b*d()k5>%>h)_y>Y^?/n>Nj[ >52>?>Tv練>(ٲ(@>LjE>xi.>8(>$G~>ʨ+H?1 N?|*?%h?Hc$?O W?i٥?T+>]>1\[>1Ͱ*>|Gg>l/>Wy>JBK>_'7>3j>譈?B6@r>oiy>*T>xX`>M>z>uH ? i?Nj-?@' AW ?m?2?iyt?уH ?>;b ?ng?ऴ!?J"?csB&?z()?w*$| ?TF$?La:$?GC'?Dvj("?H; ? %U?^(ќ?2N&?cpzg?dxM¾?,د#?r?APы?)GR"?3{*%?\1%?*b!?NH?٪Yv?7"?s.W?TZ$?5>a!Ѿnl1 9_~?n>l*>Cd?>B frl@S>= D>v>F-"_>sPhp?<-+>u%>`>Bn>U>k^7> 颮>M\F>%|>fRE>cò><S><}C*>"ޡa>jy:>\UQF>6p>,yۗt>"ܴa>ɐȣ>EhI>Zg<ʼn>/\>p >[+=,ܝ> 6#ߧ>E>}a4>eB>Sܱ\>+>>PB>*;>ɪG>s$>d*Ǫ>;&i>:>'Q~>?!Oǭ>A&Gq>rݵ9v>m>Ǩ2>=KnZ>?7>-cBZ>w=}>Ty>`J)X>R=U>ۼؽ?f>fx\D>6%aW>e9[>w%KXJ>2O .p>t 'T r>6?>'DZxx> c>"u>R(E>,ӝ B>%W-SM$>ݦڪY>e.|2uX>dv">r9g,8o=.>ڄ@6U=V c=9=^/i]X!a'Ԡ=V;< 't 3=Q[=ٚ 4}}،[w DnRrqEjTOuRmh}s  DLѓ!N~C[28-~O#0Z爾Amb~t4z.f-iqL|.Rua{bcE_oEy{YMx5>gZq)y{' m˜=EK,&gBP*6x]'͑x$+;Vc#ƾ:ҾsXѾ!;N!0W>ņ>Zhžю]˾Izu3b꾚bXپ(뾿#3F 쾽(JW_:v+ &»8HFAxW𾧍BT(|-M.0ܾ&߾{(p辋$Tԯ"ABFVp-oUgm#Ղ< =IYKg{0SA"2[|#zc|G{CNo>!%P/$ckB%6V%VPQ("!*35F'y1sE(M߮' ؙ.&`@ d}HYۤCxrlĺ5[>_sP* :ry|*pbDhN4D2(lI( }+փ*%,4}.iyv?;S)l>bӎG?\5e?z%?UV(?HHd(?-"K)?F*1.?J [,?XU]"Nd7}^K`W[- !Y<̒lj+EfHB<0Ӗ< b`͇˨{<^2M잂e=tsEI9Z?<YIXΠ=8 9y=|CGǷ=WQ=@:=F= D=ǩpۙh==%z`g=c6e?0=EsA=6= -=2g'=js2H= BY'L?쟞!)ԚI"~-+e&м䥼oW`+<`^/f)(}@ W։E{A<4aߢkr>6(OCQӁff=k0>m{ 6ֽ:lR坽+ƞ)/㡽CX*F,RƽNҝ幪!(7QJ'ҽթQٽ0R܆?V^N?Ҍܽ%U^ҽZJ?ǽt2+̽x.H0"(7 Y>89gG2!Yb_W8t}Gya肾kc7w0\:lav.냾QiYRѺ9PPğ.O%~hȁ[pE[Pwl)-Nt)RY FضL-@+Fr /,]Lv!)Յh8n RF>"J1uKR` fj65>\ mG&)r#P^Oڬ'@?E&G(>W{fyrEllń,Mۤz=Gr8jՐd%u?d v]m/z_V`A=ayȐl ϞND eԇS>`".t>OۘX>*Mdng>06Q>^{FS>LV ]6>O Ws6>OŠta>q|a>|_At>T+`>[B>-A2>)9~f>p 3>"H>5L>hp'>MO={nyuTa+C5X$iv.ꗖؒozh=@/=XfY=mjS=`o5=1'݂=xPU= b[=8`=4-x=_K+Š=OT=j=LQ=VK= s:=|G=4= >>@<}=6;_=?Zq=B=* >Q=!_>. >OҞӖ>vt9>'i&>*0>KJk*>| >k >k }J/>F 0>)]%N>j dT>GBs[>EŖLM>19`%2>Ձŕ>>wp9> W> ]O>Yas9`>1xY>JYa>bE~Sl>ȯj>*Ymn>Gs`>Ұ->Zjyb>/tWT> Ȏf+E>W Y>- ֚>5>q$MyA>]sO 2>[ved)>$>{Ni>wO絑/>޺ I=>e<21>6r͞6>n?yW>1mR><b>*-h>pzm>}9b~[>cӓ T>َG>;t>Tg|>Pگ1>$&>'Z6>`$sgr>8p>an>e uL\Ξ>}j.>>U|b]>Ȧ>ޅl>mZ٥> ǃ>ٶpъ>jؤ->Mv>G7r{>;(m>Ά2wR>jޔE>[ĕNX>Wde>(v]>s>&cAB4΁>wy.'>NEÄ>;s>2{y>>! G>3 +^>}Z>rՓ`>*ۇӜ>=1'>>볼>8th>]tl>y>G6L>Ub> b -a*>h㶴>gcK>}->ٷ>٥>`>o#>FZۙ>Jʁ>0N>< >#>6q>Kl䕽>ba!>wU>I)CB>zn>I> R>^*>®D>k'>>>l'>, >"僨>L%:><]">Y >Ö̝>YCɀX>ޠZ> `>1CF`>O>ŠE(^iz>:2L.Ĭ>VB?>+Jz>)eBM>mq4Om>/;Y >O>Λ)><})g>wV>}:>DU6># >R>{/>:d">@>-Gno>_|>Ѕ>!>N*7>jB+>lG/D>]$JD>Aƭ>ʋF>@$e5>'3F7`>iS>zrk<3> o>z >Cy>=*!K>rU m>~s>_(m'6>|2}> .g>-i (>&?Hܵp ?Ns ?o<?ij@~ =\=`=)#u=u"/=-VaFs=\e=i* >: @?DZ=zW=W>d#U=Ǽa==u #"=jAx>M@$>1`5>ws%/>A:5V*>>S3F@]=VT ÔB=v68;>f >ex>s@ =X=]=&`)=_ =ypr=RDŷ1Y=7= tzq=WRNG=4p=-?="5v$=]M =kpR$=5$+=kl"E:= Gxv==f=TM=a\=,^r/\^=]=2= D=-0Dj=d=Dž$F=s>=\:=6E'A竼=`ziz3̅:$̈#tYMfLp<E<(Z1$n'<4T&э'e9K@*!g %EvѢ8w񼳑'xa013s`&Sc3_:#,t\`=kLKf2\n(ޝbv͈۠ɵXD;2?>r%h7 /7jy L{;Z3*w=}=^N=B[j+= ?D=YR蕹Lh>o݂=4S55Xy=]s&B=4tȃfCz%ၽ2xrR"sGJpNxbzj+|T+9 ]y|hx =&='1=xEH=yR7+^=$M=|Q¹?g=X:ɒP=qi6)I=Tn@W5=}6l6=7U=~둙qK=텱=oYv>p=)gC}=Gs V4=EXly&x=#==^f==z=T1{>FA=.=Ͽ{^_=>a=Eђqk=?nQ=1b=~IXhc=V\ِ=QY=@ie=[dGd=P盛>qݹt >C%gS<>lxH>̩oB>( X>Š1l>IY@>`;\c>2ЍF>_= >ۓ)>> M8#>XjV0>>6#>N\wÒ[>w.l>t5>U FW>CYN/t>]fz>D>HÂ>Q`i>Hu4F>Ɨc `>X>b`w>f|>D+>_`Ɗp>~꼉>vR> {DG>Rl>;1>M_>Rr>Bx4t>X&%oy>׀8xa>8C>Ih)e>WLC>$J->xKbu>> .Y>M/">$GK=ۃ*c9>Gu)!L>qZ ὾kR&aTQ鞐X-=l`A.r5%4⑾ Z (>`q{>\$UwB&k>_>r4Cy>c>9>GƊ>>+)x>R?zC>ɹ aK>OC>kvmj>itP`u>\xBO>_ZU>h*,Ţ'ΪDΥi]᡾!Po %U5FY?pEcS>QDjLb`rH0 ̖jTI6TO/L| m#ݛVEwj`ñro_/2.)hr1kh+ ә~ uZ; ?<*rPfqWu龒; bi`={ѾԽʾPku S` X^ܯ>;=na&G"W# LSź~ ľHȾ%þᾖYZ{ ۾B&a޾Z4Na/S㾧[ݾnՕѾ@>-оs|IDɾgMػToaC㽤C(dTV46q`(Rþ1 cXP +=e˞pkzŢp~Q>IXfW۟4}_4>n'nj5 I}q9`{i3QvWJs~q_j8}o8q|LjxFԆx>$!e!,T쫶(_LL;jjAvY eľ!K;Φ~/5Ȝpob&Jj_tp{@Dk}xo噾ZCYb3jkÃRhu.^*r`TXrohj,׿*r{nJơjtvAeeQWSKq3k bp֎cPH2a|/{^~vBU?0:Z-\}M"3 \)a#ȤQ4II&/PNFEh"3D?Hvt6:t7o Utty$O. K1.kʌx,Gb&?~X#q`g/g;0w9GÍ)Wˋk:"kǛf-tP#jq?KeE}AJcPX8}bD)pts'tXln!Ɇ\Bm@wwtjKC {A1Rtf|:1nR0-N݉}T #3Ou![ ֣8wn(_MAykzn##"HG( !-jEwP< R^v#͆4։`>жsľyw7 ?.J?9Sľbiؾ+;\gB"4V=]y྘ .%>b@> c&>~G> ZBR>uI)GW>. \ ?EϋK>?bEZ?=ԑ\?ZJ$?$?q2f ?Ĩd ?\I?FζY?P?0?u/?N5?_q~!!?՟K.?6!&c*?Ї/?ȤFV)?jB+?X5n?2?c ??7X?2,V?@?]a?mΕ?,҉&?V'%?*㋃~#? &?`?A`"?tV[?q!1?t<]?  ?b(??@Y>,U$>ͫ8>0s?%~?!?t@?O>;BF@<H~u[>+쾺jT]B/1ҭR i _ !&e-{aXBubrJ/>Ǡ_\5:ھu~C\[4MRLRվ_-sǾO+Qھ\Y 22x 1>aP>xx>Gde>/(_?vm ?Gcqޤ?r\݂>2#>]uo>rp> ܋F$>ܩP?@խ>)<Ц>sZn ?6``'?SBP ?2cШ?!7԰ ?X"m%&? 3?Ra-a!?mI?C+͞ -?]a;.?{0?@%3?6-[D?$z:?m.K?kLBH?رS\?V[?z0?o`U/?݊E-?gssF?MkrS?'P[^$b?& }k?ȔF #m?hLL|w_?+;|rgv?j Ā?C&?4?%pr?.a?54Kmsh?L,<5? (5ې? ?4;?#9?2 ն}?R)s? z? %[?zI_v?%CX5U?Izp? zxJ`?.m͎AN?TD?O`gkH?Ip|C?e&4?Lh.5>?zYF`?DK?'xD?KOkB?0fA?F4>B?zh|4O?F?e.B?@"E?@9W?tYB K`?<4 _H?+_P?uΌf?=rEs?xH'q?rJg?q},d?=Oj{?[ǢBt?8:i^?yr}5s?` sy?ʔc? ?UW?!Gke^?/ kY?KJ?ܱͣQ?ǬC?xQK?;]T?zox\?E-0`f?fS?KrLB?ejB?ռF?J.?pzP*?Cm?)?S9"8?q!? jG?j.|?DXl ?݄"D?)r?Nqɓr?g\&9?6?tA?Du!?ޜW "?~' ?%"8?*ǐkL?GTV?j>9?Q>?J??L?P5?yk?jO ? ~?f=Cuf'?Mӛ0?ʗ-?E#&? X"?G%?Sp%;,?hwٱ0?f糋3?l/5?\̯q:?Hj=?,!,-C?n'g??ק% 5?^?2?~,6?_.0n@?p@?E1:?>`?|-?TG8? <1?*?u@M%?P'w+?no#?vv&?%B,?q +?Պ[2?I|%(2?/3?^=+?E3?kTZ~/?Kg+ac+?+mJ?@?x^?t; ?8[~%?7'? a[&?:  ?u$? 6 ? ?b~x?M?;f3 ??{/?шɇ?x<?6?M*$Iݾ2([>h}{Æ>Dg>Oj >NY>hS?HO@< ?fb`?W?f?io!?h|.j?/fJ ?sҼ?|ؚ?`an?*`?$Ա.>$L>[QQ턩>Lb>Tdl>iH>HP>4Ͼ_ 8>翫R>\PžE,.FǾ,OR>{ >~>P ">.>Ķ@e>2ۗξ,GTWɾ`)d>E ch_wL3g_;CVK;w!h)uzI|;X\w㟹=OKVlMxc d{Y 4T+'I{=)$m1ÙD]7k߾?-y5ȞZվ .fb־ {߾9"Ծ%_Ӿ_^ɾlѕMEP-9ճ dQ>Q6Kr>b`5 >KU,>^MC>fٲ> .9>Yx/YQ. I>#_.~>}ѝ+> ׾>Ď>G Z>n>Jsx9@>z[>y{[E> I_!>&mjd>*2x>π"u>/Wj;>?Ƅ>6>:G>>E>EV?;//>B>_#X>$Z5L>&>k0>[x%->(E[F>WF>9!>Ӱ XՐ>ׂy>F >8>pjμy>Hx(ߓC>_>D>>>t->&*=>Id:>;.H>nQ<?n/y>|$>4>󕴘?EQ ?j?$u?L˫v0?3?Rc/H?G4?%F"5?;E?vD"h:7?)}j?7q)?rOE?+p? ;L?fp'?$si?8 ,ғ.?6oV5>?Sy)K?M~-?[ͰG?#8s>'.hv>i\Ӊi>Ye>lqC>Uo>d5>lT>|o^>[LԬ?]a?>6>dĐ>ot>9FW >gܼ>;Rn>!'8v?z/?H W>N-^>z. N ?j2]8 ?Y;ނ!?| ?=?=bkMM?@jfD?ۢI!w6?6W:?OO@?iOiqC?3;?<8:-? ^!?т{? FOy?f?s /*?R_`?o6ĭ2?7t;E?BpfwQ?:a_A?:e\]?0jn?.r`?QW?V3?A/dHy?NR?R,2?ބΣaz?fr?p Da?RQ?kh?v \?s4dS?I+^?ZBd?6s?)Th]Q?22aEx?D?4\ٖ?ak٤?ӵB?|*c?6xC?yfݟc?+@?Ǧ/j?7=6Fz?h v?f?˘j'ʛ?w0p3?΅E#?oGR?G??!Ԕ?zm(?U‡ XF?_舀s?4`m>w?YB/\?$sAf`i?9b?ZWS?J!FK?6=d?axk?Ώ@}?)xpۀ?S_m?>+LpX?CJږP?3Ĭ}e?(..F?UktV?z3p?d0P|?f?$??aFwT?d(a?Z̛?  :?,?\?[SOM?X h#?<1?Nx? ?0SVy?ؗ 2? )_q?:M??t6?㏓_*?Ṯ?(Ӷ)t?=b?bM?ra?&?XJH?Q^H@}Qt?WN?JڴK?7iS?=Ď?x"? H*?G#~@3W@od i?+om@:h͞?.?I3?MA?o=#Df?DyK?ϱ\?/Z鵉?I"??Y?~]r:a?[ m2*?v?l}?daj?_˺?j!@H_!@1Z?5z@!H @%{_@Y p!@J  @b]@Y@]?Gg @@: @T@́F@= :@ӫҖ@l@s@@;.b@@,{W @7«@o:@KO&p@6@5zb@0b@䳸ܕ@}K@7m:  @4{N @b!@49a!@k`!@<+M7 @vw@~w@? @Wt2)@@J@@5@O@gU0@1 *G@F@ E @"ip@%U?/v?R?2&??@1y(?pRyx@D @/n@0@8ˋ @=<@c8Ɂ@0@ Ot @ևI @O|@P?7txƂ@+?ĝa.|?r\A?fL?^n*?{? k?م"?~Uj?$ue?lՂ?x}o?ʽ?H?`MHn?k?+`J?eʾZ?M,7?@O?B8?az]?;*?qx ǃ? ?Cr?3չ?p$}?P?H{ ?,UD?byP?J?hMV?TY ?`h?L?˸ f?*wt? W?P5?AZ{??lUu?s<:?O?g?=n<?89~!x?†?Z*?\ijm?_?KDY?B?JI5w7?3>T$C?%-? SK?F ? w?<9cB?X41?p'?~?Zh?Ϩ1Isj?ː?TPJ?7?wY1>?U?͆(? ?i0q?nI0@EIAO@r\@vbބ@BQV?nZqaA@n9BR@ٗ@@|> @Zj @X@y]ӯ@-o۶U@_?r8?ԩ<:?STt #k?B?ɳ6&3Ywz/-I0wv~[/~ʿԿ<пB?s[Q8̶3iw˿4RMԿSHi0ֿ#jI b)쿳3\迤rɠ.*R`(^ʖ]y8 𿐳.y2[SNGo{!]b-}N 6_u Џ[b># A'' Zw%D= %6"St@58nT(L,u8']AXAO8pX/}覛?a0&^(A_.B F$F x{l'W1:Sl^//3240QO[g | ߶$|b^jt 2;B3y ѲQMpuThp@ƒӨ~ hJN,szaPѭ߿SN627k՜ i"QGF 2Y_E|bAdU )9ͪ _^2ܿ`E+#Mܿ>!Gտ=<H5_ĿDNToҿZ;ҿwn?ؿ[k(Ͽc6?". w;֧)y0OU G9ӿ?]ɿKUпkF.ѿHBʿ֚i¿ߪl|oH򦿖 m>֬0RVFܠw`m8򩒽Mo=|{¿bEx1h`'4¿Bl/ۿLȿeؿي؟dMAǒsITC뿁K ۿrE?cӿ]: QJͿ< Ŀv2¿sO)ӿ<[̿>r >MS?q$iɍX yPf{o2™Γ-w[_%=cC %s਩QVNg0yi"]f B r\r_Z˂$ canQl͞㙿YLY\e ]f9 CeR.Ք'@eOɪFBygd/S{GsPRL.[1qfRG{:Ia]X;JsT epAE J#ЋiF;M8)9Yђ:Z" 5ZSA14<^5W!'zDٯ4lC{aT5o6 3'.4~D>j9j+YrK#p)G89. !@L{VZ.wO#w/&3E)clkZ!_M\i)߭"j쁖ҚpjcA̕Ǜ%90L뾬zFP R}6 sr?uUk [s 1K|a!5mX{׽j򳁋E? (U"D:›ϫ2S,C X5{ݾ8f6>ؓFXv>6>t>_wOxR. b>*U->B90N`>%Rw>tkG?9Aa?f ?'id?6ef?ڊr?]-?G߉/ ?iSk>M >Q+ݾW[}*>%V>$O5$J>=dVǾ#T?4޿ ?5d?-[Y?Q!?̃|!?۰DI!?Hg?ƨ{??R6`'#?e?8> ?!MA_?a*k?wQ?4Om ?֢>5f\>>bNu5?\ H]?]We>W#> W#:>(chMѾ >q&=Oq JA)rX2|=B ^WNU ?>y>= >v=ea ?{g>R?lԛN ?g^+S?->p\ ¾J=h//KvgޙF}Ѿ Qz zv@ ~\ F aYAھC$@Q~].Qo Uvh|K]L*p #5K>L,sO>h HV>Vt9>9`rX?Y?RE >!# ?؝r u*?L%?n)?Deʛ?+26>MlFX?9 ? >0>ҹ>TxP>A%'>z6>Lܖ;?P[ ?dum>h>ު >K $>uX >2*>s*0yue>=(Ҕ>>->ip 5BD#ӫ2}!- оRI?2!gp辒$mMgȶhwEt F徯}UN,྽zzԾ-W›־;v.U>&% >,G>~Xo>QlVݷ> FľxR-xоj ξ{JFT@e4;A˄ ^?l2nþjLоYҾ%`徾gY/Cm`۾kö߾CMD Cnf+Qtpvx ):K #vZ: pg &"pv "G%z "Z k >>I P.O χmϰ;1vZ|b' CJl$ Z,>Cy+eQ*@"J w/[>-8?wS<b.3tmmB4B>i2F+e3==G/6t_2v^ 'HI6RY!"P?v. !+E86j< jwJC7EMY${dOKn՗e3hbv<~n xu?F`yd `*i);aa^SW=GXS(}DU4k/L@ZCS$DUB(f9#?ϒGι'Q@AzPUgW2CNMA<ھCz˲H`H6K@pZx?IYGGHiѤ^TV7q~JcG)^tmDx csl" Ke [YK]hlyMv]PKyAdh_\I ?x i:&x^ agqg6OeR>ۖ蓿װ󗦑6o%وmtGnsAz݀ [fp|޵ n锿י֎^M;i ֹB䜟pw\tL ǧ*_xunY?~%sŖmW\pKpbkNnxΏn\bSyɬ5idc[DXdo Z\TPQ@?NRm{$\$>_f${F$̿p[v]by3Ne-Wtssq 8P haB;g5/d,E44@@/ٷ&(Tw! d?L:|7,Fp3z8oX"yh LUccK[&a!"n^YfŠnb]] J`ľ2i־^V׾6KǾ-ß OgؾNqT`DHK K޾t91vѤоTaEܾnv/¾JؾTZ@X oje׌ 'w#M?Ͼs,FQ  $'0.8=P3Sh( #`csDTrVо5cP_mi^`DQ d3Za䦷ttu.{D@M[|Q@j&k"f8#r :ŕtFjltV"[DZX" &ƞ𶨿 ִk|W_ܻ$AX5@)dˌ4>@Y|*=k.䭿@̿zůk ɿ7ɿe#%Oymwѿ[׿e*f;qC1޲\Z,XxN} ٲH~{)ZBQp'y3Vq1BAн鿏v{uĀ8dZQy'G Fg 4 ȧ&I.8%Yֿ,2Cdݿvs忤ڌݿeϿ0ӿj4#||kȿBGʿ; %ο% W ;ӿ ࿱t|ؿddgSg?ܿrr#Ͽg#tҿUҴ_Y_ZUкc̿F tȿ(K}pխb'п I6 1տxǿ׿2N-@ۿ{6oR( ̄؈ ࿌—@X4]2x_SAc#f%Snz}N4?[v5Pahϳ<n?^O_EÛ /+nAV vl( n3!t$oդ"&_LG$`7$.[6'[>^Q\b>C]1q>%`q> վy>r{ 0>Aᆍ>p%gc>! 4x>݈~>v?6>`_K>{ޑ> 'y> p/>~ڣ0>~Tr>ܴUݐ>7B>{ 3Ⱥ>߲WL>ʯHBn>x3ʄ>laU->Zc_>XAG>z>^J*> >{PPC+>7>`%>1D$>bk#>GAߒf>Q1x>O, f)>)>=ր>%T:>2 >R>,S >vev{U>>O>tW >f >li>>W>0;6"?4:^"!?sN?.n?s1%?1H?l.`F?:y?Z?@5,G?f ?k ?}Y>?i?3 : ?$t|?kQY?PH\j>xĝ?>b/;>MoZ>;Yh>w+ d?v ?ۉ?i? mz? =X>jq>Ҝ)>*>'>ؒd"]U>1;9>H'̃">2g>C>kv>Hw>Li >@Ƕ7>ݏӁ>).>'d>QcS>>Ǡo>>*JÒ$.>Kˮh>%@@>lyo+>VEU7>~En~>3ȸ>)b>%ɵ[>/>PPF\>-n >EӦ>zi>m0g>V;>]c>\k>py,>2QS;>*T>Z$b8>L>gYBK6>Yƥ>611!Z>69g?ަ ?Kjtk>9Vْ>ӴL>F7omT?g֧3 ?L,M?Ҋ8 ?q~vȔ?Z,D ?u(?)@? ?c$`? '2% ?>Ɛ?hV?- ?Vd<?n? /0>_ ?:?)p%d?IÓ{?1y7?&՟E? Y8k??ko?԰U M ?t)ϱ?Ç?vÅK?.!?Ǭ(q$?Nrt%?dJ ?. ·#?Uuw(?s'?FX(?9-&?z #?X "?k_z"?g/$?GF ? QL$?vc &?`L&?lY)?:%!e6*?_v(?7Y|~&?$/D#?T3*&?ct!?Gȑq"?V8?:K?1-A?*k ?}b?!?Z~1u?e,?Ⱥ4?W ;w?^?*)?HC=?pDj?57G.u?P (?3*?2?UyKT?qph?{Yl ?UR ?D=l ?R]P?'a;?Sb?. ??n?EW?&;1?u?5PR" ?NRDQ"?& $?u2a$?~:s'?pg"? Ks%?; T#?P"?+# H?o5>?Poln ?!0?Pd*?fe?] i ?o i^ ?*{?]9fnF?rr,? ֱWX>1>Ut.>XnB?AJ >)c+4> yD>H 5>? 5?f ?[z1c>&t?qF>NGB>ٵ%,>q>$> }Ȟ>%ǩb>pqP>0ʤ[>>N>[/>维w>\ÿrK>xuE6>S0\>I>lVkm1>+@??B`? a?en ?6,q>X(?y-h?> |#>R+$!>! >>R:ڗU9>iHn%>JH>LK>^cs>d:n>w#@>b>3?>}o>£$W>XEݔO>sWg>G>1t>xv(Y>ЫAeb>;C?>й_\>2+ >ѠKF> >Ky>>.}>nA>ɏ\fu>LO>kR>h`>$Fq>#wJ>n҈[bkqUP>+> 9pi>>KL>!,2>jK>:T>(p>>d煮>pܦ>3b>q<>w^wW y΀>t_>H'0'~>.챩>X_ʅxVH,X>ᑙt>41㶏>fe>Md!;0>C>hȊ>o>4!AV>&>C97N>6ت>|O>t~>5 >[>V>e> Sz>%zu>@>}E#>`oAj>t#g>ā1H>oy4>T_ >i9>a>><7F۶>ąwì>'>o>~@>+zz> i>:yY> =>$bN>Iɐ<>3P>-G !>m->Fmo>}'>g>J>ǩ4>Ƴ>h܍>ķM>==zq>I1]> 5>E P>KcVK0>qXe>NE,> O>y$22>s">r88Z>52ޅ>'qZ">- >]|&>E>e$>&?>=KI\ >vt>V=&j>kW>ȓkڭ> B>AƔ>aC"#>8RH >S}NJ>fagw>A St> ~>ߣ#܀>kEK!>YRߐ>23̘>“>?ܙ>mk<>7C>ewq%P>"H>1>-ӤZ>.i1>uZGА>#e>y[> ޗݰ{>k,ú>t&>VEUs>a>ܺ-t>1~?7{>`SYq>j0c>'sb>VP>P?Y>ӅAO>0F3a>]r>&x>`C$_>6c>{o>x[=[>KDR>MdO>f FA]>q5Y>Pt$F>Ċ3>>Hv5I>|ZR>R rV>uXf-xR>I_No"i>|SMD`>+z;c>b>`0f>Hdo>u> B0p> '}>ěX6><ER>?$u>O܂>~V=>{li}}>SH<ƀ>Leu>yn>V'}i>kshp*m>9#s>J-s>PS/>@$nk>E*>x n>œ b>OF9vW> ,`rl(RFhE>mV>& 3`>Q>"3X>>\jh.>i=$::>W LR>Y{18`>~WDO>;PMiG>%!3>L**>[">vRx >i*G=a6y=$-S>n ?A>̡j) >bHp׏%> 5/->7{>%=]aVU=S=pU=Pkm=9͹"u=FVcŦmt}m~=8RT=;1%(=/c6Wu=Bte:>H5u??>B>)[R=m{;Z2蓴t]gB8Mꔴ3mWm /=((&/'=qC*8ky^=ʓy}!u9a.v[œ]2L1᳽v (OǽMUཛྷ-} 3^Fܽ c>Jѽw 6 @{WcH &2d8šܬ5B[ lswg4$aDB{B 8!2LQ'4d`8o;IzfAL=NQ *R7]'_]k/

"M=sS)S Ʈ3 0IJH'o!WS Qռ~JEPPmzmej_ Yݕ2b#ܪ5_Mfhԅ?AdxTq 6o)g;  ѺYpMzH4M/qkN,+褧澰p)\3TiݾYbՅGJa'޾gq D&GIv澅P^tT**n陾թ[1ws{d"ɻrr[ {ѥWwrBPȇxmz"iYg_|ӏFr1gߺ#&TƖ[}W 8ُg3"Xia3nόcFs3С7 nŕ;N>mT(!¾H~&X7hawm_\w3ʱ3;]BX?꠾W`@l y˯lgj2G.'.ȶ 3esžƻƾdVRӾ2k9ξ 0.<ؾM&U3оAѾ!FTq̾"$]Ⱦ3Nɾ_3;LVDȾȾc.aLѾtӾ̢6}ؾ@վhX:T۾iySھ5Jھ6o+9#Ѿ Ӿ qYC3Ⱦɿ=;־_.bo˾_X€þǾo@!^žо$0V 3LO\22vX 7S1&Z=#>x+h"3[6d. Zb3j3lA[tyYu̬[Tܿ)%Ojq2\USIf[$Ь5)F}z呵p7pLٚ!z#8r 5@;/̙St򵈾VhLUf|\=5-g^m^U'GlI(Dg nvrpoI遾9e/s{ F|U2cyuOϻcsRFmcp1 [?ad/+N՝h p9BnwҔ{Ηml!Fp, gdQ^~N2҅ucWMXb,-Dfv- D^&?d{<o_d3+tp ~E|)5 )x/tX~x0<ȃkTyz(,.ۑK "ĉ;buRꭧQ}Y۾h2 cH6J䔾Fd*ɖ9/灾 ~ad|]'ⅾV?F\tktgumVS+ld "w-Z{her?'zmnxLf\B? ۄiʊ L5@UQ kq^!I T `P0GGQ gJ!AX~kUZ>FjqEHD+-7UKKK#k0(*Sg-[az#ir&@+nk/k},Ru kFva`gas~xt% DAZx;9>;3._ay$9t0_yh//s~t*e#ǰ7Ѧ.v;ɠXtG%CV, 4 8s7jR=UyRӛr[v#zHd %#~Ⲿ4Zly³醰nbXrkťSϘ0{ S{ hT;7\Iɾ_]JN=þ.-m]žM']<ʾF̾_8CԾR:оL \վ3w:̾Q/ɾ^b2#Ҿ4Ⱦ;Y٬eMy֦%I3{>Xw97L¾L.pt>뗾Y_Uk>0_v̺X ;}wC7־T@ԾNZKiԾf^q"Ҿb@sQɾ-VbѾ=՗Ѿ[K۾ i{޾J=z>_쾨;]A<OJ26*ky'">g:{9%1wVY0YjD9N(VQK3Gc`! 2 mf?W pX_t2VJVd:P0ニ}뾺lG=޾SL|GYAо Q$ؾ-!x߾OECU}K}-澧V?۾k*Տ57>s B HSiMO!bmJnL߾+հa}qE I&Є[IP*GjΜw>e=BF@n{2$;e8(3Є`M3һvzg8 o yl_}.- JM Rc<;-J N~:-( E1Tm< < _$  y*EJ7n% ;bxЊ yԃf N"ݖC&%YSxz~C"yY # v{ڽ;a{๙(RppZ%w* Հ ɓMk0SCʇa%I3} y/y T/D Q gON$D$7U#i<]"ݒlm"!wIX['B!}<$ZzW%˙W $&,)ɞ%bg*&u$$(gt): o?+c y)B'%G*%}Ao$$I%!ggz3(,$/&r' ).)@*%j[-T=#K+%12y_#2o~g >V &a!vI!W<XYdX0.:t.'p xiޫ_uDhىykLl]Fh)Ҿgv%`_> s avX`p,WYGFLtyb}Uw~*AG7u$g eo꾱Z^V_Dc'ľ{IE^ Vy850rNvX10<K,TY'So6&X!Z\-%3.N/}/ ,b.УR .\nX-;hXܣ+Pm2<,M+"Ǣ)Q)RV-?4, ?})?Ύ?˽k^?NZ3>"噹>K8>X#PGr?#~](?# ?Z<ˋ?\MO?4C ?l!? #?H1ˏu'?q'=})?t1!?&E#?묻%? ߲&?Mf$)?dTT'?zp)?iU}"+? jl+?]@fR+??3'?M$\~*? =B_&?s U^#? &n.? Y .?g֟H.?HS++?H-?KlCm.?h|--?l%6.?I/?B],?(^+? n97$*?͵*?2$]?Y!pG<<ݛ5_d73=hw=<<H_9wؽT?Ͻ1I!e#Hyvgښ\>;ob>9/J=tֹ(>~f>"B,> \hF>T>Fw>gT>NfJ>[HwloT>)=B?fa>j@>ji>bKd>U>{1Bx>2q>w9Պ>fl>75>e>yBV>fM>^3j>= >>Nа>IX4>>Pٸ> >J`V>?P>`*?ަ?? C >DaiML.>W>k؛m+U悅>:I?Fl'.h"0)DԾ Cƾ!1#K⾣ItQX5/Qʾ4\yao+Xa_L"Fb!TrӾuzǾk_P,3@Ǘx~nFro9`E<6Dwq9~VsocYL $0HÚ$ ^bÛAai\9Gn *12nJ#21#OE5JK3Bc,x_0Bd!7z912UgpIa> V>s֤ϡ>sߧ>P$? 3?(e$?8ed"?3έ ?Q I>kW?$ub"?xԧ?f?a! ??'e/K>˨2/  [> O(>+:3׾,ݶ ?4$(?OEfe>?Cul?Ò}B?1di@?U@?xaqJ:?|ԑ V?"I*D?fe?6?7Z?ZO?̈́l|pS?ng`+E?TgdB;?{$4??S ?/b?O4D?sHy!?P?b44?ϡ1?ܕ8?}60?(4!?z?Zo#??M҅r@c>sR>פG>P>` NHl ZVdpʾ"]k>c@e>Һ7ތ>[wp>9JC5>П Oy>9AME*?X?sH?<-->D?#+v?}E?BC?}?B^@Im~@ULvD?+:?w B$@$קTR?#?6t?wF?xuKֱ?̇J @ a \%a K>I\gn࿣P?0,_j'̴&g\IF4H7#C}r&8|ie,@Z,xE01h,C,4g2s8BłBSGS~}v!/  jƭZ2˾f% ?ѩH}+>wE?o`? \߫'\k@dy[ 0b!RLM}/jϒ/TizvA,A;J5NP/%m kT*c)Q;EXI>Yj>uTn?+yF>r>Ӵ`ܾTRB,7_/޾&Iþ}o~b¾jY&Fjƾy!e{^ n$kGnn& Av[ %% KeqA0+>ñDj2fWޅ@6jP7\ h|; M оٻwJfy߿|1AJeDhY9ſ5ޓ(X EN%y[!p ֻpc{ri>):9>`vף>gG>_rZ>&>H~o>{N>f0$?s\?_f?5w$>+>]pY?z8J=>YaOK>`>$U># />TQWWs>K>̬`Ms>BU?rh٬ ?ˆ*n ?'G@vc?nT?^ff?#%C!?ݮ$|s%?m- ?\$)?gp )?any%?~?Wh ?mN?&GP?fLY ?À24?0r"?9M=rO?"`B ?r^E?3󾔛>釖ޤľnF.>.\F0>%,jM>Cis> $n>8WE>'G>M9{>q`;><K;Ν(QI݆{z>}42>'9\CqCZsp'+Ƕ>VZ>?b>e%6Y>EM>@87 >X?=>1n(>]]> P/>[֣>(Ì>,:\>pt>2Y>[->:+%Ŵ5lLyok>tfZa>|cVN>7G>Kq5>O)$`b>[}YB+>"n>D J>⸙a>k`(;X (OE:u~QC>.T>sᣲ=,^=Zl^@T~-NNꭸ0nM!0s=0Cʴ8&wxQ=fʓݶ辆0_ھ`;uj`臾9{:<^Fm#Nl}dXi|1`$FѾ9qEɮq_aUi4kϳӪp5u5X]vKhxehl^Z=C'{^t) +?Gꗰr/$hƂJQ'prO[{M"RIYgZ&?3TM Œ[-"U-1C/!?/wo0$?X,?IYo-?9vh[-?==iaళ bp8 =E<vꔼ9Ҏ< ݕMvp}. <^{Ũ<8~ㅑg VMq<zhbՈ<:xva< gW^=iLcEM}DՊ4"lQu"s* ?"ѽa1\H)Ɔ|[!@dfF*Q,uv6LdK1O'M!zGS5t$g|v$ieLN`4D O EQ3t> p6n>dKMf>m}1 x<>5> S>:ߢ>Znm>/&)P>"4Jvz8>@v1>`g>VH4=,\q=s9>/=!%4н;%ץDa=ɑdAI=c=*-=dm=7RƧ:=t&`=ۧ v= x9=֩F=IB= t=M+1=S=퐟]>ۢθ=OJ>Q?0>5S/-=lf=&G[j>&H >q,F>.$lgC>>$S>ЦWm>ah\`>izkw>L^>(E>&#X!>'?G'>X(|I>Q` L>X5Sq>{#RYa> ҵQ><νv+f>?GD> W>ؔ>xm>bxYi>p$a>VV؃>i>٢T!> e)>8˧>jTu4U>ng/6>C]y&>‘k>Iq>>ZQ->Os>³?`>pqƪ>;j>{"Z,q>> >Ut>>^b>]]'Cŵ>Vo>q$`>ߤ?Bۂ>u>Ҁ->];2V ?)?'z?ӣ}>SN=v,Lx=N![e=fٱ(=d'a@=< &=&/F>R\:> ƕ'=)T >i6> zL*i >0^s=1C=Jiv"y=.U3=Lc'%=Q=Ku˼[=2]Bo[=|0S(0k=us!:=/RE=]I=@A=D=>YR=]U_=̰ؕh= JWa=Ѭ=yOHׁ=)+|M=te K=3r5=Z!="#<1Fljҭ<,`nq\G*/`<`~}{faG%gp`E] Rڽ}u&nVҽ!K_.Nv;-Vor6[f S[skEȭETWiýb42}CƚK1\Nê_rRoս+Xc0dDqW.M-Dƽ @ p/n 8bX GPg2[ҹBQDŝ< K/#<+{Wټ| m< $Ƽpo|ħ_7a$,!> 7fײvA-DT]5r< =K4DXp0`^_|^YX(b罯!SBn/,Uս?2M ~E7CAKF MA)gW= LL"ΚyUɽꠄؽo= ĺ=Moh=Kõ9yJ=ǰX}b6{]a+I=#GPp'R_IΎe@ly/x=h<ע]?1=w}MOlw=^6~=$q8ϣbO=wtAH==$}ia=~~+6=Xwxv=9/=]Z=I}j=謝R==$DD=\=FA4=TOq;=Aˎ=OM<> =_~=m,= e&=h{J4>@N >ج ՙP>]>'BQ>9P>?>e6->Ҥ>y+z>2|}R->R>7%ER>s6PP>?em݂>.>rD>&Wa>j[p!l> Dg>3#ޑx>]Iw>$2`>f>l}>FH\>aVC>^>Pl<>wc>Ft>,Wc>ڊf5S>E&3>z>iw>j[[!4>nhD~63{ÛmgAzm#Qf2z72'hx>Uv2a>?y} 1>­;v?b>4iY>nmm>SE>5g:q>\'>Z߅qWvTɅvw鮾QN3TgUҾ"־I$|p2ܾ3!оXؾf$"Z\Q2+?U& A&.Əu^nޡ2*%_\_ }`.ql);I0]վqjվ0Pl}:d=b?oN>_䀾 obh+׃ZY􅾠 :ם G/۝&u%,*ҬB|b8zi7]=̯dB1HA^8ø%V3S r^Qqkw›j U(HppSmȍN?`+hRf5WMIe6MA0cR#9r:q ~ $Ƣlu8 \>tQ=n#{gl) b>ŝl ?*?>0op_T>']b ?D«>x?۵*F&?y ?g0$?,PhQ?m'?_n?֐?D΍u>{>B.Q*T?P8%U귾%D>;ޗ?c4_yr>@ u>?O'?X+? Pg)?<4d;?.u5{1?-Lm 0??N?׳LR?&n?&^n?F?=:?dq?_.:r?Yt?/?D?O2 ?2?fV2GH?nyz?fюc?XRY?Pqgp%M?]sI4?G g29?5E?-C;?qW5?\*dP Y?Q)@P?2A?o3M?Yx?r?kҰ s?&d?Xu?Xjŵo?Y{?]*?@$vp?鍻?hT01?§Mb?_63]J?B)ODH^?o;R?m)J$?Y05?:qQ?K!?) q[j?~k.wh?'~! o?|CH?7_R?; $ig?dM?m??K"1?v .?A-?պU ?x⁘?|.9?p4 Q?uPK?]*?L'?& w@?7r9?\#e>^>-/?kU?+>GΤǾ*o6f><{>XB[>8Ɔ!'x 63q:hBr>N/d龶4| !@Ӿ!}>@f>-FU>Xgڳg->0ck&>j >|>2{>0ӵ^>xPp>>wi>a>>x B>%w>lZ>S/?{͍*?W-"??^Iz??¤\<?jgO?zD4\ ?"2?^"V?i!@?G#c:?*L?|uf/?ς?ZWKc?ёgl?b?jj>`Y>'o>zY>Hx7a.>*[P>Gt>Y!2>eڛ>=?Yz;">dOi>Ҩz>"N>FG>Īz?:x?7S?SxC(?v1?-C?ǘ{ S3?>%(?"v?ZԈ3Y?FFUf?3DK[?[R5! q?a<Z?6 ~?XۚuZ?y)>Ic?SNoj?1Zkl?+P~?S?*'n?ù?5Lµ?:o ?t"?6Wt? l?M?킹v?"3?Bֶ?\)S?f`N?j F?H쟱?N? Zzј?0z?~/Xw?okU[?o'6S?a`?اDy?W4L{?!Je;r?4(xZ? ȭb?, `rv?)O??cib`?tʔt?dN$FGH?+D0ũ?+݋|?0,-?4;z??jb?ȯ?7?n9N?[ *?m/n@Rj?aS@ʁY*?D?~r?DΎm?9P&q@^ro@_O[@VgZ?Ѷ?܋I ?_?z2D>?_gU? ?v| ?%R?>d?ɚ8?"`\?6+?2 I0?~#?!?G3?3kQ?dZ<@o?Y@L@k#?Mοy?j!@?Hm ?E?Gr @j.c@$Ê~@S@8fc@7ū@!z @^! @dtc@`@` L @{ָ#"@`~7$@L|{%@}j'8S'#@{ @u,U!@s9+O$@~&Ж$@O!@GE9 @t4H @7Q@>`@76@:@ ;4_@T{@K,& @}m @h8@A k @,rw@R^@$@#v|g@iN!@lo# @@Ш@w2!@ߝ0A@lm{u@;X@2CY @i[Z@_@t!?@2!E@PJ@1&?n*-?R% @%>@l@On)@؆}@@8_@a? =0?[$?cӴ?1?+??{ y?~iL?D?~ O?r\i?}yD?QB3Dz? hd?܏?Pr9-?dPXL?7?w??ed?}a?D% -(?x-s?MѦ ?Td?C?=;`?E/4??V^b\?Z:%}?`t`&?=?8R#nK? '?^r"? ?gC??ꈯv?LLZ?Oe?ZN?'gۡ?` ?¼?mc&?̬:?և4}R?A+e~yᝒE?8?":6?_vϥ~?ɂ?MAg$?qQMN( bi%E$ _M-qCq{)ҕ4B ӵ`b-&E{MX{ָqnq?3AuqĠ|ٙsNZ 140fZ:J "Fs޿ܿ+0Y(b( {0>ٮ9?-K WmRjO'*z7ba󯹒̿ ڭֿKysĿQƿSJTザ9Wuz5bHĿHҿ mѿžD^¿r <8 񠻿ynOS}@\pw$`HWAn.F kxƽVCG&I¿g5j&_ԿVyEп'@俹@R޿+^.1Zm?zп~zFȿ_esl뻿UT{Iҿ@|K¿d#[3ʔS]ጉ G{6:)PɊG]72iYkwuPDrG$[_6}v=ZC[unfSw§;n@O}U)Q Nf>' />0>y3F GElEP=$e4?]MD#M0aGc!wBv^ oW7`2h?;Z?-?l ?:c2>?ۗ>5knc>p/ʔ`?l?cL$a$?)Sf?v̦5%?f"l?NHU?jR5>ҤW?1ܤl&J(%p?N?-k y>V!$^8~0^dPJPhC=(!6A.Vj#ɫ h"B*i(H"EG?.!l 41wC)p"|E%8(}Bpǜ|[A>5f!>B~ >S> ?Uɇ?ZFvX>x?x~>Ż>ҲYݾѲC,O<=oL;>𣴲>"1ҾU MkfuTA&s۾P Ĺd2Rvg8@띝F܏kJlCڸ+Z;\1o{m9n޹q7[H-跩F9[lY#3'cG 軃;!ctWw"[2opMuDޕZIK7jELK 6j -G*S`_U${l{| cJt "鱵ϓ*G~|E `.ܙ0rP⋔FϠW.f(!l~uȫT嵿ͮYuAгsޟYѪIMoE^oMqnuJ@,bCA,:hQe@S|/y?he^Sc$q1eGw=ſ[z)ѿʯgyVdXN7ƿvnEտg ݿ-|t%'nxWnFL$\JjU`C?N]CDPB뿤TITSbҼb <C/F0|1 .N oSR-F?D$MJdv1His1 ,|N!?X!#K b# #pP!GR7>"fv $T$~z͌"Iup!A0bU 2W7 2LG?~y,: to3tbPa"$@eIk4 @#E#xv9$&Oߠc> s>/Ht€>r\> 3>vȿ>OH>s+>%ypѷ> vF{>%FO>>fM>4}>p=>h| V8>D>u%?Gd5??XS ?\1Zn?2>''{?^??oj~@>],Ҷ7>qK<ƚ>zC@>}eʭ >xx鳕>6"R>(wW>)\ >;>e> zOy>T\>:p`|?en8 ?nL!?+c` ?b(|?/E>wa?eE?fA? ?Jkt#?ӵ2$?འF(?X= #?7="?FZ@#?}?HcV?r4"p{X?x˟?@U?"d?%7? sk ?x}&?f#?d>۶3?,7hE?4Ź?djQ?5U5sԾo Q?R f;~?RIr>>>jR>μi >Ey4?ʱkp>p>#$>dMخe(>d`ЂX>wlK >gj6>mX>ֳ>/>l>y>di>?>$> ;>hGٺ>xU>>邛>ZWǢ >Aˠ>GdVC>=:> @pqc>6j>pϛ{>8Te>3a'E>- 1> zZ!>%>#{t{>G>VRʑ>cbQ9>7 &A>}}a>E)sb>Քqr>k. ģIQ>>aV> +q>``l>iƕH>6+3HS>*PQ>\d>f>gx>q+ sҒ>P% >6+w>I*}v> ],~T>G3hw:>u7I>_)FS>McXb7>l<>1`;=H=14 >:*ͭ=46=p<=8*W=r5`(q=G=,-o=qeU=M"9>*Z=^PlE=)ntWxĸ<@ + bcAD ܔ.3Ɨ=|& [Og4&$Xfj k$Fm" |QֲlFZ D~51춯|̌7n侐{TMEtkE QWtkч/sE偾t^^X ZjjT? 6qAlǷ;r#_9Jɜj![m2ϦBɾTj nپIҾYY!ƾ~!)߾r־kȾ&iEuݾWi*ྙ˓pо7=_yl̾%aadcdn<ŷi ۹6 ,B@٧zľ ^HXRh38nJل#LtR+XKc\Ane/r!W[F w+p }ZyEDŽN@ڛcf,Yl3-8X'~=-Ì7[ݎ|LZWa+#oQ-&ϵr9i#p)$)pwdjMhez!^Q ~p]ΪmIՕ֘3䓾Px[~GA٫lTnƾ7#B2h+оQ&}Q˾ͣs0fL< ʒ>4TO0Ӿ㥾U(ƾnjBNyH, طv|'Q7D7'M}._/]$Z~@rtؾS&Cc؅T:"vԬMej;Ĵ.}mg  \Du3~R>YyJ׽Yl`{TG C.oD.u H?ypNd%#,"_F!Z^9'\_&qT)h'ƒBO#0$n &H]{ K-wQdd1J@ b >`? stć(侜F]!KaORH2mϻb#J#ȽU) 3$zJ7*m'}*d&U-]- |-YQ9*?.4j6?k7>ȋ?@u?< k%?9$9|'?++? 7"?XZ)?#< .?u.-?A-?S 0O+?rӷ-? )?85<Ɯ٭薼(_r<#Hvݒ,~ o&a<#NU @S7RqE(z1>̼C>OWJ>'LJ#>c޾۵_gz=q2Vn=(!&a=q@д$=q<=s$>ӧY=P[F>pa%$> {s(>(pzñN>^+Z>pmJVH>ԁMw>r|{>+d"s>飯*eP>T;>L3q >jZ>ٌcd>& C#M>>(G_V>$)|ء>zwt>[究>a[>Qg[>JWb>_>V>b-TS>:mb>է3l>h*>Q>лwL˴>X*H>h/-d7|p>)H-l>Z=F>\5.>%l>>u&1> =KI>j>kn?̼?>@un?x٥=nD6*>jk=KC >~3–ˡ=%ˇ#D}=)4T=A=JH_=BF?<<!<&oo)~i<ܨ34<(nUS<%X<ժu^~6Q$+!hbo =["򎌽7 QRo"=,\tk=U}=LcH3=^o= !8>b(+^=<|p=:ٳ&>=?s(>BY>|>`6w>eM!> {$>{>hc>Ҭ>-^?>\9V>zUF>8;x%OA>ˉ*G>@3 K iFR. y<A7򜾌S&2/K2U+g 'V-G@4Ѷ6Ux׾;6V¾P<ݮ<B~r`thuCne!2'mtR욇:~>b7HeQV㟾z竵_EXvTfhNQHtd#QG3P~f@uPP45>)COIT4 ByQ %# :2>) YV-WEZzQlro1$vjT(7PV*A.Z HpU c]j56~vAAlf .O>q>X@i,v>9QM>)c¾D>z?ZjD?i;r&?^ g,?Hbd'#?Q?(W]!?G1 ?i]R? 6 ?2^>zU{>.Mk-S- c6Ѿ7g >N>3->"b&r?f!ؖؾ- ?Zv5?&GҪ#?'#%?!i‚7?@?V8Te??TE?/ w?:A?{'z?э Q?I!t>?v#?$4? ?zEG`?&4S/?:44?З3?$r''? ?l ?YSG"?rʃHw?A#0'?"81?ܳ?ّ!?qci>9 c>Nv<>-Ye]Ǥ{Ⱦ/u>#^/]>U! ϳlxYly2*)loD U:dd龂񷭬ž:*Dɾ>QRZU>sTF׽>AI i>}>3> V>~fAQ> #_n>(>oy>J;?o%?F͖J3?tЅF? C?ve_4?F?1哩?x^?G>[Y>_n>/#(5>:$"ָ?P /P?_8>.?b.\]g? t/?0EL?4Zr?@3*?FY?0qr?+ę ]?߹~j?JW?k{?D8$5&?+RR?2hh?J @R+0@x,6p@l@rA@'I5@8$Ͱ͕@{,@x̧u@y/@% @dؘ"s!@ r3@m?@5w\@9&s?hZ?{;M?7"Ѿ??WL?+<?8i3?t?K_q?RH?缰n?,m?ɓ?ǿ `1?bhj;?{>~%Gv?[!e}?z~?dV:*?bc?DvX?-?hl? @FlK@؂-?Oa1H?]x+뿯#W*n/ƿٷAS4_Tᅭק36 Q1hT  {ZX'[AUW7L>Z~Ю8_+|% q#; [=͏&ؿ %u.+EL񿤷 yZֿ@;ſFGY!uj+K¿O\ȿ ؗ{q⽿fֿ1'f6ɿGMÊT 2.Y. J,& 9o +h|)65 92o#5"c~nkjO\*#D4H6m=jYmVps17ja0{zD>l@rq?1>PE+x>ڶX?by>)^?TL?-cDz?F,?M4 ?ն>B֨A[>p+܉Y5o=Q ? L-͵L`|yk#y.X? hNCn]4tO(5(:M'*~ axY,.d7v]U/?o28F.Mc" xe,ES[vIAQ]6>&>:PN>&px ?-g .Z?7>Hɲ> >5'^Gľ95eϧ #Q@ -d?Ӿ@e(;>:[sFTľ)HYTf|D`EtK$%'kx+O5 9DY~'XӲl wVV$9.(%)@ bAV8BSU'-EqwB ]`N%t hHi%$E0KfQiRA^laDQw`A=G"-Ii=MdO谿./=̌e{gwn.Hb q%* Z&WQ`ڦ5s{%Qgx2;GyCR =z +mȾ]&Toc/j \s¾fݾQma}쒤_)Ϧ.HRETC)+Kh'=/uX Xܙܾ1VFa񾏫O "Z.>kiۮ]lk(p鄿_dtڙ5z<$e9'ړ'8#__ n׿׿1&8~僽'i٭x-ۻ#Կafݿȿ|$%ƿ|zP<ZY 5v(hc%$uM#PI\Z!^!f+#DX0ouO 1$vb|b_qoj>]>WvB0H>olҚ>]KOV>j㴥>_Lq>}@f>@N4>]/1h>HJ>:>-gT >3޺s7>]{p?? i?> ?5 >t#K?%?_4KI>U>|b!>4t>I>l3>KXƸ>Fcb>Ӥ]>P >Sz)>Kw>tɀ?1T<>v?ʎ֯ħ?qE^?w[>= Uz?`F?n;Z?]w?"<I!#?Vaj7J&?OS'?h w #?j"?GD`'?f%?XM?6Lyg?-g@z?;),?=He?fMR ?JUW#?C]),?;S($?_YS?/d2?yA͌c?h ?F{>sVe%>퍠>GQ?z>gz>;m,pֳ">C> l>c}>Nbq>L>a/>*FR>! ,>,>"N>3CLG@2?;>Ÿ >+'J- >le z N>[,3>5h]&>-">j>@]弮>\V?>weD>>"ܶA>l9w>#>W72@>a%5>ջ>P& >B,A>P8>9 M>rѐ>: ^>e>:T’>ӣ׈> sk>Ij>1LJh>F@:Ii>&dW>0wpP>$mf@>谛 ^>X7Gj>>־\>2~&b>I {^{>T̑yk>6$w^>dNeB>HUTNXrG>{l3 z->x:=9= =@S3=LA3.a=oа/ X;p?/Zaj |QBR𾧯㾹KQ %êkl.xǭ#9:q^{Ȣ 6kcqs!:s63C 7H¾7k95H=佾'F־DR^EԾ&5rȾMPӾ]w+پDO\پ"b׾ҾiG޾tɾhƷՆ xI,:5{ѷpYF` qϠSX-h)j mRfý\OuԉhtJߦQ'ebn%s;i'bF$MFʁVFDU|+\H׊x$inK_ A{6v@%fN`%rDX::H*/gz3FdKOLyDZUz lbw[DAb;5BoWy$y2 "|G85#8eieľv¾yҾp>7 O26f,x@KC]dܾbc H[۾0F4Ler@g!wMCE瘣|:侽2I V׾ {(WR) :v=5>|.{$'zV| ڗ<gZaMseBTV8G Q~>vy(7CsrR&,8sD"γ"| `(s&~(Z#[%#o,%",EEN*E,s Z#`a_ %IEW SYʭO\ص5HO'S~Exz t "o (^Y3I >>%c׃)믳*Q=)w.u.ݣ".gQ,0}?5?J+#?NB'?,ʋ|+?^o-?̈́,?Q0)j-%?v +?rb.?_[g5dl_餼KJA+DQF_n+8ç 3Ϲ<&רCJf<[dV<%<̥q<~ʐE<_<*s<ŷ^<~xV<KsVS<]AxUu8 jI49׬LԣkjfT"?:^~a3޽T<nb\Q)7 xo@|g琾^q%#Lds偾s5Nw8ƐA6"YhԦvFﲾ8LAmr GXW>>>fZP>pY6F G->5=_|5>(u/N>ɚ-P>Xy>O|_ >l=gKf_8>d`='n=9Ap1=t}н}ʌk=5=ձ=$"=>t3,Y=iX1$g=F4(m=F|p?=9= >1QY =s!2>"" >[N=0 > g7>@;B)Q>HUO0 &>T< pP>DEBC>;vQ>rwu7d>RK+>Y%-+Z>y7?P1>>X=Jӝ>O^Kq8>s~+*>g8&r>|>]֥ܩe>b_d>Ev>e>A}>3Mv>2@U4>,P7y>ZNt>ca>lqdKmwvgW T cr뫾i*e] eY&bמjêШ.A38r^L"o#RþjBr6S:͆>vx>c3.՚>%&꫸IyKʾ;dB/;i =Ud=tвM=/k=1>=C;־=j'M=rs\=Eҵ="bS>z&1h=wл=X_Y=c<=L={ x=RV[=pY=冠Z%=?ֿ3=12s){='kQ[f=<Pg^=Irމ'=(8=RCw~>2e]Ϥ`Eķe MIFsŽ3ӻ&]Bt)s]1vT7j,wByO{yaϦF޽{ r퇽SbYpM&Y&}:ą+AzPuU I@Co aSȼcGJb#Y \qx[u yڥ<̄Mx-S֐9<EB'閔 <aIǗ<.?&Y[PW|._hNBNHۨNfvxaLvg0솈{M/T½ 2fŽ6UCo:!ðfT`>ڽ% ^@گm,;:>%WϜQw}t*1l @xmAM=ܽ<'='H۰3Ka=yvy>k;=n)Py=[_Ud4`8=ՄQV=.%'O>*Hg>chQ>fK.>P> >'L!>8A>/&8x>{>/;mΦ>*tRࢶ>D{q>]=6Ea>,p>4B$>>>7 >4p>䯡Ӟ>M!Tw>ǖJ>j>|d- (>^!U<1>[e>2A?,>`CD>wbs>Kǽ|3f^Q`UsOp8Me>cv>h" }A+>QY>Օ>d>VR4>_-P>4ٶ> > U+>23L>mip>ãbjFvi.4eCtf;'d5~oU>!&>br jHj$o>'; >Z1 >٠ f>Cp&w>[>nݡ>ӿi>M :> ">>mʔ>>Xs%I= 04EP!IEi ?je'a75,с4$iZFqQrݦШ>i`$F nft`'#>xq "񭇾feiUz::|X@SFtLNf- ')QɞGfU5͈;F忁EAed4Sy3c5\D+ GeKk, lG-k=vd2;<+Zx4bIkPd/XFrWpKs^I.n>V:܅= ?)C"%>w+>tVy?DE^?c_%?ε?}\8m?H[<?뢕T??"&>2)3 ? A0{?OC?,?[']6?KD:X[0,? x?Ray'$?D ?N4"?ʠ'6_ ?7;舫@ ?Pփj?[! ?~ f.?4a>g>z<̝?[p?Y>-?0oI ?"fІU? >qh=N>WD:>ژ@o>mdW>'xl?N Of>%:H!s,^{>_>zc!Xr"?5M;U+?4-!%?߹D?Ԙ U14?YSM `KiJ?v>GK`w?|֛o?_B}?J5 ?`i!p?܃,d?PPG?@4qG^?W;?f,+-?I?$E&G0?tE[?w+DP>?a)`Ao6?߼ \٩=?< cP?0g,Q?fvyK1?;2a?n`އv#?i}?WV?֣-`>N ?7;?ǥ ?v&J0?3NJ d>Og>gT1(?M׫K\?V-?&Ht0?|n]2?(< ?4i!?{vB?B6=?6[%!?ɷa!?{@ل.&?@[? U/m?\Uq?>`ﳲ]?_e>/¿Gt>!{cƣ?uh>[/ ?,M4O?U>qQQ>E~W^>OKV>7 >hT>i/eU> jxVL>M>Add>+U>$$Z>]F>#u<>s_]ƿ>Y(,>,MV>δ >^q>Ay>~>xp5>e  >)L>1/^> >yZFZ>]>Ala>S~#S>C>I,Ү>xw> ?6KRB/?*4? x2?C|!B?(E'?Tef?ׇ?ʼA?'Xw>JGv&B?7? +?ٔo>?K ? {6?2sv?~Ǝ[>rT :>x{>Y%]> U.>ﺡ>e>j%*Y>T]K>Xj>Th#J?8?P?尌?&k1l?_8?^a4?\<Gx?V\H?و?C>D?AZi?Jmra?qS?rP?vTEw?L r._?/]?WFO?a? {?n |W? p^&i?ED?ݝZ?o\?U`4<_?7EJ?1>?D@]?Wm?T޻?@Hֶ?@ Nvt?#T?X`۹?|>a?7O?cg?s0 ?d!{r?^?:U?\oh}?Hrs?x?w[A?h\J?Dh6nʼ?z ,?^7?8?e6i?jǓ?[%}?j?)?o}Y?NF<+v?IY{?y0Ġ?.ܸl?J-3?'I?.!y?`V ?؎E;?Gd?:u?4 F$N?|j?%??%j?G$?)xt?Q݊O ?K?jQS ?5?BFG?'C.V?h?=?5B?a?>C?1f?mVH1?ٴUK? H"?U,?\1d?>]xs?48ͪC?֧E?:d?`fp?` ]?u5?l f? ~IU?q?WɠЧ??jgC?Sn2?@sL?*U4?1|?]$?݇Xlr?#~?|i?+yN? ?%ii?̆8?O4?IL?Mj? ,?A@ν W?[V$?!N+9V?&:?(xL?Tq`?ύq?. C? g霱?$史?R?5V$?iF͞?%wT?r fĞ?'?р(??Jr? 3ׄ?4c+O~?kx&?e?_qs?;CG?1<?vZ?b?30/?;*%{}?i`;'?bRz?Tk? ?!*$?)9C?%]&&&??Q??5*L?zGw5?ղ"f?%z+?Sb؈Կ'<`ǿ3E ux$0Zj5.Fjÿ!q Tʿ@ѿQٿI}jӿUaX`ѿ.%ڿˮ*Lݿldh׿%Qyݿ2dR\῕ &ji ~>JX~0nH:A/Zc<p|,꿔U20 H^#ZyC$a 5E-V激eq濒>lyx23ԸڿR4@A٨PܿC::ԿBqGRRȿUӿTο7rĿ7.ҿҴ ~4ݿ-=RN׿EqRۿ[N̿Fkq ɿIf:cĿ'1׌;jxe>2͖ʝ7)#\bICϜu¿tkFCP35v5їӯa$s+fG9Ь}@KFս k<п\ɀԽÿ~$#C5ҕavUv4<u!E*р"](_&Kcn<88>Xa^a?M4&MzS ӑo\pvQR6;]t5^M @%.lvaã2)3FZ a'=yV.k8o3!M/=w/Nb'55>Q~% /OA_(h ad|c= "mnd&hW%mŪ[TEk)iV'*.M'?c"= Drpg3=8zLOt> 0؋Xx6 |NhH`l8eHF<'93I eqղs mDߛ]ҲuhPI#ʚNh$"OSG2$-x*ۜ6(HA$h Wl?%ZZ5yH0#& 6YZ6ϡܟXʏIF;St,}*g(Nzx\_Id _$A%Yc bkλX޾iX+оjE־J:rWm)پF@oΖh7ecN߾gQҒ|\羃{HПݾ`j;shHNľh'sFҾǗԾ֗}UW#U j3&Շ*m F= 6#Mv6&sb~+>F<إ(ei1ˁwhhIrnR˯~(VdlRl.;ԻOܙ?s{E!Kl>y::vYnDDI!uz3w`^1] lxG4za0Bgf^ Bπ@J8s<)SF,&ѭpS)+q[tQꮿjʅӇ]Cg(6鄅_K"t ]0ڦa\5Pڥ9At1vw'{Ҡo7j+RRCPfSEj12bwc(Rh>aGLOxY9+gQRNߘ ~@ }%L I ]w|Y@x`Id8!g01> ?%16yZ&YHσTf]־U#mɾ٪ %F,ҽ"0N|{ľFľb;Oھ~ ⾴gy-ݴ95 G%iy}zFG"`&`٭_迌1wJK46㿔A῅miOȿ]lٿP2UѾ1i [0ҿ\vuʿԴ[׿m9 հ#Cv-grmƿܺަĿ?dѿgspZ!?`x/~d00?nm-ȿ1>qvNwпJ4 ӿ迷 #W*|M/(\뿔2QڿSDN뿎yr8TJFzC`;i=[1s/kY8 h W32/-b4g|IؗK&?嵐.)1?s> ;\ lY]Be%->a(UdG:#ny+g>;RHIF_r>ą)N}>Xd>9 NZ>g> #> B>| SY>ͮ>N._,$>U=y><3WB>"ZʭY>oA>i ԬSþSl=Ͼ'oɾ&>R`9>'j&[9>@ a>w>&v->:A><9ĸ>':-n>tb?_>|>~T 8W>CUVX>m>9>А%>Ώ>f3Pl>F>r;̞>9O :1<þ"͕\0>Q~AGʾek퀾Gܞg>k0GYξ !0 #s~ RXA^^ 9$;a06WIIr ]yDȾ햟վ{ϷIj侩޾!&twT=Ӿ#/ V}po}.icxV\$߾qؾs02tR̂>TMa>rhǾV``m}_ۄ|R\>*s~`1#>^A'>m'>~RY> }s:>O>}F>?_>J%>1j> >]CJ0> Vq>*t/~Ɇ>8>>W2l<>q fɯh>+)J>-I` OU>u =g>ʍ,>do>5\s>|>pqׅ>0>ɀ9>)br>;u">R\*(>PW+^>25Y>7JG->|D>~>,Ϧ>M[>N>7}>h >Z%>qvUDs>nV>wrmp\>W*ipx>"pp>{>4ʤf^z>Yזz>!ONd>V_a>m()8C>;vH?>-;N>v&\+>t7@>%p*B>E1>> S>BxqR>ctW>g Žw>3[>PqG>dsW>u;)>QH.%>7OQh>6u>>K]B&@>z<>$RGJ ==di<>=/$c=;!=Kfy qzWc e2=AtiN;Z6>.~>ƭ>Lh4M>aIw´>OppWjP5V:#Vy>G 5⨻hP;`sޣm- Xh'{óx*фlTQ0iy*eTͶ/d^I} s!IH} X/}[܆R-&Ȩ%RK)<ǵ=pIOMWKdKT2f`Ixnc_O񱾼l@I9X+3'J"^g?7-]ߤȬ S1JؼQ5u趭 S@Z P*5!'Rx\SZ;S|)s|l䅾prۀq썻f{' d;IfύV,׆QKO!ZbyY ^;\!X)"it}C]?L  *V 3ϐv 8#aFGI.Cv-4>&xS(mYrkM=yƳi贠M12T1ُ.'¿,yVyr, OҐD#r8ۺ-newy^PT#f|`D8>4pwP>[&-NR.8*>xكG|>aȼ>[SaO0c)]†B >nZε>JK H>5aJ/?_ݰ!sP%7ͪ6f[I;Z`-%PJe<\ C;Go[) sd|7!l di%:/>ULU>UCF>G6>mڇ>FP m>ӔՈ>񹰵>eUg>V%E>-\\^>]g>T'1> Z7?z4*?"M8}?\y F ?|[q?O?ag?_o?`+?n>fm\W>rڝJ>Q6>;>Tوi>FN>;>/+3>7۶>%>mk>rؾ?;Xth ?yb$?ሠo?=u?ޱS. qf$jOV*򾕾%OL (/lKݕ f-hu.)u-u@pcVGƶFhՍd<\Y<݈<:/~;ٗ,C2hPr$A#Ы35.P~voK(TȁL}5t&ٻtISz&:3>Lmle@͹}$ >1W>X^"(|tFl>vsB>+`?>ǎbP>;rB>/#)>(# > 0w>x=峞==pJ% =2 >[M=^բ.ར1qN pABw@IO/QExXaˉU7 = ={PPg'2p=d>=[xgƈP=cWwm > $`>n.>N>MC">4>Ӧk3={= >⍲a>iY >miG?>}ZC>7J>Sdhy>>[#>n.70>z+>şI>ß Q>pJ>54ɇQ>a+}\>j67[> 皉\{`>C6w>#$u>^VT>F>.`>t9>sL>5!](>(J 4>]я%>@ ;>{bH>E5x >g@:#> ՚l2>_6[.&>{:є->T<{kN>UpժG>mDeU>p$2]>kb>"TQ>LJ>UG"@>d#H)h>,Bp>RӀ>>D&>Z%e>K60>9>>Yv>oynr}>`Wʻ>B\ >וЍ>K(r>^jà >VReq>]\ Hw>}ׂ>a>" Rf>4&[>v,A>\?93>,8\E>FeP> 'u8tD>Eh$~Z>Xk>- q>p^z>Qs>LI`>Zb>ؚlt>!+~> Pel>Ap> .X~>MiY.>Kdqs>>p-Wz>R]A>&`8>(Uh>,:>=<>o>}N>B">1Mu>.1>y]>͉Y>2t><>A]і>Rn[>XB->U l> u>UI >n5>iˈ`>0 Mb>nH xXGi5S>pFLd>r/@k>d`8O>TSo>۲pQn\|aHrQ8GM;t]pir!H |0pڟJyzq4,VOQQ=BEl7r6v^Gpꙓ:2c`Deɂ[dcTk._S@9) w@B=JoF6 t޲NٹIٶC:޸x6b3p"w{\\ჵfytt5kϘc[ylE⁾ ^1q{>PQ2>a̜sʨ>IUf>0[ix]>2CuΔ>w¡>=̟OmBvg'hpS¾X$ξ~7&Ǿ z*V¾QLѾr9.Ҿq5S|:[Z|}"a _0sz=>߀Ԁ=$ y=3Fr=Ҙ;cޭ= w`j=TJ =!+E><j:G`>aҹ{=WJ=@=f8Uw=6.\=_?<̿=l)R>/>x_M->1[&>tE >Z=$h6=,Bg=E> >e>>Cfٻ=V=i2=DC=v0=~T=yxJ=F=?R=c"j=)}=yh.g= ز6=8m=&=d/=5sj7%=ala4=;Igq= }=6xaiF=+Tũ=$=oO==dRE= (+`=d=Ki`=[, A= >=8Cϊ = b< L<x<) <g<+nk!bK襼 QSWRh< |ih$)%sT,\v'3_M|R!;VBċg9Cά~ު aG'7zQʽɬRbwɽ:NaO(`ʽ##Ղh:@4Vd@f n]fE_*f/L5͢73՚^#ơek@5H>ǼvЋiK`0un)eEF#kݼ%ݓ.t={R$RjkXCi0bun%:HSE; :ȼ:[Am-;"ssnݣDujQÕ*sq-_2atl㨼\&5< v.|<#-><(BR<5ْNa/<9,T,ziu,ʦ`8< inI `4< ޢ._MvD'Ғ<Yء<.S-j<6F<,)$G<a_ˆfhu˼ !QԼb{?$6hvAݒ}>0`yym=~$!@α;b,=T@W P9*r@ khU+ERB}!SNdu;sEkR: bN;%1s SE\ю~6z}OvYýBbo.j0ҽ5Vսv-yEVk+jͭ; }E-O;&˸LYŸߠ}xţD/ǎԤ93g@n_i,ՆY f_a{r3=2rf.ݽXXȽD:Ž|-p4=`ܯQ=ݹ-+=`9=㙄*=MRĒ=Gвh99=9}K/=qqv|=bu`=Զ;@EBr%b8oGśJ6`"F8FmfvA1T.[|# =v_ʁ&=TO>=ҏR=~ Y=ߍ D=Gb=Sd KL=~3Z1F=.!2=&2=RQ=-}WF=F =mIi=4+mw=H Ym=i\s==`\ ĥ=&#=g;5=y$> :"= rJ{=y2=SK"=hK=I=9=<=U4=N==S,=Z#f{=~a >NDA>4Hk5>7t >ɻ;>8w^{R>%jeȪd>7=>8>Gg\>#7J!@> > "#>*sTX=e͠>bj.N6> >,Ɲ\T>-d>M?0> y;Q>Rlm>>.^CGs>ZZhq>n(Ȑ>%߄*z>79`&>&X>q>< t>\)Z>ʒ2h>#xQ>KoOŗ>q>+諾>B`>M\?>s^v>h,]m>m{*ps>q&Z>k%^*<:|>-p$`>ukQ>> CG>}> vl<>T.)p>L8>B=ۄF>qZ!s,5>ßqyJ]%W̷p;\@Y¸4>țr<@>-X$cA=xI>O$V>ڶC]O>Aji>) ʾY>hx)3w>1z@ePr>ɽS[>`y>û·>ylf>-rd:>aQ8|n>WQ>Wة>42ɢ> ݃>̄ > InL>9!𑙊>᥍ȕ>E ޟ>\ϖ>oo~<{>{B>fxǸY>Z03zT>RQ1j'Fv{.1V?bc~IW>8p5Yh>at>)Yn|>0ʎ>jQs> ,y>luۭfuYurP}D4.Tf4zo5ԙ>+ʌXl>:" >3g>14;>1a>Ht<'>nW>wʞ><LJn͛>uФ>ڤ>Zjs>f@>D>U:>z">y,>p);q2>)>hH>E>>m>Q"l>E *>Ⱦd>!ؕb>XX^>J->O̭>+6>>- ,>D|>m捡>o>[ Ag>󠔧>48Iy>ray浫^xQ6yQDsĐՎxb.\1 VsE/12wu\,,m^ȶ.A{450Q;. P ֖CğbR -?rϻx@PxCٓGm};_dichCs0&/; 4Fh{Q`tn6pmf8F=+t}eZ m| o{{kٟ5ftGK%c,;qټ6UJP\PA;}_?Q>K51X]Ye,%OfE0z#yq4 y`QrR>ir13w(!YQW7Vy8^"oyj_L# ^{0z t88D$xлG0ŵzG4)$*w|r߻q&!mc$[+GLלϘC~(H [^ :X(l!fUtqvfQ'biatCKs[E\)WX>waM5z4*DI[-BS<32)?>]:DTK~~RQ7q3ATe BW9u$B&cVA_8)CP0'XG?0p;>܇Z QTԃ_bx׫&Z>~뭢`"!G#uٳ3tpzY[yu_bmɦ_="yUqQ3wܛ{9k?B4OH*LCOWwUold‹tz`ɋATɗF-^O>HJplQ,$Kf["nkf+ϔGM[(loҀ,upyG.`Nr_ d5-hʫPV@K[7d4BKSN isLTfQ$Іv\Kp[ZW?K?ia-?0?oT$h?FD>]n ?5>_h푐> A6?@?OS?Ҏ5> ?5`?}h?2*?βsa?+M~,?#?<)M?o?g;+Ž?~ ?fֺ$?lsBM?!?@s2?HG?Εt?T5?ה0? btE?e}h>DFD ?1r;>.>ֵL>5gj>ZLo4?R:>qR~?wq4 ?+!Xd ?xf?8 W?ЗTe?c?/@r'?xˀջ ?|{U?n5k ?5u$?9^4r#?# 1*??CJh#?`9 ?n*#?e ?_?S;g?Q$?ocH?Bwy?ءZ`?ʴr ?Ԧ?m?(eJP?c?WJ?^k?n ? Lr$j ?Xa?꽐?~Y?!q?m5~> ?c ? C?ֿ>n筘>\R??? ?43?)W?hCQ?R?U6?ӕ?rt3?iΐxc?&T?#8 ?m@?gEZ?5g??iW)>8>TM+?wF?5^B>5k(>eY>z$>ҟ<>Nm>+c/#>Ԝ!>6>>woWP>T! R>ێ!*>Dj>s/>1F?&f>4 >n)>'Ҩ>Nc>jvf[>H\ ? px>KEsCpZ)5>i>sh/o=?*?iu^ ??xƍ?&?VZؖ?ݎ?"U!?%۞"?'$?&'?>7?8/?`y??$2@?)5;?,J(?۾[2?RFS?l.u@?-C8?j>=6?b5?ڏ6?KB?:ԩ w;?N6? lی9? 8K?:o,R?=3=?M*IC?=Y?]rff?a~V d?ÁƜFZ?\A4D&?K?7PI&r?#ڱu?0t؂x? {uz?zIÎ?2nޅ?y?l~ ?Ikȿ?\?H YL}?*d/v?(4WŌ~?6I?'5<~? ?w?!lYAT?٣tV??rE~@>m?*B?(F( ; ?L?Ih?W?I I ?8A?~`E>xe>>;>F? zn ?` K?+?Jy? ]=$?5t"?xc?Id5?SDu?h1!?Q)]$?.C(?U'$*?TXb0?qD2?v}$HM7?]13?\],*?R1'?&<,?H| 4?K(4?xkȉ0?ARn"?CI)-?4/q7!&? su] ?X9\??jLk?iȹ? /j?t ?HhP'?8h&?n \'?r5G!? ('? 3{#?šH!? m5l?Ah ?}c?cr?cM?J w?!%w?go?sAiS ?Ӕ?ȲQ>Zqb?.SX4 ?/=87??yQ?g0I?@)2?<?b0>C^)>5> >zwt>vze"@>*Ň4>I ̹1?Z>oM2?pg?p ?w TXZ ?a./p?#!ߺ? ;?xߎT>`4x>D@>@\d>!~e>>Cf>!>n)>u<>O >? ƕz>xY}>P>8Y@>#TC>iK@>4Wحv>D2>kA>>^%1>!2>>U>>\> V>Fᑌ >>+9 a>l#k>6D>db>BE>`q>.Is>b[?65?y>3D4>X>b.K>ְ>m9>5*'O>Cèē>@>m5>Q砟>1U+w> OeS>@IR>S`!G>g0->N>wFh>fˊC,>o>R򪥁>=(>SFXl>X13~>n'Eh>C+>԰(>CXX^>:>lF`>9F>8 >e >]jZ<>T;s>֘%>tHXΏ>5m9>~h &>*_ S>cS9>->>}HqZ>h"o >jT{ >1!G>F+>U>^0I>fw}>0Y0(>KU>ƀ%>+x@>e{,>3>R>u> \>֦>>W*>LX"L>[o>MxQ>z;δ>R(S[>]O>uLA>ph>+ >>@N > |f>Ur8> %UY>Xy?^h3|݃?y2?䩎W?:$?$tmW(?!Rf=?zG )?{R*?*9? /L,?E(&8w?A ?Q?ZD@> #&G ??v+Y?8>#? s%2?P@?SSZ"?;L=u=?)1?pU?~2C?Uc?2H?>C*H>Gf >s߰=>u!j>7V+gͽ>Y7>06>rS&Z>MT>@G>W>!浪>ܣ߸>3z >leqs>x.l>0>Mi?J>䪟>b6>oД?x1+?_>ZYp?}J ?ňk2?s A?pOV9?Bb,?30?^4?<7?ҶQ1?=;"??O X? -,>x?S's ?N6?7\r'?alu::?Q E?ks5?IrQ?' Q a?BL?j9?l?qw6U-?HPu?+ n?3^?>yxU?bG?L@?f:W?_? p?*=Sdr?2IvNa?q!l}M?og^C?Y?ڕ };?S16K?FH b?Ft?=? 1?eǶA ?Q E?E?,?<%?$nU?o]u?? ?Ć\ͬ8?CYw?0 KA?A)U?&5G?Wy?mfDb?-K?$?fsM?'t?^K?6=?P??)'%? 1I?L\u?j5?p;?5)w?;je։e?b@?aZ?Se?BR?zϦʠ?G?\z?d|7@)?k6MT?tAy??x@H ?c)˼? WNCs?ֳ?J>p ?h?l=S?I'*?/GQ<{?ܷx?Utu?Mm@?p9d?Hu\b?dQϾ?l޺?+@?=@ ?4b?M(?Af?J7?(?>?=_ E$ ?tE_?M?º5\?Y`n?a x^?i9*?csq??52T?O bE?r`>K?TWa?2z?0E9? (SS?LR=I?xV?oo?Ak?uԜ/?3I?LcY=yR?7R?߅?J 4?]*?0?9?7G?-U?Yq ?>r?j•u?q%V?W \U?uq 3?? V:?̩(#?IH?%6? 1?x|?JΏ?5e?2I3$}?I]M^?˳d_?#R?`?|f?C5?{C:??!P? 7ݩ?,m~?\? 6? W?L9.?d ?X(!?ѽk?:96?LJ2)?2gD?MQ#?{90?NͰ?\>H?ݚ!i^?K݀/ ?!)¥?6c?P-8Â?Ċ ?o1?.B?v(}G?'Iw?ku5?K(}66?esv8?R^R$?dVo?>lA?i#?'|o?g&lC? v??[?ڦ*j?3]?]u(?z?c%3)נ?.?oO?z?.loK?˽?4?j?2Xl?s,w"?,pԟ?ZY?ZS?d]X?!-.?'qC ?{;*??[Uy?9b ?s5K? 4?re=?Uu?S?i8-?aDP'"?Eu?t- ?D!4t?Ȅ ?VjJ?x$b?xG9b?عH +?[? ʖr?-@;?n:Gr׺?9z_#Ri?٪ğ=?X]m?SQ༠?4>6_?LX'5?ޔ?c?*(H׬?/^$\?Dcq%_?Q~?[~Z???ATC?bM=?j~>?Q<[?%t?hz?>? Z*??|?]ə?L(? ?@fr*?m{M?WP?MR?]䬰?o?G??4s?: ?D!VD??N?e'#?>Sט?ac?*?K?]%˘Iag?嶩3?UA?K\ﱍ¡?q~z?ԧ?>`?ru?[gX"$5?#G>-?[\fF! ?$GZP?qgNF?wGc?v:?͡@?B٩?4?_H?̊eE?8x?xh%?N5?s,? $?? /?1t[?Н?3/Jg?:sx?Z??< j?Ј M_?11z?@3$?2dn?H4 ??1y?)о?2@?jii?QZb?!DyQƿDpӿ |߾˿sxCͿ-GQJkށP 䫊eP&x:]5ԬWm?Wv0E[<+tX PNl'wοۈcҿtI_5ÿ1-^ȿaÿ'Jֿ.O:пhԿC+XٿRՆ"ҿ//ڿpy޿)ԓI8/ڿ={߿(}\RȰ7>%DB U}SU,'e4(뙿l DWwQMR2ܿI!H!""H~Q86W[LJ~H\ ~ #Z-7O~ؿ2 +пΏ ˿ѿZ{Yɿ1]-ϿVSDԿϵOH0׿֟i ܿڿsa{ jҿ̞> ʿȿ Rտ,)iǿڝ[¿$ϲm|d5 ;AĿRܻrT_Oĵ᥿񞿪 Z#̐k~UDʒH80:[ -_9%H'TްS` !DOA$yM:A$Gwp6בv[ Qz_*ej>±Xޠ(?W寿_0#h֨ſ@QS0Gÿmfҿff+ʿF0.vѿCIGܫÿQEY샏emOHZ- ܭ;Hl$ !"(lak܃~gXu|?įA4&㚿і@GWIwhh{پ.1/z[ECJΑ,[S\6+̟="L:6.b[-U;$A:f#@6uZn+Y]B&O ! #+BR2O/4*^|>?Y) eRALF UȓF2@O^%N]/&YZُb- &-x>{q 򾳈VZ=VԍP꾃=&i bQ>u+A>Xfb3dnAN Bw+x͞š6%U3dO+sz״ٳ ȕì-6Ge͝"a OGS"q/Iu_.M&n\CL%nS<od %h^",5ݒSaޞLM pIUۗ) Y-@Nār `{ρ;/b 0qk,xYl5"͵}~b7ʎfY & "Ue*&Bjwp պjr Q >IIu~<89/9Kuȇ3 CDK4F*`xB'iCl#1Iٺg%*>"n2vo pԸGN/Y  'O"Xzd_gAjh`0x">40! {$" +.ވM(*p'v\L10Ŧ2.}'qHE+9L'nMdH \xo 2<I4 -(,VQ(i"e]\rry_U*\(ւDM+giRCz,*TnCƟ< dDE~V س|M2F j+bxYQg:Bm03pzEAq|E9ImZ 񾞝AyЦ! r{&|T4T!q'b쾷Ռ .Ig,6C%sھ1aiھ]! ־;i@.پ{F, v3b=AվMpyV; R(EȾB85 ƾd ;͈$ӾjԾ]>/߾.7cD{ (tᾢRk2լF6쾸~]jh82%4򾁋u½䀹u}#+˪Fo#>#A!.޺?3x`1ϴ}(v67B*r:HxK (]7-?DO2}-*,9Z&VM,ݪFx dr~B#:vG!S. RB1A@ y5A@w*yB=[WBL~acShvnriHWe#qk$<YT:FBE#>Z,32UbcWꐿ> k?׆rJwOqG}لSHzm17{Nꂿzދs /_aaۈl:6+<])I:W W˄ OS^zD(2FCQ񓀋R>z;U[\EP^?gbU&)Yݗ;6xab3g:?EbdJB5Dױϝ/oqZ3cή5-&Zc(b;g-Tc6L16J_f =G8] "[-avr[㾟3=Q JT9Ͼ0оVՐR%&Vȗоyr ̸[J[eUǮ޶QԾ,پ)ƾ\eaT/\Ӿ m˹MšоEU%n$}Ius8 'm H` H! t?,= aq oL . 0+0WCF<=udU~0/$2ųe0ޱ0+ I$rEMB  %T񬦏b &Ȍ /`$G SZ90谾7ڷ4־taDI> ľűyncav߾s ޾܎Kr辒!IScNZ n=Wem~agnҾ)ZEjѾ T9۸B@^̾`Qž(ܾF\+ &/54.XoC"gGS? -S#e>QG;xffe<}>Vg(LRiD9|_4QE^Xla*U\ghxjTQoXA'pT jǃޏ`(]q0K^ |q] uj˙]EBrHcܚ\Tσ٤ 0ÛoXƀrѽ`Y0ŢdrOR䗿7:SڨN{,7TqA8y_:$̆XKG`ݕvnZ<ῒsԿpVyؿc (n}T0ѿv oIk .oVp^!sTn\^ / ÁnlrD`9⢽BO/Y(NS1*鿘R׶l쿣wE!trQ.^7  hACRaϡۼ_onf?7~rTGjEHP/&i=翹P]`Ft远bXUo`v//^<3Ua.[7bvN޿҇ poLԝ~8OW* 6MnY'{m~=_М,szIfS>I`>6;k>Ϛ [t>aYzEy>S?m>9Oe>t^j>a[7v>7{{Lv>Gx9ȥ>Iճ{>SО?>?I,o>g'S>.?'J>I)l>Ppoߠ>ݧ>ՍP>Y#>|2> d>AZ>S˂>>cx>Ff>*Ī3ȡ>r7pG>i 1> 29W>%dE>ЩY>d>2>*vю>~ѷ >mWͣ>n$~>Ѷ>Y~ > K)>Qc?Ǩ>mu(_ë>R@-A> ->$>:m%>>:>qP͍U̧*󾰐f53S:P/tSq ;sԾXGMƾ=7?Ҿ4rj󑲾7ھTt̾kZ8~>t殈>/u2>>}n>;{$>Y>$>7^@D>/p -]5se}Ggq>;E>cL2>~ɹ>Ơ¼>4(Bȑ>`B!>#Ex>1||[>AP>l>a>G>Bs>QA$O޽>(Ϙ>./f>jq>j>>o۶>[>Ys>`> ٚ>!zhAҴ>i|Έ:>25>YC>S=q_>>O4xx>5a >:>@Ʈ\¸>b1>Y>9b%Lu>>LQ>@i<>uVFQm>:&^>JF_n>+$CVu>,>ڜ>JD>9?P>ՠc5>y>2W k>^>#/">W(>.>GT>xf8W>;Ϸžn~(Ф'ԹVI8yE>Xns*-_ۃޑ4f>Y>hY2>a>φJ`>zv尠>8wy(CV޽tξq̾= <پ U87־6 ^ھ*jޤ95VfYs?{l۾,~406XJL>;fl ^ ~g[ 6d)xNQnj4 ?Ua/t \uv{n4qƒkٰ> #.V Kcfa߰ PS';龅’g7)'SWmϾ#Yb/ھxO侊~!.v 8EvsK+bxEUt<8iz e ԟT#3{IRRf辛 zL<'g<`"/,ܾ5(h㾙`@U ;o6 Ѿ~oоㅃ>tC`iA޾Oc9:ѾH"L6֙[uRþo\cXӾ4{rᾶ>ؾ:_F7Owҝ]Y\$l 7("㙾SئDp'T>Ȩ9RU>2p>ZX\?e>IcBc> kI>!Xc>]4>V>FQU%7rӎ̬奄w mV׮m2>੾GoVѤZoV7E>K(Q >ڊ/5v> >#sI|>c]X+>+ԦY>nԣo>7>09> >e!:>Uٱ>>QM>4x(Y>Cf3Ҫ>M 2>3_>|'>NJ>n>1we>(>V>,a8Rؒ>UpK[>vi,>e΢>猨h>B#`>4 G>9&3>9?}>tq>’jމ>y}>RzI4> %q>4bD >;sPr>D|QSy>*->ӶL>5_>B>(c>>.:t^؍>!g>"㑕>P8s|>/i}rq>[+,/TZ>U=m>t4`>8hd-=Â:2Ծ:>JԔ"9S>!VUj>D)`>g!Kq>ލ@'i> #AY>(~|>eje+u>j{>K'Q>P9>: h]ѥ> EՇ>L[Tv>Qt>ܹ`8x>115>!D {> M%>o ar݃>O߂uχ>}Sr̊>p>0ƬG>`Xν>^\V>*>N|>%a>aK>py>gԖ,>ݓa>FN|> s>M>y=F>m?V> Ƙњ>.5q>N>9>نrn2>_%>7;Jِ>DO>Tx>([ ˮ>L>"^4>Ţ^K>8u)>Cdš>%kx>q7Nj>s)ܢ>ӫꫛ>8r'(> _ۙ>eߕ>YhQ1>.ekI>$R>Ueݎ>CTփ>0e[>@6.\3>lRȠ>#!fb>p>fSc7Ɲ>AdP>=̦>R7>EPbu>!z>Lxu>H'n>OW[Q]>g2giY>6"_b>@\d> u>7Ãs>W\z>#ov>*Xw|>~p>.;> ǝS>O'2{>H>6Ey|u>[[z>2u> 2wj>Uvkj>R:7b>%x|Lj>cf>waRr[>-J>]>11c>px3E_>~#&7P>ՑfQ>[y/A<>yDLE>*Zk9>7H>frJXY>*<>_>dTF>(V1+K>0lT>EC>b1Bb<>}p5>D>LA>mD/>)y`)>M 2>j-PN9>P>>< 8>\kM>9֗وE>q]dc"I>aI\G>iJ]HM> hS>;HJY>9jS> @y`>"ORj>LLn>Iz&q>7hukd>9"q>G_>( ģb>h2QPDX>@@dR> N>:#i;>NF>׬P>>v`W>QU>H\gn>Zd>~|`>iz<P>i{B>P2s6>y)ΞO&> K8>]XC>zv5>0yG">@ic oP->I4'6">yY_5>qvgC>|$3>˲M01>"q^ > a>j@ >Ԑ|O" >ݘ*j`G=K*>YG0 >7{Kg>Od>ccx>XE=r -=RZsҼ=/5R=8@U=j Չ=.ȅ}cJb|q=<#l=4=>V;#=k5%>y},%>r/>7!b-=V0K =y$,=d^A=<Vvĕa4p|G} DҼ:omOep6$Y"$G7 Zn/4-{<^柵-="=܊JUOW=Op<6mx!kyOZAn\ }Cħݣ/ý3Ѵ[ֽ\aEO7}MԽ== @/=`2~O`xrȽDH_VxBz#d=z!"" M+=2CコEԍ7Ɠ;>xcWΕ2&MIC/RW 8+A<&&iשa=CR?A՛?X`C>)mM>5>*XD>k3> Ҥ|>j[>}>n+Dz>v>83>W{k>'>N>>9>">|~>}hxŠҤ=wݜGDBNזbP/ 5fPUuP*oJV86Ne1zs\G||ڎeFB?,]4w'a*W_^xRZS<oЋ/t]I@[v,ǹ&~ 0*k fdq\՚8WĹ`jg3c^uE'8rGXd]vy\n@{^lQݘyYq\_uWBJ@ȵ΂Rl׆_ݓM'c輎#X^w|MD6 5EkKZt6HLYlPC l՞o U?CI7`*쾪[$nbM䗾xP퍾8z6NVC p 'RSWejYRъ0 1I/ӲFүV=dm[ O[R8|"q,hvb2{h-)׿*۩ାRuw񯾩(V:camrѰbP)OLSf)P𲾳S9gWHGU]D1J9HuĸFڛYfҨ`=М竾uD3lꪾD!慨3U顾Bx霾uBb{J׮lQw˘*A- `3]ΗpbaD䐾K7 rsv'V7K|Q-Sqe! uJ9vPMa1tQ]my-82Le`klt_:uitUanjR.jj>]`T\Ld^1eP^SBJv^-;{Pq6:d;IV@_,m"T^ ڣU'8PWHFm2;ݨJ4Y8B2o>-y,Eh"EL  Trя1ZJ`H[&#bF[0aCnOchw^:S cI(]YhߖddKkl"}sMRټp3Q@?Xt(}db!wX ׀l_vqtrbv1ۆu)kBN qy `dt-Spo?mq9DpKRg^nczGdewW!gFQ 2?UImTZKS_ErpWTRpLfL?Pߗ46 8!DŽh2]9)Q;Ab6 c{0DD1x w@A AԊTGRlN'4Җ@$N@;aژ?Tv 3;#*h?;4=G0 8ip d5 VҍJ NSD|U[,P}5M WV;쩐X!C1+`bEőa#++IV]$'aE>VHNBWXcRcv\MځmZ5b/e.w5 %ir^?}Q -str)NW|jӴyp}vdvWB $zjT~nKaws32w{2j~ Or&G{P`!BI hknf ૊&҂HAU.dgAɝRm^ Brz6348d:0Goa>5 q:/bx!U\lBO?y ᥾ e4Ț]\Dn՗AIЪǏLem}5y  JDQ׶aR>sDq`,_U(>B>8yI-f ) LxVv*ff{bwPBC܀s#Ȓ:^Fs]%bhB]\ ׁz<asg>H>)北>1O(n:p>'(9>{&}ɶ}y Y㈑T- #nå󰲸菉R G-Πd>(/>Q>'e_>(C2>@Fu>㷘K,W쫰δO_] F̲DPyG7PM֎b2bޢfYo NAiAfς-@6u!wqk RdG V`ERNW*f谾8 )ꩾ5_N}'tFѬ7ْ3㳾)͛{T{R!_J4۳o[ö Ob_ٴv<D@ ZC ظvdAorO5<8ߴhP&5<ַppFdlI S 1 ״OjcAzs;Z¤r^>gґ&ж>3 >V>oݧB`->!ʎRt>#[~1>& >I> Fc>#^浾U~^uݨ֏݇ҥ&*ﲸ>7(>+>v>d?jj>8.`>>ߊj>fa>ӮUG>M>xT>Y>Xc>-C >h:!>>J]>|>N>4>[V\>U!~>EDQT0>|tVu>_F7>Z,>V>&Ɍ&/>I>z>[h> ${j>x;G?6.KU?ٖ&[ ?|cK?j+?g?<?69X?+L ?d%T"?)C>z >]>MʵqK>T.B?=Sbo*L?&~15?dO?ev ?n$?aH?Ϧ` '?%[D?˯<>gjN,>)*>>W =>˹a>4 .>h6>r˸SH>.38>`;- >Z"=>v>Jv/>ܗP@>%j> >S9j>F她>*B D5>i}>6>;~v̰>Sz@>!>|=Hw>^B*> (X>*>ļ>~>z|(>",Ł>3W7>Bs>Y>T ;d[>t>.YwƯ>>0-)o>M:Q>"l>Bed>S?yR>i>nK>wE>> <4+?G>rwF?L? ;?-Oo?f?[?6 x?޷ ?2] ?0R ?ERѨ ?cm$?꟡?Fn?Рj?WO?x?o?"Au ?e?p?až?w:k?dF ??sFg)?AA ?j3wR ??;en)svTrv0 xĀWھw*MhRZ+* 6EǶ,ɳECEIehvqBc S$P @ ?Z*oJ,>O^_Hf "K AkIJs M:@@ON޴j7,LgQ$gʄ 9~P%Mi`E"* WABk3 /D]z7\]  ~3: jkh'<|`C7pY.پ(ReS(=M=<؝.-ayԽq ]Ƚ^،үB`V 'BǓ4W}B4>#'=u5pr=rETR>*n_ >*F,|r5>[sV˲D>F=g>Gp>W:.?>,U3G>ބ+_1>aF뒙U>LT7>:>}4M҇>s>cE{>v .Nf>e8s\>{pp>>p>14 c̃>{7,x>#d>qW>v]>[(>jr>8K@>9V9 x׶ 3>,ܾ4jSݾ1}!=PZJ >uDҙ>Y=X>%nLx>g|ք>uϮ>m|Kf>!z!Y llvBL>#v>23y;>:> 0>y>Dx!>b]t> ںnlg3E@dG@G列huD>y `%9+@>qń.?#M ?6Dži?3t.?[IhI?'=! ?۰? Y(?T'?,,7?M?3'?f?5l?0:|?%9p?elD?>!cp;?fmξ1>1ˋ#ԾtL`>@?8ڲ1?!)]? IS6?͝gw3?qx4?ᡙ10?{4I?zܐW8?z^'|X?@9+\}?@/ }?,%C?ew:G?2Γ9?ڋlF61?զ)B)?p؍} ?x^,?@ >x?AX?_4o>%R?83-%?2.?Hf74$?T?׈=?ö]?P?r>X\"">wG>R>eU>7up6>Ie ">|>Z5 >2/wY>Vo>i>j}>:.FW>d>\n>G t ?#2?GH">?BLu>PtL?Ti?Ua?A8&?)D? f.?%#?δh?8fA5?]6#??6'rP?yl_ ?J2b8?GP]?^l ?+*2mѿVGI͝ʿ2+ ހ&ԍO2!/=|g!6K`e-lm!nMh!$بzS%]& غu b:y E6 IT㾲HG˰f/fn86] SdaeZ(%x C]}[@ D Ui9~{c%#Ȱ8#\i_qfNEݠ.uI釆#(͸#~*`3&5P'0M*!f:. f$ AMQ&"A`%-5LJ(&X?)޾ǕоG 侲%tQݺϿ:I5wnf\%ՙ2.ӱOi@b2X>Н&q>>'ĥ>ΡI>5>H:}>*>$m ᾠW*lMBB>6.gž>^> "S>!n6K>Mҳ>3t>C{>5.$>d%>Ɍ*>ۡʼ+Ph6?ӚDkٲ>%;U}-Ұ~BfܣvP HCy'<83Z9q3|9\qBE8O-Ҿ%˾2%:mѾ ,ZFj&L 3aw?F灍߾ɦ4>K?q>k'hds.j޶y] q><=蓮>5{Iv>1\?>=x>g6^Mhrby)e &N>ps>\qE.yOp2%Yj>iEz>c[>k)rm>N0>t>b P>V2>;4B> $>Xl>`z(>F\~>¢{>}cag>L'b>Qpqm>CQq>s8йR>cvU>_ ;VH>V "8>xkd<0>+be0">޾E>gh>Y8b>w0>4Yt#-D>gt;Wv8I,%<&A'>י+=>=|A#= BxA=S{b%Um= ".>".`>~V_TCjѫZs7 5Oq-bw2/ Ge|p? -P=c[cHu" 38Uͪ;o@rμlOhn_솝IwyIEpS7U$|YFE(.VqÍ~V8ׁ)eFv—;P€ih0a{>l09h OnF-̍cOKS2άM$CA^ X96QNHcwK =} 0k ]W|]QNrfOR{eEz8rHum> [I_|l2g3SsŐ9?3Wi7ΫX2O;뷾7x;QUZQ8(I1^ZP5-^߰>e`>p"ѓP>f<ɐ>^#>*4Б>'EY>`N>M@m: ?Xs\G?j|KZU>G7 p>j>+J>\h >t^ն>gVD%>!,6>*5K>9e0?rx` ?oӘ?ՁJS`?#h@O #e?O?]q*){ϴ<z(`𨁼!+h~<<^-<,N[۫}2G:weKvAg)4L(ZmwP`4=5)3`6̹aD<%uW2gG>QFD)@7f0IуTevD(l? g#}۰=Mg8ٽ!M$Q15ΧYW_z,QTcjKVp|Ȓ>e!/{pqp}f h:wT"i~C2VgI\2O:y_K~Z(p8"kdd ;Fc /T!-t Pnyt3  zzG!1& EOAT ք^à@-oZLdIql몀Zz~w%nOA]o'hU }ucTNqWHdƔ}bɡv󞀾[iGFM;>3"@>m}=EyuJ}Xm9\(,2X2> ), e>=!T>NP>%gf4>YԬ֣#>ǫt>4l휮=A=\D=|P=Ly3v=DbCнޤ j#`7:R=&=phf=O[= #: 5κL=+C d=h=#ْ=."K=nnh&==+\o1hZ=xf;==Vb=OĔo.C>W0= lț= G=xRn>#;d6>o\4> ͚sD>"Xg\>ZaW|>YVj>%6Q>]7>>s܃ؠC>@&@>DcYDA>8Tғe>,V> H>hDVt>(v>>*f>2l>;[V>`K>l[ vk>9&>x,uc>z^sɫ>CJ>bݔ>>.>>M{_̓>v>)*#8JR /s!),{]ը8ܮ`mBv7-YBro4ygNK>! dE>0eX>hξF,kD=3?Ծ~ϰ侯e6oȰ>L-B=|ɠr=g\==ۂIb={ͳT\=O`>Vn?>!x.Z=~CifȲ>]CN.>lxY;~#>G =ѳ=Gqp=g*՝=״=au=n=T=Vߝdc=Tܑ2=-C=_a=c:@"z=*{:=˰U>=GL=p4 }X=aEb=HHe?=]Ƕ=yR/{=08'G=@pa$ݥOI؊QUM?a|mq%G*`Z枊$i E Yv޽> y/3ϳզRaٽ^*WνP4PajЙ- , 4߽b*~Zӧ-]Eng(xY€,;G?`V*Mh]ͧӧhnPӂҼ<;JڀCѶtPg~%d^!tX.[X{Jf鼶60Lvl睡Ξz١!꡼K^e lF!|<]MZru?Vge,)yf|NƊڽ̞23׽!ؗc;o:ý.5Y t8 $gݘB4YS2%7l3LyI6[*&)_=b'ZT=cV= =y"=HD$=LL=;Sw#T=gbFF"a(8M6i܁.U)ϐX%ڜl3= vBs=x2y=k;vI=*+D=L2=>e;]=p2=Dr=2,a =%ۇت$=^==+x8i=u߰=7 />fV >ymH>wa~U>BLI>7>@X&>.ZG} >MFQ>iX&>lNQ>=W4 K>\6@H>ZtXF{>w~Z>uf>jN]>pKbd>՝Y}|>7n->q>;!w>b\W>zNQv>5_!>'mz>œg˚>&u>d}8|>g$ކ>Vn]>R(m>}.?i]>L`L>-!->4CDqY>z5$>O$0>79#[>99_W GMh$Ob3e47T}w^SUq>ud`>GzXR{^>Qk$^>uh>ӌ:>lI>P_X>t&t> P>D>@?缄;}>ё0>Cߙ i w;/}v>'ck0`~iz.yכ>Vv֩>=>"`a&>^>9>uP> %>f;!k>2>2{>RH`^ʰqՐ6N1!~8>/:}O4Ȧ:{7E&G/qF0g~z|dz*WEIKSnm]kW}ME8=xb"mf!o SwP@~a&"TK-W '4Lek {,43 eq(0oGQUjZF >^Wd\XˬJV|*BVto)*Bi~T!CXCY%ךy&fE`?6?x?U5>?X ?=`?a?V ??p?K)CM?qX>'/m_?+P)?;?eZb{Z|?p ?1ShM ?'?{*?c~Rߌ?8^^?#w?F0>r?=уi?d{Х?ڼp?8ʜ>> sx>V¾Vm'>j> >ϢZp(?~@ ?Z ?B?7hJM0? jZ$?uVH"?ôW0@?p~C?IƬc]?yF`?l)"x?Jk/>p?=c?~c?Q!f?E ?oy?jc,?J?8:hf?mr?,:W l?k2V?4Z1M?Jw'@? sR)?˺D.?qt9?b0?X*?]-KM?&CC?j4?g,jzA?J9 e?؏9KKe?vLBMhW?O3Oh?UQM?־[@+?a`?B?FS~?^q?m Ns? ؈?D4!wr?͚˟?wv? ??/9봉?Ңt?,o^?gƪ\?\-rta?>=?_>-E?ۚ[? A?Z?M0Z3?l5&?G-fs #?%cK >6T64?L98?{%>Kv? ?[?Zg3?G`/?<"=1?^+?#h?Cl$1?) ;'?5$?a]?̐7?,V|?3PP?Ly>f>4 u>M?VO>v>LצL>fL)>xm>>Nlz>">vO @?k'H>ę]>WPb~R>Rb>>&O b*>p'mtz>TG !>>HN> @>ìeae>{I L>x*'>t>i23.>Ģ}# X>#;5S>A*>pP >mDֺ>7j>G^fk>Ixznb>-)LF;|>E* ?~>nt~*3?;g3?y?8>A7?:Nߔ!?p>At}?4?ed0?6, A?㊔#??W4u?dET>MŪ>=>W*_>&Z>tniI>?PƆU>d2>>d>6{K>LG>ol>cS鰺>=ؼ>wG 2>} (*>te>(Z!>0tOV?MoG?^g?q%?B+p7?N!&C(?mJ ?GjMp?{t?U8Z??tP?\c?d u?W9q?B/|ȉO?NDBW?+/_?_`?])q?Bs?J>?n?b6Υ?}k?A ?b`?/F ?h1l?QcK?"jN4?dMZf?Z?+rA? 0թ?⺡?_O?r?T|?kKk?XaP?"nYMG?Q[ـVS?l?мIso?[fUd?%sI@iO?vmU?m8ti?VYt? TJ}?Np?`bh*?+!W:?ݍ ^)Ӟ?) ? M ?:<?J^7?cÄJ? 1~?j?-.і??n`?A1~"?f/?{o*?rC1l?W?3~?(fH?<$?Hٟ?np*W?nh?yaQ\i?{_+?.^?0&?ϲB?U ?`X?p^?Rc?S0d?K?0?,l ?Qgg ?vM?(#?^!K?zi?f"[?+4N?;Ǯ?CP?!JU=?x)n&☴?v?I;?8GRy?-j\?32?RMG?5mt?Vu݋?SL{?^~>(?;̺?S`5?^H=q?"̔?2n?v ,?H͆8s?P\Ȃ?ر2c?JMmu?}?f[?Ws??k`?&I?*?F%?TI?LkUя? EG/G~?+n] ?L+Ie?d&G? iYLw?xDr?O?\b?[=}?>?y :??BgzY?:~=?&K|N3?G3?qDd?T ?1\?_Qq?yES?d)?f0?dˬ?q:JN?^)k?):=?u?aU&?Hqμ?PT?| P?r=xE-Ռ¿s$EͿ2%Ϳl#۔+*@RѡȒ¿=|;ǿrn$Ͽſ 6׿6.ֿD ܿTֿRO޿ rܿ0vCMZ$U?gթQݿPUsؿ7c8ٿVS/ݿ~pL/){{on8ۿf ,࿁ ڀSd`%Ah\zZ4?S ܍y뿇AȊ;w9c)&h忚n9в{ݿPI'YԿtĆuϿ?ȿvIǿˊe#ѿ'ֿg҃׿ʖc/χ⿵'48І`Sӿ,ҿT|пx#̿4ù3{ÿ[D=BJ{/tUɥ`s {Ӡ#4"r!BYނשX访Sm XY^Fd>tGDQ4HÌHF _XmCa _! DͿ._ƿX˿ˈDdt qJ*WAi8K쨠FPƿ&c͟m˲E0YWycN] #%r{pit]MPC2FZ J%6gx|CgO}-asi̭Q`mH&Bʨ2 "1ٙP#6 1q'$@;I*]+Bh}Sn>9 7j]6d 5!ieEh ㆠz 8g}+}CFBA\C/|9G޾*a}ƾ~8wL5F+Kɨr-y^b^C>T 8ڿ#A[MKE1 9C/:9z(f X)k J _QFg_ 6i0,ƢʃU̖$␚aSv>+cM !M3ÛOf%qnLFNy5ܣs meo@;mPqY8ᄂu2mPݾX mJYվϊYFMŻw;Q/>xu,_]U"R,?/lN;^4W)uhg"ws y}yt?mchz+ߗiXP؞~3\zi"UUi>Uꆿ/ԩMx{v4o]o0a9p!dYmwEޘY”Tg[SWR3DyDn IbeI7Bum*`!{_`,O)>3e0$ɫ8VB X@A{ZBd-^` pYnվXQþ[TL]ƾhQ>V`7:-̜n.O@&׾9'5Yľɧ߾ƹX Y0RP}yp}uFJ,$lUj$Dƞx3`\)~m=%k1w^0ޮ9 -r*.T7qdxf4¾/D?ɾ_`GƾʸwǾ+ ݾBV"b4.N4jIe *MRNIA3Oq~z2|pZxY*[8b$W[O6I aZ>Lx_(OkFJvCvxֶRߘ8\p!i+I2}ۡ8T)3mrxK@5񫿨7cҕ˪#C1t|ec}g_0(bZ ʌȿB5ٿh;翛泛"#DţIR޿U@5ڿe>Gѿ0&ؿ48k0vտz@R޿ȿr |#ÿ̂rF0hW&U"nXʿF%˿<¿W1eDnaI>NBX龿|w #@_NO$¿1Fqȿ<)Oٿ]w2ڿ;&ѿ gsqy8w>Sտ[)m>ֿ,v6޿8 @[rnT #+ߑtoǹْ:8caADž~I#?oݽo{=PrB[_d"WJpy #* X`#1Ifm>LF@d6l^ ZjFoU)   ˩UzUs:ɿפ[n !ve\d#\APY۟^E,q*SMG{Q'%TQ2m̷p򿦱!w!뿪QV> t+f>lp>w;>H1U>Gm:> eAۇ>O^>gCJ> - >E>}>C4bN}>᷒( >(Luc>7~>¬Jоκ/66>E>K=38Vq>,#W>tP^'>4g2>Sy;>nҬ>Lw >=V񷃶> _b>80>uQ>Z'Ŭb>La߶>Bu|>L^9ӖmZ},Q(ɡ}Kf3>(+J>w| He"۾_qiU' ݸ.H Hθ9\3Qi3c[PLA7ľC'gܾd5nؾpکǾk۾fX䑆7ԕ>qyw~:@U/r(!:QI)>܏ D<>=nѾ [tľQDud`%lf>-s}0>3ϵ>D£(MDn:ʪ>{2_=s>2/>->+:>~T>p.>mx>H4>\~>N9[>63mF>j`>xo¤t>^gx>GY|>|x>$8|p>a\H>Qa݈Ž>>Tt>ߚ[>;U>">z]ݣ>_p>~Veݯ>ūV >x>w^Xr}>0/j`>;M q>D.u>aɀ>hR&u>t@oh>#M> i{]> J+@>v{n͓A>nW>5?R>Iq3>|>&<>eA8>arH>4.UL>c2]>bY+s>k>mfZ>v3WW>qҫ6>d >c->y-:>Zs5">jWNf>`P==bQ >^݅=W}=D[q7=,2 Ю=׸az\qu=rXr]=R|,@!=Ϝ{=T9(>+c7Y==Z<(Ez|üX+ɒ'Jl|SIW8Yq8> fP)?hK8> >*>D'?>`}>JPι\0;>򒫹|5K'K퀮\fXW/MZyMLfvHbd)ׅ meVuNdGyNi4HouefEr]錾ǕR3gRoV'ɍ浾c(୽n @8fJZ1^vT rZu R&wW3Cא$֔l/ʓ.EÂAx&k"<3uч)onJ AkEme9^~.8Qa}GmZP<>QX'@U^]>ai7.-iE4͟z2⩍y(oRX6( C ($ 7!FN,M\RK4|P@Pk>S7q^sgW!s/=Ć|EAe.S(`HnaygHe:$t&]c>728]Y9ゾnyvt>z_.UJ}[Wo_>+8X,`豾$`c%x.NJ@wJ1mA ĵj:DItNi&V/U>4 ]W>@(돾>|::>ū>: ;>D@C>;J>sW¸[>:vh(W>s ?Qv ?Su?)# >ocna'?G>l2l܉1>Vˠ>à">zs>W>` q >q.>.)> x>$>J9꛴?h,>3?'W?4nC?uŝ?{=`*?tB[ ?{L?;z??x(m?ˬ1?P?AU4+ g߾nj񾏙eT&cP{; Ycl/x-4 <P}Bt > "ix\y[ ol?k#s!cPlXCP.ݻQ^1MSA>Bν7fʽ^XS2#PBaG/L֌X'JnƢDsfw5 n1_.n_w-fDWX*ZƳ 3MO&Z,XKr`K&:jkpp'>UIiw5>tD >,ZO׽Vca =+|=w=t=- >ISK%t>q# >:H=>m IJ>kI:>ee?^f> 7*l>/Nd>h?/MC>Z60>z9|>7~!P>!]Y>2rOC>G->j)>i$>Jb>,@u>D0 z>9z+>l k>XiŁ>7ȏ>l<\>D>KB}>Pr>%`n:Y>8?>tg)?D֞d7UIO~k2q5FDN>b LJ!>q&ھ9>5ž9#jݾN|2=;Mz>*=Й@ݥ>9?=B\u=2׹~O= X' 2=@ =䞫<-141<0Aͽ[Jý%Q"_0B!Řn9ĽHP^=1%M|"~%=ȿّD =̏~Li=7-zw=洌K=C=õ=<,z=hr=z@!>B('M">|v>)i=p>W;4?>P3B >D@>jR>V>h./]%z>,$>3 A>X;>fX^>N>hR?̪&G6XDIw~>}φ>ښg¡>y|*>߽ >y~Sc{e>h"7QgMꃾwnF>>A >3Ӯ>gMF >O=;>]][>FQJ\> |>y>/Fݱ>A4Z"wd3.Ѐ·c t|k[Zk>K?2?'3 } ?$"?A? ??=*=?~]+? >>zu>W ? $D ?p?t7~*"?Ut2?0y7?[&?b?\!& ?vY/? !6>1ýǵ|?MS?ԖB ?ne[?Nۢ>hܽw>՜>U>oېc$[>٣]о:oa>%D)?N%?3UL?ܿ ,?AYN3?o~W? %4D:[t?r;|g?$ٿu?f?2{ې?|M"<S?`;'?K+0?@$D.?40?p(Ɲg//??u)E/C?R͒4?G@?r34Q?p?Z=a?7m?(bM? V?'?sb8^?~heU\??N!^-?y 5?SO81 ?PXm?0U>jl~>I?+?Q 4?(!dJ?ŭf#?Qc )?є̒_(?}?}3:2?a /?31o?{ˊ'c?4}>?q% ?ȴbK?}AQ> KK_>i3o>qU>]#A>Z >8>8>}^޾>$/>R&sO>w&>:,S>)'>#[e>^[B>e7/>dT^۶>>s>&@B9>S eI>OUa>;(6\>.>>5s1>[%~k>f&:N?NL(? iy;?v ;.h7?L*?jH"$. >&>^R_C|>Оn~>W?C?G.z#?+X[?,dw?ДMrs?Xd?5?6V%?yZw?V)!?v!P.?H?6J~?ut??E?@ \?pWb?!xGP?,GH?\%`zZ ~?|_a?):?ԃ_Jx??,KdK?+D?oܣ?&b?I?m$?Z?m[26 ?.ٿc~fÿ8^D.9-GHeh_F嵿4ڕ(ʇg:L9Gܚ5E@ : g2+AjR'k">qu2|f [=ed*w`v,NU`DY y 9 &N׷'ܾ crs5bip?k YE2wpVE/DFh .CYHXRʿ+K,`WMx)tk2y h+@ rFNCR(B5rV4Qv _ 9W otYmBpN>vPk6(у6/kTJ *7!lCj-,Z9d"2/\)yA.|#UX\L[⹆GKn: l/2I?y#G4N3U&7^IFYpL!ݽݾKڡ5Ҿ}6};C澠>3#9>޾;⫞)Ҿ ;幾 F,9 |$,߾%羕s.BǓ b C]3*8n}d{H c{KW53oD/3&ޜ~5I8->RlD";6OFC7S?sشf2cs=%9Vk?E3^PEEG0``zjk ],|3>7,BDa/oFBO3Ûjhc3v=>OMA{DQ?eWZQsEH'dDu#T-KXv)1mԗྌNk澫EQùFޏCӾ+Ą^-KI J0Y]:;SA+#n֮8|ӾH ːH羲=Rܾ$㳾OT}# #^/j!w^wDr?ͺb.TwՃZƀUv@S9E!ҩp.D2vĿjſ TQYxgݿ#jv/k@޻Ͽp4 &¿#hmɿ\[0.),ο}L(vϐT忿*ݿ+կm⿡ ?M:UMLEQ/Rslדe\9"ܰlGf5<j>)A\{v[>UOտr>Nq0`q>ot>-}n>fz܉>8_>-Nuƚ>%ԈSH>ŭ>\9>Iud>!UV>i1;>|܆9]־wi7R ٻ>5q>9z]>ǜ>J=/2>{dϷ>(d<> +[F>+G>Zñ>X*>vW>17%8>\ +>1]->#X4>)>uv}*g>ٚN>(z=TGȽfB"]"ᆰMZpi߯`CJy "F $DBfZK "c1Ai|l=پvϣ?ɾ*`оKXW¾ھFyIqxHC48R羻 ǥ˾'NUlZ;[G{ޓM)`H>~okgˑ՟f|>Cv>>/>'Q>.V>iR>Uz>n]>ͰapjD)_) ݀> J70>n(sY>rH-A9(yM?`>ks>>j %m>{dT}> =F~ >LWL>pQ>nR)>LZ³>/ω>>N.>-F5>}͗>c׵> Q>ˎK>&̙Jaݘ>u>a+ e>ۭ)j>"w:%p>VL4)v>$O=Zp>u&T>bV>"M Q>>'P>oe%@>Ϟt>7>Uh *>s>"yXB>P>%e>t j>[{ԭg>@u]>/]L>S'zvA>ZÊg.'>bjq.>N7 ~>,N8=V="aړ=f*= EY=&=f 9R!Q,'Dn'"?V/9O>8M>=`u>_qQ`ò>{ ֑`NNP O6O湾ݪ50n苕Mr܇㿦>Naks7\5F `xۉ  clN8)2F`5Qqwr.oW/hV. PaBǂ>\ 3BI:Pf|i AhcDfj#"|zm ixCq`$ñYM_LřET ,,Sn17ԃd0gC9lsxVDV {P] A祠Mj GxȀͨAIauWn{u1s0 G?KR?xlA}^+|% D@1 ]>]mOB9> %5>w(s4m a9rQN6PתKUB0y;''^Mm]ғ'xa:1s ިۀL>f-ߝ>wu<:k}>QB>>$>8st>Q>bʶu>0|j?XkX0>afu9> Ll ?^OJ?(ʀ>E>o >z'>ir4\>g߱>q >o,tG>IQ>t`k>-\>2PE> F|9?'GG?#RJ >p&셾# ??4Ar ?k*7?m!H?zuG?]U({d~0zy ҷ'ȏfg%?Wf |.VB3d xsrcom.femlab.xmesh.Xmesh[{ω Z initializedLelemIndtLcom/femlab/util/FlIntList;Lelementsq~[geomMapt[ILgeomNumq~^L initElemIndq~^L initElementsq~[mcasesq~_[meGrpst[Lcom/femlab/xmesh/MEGrp;[meshNumt[[I[sorderq~_[ unitsystemst#[Lcom/femlab/api/client/UnitSystem;Lversionq~xpwq~ur[IM`&v겥xpuq~ t(struct('elem',{'elmesh'},'g',{{'1'}},'frame',{{'rz'}},'geomdim',{{{struct('qualname',{'qual'},'dvolname',{'dvol'},'sshape',{{{'vtx',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'r$2','z$2'}}),'lvtx',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'r$2','z$2'}})}}},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11'}}}),struct('qualname',{'qual'},'dvolname',{'dvol'},'sshape',{{{'edg',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'r$2','z$2'}}),'ledg',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'r$2','z$2'}}),'edg2',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'r$2','z$2'}})}}},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11','12'}}}),struct('qualname',{'qual'},'sizename',{'h'},'dvolname',{'dvol'},'detjacname',{'detjac'},'reldetjacname',{'reldetjac'},'reldetjacminname',{'reldetjacmin'},'sshape',{{{'tri',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'r$2','z$2'}}),'ltri',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'r$2','z$2'}}),'quad',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'r$2','z$2'}}),'lquad',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'r$2','z$2'}}),'tri2',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'r$2','z$2'}}),'quad2',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'r$2','z$2'}})}}},'ind',{{{'1','2'}}})}}})tstruct('elem',{'elmesh'},'g',{{'0'}},'frame',{{'ref'}},'geomdim',{{{struct('qualname',{'qual'},'dvolname',{'dvol0'},'ind',{{{'1'}}},'sshape',{{{'vtx',struct('type',{'fixed'},'sorder',{'1'},'sdimdofs',{{}}),'lvtx',struct('type',{'fixed'},'sorder',{'1'},'sdimdofs',{{}})}}})}}})tstruct('elem',{'elshape'},'g',{{'1'}},'tvars',{'on'},'geomdim',{{{struct('shelem',{struct('default',{{{'vtx','shlag',struct('order',{'2'},'basename',{'Hrad'},'frame',{'rz'}),'lvtx','shlag',struct('order',{'2'},'basename',{'Hrad'},'frame',{'rz'}),'vtx','shlag',struct('order',{'2'},'basename',{'Hazi'},'frame',{'rz'}),'lvtx','shlag',struct('order',{'2'},'basename',{'Hazi'},'frame',{'rz'}),'vtx','shlag',struct('order',{'2'},'basename',{'Haxi'},'frame',{'rz'}),'lvtx','shlag',struct('order',{'2'},'basename',{'Haxi'},'frame',{'rz'})}}},'case',{{{}}},'mind',{{}})},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11'}}}),struct('shelem',{struct('default',{{{'edg','shlag',struct('order',{'2'},'basename',{'Hrad'},'frame',{'rz'}),'ledg','shlag',struct('order',{'2'},'basename',{'Hrad'},'frame',{'rz'}),'edg','shlag',struct('order',{'2'},'basename',{'Hazi'},'frame',{'rz'}),'ledg','shlag',struct('order',{'2'},'basename',{'Hazi'},'frame',{'rz'}),'edg','shlag',struct('order',{'2'},'basename',{'Haxi'},'frame',{'rz'}),'ledg','shlag',struct('order',{'2'},'basename',{'Haxi'},'frame',{'rz'})}}},'case',{{{}}},'mind',{{}})},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11','12'}}}),struct('shelem',{struct('default',{{{'tri','shlag',struct('order',{'2'},'basename',{'Hrad'},'frame',{'rz'}),'ltri','shlag',struct('order',{'2'},'basename',{'Hrad'},'frame',{'rz'}),'tri','shlag',struct('order',{'2'},'basename',{'Hazi'},'frame',{'rz'}),'ltri','shlag',struct('order',{'2'},'basename',{'Hazi'},'frame',{'rz'}),'tri','shlag',struct('order',{'2'},'basename',{'Haxi'},'frame',{'rz'}),'ltri','shlag',struct('order',{'2'},'basename',{'Haxi'},'frame',{'rz'})}}},'case',{{{}}},'mind',{{}})},'ind',{{{'1','2'}}})}}})tstruct('elem',{'elvar'},'g',{{'1'}},'geomdim',{{{struct('var',{{}},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11'}}}),struct('var',{{'nr_Axisymmetric',{'nr'},'nz_Axisymmetric',{'nz'}}},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11','12'}}}),struct('var',{{'absHradx_Axisymmetric',{'sqrt(Hradr^2+Hradz^2)','sqrt(Hradr^2+Hradz^2)'},'abscu1x_Axisymmetric',{'sqrt(cu1r^2+cu1z^2)','sqrt(cu1r^2+cu1z^2)'},'absHazix_Axisymmetric',{'sqrt(Hazir^2+Haziz^2)','sqrt(Hazir^2+Haziz^2)'},'abscu2x_Axisymmetric',{'sqrt(cu2r^2+cu2z^2)','sqrt(cu2r^2+cu2z^2)'},'absHaxix_Axisymmetric',{'sqrt(Haxir^2+Haxiz^2)','sqrt(Haxir^2+Haxiz^2)'},'abscu3x_Axisymmetric',{'sqrt(cu3r^2+cu3z^2)','sqrt(cu3r^2+cu3z^2)'},'erel',{'1','e1'}}},'ind',{{{'1'},{'2'}}})}}})t8struct('elem',{'elvar'},'g',{{'1'}},'geomdim',{{{struct('var',{{'DivH',{'(Hrad-Hazi*M+(Haxiz+Hradr)*r)/r'},'Drad',{'(Haxi*M-Haziz*r)/r'},'Dazi',{'-Haxir+Hradz'},'Daxi',{'(Hazi-Hrad*M+Hazir*r)/r'},'Erad',{'Drad/erel'},'Eazi',{'Dazi/erel'},'Eaxi',{'Daxi/erel'},'comment',{'1'},'MagAziSqrd',{'imag(Hazi)^2'},'MagTransSqrd',{'real(Haxi)^2+real(Hrad)^2'},'ElecAziSqrd',{'real(Eazi)^2'},'ElecTransSqrd',{'imag(Eaxi)^2+imag(Erad)^2'}}},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11'}}}),struct('var',{{'DivH',{'(Hrad-Hazi*M+(Haxiz+Hradr)*r)/r'},'Drad',{'(Haxi*M-Haziz*r)/r'},'Dazi',{'-Haxir+Hradz'},'Daxi',{'(Hazi-Hrad*M+Hazir*r)/r'},'Erad',{'Drad/erel'},'Eazi',{'Dazi/erel'},'Eaxi',{'Daxi/erel'},'comment',{'1'},'MagAziSqrd',{'imag(Hazi)^2'},'MagTransSqrd',{'real(Haxi)^2+real(Hrad)^2'},'ElecAziSqrd',{'real(Eazi)^2'},'ElecTransSqrd',{'imag(Eaxi)^2+imag(Erad)^2'}}},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11','12'}}}),struct('var',{{'DivH',{'(Hrad-Hazi*M+(Haxiz+Hradr)*r)/r'},'Drad',{'(Haxi*M-Haziz*r)/r'},'Dazi',{'-Haxir+Hradz'},'Daxi',{'(Hazi-Hrad*M+Hazir*r)/r'},'Erad',{'Drad/erel'},'Eazi',{'Dazi/erel'},'Eaxi',{'Daxi/erel'},'comment',{'1'},'MagAziSqrd',{'imag(Hazi)^2'},'MagTransSqrd',{'real(Haxi)^2+real(Hrad)^2'},'ElecAziSqrd',{'real(Eazi)^2'},'ElecTransSqrd',{'imag(Eaxi)^2+imag(Erad)^2'}}},'ind',{{{'1','2'}}})}}})tstruct('elem',{'elconst'},'var',{{'c','299792458','k','2*pi/c','fc','k^2','alpha','1.0','M','93','delta_e','0.0','e1','n_silica^2*(1+delta_e)','e2','1.0','delta_eperp1','0*1e-3','eperp1','9.2725*(1+delta_eperp1)','delta_epara1','0*1e-3','epara1','11.3486*(1+delta_epara1)','eperp2','1.0','epara2','1.0','e_293K_alumina','9.8','eperp_4K_sapph_UWA','9.2725','epara_4K_sapph_UWA','11.3486','eperp_293K_sapph','9.407','epara_293K_sapph','11.62','eperp_4K_sapph_NPL','9.2848','epara_4K_sapph_NPL','11.3660','n_silica','1.4457','n_AlGaAs','3.36','mf','2.374616e14','ttgH','1','ttgE','0','rectangle_mf','2.376629e14','circle_mf','2.374616e14','mixing_angle','45','cMW','sin(mixing_angle * pi /180)','cEW','cos(mixing_angle * pi /180)','tngM','1','tngE','0'}})tGstruct('elem',{'elgeom'},'g',{{'1'}},'frame',{{'rz'}},'sorder',{{'2'}})tKstruct('elem',{'elepspec'},'g',{{'1'}},'geom',{{struct('ep',{{'2','1'}})}})tKstruct('elem',{'elgpspec'},'g',{{'1'}},'geom',{{struct('ep',{{'4','0'}})}})tstruct('elem',{'eleqw'},'g',{{'1'}},'geomdim',{{{struct('coeff',{{{'0','0','0'}}},'tcoeff',{{{'0','0','0'}}},'ipoints',{{'2'}},'dvolname',{{{'dvol','dvol','dvol'}}},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11'}}}),struct('coeff',{{{'0','0','0'}}},'tcoeff',{{{'0','0','0'}}},'ipoints',{{{'1','1','1'}}},'dvolname',{{{'dvol','dvol','dvol'}}},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11','12'}}}),struct('coeff',{{{'+(-Haziz*M*test(Haxi)+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))','+(alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-Hrad*M*test(Hazi)+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr))))','0'},{'+((-Haziz*M*test(Haxi)+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1)','+(alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-Hrad*M*test(Hazi)+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr))))','0'}}},'tcoeff',{{{'+(fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad)))','0','0'},{'+(fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad)))','0','0'}}},'ipoints',{{{'1','1','1'},{'1','1','1'}}},'dvolname',{{{'dvol','dvol','dvol'},{'dvol','dvol','dvol'}}},'ind',{{{'1'},{'2'}}})}}},'nonlintest',{{'off'}})tstruct('elem',{'elpconstr'},'g',{{'1'}},'geomdim',{{{{},struct('constr',{{{'+(Hrad*nr+Haxi*nz)','0','0'}}},'cpoints',{{{'1','1','1'}}},'ind',{{{'1','2','3','5','7','8'}}}),{}}}})t2struct('elem',{'elvar'},'g',{{'0','1'}},'geomdim',{{{struct('var',{{'geomnum',{'0'}}},'ind',{{{'1'}}})},{struct('var',{{}},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11'}}}),struct('var',{{}},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11','12'}}}),struct('var',{{}},'ind',{{{'1','2'}}})}}})uq~d uq~tEstruct('elem',{'elvar'},'g',{{'1'}},'geomdim',{{{struct('var',{{'r$2',{'rg'},'z$2',{'zg'}}},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11'}}}),struct('var',{{'r$2',{'rg'},'z$2',{'zg'}}},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11','12'}}}),struct('var',{{'r$2',{'rg'},'z$2',{'zg'}}},'ind',{{{'1','2'}}})}}})tstruct('elem',{'elvar'},'g',{{'1'}},'geomdim',{{{struct('var',{{'Hrad',{''},'Hazi',{''},'Haxi',{''},'Hradt',{''},'Hazit',{''},'Haxit',{''}}},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11'}}}),struct('var',{{'Hrad',{''},'Hazi',{''},'Haxi',{''},'Hradt',{''},'Hazit',{''},'Haxit',{''}}},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11','12'}}}),struct('var',{{'Hrad',{'0'},'Hazi',{'0'},'Haxi',{'0'},'Hradt',{'0'},'Hazit',{'0'},'Haxit',{'0'}}},'ind',{{{'1','2'}}})}}})uq~duq~dur[Lcom.femlab.xmesh.MEGrp;5q|Yxpsrcom.femlab.xmesh.MEGrpfI bmTypeIndIeDimIgeomNumImeshCaseL bmTypeStrq~[coordst[[D[domainsq~_[namest[Ljava/lang/String;xpwtls(0)uq~duq~ur[[Dǭ dgExpxsq~{wtls(0)uq~d  uq~tHaxitHazitHraduq~xsq~{wts(1)uq~d  uq~ tHaxitHaxitHaxitHazitHazitHazitHradtHradtHradtr$2tz$2uq~uq~> ????????xsq~{wts(2)uq~duq~tHaxitHaxitHaxitHaxitHaxitHaxitHazitHazitHazitHazitHazitHazitHradtHradtHradtHradtHradtHradtr$2tr$2tr$2tz$2tz$2tz$2uq~uq~>?????????????uq~>?????????????xsq~{wtls(2)uq~duq~tHaxitHaxitHaxitHaxitHaxitHaxitHazitHazitHazitHazitHazitHazitHradtHradtHradtHradtHradtHraduq~uq~>?????????uq~>?????????xuq~dxq~Pq~Sq~Wq~csq~3wq~wuq~+Geom2|=-C6?@ *@ *@@@@???? BezierCurve@ ?*@ ? BezierCurve*@ ?*@@? BezierCurve*@@?@@? BezierCurve@@?@ ? AssocAttrib VectorInt1   AssocAttrib VectorInt1   AssocAttrib VectorInt1   AssocAttrib VectorInt1  xwxwq~=uq~>@"?uq~@sq~Bwq~Ew?xsq~Bwq~Gw?xwsq~Bwq~Iw?FR9xxw @ sq~Bwq~Kw?xw@ sq~Bwq~Mw?xxsq~8wq~w[uq~+[Geom2|=-C6?@@? 1`fW@ 1`fW@? @ @@"@???????? BezierCurve@?@?? BezierCurve@? 1`fW@? BezierCurve@?? 1`fW@?? BezierCurve 1`fW@ .)?$L@5A-? @? BezierCurve 1`fW@? .)?$L@@5A-? @@? BezierCurve @?"@;f?"@?? BezierCurve @@?"@@;f?"@?? AssocAttrib VectorInt5  xwxq~;q~Nsrcom.femlab.api.client.MFileInfo3$$LfemNameq~[historyq~}[mfileTagsAndTypest[[Ljava/lang/String;[ resetHistoryq~}[ storedNamesq~}Lversionq~xpwsq~wq~q~q~ q~ t COMSOL 3.2twt $Name: $t$Date: 2005/10/24 07:30:19 $xuq~t`% COMSOL Multiphysics Model M-file % Generated by COMSOL 3.2 (COMSOL 3.2.0.224, $Date: 2005/10/24 07:30:19 $) % Application mode 1 clear appl appl.mode.class = 'FlPDEW'; appl.mode.type = 'cartesian'; appl.dim = {'Hrad','Hazi','Haxi','Hrad_t','Hazi_t','Haxi_t'}; appl.sdim = {'r','z','z2'}; appl.name = 'Axisymmetric'; appl.shape = {}; appl.gporder = {}; appl.cporder = {}; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_Axisymmetric'; clear prop prop.elemdefault='Lag2'; prop.wave='off'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm1','lm2','lm3','lm4','lm5','lm6'}; prop.weakconstr = weakconstr; prop.frame='rz'; appl.prop = prop; clear pnt pnt.weak = {}; pnt.dweak = {}; pnt.constr = {}; pnt.name = {}; pnt.ind = []; appl.pnt = pnt; clear bnd bnd.weak = {}; bnd.dweak = {}; bnd.constr = {}; bnd.name = {}; bnd.ind = []; appl.bnd = bnd; clear equ equ.gporder = {}; equ.init = {}; equ.shape = {}; equ.weak = {}; equ.dweak = {}; equ.usage = {}; equ.constr = {}; equ.cporder = {}; equ.dinit = {}; equ.name = {}; equ.ind = []; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'rz'}; % Simplify expressions fem.simplify = 'on'; fem.border = 1; fem.units = 'SI'; % Global expressions fem.expr = {}; % Functions clear fcns fem.functions = {}; % Solution form fem.solform = 'weak'; % Multiphysics fem=multiphysics(fem); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.2 (COMSOL 3.2.0.224, $Date: 2005/10/24 07:30:19 $) % Some geometry objects are stored in a separate file. % The name of this file is given by the variable 'flbinaryfile'. flbinaryfile=''; % Geometry g1=flbinary('g1','draw',flbinaryfile); g2=flbinary('g2','draw',flbinaryfile); g1=move(g1,[0,0.5]); g2=move(g2,[0,0.5]); % Constants fem.const = {'c','299792458', ... 'k','2*pi/c', ... 'fc','k^2', ... 'alpha','10.0', ... 'M','11', ... 'delta_e','0.0', ... 'e1','n_AlGaAs^2*(1+delta_e)', ... 'e2','1.0', ... 'e3','1.0', ... 'e4','1.0', ... 'e5','1.0', ... 'delta_eperp1','0*1e-3', ... 'eperp1','9.2725*(1+delta_eperp1)', ... 'delta_epara1','0*1e-3', ... 'epara1','11.3486*(1+delta_epara1)', ... 'eperp2','1.0', ... 'epara2','1.0', ... 'eperp3','1.0', ... 'epara3','1.0', ... 'eperp4','1.0', ... 'epara4','1.0', ... 'eperp5','1.0', ... 'epara5','1.0', ... 'e_293K_alumina','9.8', ... 'eperp_4K_sapph_UWA','9.2725', ... 'epara_4K_sapph_UWA','11.3486', ... 'eperp_293K_sapph','9.407', ... 'epara_293K_sapph','11.62', ... 'eperp_4K_sapph_NPL','9.2848', ... 'epara_4K_sapph_NPL','11.3660', ... 'n_silica','1.4457', ... 'n_AlGaAs','3.36', ... 'mf','2.374616e14', ... 'ttgH','1', ... 'ttgE','0', ... 'rectangle_mf','2.376629e14', ... 'circle_mf','2.374616e14', ... 'mixing_angle','45', ... 'cMW','sin(mixing_angle * pi /180)', ... 'cEW','cos(mixing_angle * pi /180)', ... 'tngM','1', ... 'tngE','0'}; % Geometry clear s s.objs={g1,g2}; s.name={'CO1','R1'}; s.tags={'g1','g2'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % Initialize mesh fem.mesh=meshinit(fem, ... 'hmax',[], ... 'hmaxfact',1, ... 'hgrad',1.3, ... 'hcurve',0.3, ... 'hcutoff',0.001, ... 'hnarrow',1, ... 'hpnt',10, ... 'xscale',1.0, ... 'yscale',1.0, ... 'mlevel','sub'); % Refine mesh fem.mesh=meshrefine(fem, ... 'mcase',0, ... 'boxcoord',[6.916843702579666 9.867981790591806 -1.3094081942336881 2.456297420333839], ... 'rmethod','regular'); % Application mode 1 clear appl appl.mode.class = 'FlPDEW'; appl.mode.type = 'cartesian'; appl.dim = {'Hrad','Hazi','Haxi','Hrad_t','Hazi_t','Haxi_t'}; appl.sdim = {'r','z','z2'}; appl.name = 'Axisymmetric'; appl.shape = {'shlag(2,''Hrad'')','shlag(2,''Hazi'')','shlag(2,''Haxi'')'}; appl.gporder = 4; appl.cporder = 2; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_Axisymmetric'; clear prop prop.elemdefault='Lag2'; prop.wave='off'; prop.frame='rz'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm1','lm2','lm3','lm4','lm5','lm6'}; prop.weakconstr = weakconstr; appl.prop = prop; clear pnt pnt.weak = {{'0';'0';'0'}}; pnt.dweak = {{'0';'0';'0'}}; pnt.constr = {{'0';'0';'0'}}; pnt.ind = [1,1,1,1,1,1,1,1,1,1,1]; appl.pnt = pnt; clear bnd bnd.weak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.dweak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.constr = {{'Hrad*nr+Haxi*nz';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'0';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'Hrad*nr+Haxi*nz';'0';'0'},{'Haxi*nr-Hrad*nz';'Hazi';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'Haxi*nr-Hrad*nz';'Hazi';'0'},{'0';'0';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'-i*cMW*Hazi*k*mf+(cEW*(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r))/r'; ... '-i*cEW*(-Haxir+Hradz)+cMW*k*mf*(Haxi*nr-Hrad*nz)';'0'},{'0';'0';'0'}}; bnd.name = {'electric_wall','normal_D','tangential_H','magnetic_wall','normal_H', ... 'tangential_D','radiation_match','null'}; bnd.ind = [1,1,1,8,1,8,1,1,8,8,8,8]; appl.bnd = bnd; clear equ equ.gporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.init = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.shape = {[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3]}; equ.weak = {{'-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz))'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e2'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara1*Haziz*M*test(Haxi))+eperp1*Hazir*test(Hazi)+eperp1*Hazi*test(Hazir)-eperp1*Hrad*M*test(Hazir)-epara1*Haxi*M*test(Haziz)-eperp1*Hazir*M*test(Hrad))/(epara1*eperp1)+(epara1*Haxi*M^2*test(Haxi)+eperp1*Hazi*test(Hazi)-eperp1*Hrad*M*test(Hazi)-eperp1*Hazi*M*test(Hrad)+eperp1*Hrad*M^2*test(Hrad))/(epara1*eperp1*r)+(r*(epara1*(Haxir-Hradz)*test(Haxir)+eperp1*Hazir*test(Hazir)+epara1*Haziz*test(Haziz)-epara1*Haxir*test(Hradz)+epara1*Hradz*test(Hradz)))/(epara1*eperp1)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara2*Haziz*M*test(Haxi))+eperp2*Hazir*test(Hazi)+eperp2*Hazi*test(Hazir)-eperp2*Hrad*M*test(Hazir)-epara2*Haxi*M*test(Haziz)-eperp2*Hazir*M*test(Hrad))/(epara2*eperp2)+(epara2*Haxi*M^2*test(Haxi)+eperp2*Hazi*test(Hazi)-eperp2*Hrad*M*test(Hazi)-eperp2*Hazi*M*test(Hrad)+eperp2*Hrad*M^2*test(Hrad))/(epara2*eperp2*r)+(r*(epara2*(Haxir-Hradz)*test(Haxir)+eperp2*Hazir*test(Hazir)+epara2*Haziz*test(Haziz)-epara2*Haxir*test(Hradz)+epara2*Hradz*test(Hradz)))/(epara2*eperp2)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'}}; equ.dweak = {{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'}}; equ.usage = {1,1,1,1,1}; equ.constr = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'}}; equ.cporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.dinit = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.name = {'dielectric_0:vacuum','isotrop_diel_1','isotrop_diel_2','uniaxial_diel_1', ... 'uniaxial_diel_2'}; equ.ind = [1,2]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'rz'}; % Simplify expressions fem.simplify = 'on'; fem.border = 1; fem.units = 'SI'; % Subdomain expressions clear equ equ.ind = [1,2]; equ.dim = {'Hrad','Hazi','Haxi'}; equ.var = {}; equ.expr = {'erel',{'1','e1'}}; fem.equ = equ; % Global expressions fem.expr = {'DivH','(Hrad-Hazi*M+(Haxiy+Hradx)*x)/x', ... 'MagEnDens','Hrad*Hrad+Hazi*Hazi+Haxi*Haxi', ... 'Drad','(Haxi*M-Haziy*x)/x', ... 'Dazi','-Haxix+Hrady', ... 'Daxi','(Hazi-Hrad*M+Hazix*x)/x', ... 'Erad','Drad/erel', ... 'Eazi','Dazi/erel', ... 'Eaxi','Daxi/erel', ... 'ElecMagSqrd','Erad*Erad+Eazi*Eazi+Eaxi*Eaxi', ... 'ElecEnDens','Erad*Drad+Eazi*Dazi+Eaxi*Daxi', ... 'AbsMagEnDens','abs(Hrad)^2+abs(Hazi)^2+abs(Haxi)^2', ... 'MagNrmlHSqrd','2*pi*x*abs(Haxi*ny+Hrad*nx)^2', ... 'MagTngHSqrd','2*pi*x*(1*abs(Hazi)^2+1*abs(Haxi*nx-Hrad*ny)^2)', ... 'AbsElecSqrd','abs(Erad)^2+abs(Eazi)^2+abs(Eaxi)^2'}; % Descriptions clear descr descr.expr= {'Eaxi','axial component of electric field strength','DivH','divergence of magnetic field (should be zero!)','ElecEnDens','electric energy density','ElecMagSqrd','electric field strength magnitude squared','Eazi','azimuthal component of electric field strength','Drad','radial component of electric displacement','Dazi','azimuthal component of electric displacement','Erad','radial component of electric field strength','Daxi','axial component of electric displacement','MagEnDens','magnetic energy density'}; fem.descr = descr; % Functions clear fcns fem.functions = {}; % Descriptions descr = fem.descr; descr.const= {'eperp2','relative permittivity of uniaxial_dielectric_2 perpendicular to cylindrical axis','c','speed of light (exact!)','e3','etc. ...','mixing_angle','Electric-Magnetic Mixing Angle (in degrees)','delta_epara1','fractional increment (for determining filling factors)','epara2','ditto but parallel to cylindrical axis','n_silica','refractive index of thermally grown silica (Fig B.2, p. 172 of Kippenberg''s thesis)','eperp1','relative permittivity of uniaxial_dielectric_1 perpendicular to cylindrical axis','cMW','Magnetic-Wall-ness','mf','match frequency','alpha','penalty coefficient on Div H','e_293K_alumina','relative permittivity of alumina at room temperature','e2','ditto for isotropic_dielectric_2','eperp_4K_sapph_UWA','UWA values for cryogenic HEMEX sapphire','eperp_293K_sapph','nominal room temperature values for same','delta_e','fractional increment (for determining filling factors)','epara1','relative permittivity of uniaxial_dielectric_1 parallel to cylindrical axis','eperp3','etc.','M','azimuthal mode order','fc','constant used internally --do not modify','epara3','etc. ...','e1','relative permittivity of isotropic_dielectric_1','cEW','Electric-Wall-ness','n_AlGaAs','average refractive index of GaAs and AlGaAs layers (p. 172 of Srinivasan)','delta_eperp1','fractional increment (for determining filling factors)','eperp_4K_sapph_NPL','NPL values'}; fem.descr = descr; % Solution form fem.solform = 'weak'; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem,'geoms',[1],'eqvars','on','cplbndeq','on','cplbndsh','off'); % Solve problem fem.sol=femeig(fem, ... 'method','eliminate', ... 'nullfun','auto', ... 'blocksize',5000, ... 'complexfun','off', ... 'solfile','off', ... 'conjugate','on', ... 'symmetric','on', ... 'solcomp',{'Hazi','Haxi','Hrad'}, ... 'outcomp',{'Hazi','Haxi','Hrad'}, ... 'rowscale','on', ... 'neigs',10, ... 'shift',0, ... 'krylovdim',0, ... 'maxeigit',300, ... 'etol',0.0, ... 'linsolver','spooles', ... 'thresh',0.1, ... 'preorder','mmd', ... 'uscale','auto', ... 'mcase',0); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'Hrad','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',1, ... 'phase',(0)*pi/180, ... 'title','lambda(1)=4.677311e7 Surface: Hrad', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.57996965098634,13.4200303490137,-3.9,4.9,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'Hrad','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',9, ... 'phase',(0)*pi/180, ... 'title','lambda(9)=2.772605e7 Surface: Hrad', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.30067453625632,5.30067453625632,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'Hrad','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',8, ... 'phase',(0)*pi/180, ... 'title','lambda(8)=3.333817e7 Surface: Hrad', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.30067453625632,5.30067453625632,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'Hrad','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',7, ... 'phase',(0)*pi/180, ... 'title','lambda(7)=3.499784e7 Surface: Hrad', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.30067453625632,5.30067453625632,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'Hrad','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',5, ... 'phase',(0)*pi/180, ... 'title','lambda(5)=3.879435e7 Surface: Hrad', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.30067453625632,5.30067453625632,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'Hrad','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',5, ... 'phase',(0)*pi/180, ... 'title','lambda(5)=3.879435e7 Surface: Hrad', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.30067453625632,5.30067453625632,-1,1]); % Geometry g1=scale(g1,0.000001,0.000001,0,0); g2=scale(g2,0.000001,0.000001,0,0); % Constants fem.const = {'c','299792458', ... 'k','2*pi/c', ... 'fc','k^2', ... 'alpha','1.0', ... 'M','93', ... 'delta_e','0.0', ... 'e1','n_silica^2*(1+delta_e)', ... 'e2','1.0', ... 'delta_eperp1','0*1e-3', ... 'eperp1','9.2725*(1+delta_eperp1)', ... 'delta_epara1','0*1e-3', ... 'epara1','11.3486*(1+delta_epara1)', ... 'eperp2','1.0', ... 'epara2','1.0', ... 'e_293K_alumina','9.8', ... 'eperp_4K_sapph_UWA','9.2725', ... 'epara_4K_sapph_UWA','11.3486', ... 'eperp_293K_sapph','9.407', ... 'epara_293K_sapph','11.62', ... 'eperp_4K_sapph_NPL','9.2848', ... 'epara_4K_sapph_NPL','11.3660', ... 'n_silica','1.4457', ... 'n_AlGaAs','3.36', ... 'mf','2.374616e14', ... 'ttgH','1', ... 'ttgE','0', ... 'rectangle_mf','2.376629e14', ... 'circle_mf','2.374616e14', ... 'mixing_angle','45', ... 'cMW','sin(mixing_angle * pi /180)', ... 'cEW','cos(mixing_angle * pi /180)', ... 'tngM','1', ... 'tngE','0'}; % Constants fem.const = {'c','299792458', ... 'k','2*pi/c', ... 'fc','k^2', ... 'alpha','1.0', ... 'M','93', ... 'delta_e','0.0', ... 'e1','n_silica^2*(1+delta_e)', ... 'e2','1.0', ... 'delta_eperp1','0*1e-3', ... 'eperp1','9.2725*(1+delta_eperp1)', ... 'delta_epara1','0*1e-3', ... 'epara1','11.3486*(1+delta_epara1)', ... 'eperp2','1.0', ... 'epara2','1.0', ... 'e_293K_alumina','9.8', ... 'eperp_4K_sapph_UWA','9.2725', ... 'epara_4K_sapph_UWA','11.3486', ... 'eperp_293K_sapph','9.407', ... 'epara_293K_sapph','11.62', ... 'eperp_4K_sapph_NPL','9.2848', ... 'epara_4K_sapph_NPL','11.3660', ... 'n_silica','1.4457', ... 'n_AlGaAs','3.36', ... 'mf','2.374616e14', ... 'ttgH','1', ... 'ttgE','0', ... 'rectangle_mf','2.376629e14', ... 'circle_mf','2.374616e14', ... 'mixing_angle','45', ... 'cMW','sin(mixing_angle * pi /180)', ... 'cEW','cos(mixing_angle * pi /180)', ... 'tngM','1', ... 'tngE','0'}; % Geometry clear s s.objs={g1,g2}; s.name={'CO1','R1'}; s.tags={'g1','g2'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % Initialize mesh fem.mesh=meshinit(fem, ... 'hmax',[], ... 'hmaxfact',1, ... 'hgrad',1.3, ... 'hcurve',0.3, ... 'hcutoff',0.001, ... 'hnarrow',1, ... 'hpnt',10, ... 'xscale',1.0, ... 'yscale',1.0, ... 'mlevel','sub'); % Application mode 1 clear appl appl.mode.class = 'FlPDEW'; appl.mode.type = 'cartesian'; appl.dim = {'Hrad','Hazi','Haxi','Hrad_t','Hazi_t','Haxi_t'}; appl.sdim = {'r','z','z2'}; appl.name = 'Axisymmetric'; appl.shape = {'shlag(2,''Hrad'')','shlag(2,''Hazi'')','shlag(2,''Haxi'')'}; appl.gporder = 4; appl.cporder = 2; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_Axisymmetric'; clear prop prop.elemdefault='Lag2'; prop.wave='off'; prop.frame='rz'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm1','lm2','lm3','lm4','lm5','lm6'}; prop.weakconstr = weakconstr; appl.prop = prop; clear pnt pnt.weak = {{'0';'0';'0'}}; pnt.dweak = {{'0';'0';'0'}}; pnt.constr = {{'0';'0';'0'}}; pnt.ind = [1,1,1,1,1,1,1,1,1,1,1]; appl.pnt = pnt; clear bnd bnd.weak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.dweak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.constr = {{'Hrad*nr+Haxi*nz';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'0';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'Hrad*nr+Haxi*nz';'0';'0'},{'Haxi*nr-Hrad*nz';'Hazi';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'Haxi*nr-Hrad*nz';'Hazi';'0'},{'0';'0';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'-i*cMW*Hazi*k*mf+(cEW*(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r))/r'; ... '-i*cEW*(-Haxir+Hradz)+cMW*k*mf*(Haxi*nr-Hrad*nz)';'0'},{'0';'0';'0'}}; bnd.name = {'electric_wall','normal_D','tangential_H','magnetic_wall','normal_H', ... 'tangential_D','radiation_match','null'}; bnd.ind = [1,1,1,8,1,8,1,1,8,8,8,8]; appl.bnd = bnd; clear equ equ.gporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.init = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.shape = {[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3]}; equ.weak = {{'-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz))'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e2'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara1*Haziz*M*test(Haxi))+eperp1*Hazir*test(Hazi)+eperp1*Hazi*test(Hazir)-eperp1*Hrad*M*test(Hazir)-epara1*Haxi*M*test(Haziz)-eperp1*Hazir*M*test(Hrad))/(epara1*eperp1)+(epara1*Haxi*M^2*test(Haxi)+eperp1*Hazi*test(Hazi)-eperp1*Hrad*M*test(Hazi)-eperp1*Hazi*M*test(Hrad)+eperp1*Hrad*M^2*test(Hrad))/(epara1*eperp1*r)+(r*(epara1*(Haxir-Hradz)*test(Haxir)+eperp1*Hazir*test(Hazir)+epara1*Haziz*test(Haziz)-epara1*Haxir*test(Hradz)+epara1*Hradz*test(Hradz)))/(epara1*eperp1)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara2*Haziz*M*test(Haxi))+eperp2*Hazir*test(Hazi)+eperp2*Hazi*test(Hazir)-eperp2*Hrad*M*test(Hazir)-epara2*Haxi*M*test(Haziz)-eperp2*Hazir*M*test(Hrad))/(epara2*eperp2)+(epara2*Haxi*M^2*test(Haxi)+eperp2*Hazi*test(Hazi)-eperp2*Hrad*M*test(Hazi)-eperp2*Hazi*M*test(Hrad)+eperp2*Hrad*M^2*test(Hrad))/(epara2*eperp2*r)+(r*(epara2*(Haxir-Hradz)*test(Haxir)+eperp2*Hazir*test(Hazir)+epara2*Haziz*test(Haziz)-epara2*Haxir*test(Hradz)+epara2*Hradz*test(Hradz)))/(epara2*eperp2)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'}}; equ.dweak = {{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'}}; equ.usage = {1,1,1,1,1}; equ.constr = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'}}; equ.cporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.dinit = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.name = {'dielectric_0:vacuum','isotrop_diel_1','isotrop_diel_2','uniaxial_diel_1', ... 'uniaxial_diel_2'}; equ.ind = [1,2]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'rz'}; % Simplify expressions fem.simplify = 'on'; fem.border = 1; fem.units = 'SI'; % Subdomain expressions clear equ equ.ind = [1,2]; equ.dim = {'Hrad','Hazi','Haxi'}; equ.var = {}; equ.expr = {'erel',{'1','e1'}}; fem.equ = equ; % Global expressions fem.expr = {'DivH','(Hrad-Hazi*M+(Haxiy+Hradx)*x)/x', ... 'MagEnDens','Hrad*Hrad+Hazi*Hazi+Haxi*Haxi', ... 'Drad','(Haxi*M-Haziy*x)/x', ... 'Dazi','-Haxix+Hrady', ... 'Daxi','(Hazi-Hrad*M+Hazix*x)/x', ... 'Erad','Drad/erel', ... 'Eazi','Dazi/erel', ... 'Eaxi','Daxi/erel', ... 'ElecMagSqrd','Erad*Erad+Eazi*Eazi+Eaxi*Eaxi', ... 'ElecEnDens','Erad*Drad+Eazi*Dazi+Eaxi*Daxi', ... 'AbsMagEnDens','abs(Hrad)^2+abs(Hazi)^2+abs(Haxi)^2', ... 'MagNrmlHSqrd','2*pi*x*abs(Haxi*ny+Hrad*nx)^2', ... 'MagTngHSqrd','2*pi*x*(1*abs(Hazi)^2+1*abs(Haxi*nx-Hrad*ny)^2)', ... 'AbsElecSqrd','abs(Erad)^2+abs(Eazi)^2+abs(Eaxi)^2'}; % Descriptions clear descr descr.expr= {'Eaxi','axial component of electric field strength','DivH','divergence of magnetic field (should be zero!)','ElecEnDens','electric energy density','ElecMagSqrd','electric field strength magnitude squared','Eazi','azimuthal component of electric field strength','Drad','radial component of electric displacement','Dazi','azimuthal component of electric displacement','Erad','radial component of electric field strength','Daxi','axial component of electric displacement','MagEnDens','magnetic energy density'}; fem.descr = descr; % Functions clear fcns fem.functions = {}; % Descriptions descr = fem.descr; descr.const= {'e_293K_alumina','relative permittivity of alumina at room temperature','e2','ditto for isotropic_dielectric_2','eperp2','relative permittivity of uniaxial_dielectric_2 perpendicular to cylindrical axis','eperp_293K_sapph','nominal room temperature values for same','eperp_4K_sapph_UWA','UWA values for cryogenic HEMEX sapphire','c','speed of light (exact!)','delta_e','fractional increment (for determining filling factors)','mixing_angle','Electric-Magnetic Mixing Angle (in degrees)','epara1','relative permittivity of uniaxial_dielectric_1 parallel to cylindrical axis','delta_epara1','fractional increment (for determining filling factors)','epara2','ditto but parallel to cylindrical axis','M','azimuthal mode order','n_silica','refractive index of thermally grown silica (Fig B.2, p. 172 of Kippenberg''s thesis)','fc','constant used internally --do not modify','e1','relative permittivity of isotropic_dielectric_1','eperp1','relative permittivity of uniaxial_dielectric_1 perpendicular to cylindrical axis','cEW','Electric-Wall-ness','cMW','Magnetic-Wall-ness','n_AlGaAs','average refractive index of GaAs and AlGaAs layers (p. 172 of Srinivasan)','mf','match frequency','delta_eperp1','fractional increment (for determining filling factors)','eperp_4K_sapph_NPL','NPL values','alpha','penalty coefficient on Div H'}; fem.descr = descr; % Solution form fem.solform = 'weak'; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem,'geoms',[1],'eqvars','on','cplbndeq','on','cplbndsh','off'); % Solve problem fem.sol=femeig(fem, ... 'method','eliminate', ... 'nullfun','auto', ... 'blocksize',5000, ... 'complexfun','off', ... 'solfile','off', ... 'conjugate','on', ... 'symmetric','on', ... 'solcomp',{'Hazi','Haxi','Hrad'}, ... 'outcomp',{'Hazi','Haxi','Hrad'}, ... 'rowscale','on', ... 'neigs',10, ... 'shift',0, ... 'krylovdim',0, ... 'maxeigit',300, ... 'etol',0.0, ... 'linsolver','spooles', ... 'thresh',0.1, ... 'preorder','mmd', ... 'uscale','auto', ... 'mcase',0); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'Hrad','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',1, ... 'phase',(0)*pi/180, ... 'title','lambda(1)=1.897706e15 Surface: Hrad', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.57996952573619E-6,1.34200302014445E-5,-3.90000004699687E-6,4.89999993078527E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'Hrad','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',1, ... 'phase',(0)*pi/180, ... 'title','lambda(1)=1.897706e15 Surface: Hrad', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59999987469928E-6,1.33999998524814E-5,-4.34224876819716E-6,5.34224865198557E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'Hrad','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(10)=3.608767e14 Surface: Hrad', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59999987469928E-6,1.33999998524814E-5,-4.34224876819716E-6,5.34224865198557E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'Hrad','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',9, ... 'phase',(0)*pi/180, ... 'title','lambda(9)=3.666974e14 Surface: Hrad', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59999987469928E-6,1.33999998524814E-5,-4.32580649753471E-6,5.32580638132312E-6,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hmax',[], ... 'hmaxfact',1, ... 'hgrad',1.3, ... 'hcurve',0.3, ... 'hcutoff',0.001, ... 'hnarrow',1, ... 'hpnt',10, ... 'xscale',1.0, ... 'yscale',1.0, ... 'mlevel','sub'); % Refine mesh fem.mesh=meshrefine(fem, ... 'mcase',0, ... 'rmethod','regular'); % Refine mesh fem.mesh=meshrefine(fem, ... 'mcase',0, ... 'boxcoord',[7.127659442785637E-6 1.0150151836370384E-5 -1.4525836398021376E-6 2.479331243887753E-6], ... 'rmethod','regular'); % Application mode 1 clear appl appl.mode.class = 'FlPDEW'; appl.mode.type = 'cartesian'; appl.dim = {'Hrad','Hazi','Haxi','Hrad_t','Hazi_t','Haxi_t'}; appl.sdim = {'r','z','z2'}; appl.name = 'Axisymmetric'; appl.shape = {'shlag(2,''Hrad'')','shlag(2,''Hazi'')','shlag(2,''Haxi'')'}; appl.gporder = 4; appl.cporder = 2; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_Axisymmetric'; clear prop prop.elemdefault='Lag2'; prop.wave='off'; prop.frame='rz'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm1','lm2','lm3','lm4','lm5','lm6'}; prop.weakconstr = weakconstr; appl.prop = prop; clear pnt pnt.weak = {{'0';'0';'0'}}; pnt.dweak = {{'0';'0';'0'}}; pnt.constr = {{'0';'0';'0'}}; pnt.ind = [1,1,1,1,1,1,1,1,1,1,1]; appl.pnt = pnt; clear bnd bnd.weak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.dweak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.constr = {{'Hrad*nr+Haxi*nz';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'0';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'Hrad*nr+Haxi*nz';'0';'0'},{'Haxi*nr-Hrad*nz';'Hazi';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'Haxi*nr-Hrad*nz';'Hazi';'0'},{'0';'0';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'-i*cMW*Hazi*k*mf+(cEW*(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r))/r'; ... '-i*cEW*(-Haxir+Hradz)+cMW*k*mf*(Haxi*nr-Hrad*nz)';'0'},{'0';'0';'0'}}; bnd.name = {'electric_wall','normal_D','tangential_H','magnetic_wall','normal_H', ... 'tangential_D','radiation_match','null'}; bnd.ind = [1,1,1,8,1,8,1,1,8,8,8,8]; appl.bnd = bnd; clear equ equ.gporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.init = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.shape = {[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3]}; equ.weak = {{'-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz))'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e2'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara1*Haziz*M*test(Haxi))+eperp1*Hazir*test(Hazi)+eperp1*Hazi*test(Hazir)-eperp1*Hrad*M*test(Hazir)-epara1*Haxi*M*test(Haziz)-eperp1*Hazir*M*test(Hrad))/(epara1*eperp1)+(epara1*Haxi*M^2*test(Haxi)+eperp1*Hazi*test(Hazi)-eperp1*Hrad*M*test(Hazi)-eperp1*Hazi*M*test(Hrad)+eperp1*Hrad*M^2*test(Hrad))/(epara1*eperp1*r)+(r*(epara1*(Haxir-Hradz)*test(Haxir)+eperp1*Hazir*test(Hazir)+epara1*Haziz*test(Haziz)-epara1*Haxir*test(Hradz)+epara1*Hradz*test(Hradz)))/(epara1*eperp1)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara2*Haziz*M*test(Haxi))+eperp2*Hazir*test(Hazi)+eperp2*Hazi*test(Hazir)-eperp2*Hrad*M*test(Hazir)-epara2*Haxi*M*test(Haziz)-eperp2*Hazir*M*test(Hrad))/(epara2*eperp2)+(epara2*Haxi*M^2*test(Haxi)+eperp2*Hazi*test(Hazi)-eperp2*Hrad*M*test(Hazi)-eperp2*Hazi*M*test(Hrad)+eperp2*Hrad*M^2*test(Hrad))/(epara2*eperp2*r)+(r*(epara2*(Haxir-Hradz)*test(Haxir)+eperp2*Hazir*test(Hazir)+epara2*Haziz*test(Haziz)-epara2*Haxir*test(Hradz)+epara2*Hradz*test(Hradz)))/(epara2*eperp2)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'}}; equ.dweak = {{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'}}; equ.usage = {1,1,1,1,1}; equ.constr = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'}}; equ.cporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.dinit = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.name = {'dielectric_0:vacuum','isotrop_diel_1','isotrop_diel_2','uniaxial_diel_1', ... 'uniaxial_diel_2'}; equ.ind = [1,2]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'rz'}; % Simplify expressions fem.simplify = 'on'; fem.border = 1; fem.units = 'SI'; % Subdomain expressions clear equ equ.ind = [1,2]; equ.dim = {'Hrad','Hazi','Haxi'}; equ.var = {}; equ.expr = {'erel',{'1','e1'}}; fem.equ = equ; % Global expressions fem.expr = {'DivH','(Hrad-Hazi*M+(Haxiy+Hradx)*x)/x', ... 'MagEnDens','Hrad*Hrad+Hazi*Hazi+Haxi*Haxi', ... 'Drad','(Haxi*M-Haziy*x)/x', ... 'Dazi','-Haxix+Hrady', ... 'Daxi','(Hazi-Hrad*M+Hazix*x)/x', ... 'Erad','Drad/erel', ... 'Eazi','Dazi/erel', ... 'Eaxi','Daxi/erel', ... 'ElecMagSqrd','Erad*Erad+Eazi*Eazi+Eaxi*Eaxi', ... 'ElecEnDens','Erad*Drad+Eazi*Dazi+Eaxi*Daxi', ... 'AbsMagEnDens','abs(Hrad)^2+abs(Hazi)^2+abs(Haxi)^2', ... 'MagNrmlHSqrd','2*pi*x*abs(Haxi*ny+Hrad*nx)^2', ... 'MagTngHSqrd','2*pi*x*(1*abs(Hazi)^2+1*abs(Haxi*nx-Hrad*ny)^2)', ... 'AbsElecSqrd','abs(Erad)^2+abs(Eazi)^2+abs(Eaxi)^2'}; % Descriptions clear descr descr.expr= {'Eaxi','axial component of electric field strength','DivH','divergence of magnetic field (should be zero!)','ElecEnDens','electric energy density','ElecMagSqrd','electric field strength magnitude squared','Eazi','azimuthal component of electric field strength','Drad','radial component of electric displacement','Dazi','azimuthal component of electric displacement','Erad','radial component of electric field strength','Daxi','axial component of electric displacement','MagEnDens','magnetic energy density'}; fem.descr = descr; % Functions clear fcns fem.functions = {}; % Descriptions descr = fem.descr; descr.const= {'e_293K_alumina','relative permittivity of alumina at room temperature','e2','ditto for isotropic_dielectric_2','eperp2','relative permittivity of uniaxial_dielectric_2 perpendicular to cylindrical axis','eperp_293K_sapph','nominal room temperature values for same','eperp_4K_sapph_UWA','UWA values for cryogenic HEMEX sapphire','c','speed of light (exact!)','delta_e','fractional increment (for determining filling factors)','mixing_angle','Electric-Magnetic Mixing Angle (in degrees)','epara1','relative permittivity of uniaxial_dielectric_1 parallel to cylindrical axis','delta_epara1','fractional increment (for determining filling factors)','epara2','ditto but parallel to cylindrical axis','M','azimuthal mode order','n_silica','refractive index of thermally grown silica (Fig B.2, p. 172 of Kippenberg''s thesis)','fc','constant used internally --do not modify','e1','relative permittivity of isotropic_dielectric_1','eperp1','relative permittivity of uniaxial_dielectric_1 perpendicular to cylindrical axis','cEW','Electric-Wall-ness','cMW','Magnetic-Wall-ness','n_AlGaAs','average refractive index of GaAs and AlGaAs layers (p. 172 of Srinivasan)','mf','match frequency','delta_eperp1','fractional increment (for determining filling factors)','eperp_4K_sapph_NPL','NPL values','alpha','penalty coefficient on Div H'}; fem.descr = descr; % Solution form fem.solform = 'weak'; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem,'geoms',[1],'eqvars','on','cplbndeq','on','cplbndsh','off'); % Solve problem fem.sol=femeig(fem, ... 'method','eliminate', ... 'nullfun','auto', ... 'blocksize',5000, ... 'complexfun','off', ... 'solfile','off', ... 'conjugate','on', ... 'symmetric','on', ... 'solcomp',{'Hazi','Haxi','Hrad'}, ... 'outcomp',{'Hazi','Haxi','Hrad'}, ... 'rowscale','on', ... 'neigs',10, ... 'shift',0, ... 'krylovdim',0, ... 'maxeigit',300, ... 'etol',0.0, ... 'linsolver','spooles', ... 'thresh',0.1, ... 'preorder','mmd', ... 'uscale','auto', ... 'mcase',0); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'Hrad','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',1, ... 'phase',(0)*pi/180, ... 'title','lambda(1)=5.208102e15 Surface: Hrad', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.57325215440207E-6,1.34267475727786E-5,-3.90000004699687E-6,4.89999993078527E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'Hrad','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',1, ... 'phase',(0)*pi/180, ... 'title','lambda(1)=5.208102e15 Surface: Hrad', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59999987469928E-6,1.33999998524814E-5,-4.29325468344076E-6,5.29325456722916E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'Hrad','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(10)=3.561182e14 Surface: Hrad', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59999987469928E-6,1.33999998524814E-5,-4.29325468344076E-6,5.29325456722916E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'Hrad','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',9, ... 'phase',(0)*pi/180, ... 'title','lambda(9)=3.62576e14 Surface: Hrad', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59999987469928E-6,1.33999998524814E-5,-4.29325468344076E-6,5.29325456722916E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'Hrad','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',8, ... 'phase',(0)*pi/180, ... 'title','lambda(8)=3.89912e14 Surface: Hrad', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59999987469928E-6,1.33999998524814E-5,-4.29325468344076E-6,5.29325456722916E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'Hrad','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(10)=3.561182e14 Surface: Hrad', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59999987469928E-6,1.33999998524814E-5,-4.29325468344076E-6,5.29325456722916E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'Hrad','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',9, ... 'phase',(0)*pi/180, ... 'title','lambda(9)=3.62576e14 Surface: Hrad', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59999987469928E-6,1.33999998524814E-5,-4.29325468344076E-6,5.29325456722916E-6,-1,1]); % Application mode 1 clear appl appl.mode.class = 'FlPDEW'; appl.mode.type = 'cartesian'; appl.dim = {'Hrad','Hazi','Haxi','Hrad_t','Hazi_t','Haxi_t'}; appl.sdim = {'r','z','z2'}; appl.name = 'Axisymmetric'; appl.shape = {'shlag(2,''Hrad'')','shlag(2,''Hazi'')','shlag(2,''Haxi'')'}; appl.gporder = 4; appl.cporder = 2; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_Axisymmetric'; clear prop prop.elemdefault='Lag2'; prop.wave='off'; prop.frame='rz'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm1','lm2','lm3','lm4','lm5','lm6'}; prop.weakconstr = weakconstr; appl.prop = prop; clear pnt pnt.weak = {{'0';'0';'0'}}; pnt.dweak = {{'0';'0';'0'}}; pnt.constr = {{'0';'0';'0'}}; pnt.ind = [1,1,1,1,1,1,1,1,1,1,1]; appl.pnt = pnt; clear bnd bnd.weak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.dweak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.constr = {{'Hrad*nr+Haxi*nz';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'0';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'Hrad*nr+Haxi*nz';'0';'0'},{'Haxi*nr-Hrad*nz';'Hazi';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'Haxi*nr-Hrad*nz';'Hazi';'0'},{'0';'0';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'-i*cMW*Hazi*k*mf+(cEW*(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r))/r'; ... '-i*cEW*(-Haxir+Hradz)+cMW*k*mf*(Haxi*nr-Hrad*nz)';'0'},{'0';'0';'0'}}; bnd.name = {'electric_wall','normal_D','tangential_H','magnetic_wall','normal_H', ... 'tangential_D','radiation_match','null'}; bnd.ind = [1,1,1,8,1,8,1,1,8,8,8,8]; appl.bnd = bnd; clear equ equ.gporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.init = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.shape = {[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3]}; equ.weak = {{'-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz))'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e2'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara1*Haziz*M*test(Haxi))+eperp1*Hazir*test(Hazi)+eperp1*Hazi*test(Hazir)-eperp1*Hrad*M*test(Hazir)-epara1*Haxi*M*test(Haziz)-eperp1*Hazir*M*test(Hrad))/(epara1*eperp1)+(epara1*Haxi*M^2*test(Haxi)+eperp1*Hazi*test(Hazi)-eperp1*Hrad*M*test(Hazi)-eperp1*Hazi*M*test(Hrad)+eperp1*Hrad*M^2*test(Hrad))/(epara1*eperp1*r)+(r*(epara1*(Haxir-Hradz)*test(Haxir)+eperp1*Hazir*test(Hazir)+epara1*Haziz*test(Haziz)-epara1*Haxir*test(Hradz)+epara1*Hradz*test(Hradz)))/(epara1*eperp1)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara2*Haziz*M*test(Haxi))+eperp2*Hazir*test(Hazi)+eperp2*Hazi*test(Hazir)-eperp2*Hrad*M*test(Hazir)-epara2*Haxi*M*test(Haziz)-eperp2*Hazir*M*test(Hrad))/(epara2*eperp2)+(epara2*Haxi*M^2*test(Haxi)+eperp2*Hazi*test(Hazi)-eperp2*Hrad*M*test(Hazi)-eperp2*Hazi*M*test(Hrad)+eperp2*Hrad*M^2*test(Hrad))/(epara2*eperp2*r)+(r*(epara2*(Haxir-Hradz)*test(Haxir)+eperp2*Hazir*test(Hazir)+epara2*Haziz*test(Haziz)-epara2*Haxir*test(Hradz)+epara2*Hradz*test(Hradz)))/(epara2*eperp2)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'}}; equ.dweak = {{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'}}; equ.usage = {1,1,1,1,1}; equ.constr = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'}}; equ.cporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.dinit = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.name = {'dielectric_0:vacuum','isotrop_diel_1','isotrop_diel_2','uniaxial_diel_1', ... 'uniaxial_diel_2'}; equ.ind = [1,2]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'rz'}; % Simplify expressions fem.simplify = 'on'; fem.border = 1; fem.units = 'SI'; % Subdomain expressions clear equ equ.ind = [1,2]; equ.dim = {'Hrad','Hazi','Haxi'}; equ.var = {}; equ.expr = {'erel',{'1.0','e1'}}; fem.equ = equ; % Global expressions fem.expr = {'DivH','(Hrad-Hazi*M+(Haxiz+Hradr)*r)/r', ... 'MagEnDens','Hrad*Hrad+Hazi*Hazi+Haxi*Haxi', ... 'Drad','(Haxi*M-Haziz*r)/r', ... 'Dazi','-Haxir+Hradz', ... 'Daxi','(Hazi-Hrad*M+Hazir*r)/r', ... 'Erad','Drad/erel', ... 'Eazi','Dazi/erel', ... 'Eaxi','Daxi/erel', ... 'ElecMagSqrd','Erad*Erad+Eazi*Eazi+Eaxi*Eaxi', ... 'ElecEnDens','Erad*Drad+Eazi*Dazi+Eaxi*Daxi', ... 'AbsMagEnDens','abs(Hrad)^2+abs(Hazi)^2+abs(Haxi)^2', ... 'MagNrmlHSqrd','2*pi*r*abs(Haxi*nz+Hrad*nr)^2', ... 'MagTngHSqrd','2*pi*r*(1*abs(Hazi)^2+1*abs(Haxi*nr-Hrad*nz)^2)', ... 'AbsElecSqrd','abs(Erad)^2+abs(Eazi)^2+abs(Eaxi)^2'}; % Descriptions clear descr descr.expr= {'Eaxi','axial component of electric field strength','DivH','divergence of magnetic field (should be zero!)','ElecEnDens','electric energy density','ElecMagSqrd','electric field strength magnitude squared','Eazi','azimuthal component of electric field strength','Drad','radial component of electric displacement','Dazi','azimuthal component of electric displacement','Erad','radial component of electric field strength','Daxi','axial component of electric displacement','MagEnDens','magnetic energy density'}; fem.descr = descr; % Functions clear fcns fem.functions = {}; % Descriptions descr = fem.descr; descr.const= {'e_293K_alumina','relative permittivity of alumina at room temperature','e2','ditto for isotropic_dielectric_2','eperp2','relative permittivity of uniaxial_dielectric_2 perpendicular to cylindrical axis','eperp_293K_sapph','nominal room temperature values for same','eperp_4K_sapph_UWA','UWA values for cryogenic HEMEX sapphire','c','speed of light (exact!)','delta_e','fractional increment (for determining filling factors)','mixing_angle','Electric-Magnetic Mixing Angle (in degrees)','epara1','relative permittivity of uniaxial_dielectric_1 parallel to cylindrical axis','delta_epara1','fractional increment (for determining filling factors)','epara2','ditto but parallel to cylindrical axis','M','azimuthal mode order','n_silica','refractive index of thermally grown silica (Fig B.2, p. 172 of Kippenberg''s thesis)','fc','constant used internally --do not modify','e1','relative permittivity of isotropic_dielectric_1','eperp1','relative permittivity of uniaxial_dielectric_1 perpendicular to cylindrical axis','cEW','Electric-Wall-ness','cMW','Magnetic-Wall-ness','n_AlGaAs','average refractive index of GaAs and AlGaAs layers (p. 172 of Srinivasan)','mf','match frequency','delta_eperp1','fractional increment (for determining filling factors)','eperp_4K_sapph_NPL','NPL values','alpha','penalty coefficient on Div H'}; fem.descr = descr; % Solution form fem.solform = 'weak'; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem,'geoms',[1],'eqvars','on','cplbndeq','on','cplbndsh','off'); % Solve problem fem.sol=femeig(fem, ... 'method','eliminate', ... 'nullfun','auto', ... 'blocksize',5000, ... 'complexfun','off', ... 'solfile','off', ... 'conjugate','on', ... 'symmetric','on', ... 'solcomp',{'Hazi','Haxi','Hrad'}, ... 'outcomp',{'Hazi','Haxi','Hrad'}, ... 'rowscale','on', ... 'neigs',10, ... 'shift',0, ... 'krylovdim',0, ... 'maxeigit',300, ... 'etol',0.0, ... 'linsolver','spooles', ... 'thresh',0.1, ... 'preorder','mmd', ... 'uscale','auto', ... 'mcase',0); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'ElecMagSqrd','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',1, ... 'phase',(0)*pi/180, ... 'title','lambda(1)=1.999078e15 Surface: ElecMagSqrd', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'gt`rid','off', ... 'axis',[4.57325215440207E-6,1.34267475727786E-5,-3.90000004699687E-6,4.89999993078527E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'ElecMagSqrd','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',1, ... 'phase',(0)*pi/180, ... 'title','lambda(1)=1.999078e15 Surface: ElecMagSqrd', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59999987469928E-6,1.33999998524814E-5,-4.44330439345124E-6,5.44330427723965E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'ElecMagSqrd','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(10)=3.536146e14 Surface: ElecMagSqrd', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59999987469928E-6,1.33999998524814E-5,-4.44330439345124E-6,5.44330427723965E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log(ElecMagSqrd+1.0E9)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(10)=3.536146e14 Surface: log(ElecMagSqrd+1.0E9)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59999987469928E-6,1.33999998524814E-5,-4.44330439345124E-6,5.44330427723965E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log(ElecMagSqrd+1.0E13)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(10)=3.536146e14 Surface: log(ElecMagSqrd+1.0E13)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59999987469928E-6,1.33999998524814E-5,-4.34224876819716E-6,5.34224865198557E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log(ElecMagSqrd+1.0E12)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(10)=3.536146e14 Surface: log(ElecMagSqrd+1.0E12)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59999987469928E-6,1.33999998524814E-5,-4.34224876819716E-6,5.34224865198557E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log(ElecMagSqrd+1.0E12)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(10)=3.536146e14 Surface: log(ElecMagSqrd+1.0E12)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59999987469928E-6,1.33999998524814E-5,-4.34224876819716E-6,5.34224865198557E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log(ElecMagSqrd+1.0E12)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(10)=3.536146e14 Surface: log(ElecMagSqrd+1.0E12)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59999987469928E-6,1.33999998524814E-5,-4.34224876819716E-6,5.34224865198557E-6,-1,1]); % Application mode 1 clear appl appl.mode.class = 'FlPDEW'; appl.mode.type = 'cartesian'; appl.dim = {'Hrad','Hazi','Haxi','Hrad_t','Hazi_t','Haxi_t'}; appl.sdim = {'r','z','z2'}; appl.name = 'Axisymmetric'; appl.shape = {'shlag(2,''Hrad'')','shlag(2,''Hazi'')','shlag(2,''Haxi'')'}; appl.gporder = 4; appl.cporder = 2; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_Axisymmetric'; clear prop prop.elemdefault='Lag2'; prop.wave='off'; prop.frame='rz'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm1','lm2','lm3','lm4','lm5','lm6'}; prop.weakconstr = weakconstr; appl.prop = prop; clear pnt pnt.weak = {{'0';'0';'0'}}; pnt.dweak = {{'0';'0';'0'}}; pnt.constr = {{'0';'0';'0'}}; pnt.ind = [1,1,1,1,1,1,1,1,1,1,1]; appl.pnt = pnt; clear bnd bnd.weak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.dweak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.constr = {{'Hrad*nr+Haxi*nz';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'0';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'Hrad*nr+Haxi*nz';'0';'0'},{'Haxi*nr-Hrad*nz';'Hazi';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'Haxi*nr-Hrad*nz';'Hazi';'0'},{'0';'0';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'-i*cMW*Hazi*k*mf+(cEW*(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r))/r'; ... '-i*cEW*(-Haxir+Hradz)+cMW*k*mf*(Haxi*nr-Hrad*nz)';'0'},{'0';'0';'0'}}; bnd.name = {'electric_wall','normal_D','tangential_H','magnetic_wall','normal_H', ... 'tangential_D','radiation_match','null'}; bnd.ind = [3,3,3,8,3,8,3,3,8,8,8,8]; appl.bnd = bnd; clear equ equ.gporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.init = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.shape = {[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3]}; equ.weak = {{'-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz))'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e2'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara1*Haziz*M*test(Haxi))+eperp1*Hazir*test(Hazi)+eperp1*Hazi*test(Hazir)-eperp1*Hrad*M*test(Hazir)-epara1*Haxi*M*test(Haziz)-eperp1*Hazir*M*test(Hrad))/(epara1*eperp1)+(epara1*Haxi*M^2*test(Haxi)+eperp1*Hazi*test(Hazi)-eperp1*Hrad*M*test(Hazi)-eperp1*Hazi*M*test(Hrad)+eperp1*Hrad*M^2*test(Hrad))/(epara1*eperp1*r)+(r*(epara1*(Haxir-Hradz)*test(Haxir)+eperp1*Hazir*test(Hazir)+epara1*Haziz*test(Haziz)-epara1*Haxir*test(Hradz)+epara1*Hradz*test(Hradz)))/(epara1*eperp1)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara2*Haziz*M*test(Haxi))+eperp2*Hazir*test(Hazi)+eperp2*Hazi*test(Hazir)-eperp2*Hrad*M*test(Hazir)-epara2*Haxi*M*test(Haziz)-eperp2*Hazir*M*test(Hrad))/(epara2*eperp2)+(epara2*Haxi*M^2*test(Haxi)+eperp2*Hazi*test(Hazi)-eperp2*Hrad*M*test(Hazi)-eperp2*Hazi*M*test(Hrad)+eperp2*Hrad*M^2*test(Hrad))/(epara2*eperp2*r)+(r*(epara2*(Haxir-Hradz)*test(Haxir)+eperp2*Hazir*test(Hazir)+epara2*Haziz*test(Haziz)-epara2*Haxir*test(Hradz)+epara2*Hradz*test(Hradz)))/(epara2*eperp2)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'}}; equ.dweak = {{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'}}; equ.usage = {1,1,1,1,1}; equ.constr = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'}}; equ.cporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.dinit = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.name = {'dielectric_0:vacuum','isotrop_diel_1','isotrop_diel_2','uniaxial_diel_1', ... 'uniaxial_diel_2'}; equ.ind = [1,2]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'rz'}; % Simplify expressions fem.simplify = 'on'; fem.border = 1; fem.units = 'SI'; % Subdomain expressions clear equ equ.ind = [1,2]; equ.dim = {'Hrad','Hazi','Haxi'}; equ.var = {}; equ.expr = {'erel',{'1','e1'}}; fem.equ = equ; % Global expressions fem.expr = {'DivH','(Hrad-Hazi*M+(Haxiz+Hradr)*r)/r', ... 'MagEnDens','Hrad*Hrad+Hazi*Hazi+Haxi*Haxi', ... 'Drad','(Haxi*M-Haziz*r)/r', ... 'Dazi','-Haxir+Hradz', ... 'Daxi','(Hazi-Hrad*M+Hazir*r)/r', ... 'Erad','Drad/erel', ... 'Eazi','Dazi/erel', ... 'Eaxi','Daxi/erel', ... 'ElecMagSqrd','Erad*Erad+Eazi*Eazi+Eaxi*Eaxi', ... 'ElecEnDens','Erad*Drad+Eazi*Dazi+Eaxi*Daxi', ... 'AbsMagEnDens','abs(Hrad)^2+abs(Hazi)^2+abs(Haxi)^2', ... 'MagNrmlHSqrd','2*pi*r*abs(Haxi*nz+Hrad*nr)^2', ... 'MagTngHSqrd','2*pi*r*(1*abs(Hazi)^2+1*abs(Haxi*nr-Hrad*nz)^2)', ... 'AbsElecSqrd','abs(Erad)^2+abs(Eazi)^2+abs(Eaxi)^2'}; % Descriptions clear descr descr.expr= {'Eaxi','axial component of electric field strength','DivH','divergence of magnetic field (should be zero!)','ElecEnDens','electric energy density','ElecMagSqrd','electric field strength magnitude squared','Eazi','azimuthal component of electric field strength','Drad','radial component of electric displacement','Dazi','azimuthal component of electric displacement','Erad','radial component of electric field strength','Daxi','axial component of electric displacement','MagEnDens','magnetic energy density'}; fem.descr = descr; % Functions clear fcns fem.functions = {}; % Descriptions descr = fem.descr; descr.const= {'e_293K_alumina','relative permittivity of alumina at room temperature','e2','ditto for isotropic_dielectric_2','eperp2','relative permittivity of uniaxial_dielectric_2 perpendicular to cylindrical axis','eperp_293K_sapph','nominal room temperature values for same','eperp_4K_sapph_UWA','UWA values for cryogenic HEMEX sapphire','c','speed of light (exact!)','delta_e','fractional increment (for determining filling factors)','mixing_angle','Electric-Magnetic Mixing Angle (in degrees)','epara1','relative permittivity of uniaxial_dielectric_1 parallel to cylindrical axis','delta_epara1','fractional increment (for determining filling factors)','epara2','ditto but parallel to cylindrical axis','M','azimuthal mode order','n_silica','refractive index of thermally grown silica (Fig B.2, p. 172 of Kippenberg''s thesis)','fc','constant used internally --do not modify','e1','relative permittivity of isotropic_dielectric_1','eperp1','relative permittivity of uniaxial_dielectric_1 perpendicular to cylindrical axis','cEW','Electric-Wall-ness','cMW','Magnetic-Wall-ness','n_AlGaAs','average refractive index of GaAs and AlGaAs layers (p. 172 of Srinivasan)','mf','match frequency','delta_eperp1','fractional increment (for determining filling factors)','eperp_4K_sapph_NPL','NPL values','alpha','penalty coefficient on Div H'}; fem.descr = descr; % Solution form fem.solform = 'weak'; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem,'geoms',[1],'eqvars','on','cplbndeq','on','cplbndsh','off'); % Solve problem fem.sol=femeig(fem, ... 'method','eliminate', ... 'nullfun','auto', ... 'blocksize',5000, ... 'complexfun','off', ... 'solfile','off', ... 'conjugate','on', ... 'symmetric','on', ... 'solcomp',{'Hazi','Haxi','Hrad'}, ... 'outcomp',{'Hazi','Haxi','Hrad'}, ... 'rowscale','on', ... 'neigs',10, ... 'shift',0, ... 'krylovdim',0, ... 'maxeigit',300, ... 'etol',0.0, ... 'linsolver','spooles', ... 'thresh',0.1, ... 'preorder','mmd', ... 'uscale','auto', ... 'mcase',0); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'log(ElecMagSqrd+1.0E12)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',1, ... 'phase',(0)*pi/180, ... 'title','lambda(1)=2.966207e15 Surface: log(ElecMagSqrd+1.0E12)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.57325215440207E-6,1.34267475727786E-5,-3.90000004699687E-6,4.89999993078527E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log(ElecMagSqrd+1.0E12)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(10)=3.533686e14 Surface: log(ElecMagSqrd+1.0E12)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59999987469928E-6,1.33999998524814E-5,-4.34224876819716E-6,5.34224865198557E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log(ElecMagSqrd+1.0E12)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',7, ... 'phase',(0)*pi/180, ... 'title','lambda(7)=4.295804e14 Surface: log(ElecMagSqrd+1.0E12)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59999987469928E-6,1.33999998524814E-5,-4.34224876819716E-6,5.34224865198557E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log(ElecMagSqrd+1.0E12)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',7, ... 'phase',(0)*pi/180, ... 'title','lambda(7)=4.295804e14 Surface: log(ElecMagSqrd+1.0E12)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59999987469928E-6,1.33999998524814E-5,-4.34224876819716E-6,5.34224865198557E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log(ElecMagSqrd+1.0E12)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(10)=3.533686e14 Surface: log(ElecMagSqrd+1.0E12)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59999987469928E-6,1.33999998524814E-5,-4.34224876819716E-6,5.34224865198557E-6,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hmax',[], ... 'hmaxfact',1, ... 'hgrad',1.3, ... 'hcurve',0.3, ... 'hcutoff',0.001, ... 'hnarrow',1, ... 'hpnt',10, ... 'xscale',1.0, ... 'yscale',1.0, ... 'mlevel','sub'); % Refine mesh fem.mesh=meshrefine(fem, ... 'mcase',0, ... 'boxcoord',[6.79331293907051E-6 1.0150151836370384E-5 -1.7066869826256343E-6 2.7735561671570644E-6], ... 'rmethod','regular'); % Application mode 1 clear appl appl.mode.class = 'FlPDEW'; appl.mode.type = 'cartesian'; appl.dim = {'Hrad','Hazi','Haxi','Hrad_t','Hazi_t','Haxi_t'}; appl.sdim = {'r','z','z2'}; appl.name = 'Axisymmetric'; appl.shape = {'shlag(2,''Hrad'')','shlag(2,''Hazi'')','shlag(2,''Haxi'')'}; appl.gporder = 4; appl.cporder = 2; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_Axisymmetric'; clear prop prop.elemdefault='Lag2'; prop.wave='off'; prop.frame='rz'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm1','lm2','lm3','lm4','lm5','lm6'}; prop.weakconstr = weakconstr; appl.prop = prop; clear pnt pnt.weak = {{'0';'0';'0'}}; pnt.dweak = {{'0';'0';'0'}}; pnt.constr = {{'0';'0';'0'}}; pnt.ind = [1,1,1,1,1,1,1,1,1,1,1]; appl.pnt = pnt; clear bnd bnd.weak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.dweak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.constr = {{'Hrad*nr+Haxi*nz';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'0';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'Hrad*nr+Haxi*nz';'0';'0'},{'Haxi*nr-Hrad*nz';'Hazi';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'Haxi*nr-Hrad*nz';'Hazi';'0'},{'0';'0';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'-i*cMW*Hazi*k*mf+(cEW*(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r))/r'; ... '-i*cEW*(-Haxir+Hradz)+cMW*k*mf*(Haxi*nr-Hrad*nz)';'0'},{'0';'0';'0'}}; bnd.name = {'electric_wall','normal_D','tangential_H','magnetic_wall','normal_H', ... 'tangential_D','radiation_match','null'}; bnd.ind = [3,3,3,8,3,8,3,3,8,8,8,8]; appl.bnd = bnd; clear equ equ.gporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.init = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.shape = {[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3]}; equ.weak = {{'-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz))'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e2'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara1*Haziz*M*test(Haxi))+eperp1*Hazir*test(Hazi)+eperp1*Hazi*test(Hazir)-eperp1*Hrad*M*test(Hazir)-epara1*Haxi*M*test(Haziz)-eperp1*Hazir*M*test(Hrad))/(epara1*eperp1)+(epara1*Haxi*M^2*test(Haxi)+eperp1*Hazi*test(Hazi)-eperp1*Hrad*M*test(Hazi)-eperp1*Hazi*M*test(Hrad)+eperp1*Hrad*M^2*test(Hrad))/(epara1*eperp1*r)+(r*(epara1*(Haxir-Hradz)*test(Haxir)+eperp1*Hazir*test(Hazir)+epara1*Haziz*test(Haziz)-epara1*Haxir*test(Hradz)+epara1*Hradz*test(Hradz)))/(epara1*eperp1)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara2*Haziz*M*test(Haxi))+eperp2*Hazir*test(Hazi)+eperp2*Hazi*test(Hazir)-eperp2*Hrad*M*test(Hazir)-epara2*Haxi*M*test(Haziz)-eperp2*Hazir*M*test(Hrad))/(epara2*eperp2)+(epara2*Haxi*M^2*test(Haxi)+eperp2*Hazi*test(Hazi)-eperp2*Hrad*M*test(Hazi)-eperp2*Hazi*M*test(Hrad)+eperp2*Hrad*M^2*test(Hrad))/(epara2*eperp2*r)+(r*(epara2*(Haxir-Hradz)*test(Haxir)+eperp2*Hazir*test(Hazir)+epara2*Haziz*test(Haziz)-epara2*Haxir*test(Hradz)+epara2*Hradz*test(Hradz)))/(epara2*eperp2)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'}}; equ.dweak = {{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'}}; equ.usage = {1,1,1,1,1}; equ.constr = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'}}; equ.cporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.dinit = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.name = {'dielectric_0:vacuum','isotrop_diel_1','isotrop_diel_2','uniaxial_diel_1', ... 'uniaxial_diel_2'}; equ.ind = [1,2]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'rz'}; % Simplify expressions fem.simplify = 'on'; fem.border = 1; fem.units = 'SI'; % Subdomain expressions clear equ equ.ind = [1,2]; equ.dim = {'Hrad','Hazi','Haxi'}; equ.var = {}; equ.expr = {'erel',{'1','e1'}}; fem.equ = equ; % Global expressions fem.expr = {'DivH','(Hrad-Hazi*M+(Haxiz+Hradr)*r)/r', ... 'MagEnDens','Hrad*Hrad+Hazi*Hazi+Haxi*Haxi', ... 'Drad','(Haxi*M-Haziz*r)/r', ... 'Dazi','-Haxir+Hradz', ... 'Daxi','(Hazi-Hrad*M+Hazir*r)/r', ... 'Erad','Drad/erel', ... 'Eazi','Dazi/erel', ... 'Eaxi','Daxi/erel', ... 'ElecMagSqrd','Erad*Erad+Eazi*Eazi+Eaxi*Eaxi', ... 'ElecEnDens','Erad*Drad+Eazi*Dazi+Eaxi*Daxi', ... 'AbsMagEnDens','abs(Hrad)^2+abs(Hazi)^2+abs(Haxi)^2', ... 'MagNrmlHSqrd','2*pi*r*abs(Haxi*nz+Hrad*nr)^2', ... 'MagTngHSqrd','2*pi*r*(1*abs(Hazi)^2+1*abs(Haxi*nr-Hrad*nz)^2)', ... 'AbsElecSqrd','abs(Erad)^2+abs(Eazi)^2+abs(Eaxi)^2'}; % Descriptions clear descr descr.expr= {'Eaxi','axial component of electric field strength','DivH','divergence of magnetic field (should be zero!)','ElecEnDens','electric energy density','ElecMagSqrd','electric field strength magnitude squared','Eazi','azimuthal component of electric field strength','Drad','radial component of electric displacement','Dazi','azimuthal component of electric displacement','Erad','radial component of electric field strength','Daxi','axial component of electric displacement','MagEnDens','magnetic energy density'}; fem.descr = descr; % Functions clear fcns fem.functions = {}; % Descriptions descr = fem.descr; descr.const= {'e_293K_alumina','relative permittivity of alumina at room temperature','e2','ditto for isotropic_dielectric_2','eperp2','relative permittivity of uniaxial_dielectric_2 perpendicular to cylindrical axis','eperp_293K_sapph','nominal room temperature values for same','eperp_4K_sapph_UWA','UWA values for cryogenic HEMEX sapphire','c','speed of light (exact!)','delta_e','fractional increment (for determining filling factors)','mixing_angle','Electric-Magnetic Mixing Angle (in degrees)','epara1','relative permittivity of uniaxial_dielectric_1 parallel to cylindrical axis','delta_epara1','fractional increment (for determining filling factors)','epara2','ditto but parallel to cylindrical axis','M','azimuthal mode order','n_silica','refractive index of thermally grown silica (Fig B.2, p. 172 of Kippenberg''s thesis)','fc','constant used internally --do not modify','e1','relative permittivity of isotropic_dielectric_1','eperp1','relative permittivity of uniaxial_dielectric_1 perpendicular to cylindrical axis','cEW','Electric-Wall-ness','cMW','Magnetic-Wall-ness','n_AlGaAs','average refractive index of GaAs and AlGaAs layers (p. 172 of Srinivasan)','mf','match frequency','delta_eperp1','fractional increment (for determining filling factors)','eperp_4K_sapph_NPL','NPL values','alpha','penalty coefficient on Div H'}; fem.descr = descr; % Solution form fem.solform = 'weak'; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem,'geoms',[1],'eqvars','on','cplbndeq','on','cplbndsh','off'); % Solve problem fem.sol=femeig(fem, ... 'method','eliminate', ... 'nullfun','auto', ... 'blocksize',5000, ... 'complexfun','off', ... 'solfile','off', ... 'conjugate','on', ... 'symmetric','on', ... 'solcomp',{'Hazi','Haxi','Hrad'}, ... 'outcomp',{'Hazi','Haxi','Hrad'}, ... 'rowscale','on', ... 'neigs',10, ... 'shift',0, ... 'krylovdim',0, ... 'maxeigit',300, ... 'etol',0.0, ... 'linsolver','spooles', ... 'thresh',0.1, ... 'preorder','mmd', ... 'uscale','auto', ... 'mcase',0); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'log(ElecMagSqrd+1.0E12)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',1, ... 'phase',(0)*pi/180, ... 'title','lambda(1)=3.233941e15 Surface: log(ElecMagSqrd+1.0E12)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.57325215440207E-6,1.34267475727786E-5,-3.90000004699687E-6,4.89999993078527E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log(ElecMagSqrd+1.0E12)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(10)=3.533559e14 Surface: log(ElecMagSqrd+1.0E12)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59999987469928E-6,1.33999998524814E-5,-4.34224876819716E-6,5.34224865198557E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log(ElecMagSqrd+1.0E17)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(10)=3.533559e14 Surface: log(ElecMagSqrd+1.0E17)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59999987469928E-6,1.33999998524814E-5,-4.34224876819716E-6,5.34224865198557E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log(ElecMagSqrd+1.0E15)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(10)=3.533559e14 Surface: log(ElecMagSqrd+1.0E15)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59999987469928E-6,1.33999998524814E-5,-4.34224876819716E-6,5.34224865198557E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log(ElecMagSqrd+1.0E14)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(10)=3.533559e14 Surface: log(ElecMagSqrd+1.0E14)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59999987469928E-6,1.33999998524814E-5,-4.34224876819716E-6,5.34224865198557E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log(ElecMagSqrd+1.0E14)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(10)=3.533559e14 Surface: log(ElecMagSqrd+1.0E14)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59999987469928E-6,1.33999998524814E-5,-4.34224876819716E-6,5.34224865198557E-6,-1,1]); % Application mode 1 clear appl appl.mode.class = 'FlPDEW'; appl.mode.type = 'cartesian'; appl.dim = {'Hrad','Hazi','Haxi','Hrad_t','Hazi_t','Haxi_t'}; appl.sdim = {'r','z','z2'}; appl.name = 'Axisymmetric'; appl.shape = {'shlag(2,''Hrad'')','shlag(2,''Hazi'')','shlag(2,''Haxi'')'}; appl.gporder = 4; appl.cporder = 2; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_Axisymmetric'; clear prop prop.elemdefault='Lag2'; prop.wave='off'; prop.frame='rz'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm1','lm2','lm3','lm4','lm5','lm6'}; prop.weakconstr = weakconstr; appl.prop = prop; clear pnt pnt.weak = {{'0';'0';'0'}}; pnt.dweak = {{'0';'0';'0'}}; pnt.constr = {{'0';'0';'0'}}; pnt.ind = [1,1,1,1,1,1,1,1,1,1,1]; appl.pnt = pnt; clear bnd bnd.weak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.dweak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.constr = {{'Hrad*nr+Haxi*nz';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'0';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'Hrad*nr+Haxi*nz';'0';'0'},{'Haxi*nr-Hrad*nz';'Hazi';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'Haxi*nr-Hrad*nz';'Hazi';'0'},{'0';'0';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'-i*cMW*Hazi*k*mf+(cEW*(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r))/r'; ... '-i*cEW*(-Haxir+Hradz)+cMW*k*mf*(Haxi*nr-Hrad*nz)';'0'},{'0';'0';'0'}}; bnd.name = {'electric_wall','normal_D','tangential_H','magnetic_wall','normal_H', ... 'tangential_D','radiation_match','null'}; bnd.ind = [8,8,8,8,8,8,8,8,8,8,8,8]; appl.bnd = bnd; clear equ equ.gporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.init = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.shape = {[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3]}; equ.weak = {{'-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz))'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e2'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara1*Haziz*M*test(Haxi))+eperp1*Hazir*test(Hazi)+eperp1*Hazi*test(Hazir)-eperp1*Hrad*M*test(Hazir)-epara1*Haxi*M*test(Haziz)-eperp1*Hazir*M*test(Hrad))/(epara1*eperp1)+(epara1*Haxi*M^2*test(Haxi)+eperp1*Hazi*test(Hazi)-eperp1*Hrad*M*test(Hazi)-eperp1*Hazi*M*test(Hrad)+eperp1*Hrad*M^2*test(Hrad))/(epara1*eperp1*r)+(r*(epara1*(Haxir-Hradz)*test(Haxir)+eperp1*Hazir*test(Hazir)+epara1*Haziz*test(Haziz)-epara1*Haxir*test(Hradz)+epara1*Hradz*test(Hradz)))/(epara1*eperp1)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara2*Haziz*M*test(Haxi))+eperp2*Hazir*test(Hazi)+eperp2*Hazi*test(Hazir)-eperp2*Hrad*M*test(Hazir)-epara2*Haxi*M*test(Haziz)-eperp2*Hazir*M*test(Hrad))/(epara2*eperp2)+(epara2*Haxi*M^2*test(Haxi)+eperp2*Hazi*test(Hazi)-eperp2*Hrad*M*test(Hazi)-eperp2*Hazi*M*test(Hrad)+eperp2*Hrad*M^2*test(Hrad))/(epara2*eperp2*r)+(r*(epara2*(Haxir-Hradz)*test(Haxir)+eperp2*Hazir*test(Hazir)+epara2*Haziz*test(Haziz)-epara2*Haxir*test(Hradz)+epara2*Hradz*test(Hradz)))/(epara2*eperp2)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'}}; equ.dweak = {{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'}}; equ.usage = {1,1,1,1,1}; equ.constr = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'}}; equ.cporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.dinit = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.name = {'dielectric_0:vacuum','isotrop_diel_1','isotrop_diel_2','uniaxial_diel_1', ... 'uniaxial_diel_2'}; equ.ind = [1,2]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'rz'}; % Simplify expressions fem.simplify = 'on'; fem.border = 1; fem.units = 'SI'; % Subdomain expressions clear equ equ.ind = [1,2]; equ.dim = {'Hrad','Hazi','Haxi'}; equ.var = {}; equ.expr = {'erel',{'1','e1'}}; fem.equ = equ; % Global expressions fem.expr = {'DivH','(Hrad-Hazi*M+(Haxiz+Hradr)*r)/r', ... 'MagEnDens','Hrad*Hrad+Hazi*Hazi+Haxi*Haxi', ... 'Drad','(Haxi*M-Haziz*r)/r', ... 'Dazi','-Haxir+Hradz', ... 'Daxi','(Hazi-Hrad*M+Hazir*r)/r', ... 'Erad','Drad/erel', ... 'Eazi','Dazi/erel', ... 'Eaxi','Daxi/erel', ... 'ElecMagSqrd','Erad*Erad+Eazi*Eazi+Eaxi*Eaxi', ... 'ElecEnDens','Erad*Drad+Eazi*Dazi+Eaxi*Daxi', ... 'AbsMagEnDens','abs(Hrad)^2+abs(Hazi)^2+abs(Haxi)^2', ... 'MagNrmlHSqrd','2*pi*r*abs(Haxi*nz+Hrad*nr)^2', ... 'MagTngHSqrd','2*pi*r*(1*abs(Hazi)^2+1*abs(Haxi*nr-Hrad*nz)^2)', ... 'AbsElecSqrd','abs(Erad)^2+abs(Eazi)^2+abs(Eaxi)^2'}; % Descriptions clear descr descr.expr= {'Eaxi','axial component of electric field strength','DivH','divergence of magnetic field (should be zero!)','ElecEnDens','electric energy density','ElecMagSqrd','electric field strength magnitude squared','Eazi','azimuthal component of electric field strength','Drad','radial component of electric displacement','Dazi','azimuthal component of electric displacement','Erad','radial component of electric field strength','Daxi','axial component of electric displacement','MagEnDens','magnetic energy density'}; fem.descr = descr; % Functions clear fcns fem.functions = {}; % Descriptions descr = fem.descr; descr.const= {'e_293K_alumina','relative permittivity of alumina at room temperature','e2','ditto for isotropic_dielectric_2','eperp2','relative permittivity of uniaxial_dielectric_2 perpendicular to cylindrical axis','eperp_293K_sapph','nominal room temperature values for same','eperp_4K_sapph_UWA','UWA values for cryogenic HEMEX sapphire','c','speed of light (exact!)','delta_e','fractional increment (for determining filling factors)','mixing_angle','Electric-Magnetic Mixing Angle (in degrees)','epara1','relative permittivity of uniaxial_dielectric_1 parallel to cylindrical axis','delta_epara1','fractional increment (for determining filling factors)','epara2','ditto but parallel to cylindrical axis','M','azimuthal mode order','n_silica','refractive index of thermally grown silica (Fig B.2, p. 172 of Kippenberg''s thesis)','fc','constant used internally --do not modify','e1','relative permittivity of isotropic_dielectric_1','eperp1','relative permittivity of uniaxial_dielectric_1 perpendicular to cylindrical axis','cEW','Electric-Wall-ness','cMW','Magnetic-Wall-ness','n_AlGaAs','average refractive index of GaAs and AlGaAs layers (p. 172 of Srinivasan)','mf','match frequency','delta_eperp1','fractional increment (for determining filling factors)','eperp_4K_sapph_NPL','NPL values','alpha','penalty coefficient on Div H'}; fem.descr = descr; % Solution form fem.solform = 'weak'; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem,'geoms',[1],'eqvars','on','cplbndeq','on','cplbndsh','off'); % Solve problem fem.sol=femeig(fem, ... 'method','eliminate', ... 'nullfun','auto', ... 'blocksize',5000, ... 'complexfun','off', ... 'solfile','off', ... 'conjugate','on', ... 'symmetric','on', ... 'solcomp',{'Hazi','Haxi','Hrad'}, ... 'outcomp',{'Hazi','Haxi','Hrad'}, ... 'rowscale','on', ... 'neigs',10, ... 'shift',0, ... 'krylovdim',0, ... 'maxeigit',300, ... 'etol',0.0, ... 'linsolver','spooles', ... 'thresh',0.1, ... 'preorder','mmd', ... 'uscale','auto', ... 'mcase',0); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'log(ElecMagSqrd+1.0E14)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',1, ... 'phase',(0)*pi/180, ... 'title','lambda(1)=1.904246e14 Surface: log(ElecMagSqrd+1.0E14)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.57325215440207E-6,1.34267475727786E-5,-3.90000004699687E-6,4.89999993078527E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log(ElecMagSqrd+1.0E14)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(10)=3.529579e13 Surface: log(ElecMagSqrd+1.0E14)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59999987469928E-6,1.33999998524814E-5,-4.34224876819716E-6,5.34224865198557E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log(ElecMagSqrd+1.0E14)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',9, ... 'phase',(0)*pi/180, ... 'title','lambda(9)=3.55075e13 Surface: log(ElecMagSqrd+1.0E14)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59999987469928E-6,1.33999998524814E-5,-4.34224876819716E-6,5.34224865198557E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log(ElecMagSqrd+1.0E14)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',8, ... 'phase',(0)*pi/180, ... 'title','lambda(8)=4.912523e13 Surface: log(ElecMagSqrd+1.0E14)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59999987469928E-6,1.33999998524814E-5,-4.34224876819716E-6,5.34224865198557E-6,-1,1]); % Application mode 1 clear appl appl.mode.class = 'FlPDEW'; appl.mode.type = 'cartesian'; appl.dim = {'Hrad','Hazi','Haxi','Hrad_t','Hazi_t','Haxi_t'}; appl.sdim = {'r','z','z2'}; appl.name = 'Axisymmetric'; appl.shape = {'shlag(2,''Hrad'')','shlag(2,''Hazi'')','shlag(2,''Haxi'')'}; appl.gporder = 4; appl.cporder = 2; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_Axisymmetric'; clear prop prop.elemdefault='Lag2'; prop.wave='off'; prop.frame='rz'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm1','lm2','lm3','lm4','lm5','lm6'}; prop.weakconstr = weakconstr; appl.prop = prop; clear pnt pnt.weak = {{'0';'0';'0'}}; pnt.dweak = {{'0';'0';'0'}}; pnt.constr = {{'0';'0';'0'}}; pnt.ind = [1,1,1,1,1,1,1,1,1,1,1]; appl.pnt = pnt; clear bnd bnd.weak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.dweak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.constr = {{'Hrad*nr+Haxi*nz';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'0';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'Hrad*nr+Haxi*nz';'0';'0'},{'Haxi*nr-Hrad*nz';'Hazi';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'Haxi*nr-Hrad*nz';'Hazi';'0'},{'0';'0';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'-i*cMW*Hazi*k*mf+(cEW*(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r))/r'; ... '-i*cEW*(-Haxir+Hradz)+cMW*k*mf*(Haxi*nr-Hrad*nz)';'0'},{'0';'0';'0'}}; bnd.name = {'electric_wall','normal_D','tangential_H','magnetic_wall','normal_H', ... 'tangential_D','radiation_match','null'}; bnd.ind = [2,2,2,8,2,8,2,2,8,8,8,8]; appl.bnd = bnd; clear equ equ.gporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.init = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.shape = {[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3]}; equ.weak = {{'-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz))'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e2'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara1*Haziz*M*test(Haxi))+eperp1*Hazir*test(Hazi)+eperp1*Hazi*test(Hazir)-eperp1*Hrad*M*test(Hazir)-epara1*Haxi*M*test(Haziz)-eperp1*Hazir*M*test(Hrad))/(epara1*eperp1)+(epara1*Haxi*M^2*test(Haxi)+eperp1*Hazi*test(Hazi)-eperp1*Hrad*M*test(Hazi)-eperp1*Hazi*M*test(Hrad)+eperp1*Hrad*M^2*test(Hrad))/(epara1*eperp1*r)+(r*(epara1*(Haxir-Hradz)*test(Haxir)+eperp1*Hazir*test(Hazir)+epara1*Haziz*test(Haziz)-epara1*Haxir*test(Hradz)+epara1*Hradz*test(Hradz)))/(epara1*eperp1)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara2*Haziz*M*test(Haxi))+eperp2*Hazir*test(Hazi)+eperp2*Hazi*test(Hazir)-eperp2*Hrad*M*test(Hazir)-epara2*Haxi*M*test(Haziz)-eperp2*Hazir*M*test(Hrad))/(epara2*eperp2)+(epara2*Haxi*M^2*test(Haxi)+eperp2*Hazi*test(Hazi)-eperp2*Hrad*M*test(Hazi)-eperp2*Hazi*M*test(Hrad)+eperp2*Hrad*M^2*test(Hrad))/(epara2*eperp2*r)+(r*(epara2*(Haxir-Hradz)*test(Haxir)+eperp2*Hazir*test(Hazir)+epara2*Haziz*test(Haziz)-epara2*Haxir*test(Hradz)+epara2*Hradz*test(Hradz)))/(epara2*eperp2)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'}}; equ.dweak = {{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'}}; equ.usage = {1,1,1,1,1}; equ.constr = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'}}; equ.cporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.dinit = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.name = {'dielectric_0:vacuum','isotrop_diel_1','isotrop_diel_2','uniaxial_diel_1', ... 'uniaxial_diel_2'}; equ.ind = [1,2]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'rz'}; % Simplify expressions fem.simplify = 'on'; fem.border = 1; fem.units = 'SI'; % Subdomain expressions clear equ equ.ind = [1,2]; equ.dim = {'Hrad','Hazi','Haxi'}; equ.var = {}; equ.expr = {'erel',{'1','e1'}}; fem.equ = equ; % Global expressions fem.expr = {'DivH','(Hrad-Hazi*M+(Haxiz+Hradr)*r)/r', ... 'MagEnDens','Hrad*Hrad+Hazi*Hazi+Haxi*Haxi', ... 'Drad','(Haxi*M-Haziz*r)/r', ... 'Dazi','-Haxir+Hradz', ... 'Daxi','(Hazi-Hrad*M+Hazir*r)/r', ... 'Erad','Drad/erel', ... 'Eazi','Dazi/erel', ... 'Eaxi','Daxi/erel', ... 'ElecMagSqrd','Erad*Erad+Eazi*Eazi+Eaxi*Eaxi', ... 'ElecEnDens','Erad*Drad+Eazi*Dazi+Eaxi*Daxi', ... 'AbsMagEnDens','abs(Hrad)^2+abs(Hazi)^2+abs(Haxi)^2', ... 'MagNrmlHSqrd','2*pi*r*abs(Haxi*nz+Hrad*nr)^2', ... 'MagTngHSqrd','2*pi*r*(1*abs(Hazi)^2+1*abs(Haxi*nr-Hrad*nz)^2)', ... 'AbsElecSqrd','abs(Erad)^2+abs(Eazi)^2+abs(Eaxi)^2'}; % Descriptions clear descr descr.expr= {'Eaxi','axial component of electric field strength','DivH','divergence of magnetic field (should be zero!)','ElecEnDens','electric energy density','ElecMagSqrd','electric field strength magnitude squared','Eazi','azimuthal component of electric field strength','Drad','radial component of electric displacement','Dazi','azimuthal component of electric displacement','Erad','radial component of electric field strength','Daxi','axial component of electric displacement','MagEnDens','magnetic energy density'}; fem.descr = descr; % Functions clear fcns fem.functions = {}; % Descriptions descr = fem.descr; descr.const= {'e_293K_alumina','relative permittivity of alumina at room temperature','e2','ditto for isotropic_dielectric_2','eperp2','relative permittivity of uniaxial_dielectric_2 perpendicular to cylindrical axis','eperp_293K_sapph','nominal room temperature values for same','eperp_4K_sapph_UWA','UWA values for cryogenic HEMEX sapphire','c','speed of light (exact!)','delta_e','fractional increment (for determining filling factors)','mixing_angle','Electric-Magnetic Mixing Angle (in degrees)','epara1','relative permittivity of uniaxial_dielectric_1 parallel to cylindrical axis','delta_epara1','fractional increment (for determining filling factors)','epara2','ditto but parallel to cylindrical axis','M','azimuthal mode order','n_silica','refractive index of thermally grown silica (Fig B.2, p. 172 of Kippenberg''s thesis)','fc','constant used internally --do not modify','e1','relative permittivity of isotropic_dielectric_1','eperp1','relative permittivity of uniaxial_dielectric_1 perpendicular to cylindrical axis','cEW','Electric-Wall-ness','cMW','Magnetic-Wall-ness','n_AlGaAs','average refractive index of GaAs and AlGaAs layers (p. 172 of Srinivasan)','mf','match frequency','delta_eperp1','fractional increment (for determining filling factors)','eperp_4K_sapph_NPL','NPL values','alpha','penalty coefficient on Div H'}; fem.descr = descr; % Solution form fem.solform = 'weak'; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem,'geoms',[1],'eqvars','on','cplbndeq','on','cplbndsh','off'); % Solve problem fem.sol=femeig(fem, ... 'method','eliminate', ... 'nullfun','auto', ... 'blocksize',5000, ... 'complexfun','off', ... 'solfile','off', ... 'conjugate','on', ... 'symmetric','on', ... 'solcomp',{'Hazi','Haxi','Hrad'}, ... 'outcomp',{'Hazi','Haxi','Hrad'}, ... 'rowscale','on', ... 'neigs',10, ... 'shift',0, ... 'krylovdim',0, ... 'maxeigit',300, ... 'etol',0.0, ... 'linsolver','spooles', ... 'thresh',0.1, ... 'preorder','mmd', ... 'uscale','auto', ... 'mcase',0); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'log(ElecMagSqrd+1.0E14)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',1, ... 'phase',(0)*pi/180, ... 'title','lambda(1)=1.21202e14 Surface: log(ElecMagSqrd+1.0E14)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.57325215440207E-6,1.34267475727786E-5,-3.90000004699687E-6,4.89999993078527E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log(ElecMagSqrd+1.0E14)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(10)=4.837159e13 Surface: log(ElecMagSqrd+1.0E14)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59999987469928E-6,1.33999998524814E-5,-4.34224876819716E-6,5.34224865198557E-6,-1,1]); % Application mode 1 clear appl appl.mode.class = 'FlPDEW'; appl.mode.type = 'cartesian'; appl.dim = {'Hrad','Hazi','Haxi','Hrad_t','Hazi_t','Haxi_t'}; appl.sdim = {'r','z','z2'}; appl.name = 'Axisymmetric'; appl.shape = {'shlag(2,''Hrad'')','shlag(2,''Hazi'')','shlag(2,''Haxi'')'}; appl.gporder = 4; appl.cporder = 2; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_Axisymmetric'; clear prop prop.elemdefault='Lag2'; prop.wave='off'; prop.frame='rz'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm1','lm2','lm3','lm4','lm5','lm6'}; prop.weakconstr = weakconstr; appl.prop = prop; clear pnt pnt.weak = {{'0';'0';'0'}}; pnt.dweak = {{'0';'0';'0'}}; pnt.constr = {{'0';'0';'0'}}; pnt.ind = [1,1,1,1,1,1,1,1,1,1,1]; appl.pnt = pnt; clear bnd bnd.weak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.dweak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.constr = {{'Hrad*nr+Haxi*nz';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+t`Hazir*nr*r+Haziz*nz*r)/r'}, ... {'0';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'Hrad*nr+Haxi*nz';'0';'0'},{'Haxi*nr-Hrad*nz';'Hazi';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'Haxi*nr-Hrad*nz';'Hazi';'0'},{'0';'0';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'-i*cMW*Hazi*k*mf+(cEW*(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r))/r'; ... '-i*cEW*(-Haxir+Hradz)+cMW*k*mf*(Haxi*nr-Hrad*nz)';'0'},{'0';'0';'0'}}; bnd.name = {'electric_wall','normal_D','tangential_H','magnetic_wall','normal_H', ... 'tangential_D','radiation_match','null'}; bnd.ind = [3,3,3,8,3,8,3,3,8,8,8,8]; appl.bnd = bnd; clear equ equ.gporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.init = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.shape = {[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3]}; equ.weak = {{'-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz))'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e2'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara1*Haziz*M*test(Haxi))+eperp1*Hazir*test(Hazi)+eperp1*Hazi*test(Hazir)-eperp1*Hrad*M*test(Hazir)-epara1*Haxi*M*test(Haziz)-eperp1*Hazir*M*test(Hrad))/(epara1*eperp1)+(epara1*Haxi*M^2*test(Haxi)+eperp1*Hazi*test(Hazi)-eperp1*Hrad*M*test(Hazi)-eperp1*Hazi*M*test(Hrad)+eperp1*Hrad*M^2*test(Hrad))/(epara1*eperp1*r)+(r*(epara1*(Haxir-Hradz)*test(Haxir)+eperp1*Hazir*test(Hazir)+epara1*Haziz*test(Haziz)-epara1*Haxir*test(Hradz)+epara1*Hradz*test(Hradz)))/(epara1*eperp1)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara2*Haziz*M*test(Haxi))+eperp2*Hazir*test(Hazi)+eperp2*Hazi*test(Hazir)-eperp2*Hrad*M*test(Hazir)-epara2*Haxi*M*test(Haziz)-eperp2*Hazir*M*test(Hrad))/(epara2*eperp2)+(epara2*Haxi*M^2*test(Haxi)+eperp2*Hazi*test(Hazi)-eperp2*Hrad*M*test(Hazi)-eperp2*Hazi*M*test(Hrad)+eperp2*Hrad*M^2*test(Hrad))/(epara2*eperp2*r)+(r*(epara2*(Haxir-Hradz)*test(Haxir)+eperp2*Hazir*test(Hazir)+epara2*Haziz*test(Haziz)-epara2*Haxir*test(Hradz)+epara2*Hradz*test(Hradz)))/(epara2*eperp2)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'}}; equ.dweak = {{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'}}; equ.usage = {1,1,1,1,1}; equ.constr = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'}}; equ.cporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.dinit = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.name = {'dielectric_0:vacuum','isotrop_diel_1','isotrop_diel_2','uniaxial_diel_1', ... 'uniaxial_diel_2'}; equ.ind = [1,2]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'rz'}; % Simplify expressions fem.simplify = 'on'; fem.border = 1; fem.units = 'SI'; % Subdomain expressions clear equ equ.ind = [1,2]; equ.dim = {'Hrad','Hazi','Haxi'}; equ.var = {}; equ.expr = {'erel',{'1','e1'}}; fem.equ = equ; % Global expressions fem.expr = {'DivH','(Hrad-Hazi*M+(Haxiz+Hradr)*r)/r', ... 'MagEnDens','Hrad*Hrad+Hazi*Hazi+Haxi*Haxi', ... 'Drad','(Haxi*M-Haziz*r)/r', ... 'Dazi','-Haxir+Hradz', ... 'Daxi','(Hazi-Hrad*M+Hazir*r)/r', ... 'Erad','Drad/erel', ... 'Eazi','Dazi/erel', ... 'Eaxi','Daxi/erel', ... 'ElecMagSqrd','Erad*Erad+Eazi*Eazi+Eaxi*Eaxi', ... 'ElecEnDens','Erad*Drad+Eazi*Dazi+Eaxi*Daxi', ... 'AbsMagEnDens','abs(Hrad)^2+abs(Hazi)^2+abs(Haxi)^2', ... 'MagNrmlHSqrd','2*pi*r*abs(Haxi*nz+Hrad*nr)^2', ... 'MagTngHSqrd','2*pi*r*(1*abs(Hazi)^2+1*abs(Haxi*nr-Hrad*nz)^2)', ... 'AbsElecSqrd','abs(Erad)^2+abs(Eazi)^2+abs(Eaxi)^2'}; % Descriptions clear descr descr.expr= {'Eaxi','axial component of electric field strength','DivH','divergence of magnetic field (should be zero!)','ElecEnDens','electric energy density','ElecMagSqrd','electric field strength magnitude squared','Eazi','azimuthal component of electric field strength','Drad','radial component of electric displacement','Dazi','azimuthal component of electric displacement','Erad','radial component of electric field strength','Daxi','axial component of electric displacement','MagEnDens','magnetic energy density'}; fem.descr = descr; % Functions clear fcns fem.functions = {}; % Descriptions descr = fem.descr; descr.const= {'e_293K_alumina','relative permittivity of alumina at room temperature','e2','ditto for isotropic_dielectric_2','eperp2','relative permittivity of uniaxial_dielectric_2 perpendicular to cylindrical axis','eperp_293K_sapph','nominal room temperature values for same','eperp_4K_sapph_UWA','UWA values for cryogenic HEMEX sapphire','c','speed of light (exact!)','delta_e','fractional increment (for determining filling factors)','mixing_angle','Electric-Magnetic Mixing Angle (in degrees)','epara1','relative permittivity of uniaxial_dielectric_1 parallel to cylindrical axis','delta_epara1','fractional increment (for determining filling factors)','epara2','ditto but parallel to cylindrical axis','M','azimuthal mode order','n_silica','refractive index of thermally grown silica (Fig B.2, p. 172 of Kippenberg''s thesis)','fc','constant used internally --do not modify','e1','relative permittivity of isotropic_dielectric_1','eperp1','relative permittivity of uniaxial_dielectric_1 perpendicular to cylindrical axis','cEW','Electric-Wall-ness','cMW','Magnetic-Wall-ness','n_AlGaAs','average refractive index of GaAs and AlGaAs layers (p. 172 of Srinivasan)','mf','match frequency','delta_eperp1','fractional increment (for determining filling factors)','eperp_4K_sapph_NPL','NPL values','alpha','penalty coefficient on Div H'}; fem.descr = descr; % Solution form fem.solform = 'weak'; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem,'geoms',[1],'eqvars','on','cplbndeq','on','cplbndsh','off'); % Solve problem fem.sol=femeig(fem, ... 'method','eliminate', ... 'nullfun','auto', ... 'blocksize',5000, ... 'complexfun','off', ... 'solfile','off', ... 'conjugate','on', ... 'symmetric','on', ... 'solcomp',{'Hazi','Haxi','Hrad'}, ... 'outcomp',{'Hazi','Haxi','Hrad'}, ... 'rowscale','on', ... 'neigs',10, ... 'shift',0, ... 'krylovdim',0, ... 'maxeigit',300, ... 'etol',0.0, ... 'linsolver','spooles', ... 'thresh',0.1, ... 'preorder','mmd', ... 'uscale','auto', ... 'mcase',0); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'log(ElecMagSqrd+1.0E14)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',1, ... 'phase',(0)*pi/180, ... 'title','lambda(1)=9.043035e14 Surface: log(ElecMagSqrd+1.0E14)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.57325215440207E-6,1.34267475727786E-5,-3.90000004699687E-6,4.89999993078527E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log(ElecMagSqrd+1.0E14)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(10)=3.5394e14 Surface: log(ElecMagSqrd+1.0E14)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59999987469928E-6,1.33999998524814E-5,-4.30947551127607E-6,5.30947539506447E-6,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hmax',[], ... 'hmaxfact',0.55, ... 'hgrad',1.25, ... 'hcurve',0.25, ... 'hcutoff',0.0005, ... 'hnarrow',1, ... 'hpnt',10, ... 'xscale',1.0, ... 'yscale',1.0, ... 'mlevel','sub'); % Refine mesh fem.mesh=meshrefine(fem, ... 'mcase',0, ... 'boxcoord',[6.98974775451839E-6 1.002784913908196E-5 -1.5265023044190234E-6 2.5536531782315657E-6], ... 'rmethod','regular'); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1.0E14)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(10)=3.5394e14 Surface: log10(ElecMagSqrd+1.0E14)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.1130913710669E-6,1.39318828023376E-5,-4.44718914271927E-6,5.34224865198557E-6,-1,1]); % Application mode 1 clear appl appl.mode.class = 'FlPDEW'; appl.mode.type = 'cartesian'; appl.dim = {'Hrad','Hazi','Haxi','Hrad_t','Hazi_t','Haxi_t'}; appl.sdim = {'r','z','z2'}; appl.name = 'Axisymmetric'; appl.shape = {'shlag(2,''Hrad'')','shlag(2,''Hazi'')','shlag(2,''Haxi'')'}; appl.gporder = 4; appl.cporder = 2; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_Axisymmetric'; clear prop prop.elemdefault='Lag2'; prop.wave='off'; prop.frame='rz'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm1','lm2','lm3','lm4','lm5','lm6'}; prop.weakconstr = weakconstr; appl.prop = prop; clear pnt pnt.weak = {{'0';'0';'0'}}; pnt.dweak = {{'0';'0';'0'}}; pnt.constr = {{'0';'0';'0'}}; pnt.ind = [1,1,1,1,1,1,1,1,1,1,1]; appl.pnt = pnt; clear bnd bnd.weak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.dweak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.constr = {{'Hrad*nr+Haxi*nz';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'0';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'Hrad*nr+Haxi*nz';'0';'0'},{'Haxi*nr-Hrad*nz';'Hazi';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'Haxi*nr-Hrad*nz';'Hazi';'0'},{'0';'0';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'-i*cMW*Hazi*k*mf+(cEW*(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r))/r'; ... '-i*cEW*(-Haxir+Hradz)+cMW*k*mf*(Haxi*nr-Hrad*nz)';'0'},{'0';'0';'0'}}; bnd.name = {'electric_wall','normal_D','tangential_H','magnetic_wall','normal_H', ... 'tangential_D','radiation_match','null'}; bnd.ind = [3,3,3,8,3,8,3,3,8,8,8,8]; appl.bnd = bnd; clear equ equ.gporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.init = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0'; ... '0';'0';'0';'0';'0'}}; equ.shape = {[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3]}; equ.weak = {{'(test(Hazi)*Hazi-M*(test(Hazi)*Hrad+Hazi*test(Hrad))+M^2*(test(Hrad)*Hrad+test(Haxi)*Haxi))/r+(test(Hazir)*(Hazi-M*Hrad)+Hazir*(test(Hazi)-M*test(Hrad)))-M*(test(Haxi)*Haziz+Haxi*test(Haziz))+r*(test(Hazir)*Hazir+((test(Haxir)-test(Hradz))*(Haxir-Hradz)+Haziz*test(Haziz)))'; ... 'alpha*((test(Hrad)*Hrad-M*(test(Hazi)*Hrad+Hazi*test(Hrad))+M^2*test(Hazi)*Hazi)/r+(test(Haxiz)+test(Hradr))*(Hrad-M*Hazi)+(test(Hrad)-M*test(Hazi))*(Hradr+Haxiz)+r*(test(Hradr)+test(Haxiz))*(Hradr+Haxiz))'; ... '0'},{'((test(Hazi)*Hazi-M*(test(Hazi)*Hrad+Hazi*test(Hrad))+M^2*(test(Hrad)*Hrad+test(Haxi)*Haxi))/r+(test(Hazir)*(Hazi-M*Hrad)+Hazir*(test(Hazi)-M*test(Hrad)))-M*(test(Haxi)*Haziz+Haxi*test(Haziz))+r*(test(Hazir)*Hazir+((test(Haxir)-test(Hradz))*(Haxir-Hradz)+Haziz*test(Haziz))))/e1'; ... 'alpha*((test(Hrad)*Hrad-M*(test(Hazi)*Hrad+Hazi*test(Hrad))+M^2*test(Hazi)*Hazi)/r+(test(Haxiz)+test(Hradr))*(Hrad-M*Hazi)+(test(Hrad)-M*test(Hazi))*(Hradr+Haxiz)+r*(test(Hradr)+test(Haxiz))*(Hradr+Haxiz))'; ... '0'},{'-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz))'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara1*Haziz*M*test(Haxi))+eperp1*Hazir*test(Hazi)+eperp1*Hazi*test(Hazir)-eperp1*Hrad*M*test(Hazir)-epara1*Haxi*M*test(Haziz)-eperp1*Hazir*M*test(Hrad))/(epara1*eperp1)+(epara1*Haxi*M^2*test(Haxi)+eperp1*Hazi*test(Hazi)-eperp1*Hrad*M*test(Hazi)-eperp1*Hazi*M*test(Hrad)+eperp1*Hrad*M^2*test(Hrad))/(epara1*eperp1*r)+(r*(epara1*(Haxir-Hradz)*test(Haxir)+eperp1*Hazir*test(Hazir)+epara1*Haziz*test(Haziz)-epara1*Haxir*test(Hradz)+epara1*Hradz*test(Hradz)))/(epara1*eperp1)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara2*Haziz*M*test(Haxi))+eperp2*Hazir*test(Hazi)+eperp2*Hazi*test(Hazir)-eperp2*Hrad*M*test(Hazir)-epara2*Haxi*M*test(Haziz)-eperp2*Hazir*M*test(Hrad))/(epara2*eperp2)+(epara2*Haxi*M^2*test(Haxi)+eperp2*Hazi*test(Hazi)-eperp2*Hrad*M*test(Hazi)-eperp2*Hazi*M*test(Hrad)+eperp2*Hrad*M^2*test(Hrad))/(epara2*eperp2*r)+(r*(epara2*(Haxir-Hradz)*test(Haxir)+eperp2*Hazir*test(Hazir)+epara2*Haziz*test(Haziz)-epara2*Haxir*test(Hradz)+epara2*Hradz*test(Hradz)))/(epara2*eperp2)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'}}; equ.dweak = {{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'}}; equ.usage = {1,1,1,1,1,1}; equ.constr = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'}}; equ.cporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.dinit = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0'; ... '0';'0';'0';'0';'0'}}; equ.name = {'vacuum2','isotrop_diel_2','dielectric_0:vacuum','isotrop_diel_1', ... 'uniaxial_diel_1','uniaxial_diel_2'}; equ.ind = [1,2]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'rz'}; % Simplify expressions fem.simplify = 'on'; fem.border = 1; fem.units = 'SI'; % Subdomain expressions clear equ equ.ind = [1,2]; equ.dim = {'Hrad','Hazi','Haxi'}; equ.var = {}; equ.expr = {'erel',{'1','e1'}}; fem.equ = equ; % Global expressions fem.expr = {'DivH','(Hrad-Hazi*M+(Haxiz+Hradr)*r)/r', ... 'MagEnDens','Hrad*Hrad+Hazi*Hazi+Haxi*Haxi', ... 'Drad','(Haxi*M-Haziz*r)/r', ... 'Dazi','-Haxir+Hradz', ... 'Daxi','(Hazi-Hrad*M+Hazir*r)/r', ... 'Erad','Drad/erel', ... 'Eazi','Dazi/erel', ... 'Eaxi','Daxi/erel', ... 'ElecMagSqrd','Erad*Erad+Eazi*Eazi+Eaxi*Eaxi', ... 'ElecEnDens','Erad*Drad+Eazi*Dazi+Eaxi*Daxi', ... 'AbsMagEnDens','abs(Hrad)^2+abs(Hazi)^2+abs(Haxi)^2', ... 'MagNrmlHSqrd','2*pi*r*abs(Haxi*nz+Hrad*nr)^2', ... 'MagTngHSqrd','2*pi*r*(1*abs(Hazi)^2+1*abs(Haxi*nr-Hrad*nz)^2)', ... 'AbsElecSqrd','abs(Erad)^2+abs(Eazi)^2+abs(Eaxi)^2'}; % Descriptions clear descr descr.expr= {'Eaxi','axial component of electric field strength','DivH','divergence of magnetic field (should be zero!)','ElecEnDens','electric energy density','ElecMagSqrd','electric field strength magnitude squared','Eazi','azimuthal component of electric field strength','Drad','radial component of electric displacement','Dazi','azimuthal component of electric displacement','Erad','radial component of electric field strength','Daxi','axial component of electric displacement','MagEnDens','magnetic energy density'}; fem.descr = descr; % Functions clear fcns fem.functions = {}; % Descriptions descr = fem.descr; descr.const= {'e_293K_alumina','relative permittivity of alumina at room temperature','e2','ditto for isotropic_dielectric_2','eperp2','relative permittivity of uniaxial_dielectric_2 perpendicular to cylindrical axis','eperp_293K_sapph','nominal room temperature values for same','eperp_4K_sapph_UWA','UWA values for cryogenic HEMEX sapphire','c','speed of light (exact!)','delta_e','fractional increment (for determining filling factors)','mixing_angle','Electric-Magnetic Mixing Angle (in degrees)','epara1','relative permittivity of uniaxial_dielectric_1 parallel to cylindrical axis','delta_epara1','fractional increment (for determining filling factors)','epara2','ditto but parallel to cylindrical axis','M','azimuthal mode order','n_silica','refractive index of thermally grown silica (Fig B.2, p. 172 of Kippenberg''s thesis)','fc','constant used internally --do not modify','e1','relative permittivity of isotropic_dielectric_1','eperp1','relative permittivity of uniaxial_dielectric_1 perpendicular to cylindrical axis','cEW','Electric-Wall-ness','cMW','Magnetic-Wall-ness','n_AlGaAs','average refractive index of GaAs and AlGaAs layers (p. 172 of Srinivasan)','mf','match frequency','delta_eperp1','fractional increment (for determining filling factors)','eperp_4K_sapph_NPL','NPL values','alpha','penalty coefficient on Div H'}; fem.descr = descr; % Solution form fem.solform = 'weak'; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem,'geoms',[1],'eqvars','on','cplbndeq','on','cplbndsh','off'); % Solve problem fem.sol=femeig(fem, ... 'method','eliminate', ... 'nullfun','auto', ... 'blocksize',5000, ... 'complexfun','off', ... 'solfile','off', ... 'conjugate','off', ... 'symmetric','on', ... 'solcomp',{'Hazi','Haxi','Hrad'}, ... 'outcomp',{'Hazi','Haxi','Hrad'}, ... 'rowscale','on', ... 'neigs',4, ... 'shift',0, ... 'krylovdim',0, ... 'maxeigit',300, ... 'etol',0.0, ... 'linsolver','spooles', ... 'thresh',0.1, ... 'preorder','mmd', ... 'uscale','auto', ... 'mcase',0); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1.0E14)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',1, ... 'phase',(0)*pi/180, ... 'title','lambda(1)=1.57752e15 Surface: log10(ElecMagSqrd+1.0E14)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.58361223933225E-6,1.34613619340722E-5,-4.44718914271927E-6,5.34224865198557E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1.0E14)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=3.797447e14 Surface: log10(ElecMagSqrd+1.0E14)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.58361223933225E-6,1.34613619340722E-5,-4.44718914271927E-6,5.34224865198557E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1.0E14)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',3, ... 'phase',(0)*pi/180, ... 'title','lambda(3)=4.107647e14 Surface: log10(ElecMagSqrd+1.0E14)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.58361223933225E-6,1.34613619340722E-5,-4.44718914271927E-6,5.34224865198557E-6,-1,1]); % Constants fem.const = {'c','299792458', ... 'k','2*pi/c', ... 'fc','k^2', ... 'alpha','1.0', ... 'M','93', ... 'delta_e','0.0', ... 'e1','n_silica^2*(1+delta_e)', ... 'e2','1.0', ... 'delta_eperp1','0*1e-3', ... 'eperp1','9.2725*(1+delta_eperp1)', ... 'delta_epara1','0*1e-3', ... 'epara1','11.3486*(1+delta_epara1)', ... 'eperp2','1.0', ... 'epara2','1.0', ... 'e_293K_alumina','9.8', ... 'eperp_4K_sapph_UWA','9.2725', ... 'epara_4K_sapph_UWA','11.3486', ... 'eperp_293K_sapph','9.407', ... 'epara_293K_sapph','11.62', ... 'eperp_4K_sapph_NPL','9.2848', ... 'epara_4K_sapph_NPL','11.3660', ... 'n_silica','1.4457', ... 'n_AlGaAs','3.36', ... 'mf','2.374616e14', ... 'ttgH','1', ... 'ttgE','0', ... 'rectangle_mf','2.376629e14', ... 'circle_mf','2.374616e14', ... 'mixing_angle','45', ... 'cMW','sin(mixing_angle * pi /180)', ... 'cEW','cos(mixing_angle * pi /180)', ... 'tngM','1', ... 'tngE','0'}; % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1.0E14)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',3, ... 'phase',(0)*pi/180, ... 'title','lambda(3)=4.107647e14 Surface: log10(ElecMagSqrd+1.0E14)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.58361223933225E-6,1.34613619340722E-5,-4.44718914271927E-6,5.34224865198557E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1.0E14)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=3.797447e14 Surface: log10(ElecMagSqrd+1.0E14)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.58361223933225E-6,1.34613619340722E-5,-4.44718914271927E-6,5.34224865198557E-6,-1,1]); % Application mode 1 clear appl appl.mode.class = 'FlPDEW'; appl.mode.type = 'cartesian'; appl.dim = {'Hrad','Hazi','Haxi','Hrad_t','Hazi_t','Haxi_t'}; appl.sdim = {'r','z','z2'}; appl.name = 'Axisymmetric'; appl.shape = {'shlag(2,''Hrad'')','shlag(2,''Hazi'')','shlag(2,''Haxi'')'}; appl.gporder = 4; appl.cporder = 2; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_Axisymmetric'; clear prop prop.elemdefault='Lag2'; prop.wave='off'; prop.frame='rz'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm1','lm2','lm3','lm4','lm5','lm6'}; prop.weakconstr = weakconstr; appl.prop = prop; clear pnt pnt.weak = {{'0';'0';'0'}}; pnt.dweak = {{'0';'0';'0'}}; pnt.constr = {{'0';'0';'0'}}; pnt.ind = [1,1,1,1,1,1,1,1,1,1,1]; appl.pnt = pnt; clear bnd bnd.weak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.dweak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.constr = {{'Hrad*nr+Haxi*nz';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'0';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'Hrad*nr+Haxi*nz';'0';'0'},{'Haxi*nr-Hrad*nz';'Hazi';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'Haxi*nr-Hrad*nz';'Hazi';'0'},{'0';'0';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'-i*cMW*Hazi*k*mf+(cEW*(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r))/r'; ... '-i*cEW*(-Haxir+Hradz)+cMW*k*mf*(Haxi*nr-Hrad*nz)';'0'},{'0';'0';'0'}}; bnd.name = {'electric_wall','normal_D','tangential_H','magnetic_wall','normal_H', ... 'tangential_D','radiation_match','null'}; bnd.ind = [3,3,3,8,3,8,3,3,8,8,8,8]; appl.bnd = bnd; clear equ equ.gporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.init = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0'; ... '0';'0';'0';'0';'0'}}; equ.shape = {[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3]}; equ.weak = {{'-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz))'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'((test(Hazi)*Hazi-M*(test(Hazi)*Hrad+Hazi*test(Hrad))+M^2*(test(Hrad)*Hrad+test(Haxi)*Haxi))/r+(test(Hazir)*(Hazi-M*Hrad)+Hazir*(test(Hazi)-M*test(Hrad)))-M*(test(Haxi)*Haziz+Haxi*test(Haziz))+r*(test(Hazir)*Hazir+((test(Haxir)-test(Hradz))*(Haxir-Hradz)+Haziz*test(Haziz))))/e1'; ... 'alpha*((test(Hrad)*Hrad-M*(test(Hazi)*Hrad+Hazi*test(Hrad))+M^2*test(Hazi)*Hazi)/r+(test(Haxiz)+test(Hradr))*(Hrad-M*Hazi)+(test(Hrad)-M*test(Hazi))*(Hradr+Haxiz)+r*(test(Hradr)+test(Haxiz))*(Hradr+Haxiz))'; ... '0'},{'(test(Hazi)*Hazi-M*(test(Hazi)*Hrad+Hazi*test(Hrad))+M^2*(test(Hrad)*Hrad+test(Haxi)*Haxi))/r+(test(Hazir)*(Hazi-M*Hrad)+Hazir*(test(Hazi)-M*test(Hrad)))-M*(test(Haxi)*Haziz+Haxi*test(Haziz))+r*(test(Hazir)*Hazir+((test(Haxir)-test(Hradz))*(Haxir-Hradz)+Haziz*test(Haziz)))'; ... 'alpha*((test(Hrad)*Hrad-M*(test(Hazi)*Hrad+Hazi*test(Hrad))+M^2*test(Hazi)*Hazi)/r+(test(Haxiz)+test(Hradr))*(Hrad-M*Hazi)+(test(Hrad)-M*test(Hazi))*(Hradr+Haxiz)+r*(test(Hradr)+test(Haxiz))*(Hradr+Haxiz))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara1*Haziz*M*test(Haxi))+eperp1*Hazir*test(Hazi)+eperp1*Hazi*test(Hazir)-eperp1*Hrad*M*test(Hazir)-epara1*Haxi*M*test(Haziz)-eperp1*Hazir*M*test(Hrad))/(epara1*eperp1)+(epara1*Haxi*M^2*test(Haxi)+eperp1*Hazi*test(Hazi)-eperp1*Hrad*M*test(Hazi)-eperp1*Hazi*M*test(Hrad)+eperp1*Hrad*M^2*test(Hrad))/(epara1*eperp1*r)+(r*(epara1*(Haxir-Hradz)*test(Haxir)+eperp1*Hazir*test(Hazir)+epara1*Haziz*test(Haziz)-epara1*Haxir*test(Hradz)+epara1*Hradz*test(Hradz)))/(epara1*eperp1)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara2*Haziz*M*test(Haxi))+eperp2*Hazir*test(Hazi)+eperp2*Hazi*test(Hazir)-eperp2*Hrad*M*test(Hazir)-epara2*Haxi*M*test(Haziz)-eperp2*Hazir*M*test(Hrad))/(epara2*eperp2)+(epara2*Haxi*M^2*test(Haxi)+eperp2*Hazi*test(Hazi)-eperp2*Hrad*M*test(Hazi)-eperp2*Hazi*M*test(Hrad)+eperp2*Hrad*M^2*test(Hrad))/(epara2*eperp2*r)+(r*(epara2*(Haxir-Hradz)*test(Haxir)+eperp2*Hazir*test(Hazir)+epara2*Haziz*test(Haziz)-epara2*Haxir*test(Hradz)+epara2*Hradz*test(Hradz)))/(epara2*eperp2)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'}}; equ.dweak = {{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'}}; equ.usage = {1,1,1,1,1,1}; equ.constr = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'}}; equ.cporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.dinit = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0'; ... '0';'0';'0';'0';'0'}}; equ.name = {'dielectric_0:vacuum','isotrop_diel_2','vacuum2','isotrop_diel_1', ... 'uniaxial_diel_1','uniaxial_diel_2'}; equ.ind = [1,2]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'rz'}; % Simplify expressions fem.simplify = 'on'; fem.border = 1; fem.units = 'SI'; % Subdomain expressions clear equ equ.ind = [1,2]; equ.dim = {'Hrad','Hazi','Haxi'}; equ.var = {}; equ.expr = {'erel',{'1','e1'}}; fem.equ = equ; % Global expressions fem.expr = {'DivH','(Hrad-Hazi*M+(Haxiz+Hradr)*r)/r', ... 'MagEnDens','Hrad*Hrad+Hazi*Hazi+Haxi*Haxi', ... 'Drad','(Haxi*M-Haziz*r)/r', ... 'Dazi','-Haxir+Hradz', ... 'Daxi','(Hazi-Hrad*M+Hazir*r)/r', ... 'Erad','Drad/erel', ... 'Eazi','Dazi/erel', ... 'Eaxi','Daxi/erel', ... 'ElecMagSqrd','Erad*Erad+Eazi*Eazi+Eaxi*Eaxi', ... 'ElecEnDens','Erad*Drad+Eazi*Dazi+Eaxi*Daxi', ... 'AbsMagEnDens','abs(Hrad)^2+abs(Hazi)^2+abs(Haxi)^2', ... 'MagNrmlHSqrd','2*pi*r*abs(Haxi*nz+Hrad*nr)^2', ... 'MagTngHSqrd','2*pi*r*(1*abs(Hazi)^2+1*abs(Haxi*nr-Hrad*nz)^2)', ... 'AbsElecSqrd','abs(Erad)^2+abs(Eazi)^2+abs(Eaxi)^2'}; % Descriptions clear descr descr.expr= {'Eaxi','axial component of electric field strength','DivH','divergence of magnetic field (should be zero!)','ElecEnDens','electric energy density','ElecMagSqrd','electric field strength magnitude squared','Eazi','azimuthal component of electric field strength','Drad','radial component of electric displacement','Dazi','azimuthal component of electric displacement','Erad','radial component of electric field strength','Daxi','axial component of electric displacement','MagEnDens','magnetic energy density'}; fem.descr = descr; % Functions clear fcns fem.functions = {}; % Descriptions descr = fem.descr; descr.const= {'e_293K_alumina','relative permittivity of alumina at room temperature','e2','ditto for isotropic_dielectric_2','eperp2','relative permittivity of uniaxial_dielectric_2 perpendicular to cylindrical axis','eperp_293K_sapph','nominal room temperature values for same','eperp_4K_sapph_UWA','UWA values for cryogenic HEMEX sapphire','c','speed of light (exact!)','delta_e','fractional increment (for determining filling factors)','mixing_angle','Electric-Magnetic Mixing Angle (in degrees)','epara1','relative permittivity of uniaxial_dielectric_1 parallel to cylindrical axis','delta_epara1','fractional increment (for determining filling factors)','epara2','ditto but parallel to cylindrical axis','M','azimuthal mode order','n_silica','refractive index of thermally grown silica (Fig B.2, p. 172 of Kippenberg''s thesis)','fc','constant used internally --do not modify','e1','relative permittivity of isotropic_dielectric_1','eperp1','relative permittivity of uniaxial_dielectric_1 perpendicular to cylindrical axis','cEW','Electric-Wall-ness','cMW','Magnetic-Wall-ness','n_AlGaAs','average refractive index of GaAs and AlGaAs layers (p. 172 of Srinivasan)','mf','match frequency','delta_eperp1','fractional increment (for determining filling factors)','eperp_4K_sapph_NPL','NPL values','alpha','penalty coefficient on Div H'}; fem.descr = descr; % Solution form fem.solform = 'weak'; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem,'geoms',[1],'eqvars','on','cplbndeq','on','cplbndsh','off'); % Solve problem fem.sol=femeig(fem, ... 'method','eliminate', ... 'nullfun','auto', ... 'blocksize',5000, ... 'complexfun','off', ... 'solfile','off', ... 'conjugate','off', ... 'symmetric','on', ... 'solcomp',{'Hazi','Haxi','Hrad'}, ... 'outcomp',{'Hazi','Haxi','Hrad'}, ... 'rowscale','on', ... 'neigs',4, ... 'shift',0, ... 'krylovdim',0, ... 'maxeigit',300, ... 'etol',0.0, ... 'linsolver','spooles', ... 'thresh',0.1, ... 'preorder','mmd', ... 'uscale','auto', ... 'mcase',0); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1.0E14)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',1, ... 'phase',(0)*pi/180, ... 'title','lambda(1)=1.576754e15 Surface: log10(ElecMagSqrd+1.0E14)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.1130913710669E-6,1.39318828023376E-5,-4.44718914271927E-6,5.34224865198557E-6,-1,1]); % Application mode 1 clear appl appl.mode.class = 'FlPDEW'; appl.mode.type = 'cartesian'; appl.dim = {'Hrad','Hazi','Haxi','Hrad_t','Hazi_t','Haxi_t'}; appl.sdim = {'r','z','z2'}; appl.name = 'Axisymmetric'; appl.shape = {'shlag(2,''Hrad'')','shlag(2,''Hazi'')','shlag(2,''Haxi'')'}; appl.gporder = 4; appl.cporder = 2; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_Axisymmetric'; clear prop prop.elemdefault='Lag2'; prop.wave='off'; prop.frame='rz'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm1','lm2','lm3','lm4','lm5','lm6'}; prop.weakconstr = weakconstr; appl.prop = prop; clear pnt pnt.weak = {{'0';'0';'0'}}; pnt.dweak = {{'0';'0';'0'}}; pnt.constr = {{'0';'0';'0'}}; pnt.ind = [1,1,1,1,1,1,1,1,1,1,1]; appl.pnt = pnt; clear bnd bnd.weak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.dweak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.constr = {{'Hrad*nr+Haxi*nz';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'0';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'Hrad*nr+Haxi*nz';'0';'0'},{'Haxi*nr-Hrad*nz';'Hazi';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'Haxi*nr-Hrad*nz';'Hazi';'0'},{'0';'0';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'-i*cMW*Hazi*k*mf+(cEW*(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r))/r'; ... '-i*cEW*(-Haxir+Hradz)+cMW*k*mf*(Haxi*nr-Hrad*nz)';'0'},{'0';'0';'0'}}; bnd.name = {'electric_wall','normal_D','tangential_H','magnetic_wall','normal_H', ... 'tangential_D','radiation_match','null'}; bnd.ind = [3,3,3,8,3,8,3,3,8,8,8,8]; appl.bnd = bnd; clear equ equ.gporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.init = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0'; ... '0';'0';'0';'0';'0'}}; equ.shape = {[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3]}; equ.weak = {{'-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz))'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'((test(Hazi)*Hazi-M*(test(Hazi)*Hrad+Hazi*test(Hrad))+M^2*(test(Hrad)*Hrad+test(Haxi)*Haxi))/r+(test(Hazir)*(Hazi-M*Hrad)+Hazir*(test(Hazi)-M*test(Hrad)))-M*(test(Haxi)*Haziz+Haxi*test(Haziz))+r*(test(Hazir)*Hazir+((test(Haxir)-test(Hradz))*(Haxir-Hradz)+Haziz*test(Haziz))))/e1'; ... 'alpha*((test(Hrad)*Hrad-M*(test(Hazi)*Hrad+Hazi*test(Hrad))+M^2*test(Hazi)*Hazi)/r+(test(Haxiz)+test(Hradr))*(Hrad-M*Hazi)+(test(Hrad)-M*test(Hazi))*(Hradr+Haxiz)+r*(test(Hradr)+test(Haxiz))*(Hradr+Haxiz))'; ... '0'},{'(test(Hazi)*Hazi-M*(test(Hazi)*Hrad+Hazi*test(Hrad))+M^2*(test(Hrad)*Hrad+test(Haxi)*Haxi))/r+(test(Hazir)*(Hazi-M*Hrad)+Hazir*(test(Hazi)-M*test(Hrad)))-M*(test(Haxi)*Haziz+Haxi*test(Haziz))+r*(test(Hazir)*Hazir+((test(Haxir)-test(Hradz))*(Haxir-Hradz)+Haziz*test(Haziz)))'; ... 'alpha*((test(Hrad)*Hrad-M*(test(Hazi)*Hrad+Hazi*test(Hrad))+M^2*test(Hazi)*Hazi)/r+(test(Haxiz)+test(Hradr))*(Hrad-M*Hazi)+(test(Hrad)-M*test(Hazi))*(Hradr+Haxiz)+r*(test(Hradr)+test(Haxiz))*(Hradr+Haxiz))'; ... '0'},{'(-(epara1*Haziz*M*test(Haxi))+eperp1*Hazir*test(Hazi)+eperp1*Hazi*test(Hazir)-eperp1*Hrad*M*test(Hazir)-epara1*Haxi*M*test(Haziz)-eperp1*Hazir*M*test(Hrad))/(epara1*eperp1)+(epara1*Haxi*M^2*test(Haxi)+eperp1*Hazi*test(Hazi)-eperp1*Hrad*M*test(Hazi)-eperp1*Hazi*M*test(Hrad)+eperp1*Hrad*M^2*test(Hrad))/(epara1*eperp1*r)+(r*(epara1*(Haxir-Hradz)*test(Haxir)+eperp1*Hazir*test(Hazir)+epara1*Haziz*test(Haziz)-epara1*Haxir*test(Hradz)+epara1*Hradz*test(Hradz)))/(epara1*eperp1)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara2*Haziz*M*test(Haxi))+eperp2*Hazir*test(Hazi)+eperp2*Hazi*test(Hazir)-eperp2*Hrad*M*test(Hazir)-epara2*Haxi*M*test(Haziz)-eperp2*Hazir*M*test(Hrad))/(epara2*eperp2)+(epara2*Haxi*M^2*test(Haxi)+eperp2*Hazi*test(Hazi)-eperp2*Hrad*M*test(Hazi)-eperp2*Hazi*M*test(Hrad)+eperp2*Hrad*M^2*test(Hrad))/(epara2*eperp2*r)+(r*(epara2*(Haxir-Hradz)*test(Haxir)+eperp2*Hazir*test(Hazir)+epara2*Haziz*test(Haziz)-epara2*Haxir*test(Hradz)+epara2*Hradz*test(Hradz)))/(epara2*eperp2)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'}}; equ.dweak = {{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'}}; equ.usage = {1,1,1,1,1,1}; equ.constr = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'}}; equ.cporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.dinit = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0'; ... '0';'0';'0';'0';'0'}}; equ.name = {'dielectric_0:vacuum','isotrop_diel_1','isotrop_diel_2','vacuum2', ... 'uniaxial_diel_1','uniaxial_diel_2'}; equ.ind = [1,2]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'rz'}; % Simplify expressions fem.simplify = 'on'; fem.border = 1; fem.units = 'SI'; % Subdomain expressions clear equ equ.ind = [1,2]; equ.dim = {'Hrad','Hazi','Haxi'}; equ.var = {}; equ.expr = {'erel',{'1','e1'}}; fem.equ = equ; % Global expressions fem.expr = {'DivH','(Hrad-Hazi*M+(Haxiz+Hradr)*r)/r', ... 'MagEnDens','Hrad*Hrad+Hazi*Hazi+Haxi*Haxi', ... 'Drad','(Haxi*M-Haziz*r)/r', ... 'Dazi','-Haxir+Hradz', ... 'Daxi','(Hazi-Hrad*M+Hazir*r)/r', ... 'Erad','Drad/erel', ... 'Eazi','Dazi/erel', ... 'Eaxi','Daxi/erel', ... 'ElecMagSqrd','Erad*Erad+Eazi*Eazi+Eaxi*Eaxi', ... 'ElecEnDens','Erad*Drad+Eazi*Dazi+Eaxi*Daxi', ... 'AbsMagEnDens','abs(Hrad)^2+abs(Hazi)^2+abs(Haxi)^2', ... 'MagNrmlHSqrd','2*pi*r*abs(Haxi*nz+Hrad*nr)^2', ... 'MagTngHSqrd','2*pi*r*(1*abs(Hazi)^2+1*abs(Haxi*nr-Hrad*nz)^2)', ... 'AbsElecSqrd','abs(Erad)^2+abs(Eazi)^2+abs(Eaxi)^2'}; % Descriptions clear descr descr.expr= {'Eaxi','axial component of electric field strength','DivH','divergence of magnetic field (should be zero!)','ElecEnDens','electric energy density','ElecMagSqrd','electric field strength magnitude squared','Eazi','azimuthal component of electric field strength','Drad','radial component of electric displacement','Dazi','azimuthal component of electric displacement','Erad','radial component of electric field strength','Daxi','axial component of electric displacement','MagEnDens','magnetic energy density'}; fem.descr = descr; % Functions clear fcns fem.functions = {}; % Descriptions descr = fem.descr; descr.const= {'e_293K_alumina','relative permittivity of alumina at room temperature','e2','ditto for isotropic_dielectric_2','eperp2','relative permittivity of uniaxial_dielectric_2 perpendicular to cylindrical axis','eperp_293K_sapph','nominal room temperature values for same','eperp_4K_sapph_UWA','UWA values for cryogenic HEMEX sapphire','c','speed of light (exact!)','delta_e','fractional increment (for determining filling factors)','mixing_angle','Electric-Magnetic Mixing Angle (in degrees)','epara1','relative permittivity of uniaxial_dielectric_1 parallel to cylindrical axis','delta_epara1','fractional increment (for determining filling factors)','epara2','ditto but parallel to cylindrical axis','M','azimuthal mode order','n_silica','refractive index of thermally grown silica (Fig B.2, p. 172 of Kippenberg''s thesis)','fc','constant used internally --do not modify','e1','relative permittivity of isotropic_dielectric_1','eperp1','relative permittivity of uniaxial_dielectric_1 perpendicular to cylindrical axis','cEW','Electric-Wall-ness','cMW','Magnetic-Wall-ness','n_AlGaAs','average refractive index of GaAs and AlGaAs layers (p. 172 of Srinivasan)','mf','match frequency','delta_eperp1','fractional increment (for determining filling factors)','eperp_4K_sapph_NPL','NPL values','alpha','penalty coefficient on Div H'}; fem.descr = descr; % Solution form fem.solform = 'weak'; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem,'geoms',[1],'eqvars','on','cplbndeq','on','cplbndsh','off'); % Solve problem fem.sol=femeig(fem, ... 'method','eliminate', ... 'nullfun','auto', ... 'blocksize',5000, ... 'complexfun','off', ... 'solfile','off', ... 'conjugate','off', ... 'symmetric','on', ... 'solcomp',{'Hazi','Haxi','Hrad'}, ... 'outcomp',{'Hazi','Haxi','Hrad'}, ... 'rowscale','on', ... 'neigs',4, ... 'shift',0, ... 'krylovdim',0, ... 'maxeigit',300, ... 'etol',0.0, ... 'linsolver','spooles', ... 'thresh',0.1, ... 'preorder','mmd', ... 'uscale','auto', ... 'mcase',0); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1.0E14)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',1, ... 'phase',(0)*pi/180, ... 'title','lambda(1)=1.572789e15 Surface: log10(ElecMagSqrd+1.0E14)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.1130913710669E-6,1.39318828023376E-5,-4.44718914271927E-6,5.34224865198557E-6,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1.0E14)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=3.553009e14 Surface: log10(ElecMagSqrd+1.0E14)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.58361223933225E-6,1.34613619340722E-5,-4.44718914271927E-6,5.34224865198557E-6,-1,1]); % Geometry g1=scale(g1,1000000,1000000,0,0); g2=scale(g2,1000000,1000000,0,0); clear s s.objs={g1,g2}; s.name={'CO1','R1'}; s.tags={'g1','g2'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % Initialize mesh fem.mesh=meshinit(fem, ... 'hmax',[], ... 'hmaxfact',0.55, ... 'hgrad',1.25, ... 'hcurve',0.25, ... 'hcutoff',0.0005, ... 'hnarrow',1, ... 'hpnt',10, ... 'xscale',1.0, ... 'yscale',1.0, ... 'mlevel','sub'); % Application mode 1 clear appl appl.mode.class = 'FlPDEW'; appl.mode.type = 'cartesian'; appl.dim = {'Hrad','Hazi','Haxi','Hrad_t','Hazi_t','Haxi_t'}; appl.sdim = {'r','z','z2'}; appl.name = 'Axisymmetric'; appl.shape = {'shlag(2,''Hrad'')','shlag(2,''Hazi'')','shlag(2,''Haxi'')'}; appl.gporder = 4; appl.cporder = 2; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_Axisymmetric'; clear prop prop.elemdefault='Lag2'; prop.wave='off'; prop.frame='rz'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm1','lm2','lm3','lm4','lm5','lm6'}; prop.weakconstr = weakconstr; appl.prop = prop; clear pnt pnt.weak = {{'0';'0';'0'}}; pnt.dweak = {{'0';'0';'0'}}; pnt.constr = {{'0';'0';'0'}}; pnt.ind = [1,1,1,1,1,1,1,1,1,1,1]; appl.pnt = pnt; clear bnd bnd.weak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.dweak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.constr = {{'Hrad*nr+Haxi*nz';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'0';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'Hrad*nr+Haxi*nz';'0';'0'},{'Haxi*nr-Hrad*nz';'Hazi';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'Haxi*nr-Hrad*nz';'Hazi';'0'},{'0';'0';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'-i*cMW*Hazi*k*mf+(cEW*(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r))/r'; ... '-i*cEW*(-Haxir+Hradz)+cMW*k*mf*(Haxi*nr-Hrad*nz)';'0'},{'0';'0';'0'}}; bnd.name = {'electric_wall','normal_D','tangential_H','magnetic_wall','normal_H', ... 'tangential_D','radiation_match','null'}; bnd.ind = [3,3,3,8,3,8,3,3,8,8,8,8]; appl.bnd = bnd; clear equ equ.gporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.init = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0'; ... '0';'0';'0';'0';'0'}}; equ.shape = {[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3]}; equ.weak = {{'-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz))'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'((test(Hazi)*Hazi-M*(test(Hazi)*Hrad+Hazi*test(Hrad))+M^2*(test(Hrad)*Hrad+test(Haxi)*Haxi))/r+(test(Hazir)*(Hazi-M*Hrad)+Hazir*(test(Hazi)-M*test(Hrad)))-M*(test(Haxi)*Haziz+Haxi*test(Haziz))+r*(test(Hazir)*Hazir+((test(Haxir)-test(Hradz))*(Haxir-Hradz)+Haziz*test(Haziz))))/e1'; ... 'alpha*((test(Hrad)*Hrad-M*(test(Hazi)*Hrad+Hazi*test(Hrad))+M^2*test(Hazi)*Hazi)/r+(test(Haxiz)+test(Hradr))*(Hrad-M*Hazi)+(test(Hrad)-M*test(Hazi))*(Hradr+Haxiz)+r*(test(Hradr)+test(Haxiz))*(Hradr+Haxiz))'; ... '0'},{'(test(Hazi)*Hazi-M*(test(Hazi)*Hrad+Hazi*test(Hrad))+M^2*(test(Hrad)*Hrad+test(Haxi)*Haxi))/r+(test(Hazir)*(Hazi-M*Hrad)+Hazir*(test(Hazi)-M*test(Hrad)))-M*(test(Haxi)*Haziz+Haxi*test(Haziz))+r*(test(Hazir)*Hazir+((test(Haxir)-test(Hradz))*(Haxir-Hradz)+Haziz*test(Haziz)))'; ... 'alpha*((test(Hrad)*Hrad-M*(test(Hazi)*Hrad+Hazi*test(Hrad))+M^2*test(Hazi)*Hazi)/r+(test(Haxiz)+test(Hradr))*(Hrad-M*Hazi)+(test(Hrad)-M*test(Hazi))*(Hradr+Haxiz)+r*(test(Hradr)+test(Haxiz))*(Hradr+Haxiz))'; ... '0'},{'(-(epara1*Haziz*M*test(Haxi))+eperp1*Hazir*test(Hazi)+eperp1*Hazi*test(Hazir)-eperp1*Hrad*M*test(Hazir)-epara1*Haxi*M*test(Haziz)-eperp1*Hazir*M*test(Hrad))/(epara1*eperp1)+(epara1*Haxi*M^2*test(Haxi)+eperp1*Hazi*test(Hazi)-eperp1*Hrad*M*test(Hazi)-eperp1*Hazi*M*test(Hrad)+eperp1*Hrad*M^2*test(Hrad))/(epara1*eperp1*r)+(r*(epara1*(Haxir-Hradz)*test(Haxir)+eperp1*Hazir*test(Hazir)+epara1*Haziz*test(Haziz)-epara1*Haxir*test(Hradz)+epara1*Hradz*test(Hradz)))/(epara1*eperp1)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara2*Haziz*M*test(Haxi))+eperp2*Hazir*test(Hazi)+eperp2*Hazi*test(Hazir)-eperp2*Hrad*M*test(Hazir)-epara2*Haxi*M*test(Haziz)-eperp2*Hazir*M*test(Hrad))/(epara2*eperp2)+(epara2*Haxi*M^2*test(Haxi)+eperp2*Hazi*test(Hazi)-eperp2*Hrad*M*test(Hazi)-eperp2*Hazi*M*test(Hrad)+eperp2*Hrad*M^2*test(Hrad))/(epara2*eperp2*r)+(r*(epara2*(Haxir-Hradz)*test(Haxir)+eperp2*Hazir*test(Hazir)+epara2*Haziz*test(Haziz)-epara2*Haxir*test(Hradz)+epara2*Hradz*test(Hradz)))/(epara2*eperp2)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'}}; equ.dweak = {{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'}}; equ.usage = {1,1,1,1,1,1}; equ.constr = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'}}; equ.cporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.dinit = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0'; ... '0';'0';'0';'0';'0'}}; equ.name = {'dielectric_0:vacuum','isotrop_diel_1','isotrop_diel_2','vacuum2', ... 'uniaxial_diel_1','uniaxial_diel_2'}; equ.ind = [1,2]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'rz'}; % Simplify expressions fem.simplify = 'on'; fem.border = 1; fem.units = 'SI'; % Subdomain expressions clear equ equ.ind = [1,2]; equ.dim = {'Hrad','Hazi','Haxi'}; equ.var = {}; equ.expr = {'erel',{'1','e1'}}; fem.equ = equ; % Global expressions fem.expr = {'DivH','(Hrad-Hazi*M+(Haxiz+Hradr)*r)/r', ... 'MagEnDens','Hrad*Hrad+Hazi*Hazi+Haxi*Haxi', ... 'Drad','(Haxi*M-Haziz*r)/r', ... 'Dazi','-Haxir+Hradz', ... 'Daxi','(Hazi-Hrad*M+Hazir*r)/r', ... 'Erad','Drad/erel', ... 'Eazi','Dazi/erel', ... 'Eaxi','Daxi/erel', ... 'ElecMagSqrd','Erad*Erad+Eazi*Eazi+Eaxi*Eaxi', ... 'ElecEnDens','Erad*Drad+Eazi*Dazi+Eaxi*Daxi', ... 'AbsMagEnDens','abs(Hrad)^2+abs(Hazi)^2+abs(Haxi)^2', ... 'MagNrmlHSqrd','2*pi*r*abs(Haxi*nz+Hrad*nr)^2', ... 'MagTngHSqrd','2*pi*r*(1*abs(Hazi)^2+1*abs(Haxi*t`nr-Hrad*nz)^2)', ... 'AbsElecSqrd','abs(Erad)^2+abs(Eazi)^2+abs(Eaxi)^2'}; % Descriptions clear descr descr.expr= {'Eaxi','axial component of electric field strength','DivH','divergence of magnetic field (should be zero!)','ElecEnDens','electric energy density','ElecMagSqrd','electric field strength magnitude squared','Eazi','azimuthal component of electric field strength','Drad','radial component of electric displacement','Dazi','azimuthal component of electric displacement','Erad','radial component of electric field strength','Daxi','axial component of electric displacement','MagEnDens','magnetic energy density'}; fem.descr = descr; % Functions clear fcns fem.functions = {}; % Descriptions descr = fem.descr; descr.const= {'e_293K_alumina','relative permittivity of alumina at room temperature','e2','ditto for isotropic_dielectric_2','eperp2','relative permittivity of uniaxial_dielectric_2 perpendicular to cylindrical axis','eperp_293K_sapph','nominal room temperature values for same','eperp_4K_sapph_UWA','UWA values for cryogenic HEMEX sapphire','c','speed of light (exact!)','delta_e','fractional increment (for determining filling factors)','mixing_angle','Electric-Magnetic Mixing Angle (in degrees)','epara1','relative permittivity of uniaxial_dielectric_1 parallel to cylindrical axis','delta_epara1','fractional increment (for determining filling factors)','epara2','ditto but parallel to cylindrical axis','M','azimuthal mode order','n_silica','refractive index of thermally grown silica (Fig B.2, p. 172 of Kippenberg''s thesis)','fc','constant used internally --do not modify','e1','relative permittivity of isotropic_dielectric_1','eperp1','relative permittivity of uniaxial_dielectric_1 perpendicular to cylindrical axis','cEW','Electric-Wall-ness','cMW','Magnetic-Wall-ness','n_AlGaAs','average refractive index of GaAs and AlGaAs layers (p. 172 of Srinivasan)','mf','match frequency','delta_eperp1','fractional increment (for determining filling factors)','eperp_4K_sapph_NPL','NPL values','alpha','penalty coefficient on Div H'}; fem.descr = descr; % Solution form fem.solform = 'weak'; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem,'geoms',[1],'eqvars','on','cplbndeq','on','cplbndsh','off'); % Solve problem fem.sol=femeig(fem, ... 'method','eliminate', ... 'nullfun','auto', ... 'blocksize',5000, ... 'complexfun','off', ... 'solfile','off', ... 'conjugate','off', ... 'symmetric','on', ... 'solcomp',{'Hazi','Haxi','Hrad'}, ... 'outcomp',{'Hazi','Haxi','Hrad'}, ... 'rowscale','on', ... 'neigs',4, ... 'shift',0, ... 'krylovdim',0, ... 'maxeigit',300, ... 'etol',0.0, ... 'linsolver','spooles', ... 'thresh',0.1, ... 'preorder','mmd', ... 'uscale','auto', ... 'mcase',0); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1.0E14)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',1, ... 'phase',(0)*pi/180, ... 'title','lambda(1)=3.553327e8 Surface: log10(ElecMagSqrd+1.0E14)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.58680659670165,13.4131934032984,-3.9,4.9,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1.0E14)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',2, ... 'phase',(0)*pi/180, ... 'title','lambda(2)=3.553302e8 Surface: log10(ElecMagSqrd+1.0E14)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.28737541528239,5.28737541528239,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',2, ... 'phase',(0)*pi/180, ... 'title','lambda(2)=3.553302e8 Surface: log10(ElecMagSqrd)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.28737541528239,5.28737541528239,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',2, ... 'phase',(0)*pi/180, ... 'title','lambda(2)=3.553302e8 Surface: log10(ElecMagSqrd+1e-2)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.35185185185185,5.35185185185185,-1,1]); % Geometry [g3,g4]=geomcopy({g1,g2}); clear g1 g2 g5=flbinary('g5','draw',flbinaryfile); g6=flbinary('g6','draw',flbinaryfile); clear s s.objs={g5,g6}; s.name={'CO1','R1'}; s.tags={'g5','g6'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % Initialize mesh fem.mesh=meshinit(fem, ... 'hmax',[], ... 'hmaxfact',0.55, ... 'hgrad',1.25, ... 'hcurve',0.25, ... 'hcutoff',0.0005, ... 'hnarrow',1, ... 'hpnt',10, ... 'xscale',1.0, ... 'yscale',1.0, ... 'mlevel','sub'); % Refine mesh fem.mesh=meshrefine(fem, ... 'mcase',0, ... 'boxcoord',[6.977844311377245 10.165868263473055 -1.9365269461077839 1.976047904191617], ... 'rmethod','regular'); % Application mode 1 clear appl appl.mode.class = 'FlPDEW'; appl.mode.type = 'cartesian'; appl.dim = {'Hrad','Hazi','Haxi','Hrad_t','Hazi_t','Haxi_t'}; appl.sdim = {'r','z','z2'}; appl.name = 'Axisymmetric'; appl.shape = {'shlag(2,''Hrad'')','shlag(2,''Hazi'')','shlag(2,''Haxi'')'}; appl.gporder = 4; appl.cporder = 2; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_Axisymmetric'; clear prop prop.elemdefault='Lag2'; prop.wave='off'; prop.frame='rz'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm1','lm2','lm3','lm4','lm5','lm6'}; prop.weakconstr = weakconstr; appl.prop = prop; clear pnt pnt.weak = {{'0';'0';'0'}}; pnt.dweak = {{'0';'0';'0'}}; pnt.constr = {{'0';'0';'0'}}; pnt.ind = [1,1,1,1,1,1,1,1,1,1,1]; appl.pnt = pnt; clear bnd bnd.weak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.dweak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.constr = {{'Hrad*nr+Haxi*nz';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'0';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'Hrad*nr+Haxi*nz';'0';'0'},{'Haxi*nr-Hrad*nz';'Hazi';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'Haxi*nr-Hrad*nz';'Hazi';'0'},{'0';'0';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'-i*cMW*Hazi*k*mf+(cEW*(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r))/r'; ... '-i*cEW*(-Haxir+Hradz)+cMW*k*mf*(Haxi*nr-Hrad*nz)';'0'},{'0';'0';'0'}}; bnd.name = {'electric_wall','normal_D','tangential_H','magnetic_wall','normal_H', ... 'tangential_D','radiation_match','null'}; bnd.ind = [3,3,3,8,3,8,3,3,8,8,8,8]; appl.bnd = bnd; clear equ equ.gporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.init = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0'; ... '0';'0';'0';'0';'0'}}; equ.shape = {[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3]}; equ.weak = {{'(test(Hazi)*Hazi-M*(test(Hazi)*Hrad+Hazi*test(Hrad))+M^2*(test(Hrad)*Hrad+test(Haxi)*Haxi))/r+(test(Hazir)*(Hazi-M*Hrad)+Hazir*(test(Hazi)-M*test(Hrad)))-M*(test(Haxi)*Haziz+Haxi*test(Haziz))+r*(test(Hazir)*Hazir+((test(Haxir)-test(Hradz))*(Haxir-Hradz)+Haziz*test(Haziz)))'; ... 'alpha*((test(Hrad)*Hrad-M*(test(Hazi)*Hrad+Hazi*test(Hrad))+M^2*test(Hazi)*Hazi)/r+(test(Haxiz)+test(Hradr))*(Hrad-M*Hazi)+(test(Hrad)-M*test(Hazi))*(Hradr+Haxiz)+r*(test(Hradr)+test(Haxiz))*(Hradr+Haxiz))'; ... '0'},{'((test(Hazi)*Hazi-M*(test(Hazi)*Hrad+Hazi*test(Hrad))+M^2*(test(Hrad)*Hrad+test(Haxi)*Haxi))/r+(test(Hazir)*(Hazi-M*Hrad)+Hazir*(test(Hazi)-M*test(Hrad)))-M*(test(Haxi)*Haziz+Haxi*test(Haziz))+r*(test(Hazir)*Hazir+((test(Haxir)-test(Hradz))*(Haxir-Hradz)+Haziz*test(Haziz))))/e1'; ... 'alpha*((test(Hrad)*Hrad-M*(test(Hazi)*Hrad+Hazi*test(Hrad))+M^2*test(Hazi)*Hazi)/r+(test(Haxiz)+test(Hradr))*(Hrad-M*Hazi)+(test(Hrad)-M*test(Hazi))*(Hradr+Haxiz)+r*(test(Hradr)+test(Haxiz))*(Hradr+Haxiz))'; ... '0'},{'-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz))'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara1*Haziz*M*test(Haxi))+eperp1*Hazir*test(Hazi)+eperp1*Hazi*test(Hazir)-eperp1*Hrad*M*test(Hazir)-epara1*Haxi*M*test(Haziz)-eperp1*Hazir*M*test(Hrad))/(epara1*eperp1)+(epara1*Haxi*M^2*test(Haxi)+eperp1*Hazi*test(Hazi)-eperp1*Hrad*M*test(Hazi)-eperp1*Hazi*M*test(Hrad)+eperp1*Hrad*M^2*test(Hrad))/(epara1*eperp1*r)+(r*(epara1*(Haxir-Hradz)*test(Haxir)+eperp1*Hazir*test(Hazir)+epara1*Haziz*test(Haziz)-epara1*Haxir*test(Hradz)+epara1*Hradz*test(Hradz)))/(epara1*eperp1)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara2*Haziz*M*test(Haxi))+eperp2*Hazir*test(Hazi)+eperp2*Hazi*test(Hazir)-eperp2*Hrad*M*test(Hazir)-epara2*Haxi*M*test(Haziz)-eperp2*Hazir*M*test(Hrad))/(epara2*eperp2)+(epara2*Haxi*M^2*test(Haxi)+eperp2*Hazi*test(Hazi)-eperp2*Hrad*M*test(Hazi)-eperp2*Hazi*M*test(Hrad)+eperp2*Hrad*M^2*test(Hrad))/(epara2*eperp2*r)+(r*(epara2*(Haxir-Hradz)*test(Haxir)+eperp2*Hazir*test(Hazir)+epara2*Haziz*test(Haziz)-epara2*Haxir*test(Hradz)+epara2*Hradz*test(Hradz)))/(epara2*eperp2)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'}}; equ.dweak = {{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'}}; equ.usage = {1,1,1,1,1,1}; equ.constr = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'}}; equ.cporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.dinit = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0'; ... '0';'0';'0';'0';'0'}}; equ.name = {'vacuum2','isotrop_diel_2','dielectric_0:vacuum','isotrop_diel_1', ... 'uniaxial_diel_1','uniaxial_diel_2'}; equ.ind = [1,2]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'rz'}; % Simplify expressions fem.simplify = 'on'; fem.border = 1; fem.units = 'SI'; % Subdomain expressions clear equ equ.ind = [1,2]; equ.dim = {'Hrad','Hazi','Haxi'}; equ.var = {}; equ.expr = {'erel',{'1','e1'}}; fem.equ = equ; % Global expressions fem.expr = {'DivH','(Hrad-Hazi*M+(Haxiz+Hradr)*r)/r', ... 'MagEnDens','Hrad*Hrad+Hazi*Hazi+Haxi*Haxi', ... 'Drad','(Haxi*M-Haziz*r)/r', ... 'Dazi','-Haxir+Hradz', ... 'Daxi','(Hazi-Hrad*M+Hazir*r)/r', ... 'Erad','Drad/erel', ... 'Eazi','Dazi/erel', ... 'Eaxi','Daxi/erel', ... 'ElecMagSqrd','Erad*Erad+Eazi*Eazi+Eaxi*Eaxi', ... 'ElecEnDens','Erad*Drad+Eazi*Dazi+Eaxi*Daxi', ... 'AbsMagEnDens','abs(Hrad)^2+abs(Hazi)^2+abs(Haxi)^2', ... 'MagNrmlHSqrd','2*pi*r*abs(Haxi*nz+Hrad*nr)^2', ... 'MagTngHSqrd','2*pi*r*(1*abs(Hazi)^2+1*abs(Haxi*nr-Hrad*nz)^2)', ... 'AbsElecSqrd','abs(Erad)^2+abs(Eazi)^2+abs(Eaxi)^2'}; % Descriptions clear descr descr.expr= {'Eaxi','axial component of electric field strength','DivH','divergence of magnetic field (should be zero!)','ElecEnDens','electric energy density','ElecMagSqrd','electric field strength magnitude squared','Eazi','azimuthal component of electric field strength','Drad','radial component of electric displacement','Dazi','azimuthal component of electric displacement','Erad','radial component of electric field strength','Daxi','axial component of electric displacement','MagEnDens','magnetic energy density'}; fem.descr = descr; % Functions clear fcns fem.functions = {}; % Descriptions descr = fem.descr; descr.const= {'e_293K_alumina','relative permittivity of alumina at room temperature','e2','ditto for isotropic_dielectric_2','eperp2','relative permittivity of uniaxial_dielectric_2 perpendicular to cylindrical axis','eperp_293K_sapph','nominal room temperature values for same','eperp_4K_sapph_UWA','UWA values for cryogenic HEMEX sapphire','c','speed of light (exact!)','delta_e','fractional increment (for determining filling factors)','mixing_angle','Electric-Magnetic Mixing Angle (in degrees)','epara1','relative permittivity of uniaxial_dielectric_1 parallel to cylindrical axis','delta_epara1','fractional increment (for determining filling factors)','epara2','ditto but parallel to cylindrical axis','M','azimuthal mode order','n_silica','refractive index of thermally grown silica (Fig B.2, p. 172 of Kippenberg''s thesis)','fc','constant used internally --do not modify','e1','relative permittivity of isotropic_dielectric_1','eperp1','relative permittivity of uniaxial_dielectric_1 perpendicular to cylindrical axis','cEW','Electric-Wall-ness','cMW','Magnetic-Wall-ness','n_AlGaAs','average refractive index of GaAs and AlGaAs layers (p. 172 of Srinivasan)','mf','match frequency','delta_eperp1','fractional increment (for determining filling factors)','eperp_4K_sapph_NPL','NPL values','alpha','penalty coefficient on Div H'}; fem.descr = descr; % Solution form fem.solform = 'weak'; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem,'geoms',[1],'eqvars','on','cplbndeq','on','cplbndsh','off'); % Solve problem fem.sol=femeig(fem, ... 'method','eliminate', ... 'nullfun','auto', ... 'blocksize',5000, ... 'complexfun','off', ... 'solfile','off', ... 'conjugate','off', ... 'symmetric','on', ... 'solcomp',{'Hazi','Haxi','Hrad'}, ... 'outcomp',{'Hazi','Haxi','Hrad'}, ... 'rowscale','on', ... 'neigs',4, ... 'shift',0, ... 'krylovdim',0, ... 'maxeigit',300, ... 'etol',0.0, ... 'linsolver','spooles', ... 'thresh',0.1, ... 'preorder','mmd', ... 'uscale','auto', ... 'mcase',0); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',1, ... 'phase',(0)*pi/180, ... 'title','lambda(1)=3.553327e8 Surface: log10(ElecMagSqrd+1e-2)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59341317365269,13.4065868263473,-4.4,4.4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=3.532667e8 Surface: log10(ElecMagSqrd+1e-2)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.79468438538206,4.79468438538206,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=3.532667e8 Surface: log10(ElecMagSqrd+1e-2)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.81066666666667,4.81066666666667,-1,1]); % Application mode 1 clear appl appl.mode.class = 'FlPDEW'; appl.mode.type = 'cartesian'; appl.dim = {'Hrad','Hazi','Haxi','Hrad_t','Hazi_t','Haxi_t'}; appl.sdim = {'r','z','z2'}; appl.name = 'Axisymmetric'; appl.shape = {'shlag(2,''Hrad'')','shlag(2,''Hazi'')','shlag(2,''Haxi'')'}; appl.gporder = 4; appl.cporder = 2; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_Axisymmetric'; clear prop prop.elemdefault='Lag2'; prop.wave='off'; prop.frame='rz'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm1','lm2','lm3','lm4','lm5','lm6'}; prop.weakconstr = weakconstr; appl.prop = prop; clear pnt pnt.weak = {{'0';'0';'0'}}; pnt.dweak = {{'0';'0';'0'}}; pnt.constr = {{'0';'0';'0'}}; pnt.ind = [1,1,1,1,1,1,1,1,1,1,1]; appl.pnt = pnt; clear bnd bnd.weak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.dweak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.constr = {{'Hrad*nr+Haxi*nz';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'0';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'Hrad*nr+Haxi*nz';'0';'0'},{'Haxi*nr-Hrad*nz';'Hazi';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'Haxi*nr-Hrad*nz';'Hazi';'0'},{'0';'0';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'-i*cMW*Hazi*k*mf+(cEW*(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r))/r'; ... '-i*cEW*(-Haxir+Hradz)+cMW*k*mf*(Haxi*nr-Hrad*nz)';'0'},{'0';'0';'0'}}; bnd.name = {'electric_wall','normal_D','tangential_H','magnetic_wall','normal_H', ... 'tangential_D','radiation_match','null'}; bnd.ind = [3,3,3,8,3,8,3,3,8,8,8,8]; appl.bnd = bnd; clear equ equ.gporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.init = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0'; ... '0';'0';'0';'0';'0'}}; equ.shape = {[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3]}; equ.weak = {{'-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz))'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'((test(Hazi)*Hazi-M*(test(Hazi)*Hrad+Hazi*test(Hrad))+M^2*(test(Hrad)*Hrad+test(Haxi)*Haxi))/r+(test(Hazir)*(Hazi-M*Hrad)+Hazir*(test(Hazi)-M*test(Hrad)))-M*(test(Haxi)*Haziz+Haxi*test(Haziz))+r*(test(Hazir)*Hazir+((test(Haxir)-test(Hradz))*(Haxir-Hradz)+Haziz*test(Haziz))))/e1'; ... 'alpha*((test(Hrad)*Hrad-M*(test(Hazi)*Hrad+Hazi*test(Hrad))+M^2*test(Hazi)*Hazi)/r+(test(Haxiz)+test(Hradr))*(Hrad-M*Hazi)+(test(Hrad)-M*test(Hazi))*(Hradr+Haxiz)+r*(test(Hradr)+test(Haxiz))*(Hradr+Haxiz))'; ... '0'},{'(test(Hazi)*Hazi-M*(test(Hazi)*Hrad+Hazi*test(Hrad))+M^2*(test(Hrad)*Hrad+test(Haxi)*Haxi))/r+(test(Hazir)*(Hazi-M*Hrad)+Hazir*(test(Hazi)-M*test(Hrad)))-M*(test(Haxi)*Haziz+Haxi*test(Haziz))+r*(test(Hazir)*Hazir+((test(Haxir)-test(Hradz))*(Haxir-Hradz)+Haziz*test(Haziz)))'; ... 'alpha*((test(Hrad)*Hrad-M*(test(Hazi)*Hrad+Hazi*test(Hrad))+M^2*test(Hazi)*Hazi)/r+(test(Haxiz)+test(Hradr))*(Hrad-M*Hazi)+(test(Hrad)-M*test(Hazi))*(Hradr+Haxiz)+r*(test(Hradr)+test(Haxiz))*(Hradr+Haxiz))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara1*Haziz*M*test(Haxi))+eperp1*Hazir*test(Hazi)+eperp1*Hazi*test(Hazir)-eperp1*Hrad*M*test(Hazir)-epara1*Haxi*M*test(Haziz)-eperp1*Hazir*M*test(Hrad))/(epara1*eperp1)+(epara1*Haxi*M^2*test(Haxi)+eperp1*Hazi*test(Hazi)-eperp1*Hrad*M*test(Hazi)-eperp1*Hazi*M*test(Hrad)+eperp1*Hrad*M^2*test(Hrad))/(epara1*eperp1*r)+(r*(epara1*(Haxir-Hradz)*test(Haxir)+eperp1*Hazir*test(Hazir)+epara1*Haziz*test(Haziz)-epara1*Haxir*test(Hradz)+epara1*Hradz*test(Hradz)))/(epara1*eperp1)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara2*Haziz*M*test(Haxi))+eperp2*Hazir*test(Hazi)+eperp2*Hazi*test(Hazir)-eperp2*Hrad*M*test(Hazir)-epara2*Haxi*M*test(Haziz)-eperp2*Hazir*M*test(Hrad))/(epara2*eperp2)+(epara2*Haxi*M^2*test(Haxi)+eperp2*Hazi*test(Hazi)-eperp2*Hrad*M*test(Hazi)-eperp2*Hazi*M*test(Hrad)+eperp2*Hrad*M^2*test(Hrad))/(epara2*eperp2*r)+(r*(epara2*(Haxir-Hradz)*test(Haxir)+eperp2*Hazir*test(Hazir)+epara2*Haziz*test(Haziz)-epara2*Haxir*test(Hradz)+epara2*Hradz*test(Hradz)))/(epara2*eperp2)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'}}; equ.dweak = {{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'}}; equ.usage = {1,1,1,1,1,1}; equ.constr = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'}}; equ.cporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.dinit = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0'; ... '0';'0';'0';'0';'0'}}; equ.name = {'dielectric_0:vacuum','isotrop_diel_2','vacuum2','isotrop_diel_1', ... 'uniaxial_diel_1','uniaxial_diel_2'}; equ.ind = [1,2]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'rz'}; % Simplify expressions fem.simplify = 'on'; fem.border = 1; fem.units = 'SI'; % Subdomain expressions clear equ equ.ind = [1,2]; equ.dim = {'Hrad','Hazi','Haxi'}; equ.var = {}; equ.expr = {'erel',{'1','e1'}}; fem.equ = equ; % Global expressions fem.expr = {'DivH','(Hrad-Hazi*M+(Haxiz+Hradr)*r)/r', ... 'MagEnDens','Hrad*Hrad+Hazi*Hazi+Haxi*Haxi', ... 'Drad','(Haxi*M-Haziz*r)/r', ... 'Dazi','-Haxir+Hradz', ... 'Daxi','(Hazi-Hrad*M+Hazir*r)/r', ... 'Erad','Drad/erel', ... 'Eazi','Dazi/erel', ... 'Eaxi','Daxi/erel', ... 'ElecMagSqrd','Erad*Erad+Eazi*Eazi+Eaxi*Eaxi', ... 'ElecEnDens','Erad*Drad+Eazi*Dazi+Eaxi*Daxi', ... 'AbsMagEnDens','abs(Hrad)^2+abs(Hazi)^2+abs(Haxi)^2', ... 'MagNrmlHSqrd','2*pi*r*abs(Haxi*nz+Hrad*nr)^2', ... 'MagTngHSqrd','2*pi*r*(1*abs(Hazi)^2+1*abs(Haxi*nr-Hrad*nz)^2)', ... 'AbsElecSqrd','abs(Erad)^2+abs(Eazi)^2+abs(Eaxi)^2'}; % Descriptions clear descr descr.expr= {'Eaxi','axial component of electric field strength','DivH','divergence of magnetic field (should be zero!)','ElecEnDens','electric energy density','ElecMagSqrd','electric field strength magnitude squared','Eazi','azimuthal component of electric field strength','Drad','radial component of electric displacement','Dazi','azimuthal component of electric displacement','Erad','radial component of electric field strength','Daxi','axial component of electric displacement','MagEnDens','magnetic energy density'}; fem.descr = descr; % Functions clear fcns fem.functions = {}; % Descriptions descr = fem.descr; descr.const= {'e_293K_alumina','relative permittivity of alumina at room temperature','e2','ditto for isotropic_dielectric_2','eperp2','relative permittivity of uniaxial_dielectric_2 perpendicular to cylindrical axis','eperp_293K_sapph','nominal room temperature values for same','eperp_4K_sapph_UWA','UWA values for cryogenic HEMEX sapphire','c','speed of light (exact!)','delta_e','fractional increment (for determining filling factors)','mixing_angle','Electric-Magnetic Mixing Angle (in degrees)','epara1','relative permittivity of uniaxial_dielectric_1 parallel to cylindrical axis','delta_epara1','fractional increment (for determining filling factors)','epara2','ditto but parallel to cylindrical axis','M','azimuthal mode order','n_silica','refractive index of thermally grown silica (Fig B.2, p. 172 of Kippenberg''s thesis)','fc','constant used internally --do not modify','e1','relative permittivity of isotropic_dielectric_1','eperp1','relative permittivity of uniaxial_dielectric_1 perpendicular to cylindrical axis','cEW','Electric-Wall-ness','cMW','Magnetic-Wall-ness','n_AlGaAs','average refractive index of GaAs and AlGaAs layers (p. 172 of Srinivasan)','mf','match frequency','delta_eperp1','fractional increment (for determining filling factors)','eperp_4K_sapph_NPL','NPL values','alpha','penalty coefficient on Div H'}; fem.descr = descr; % Solution form fem.solform = 'weak'; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem,'geoms',[1],'eqvars','on','cplbndeq','on','cplbndsh','off'); % Solve problem fem.sol=femeig(fem, ... 'method','eliminate', ... 'nullfun','auto', ... 'blocksize',5000, ... 'complexfun','off', ... 'solfile','off', ... 'conjugate','off', ... 'symmetric','on', ... 'solcomp',{'Hazi','Haxi','Hrad'}, ... 'outcomp',{'Hazi','Haxi','Hrad'}, ... 'rowscale','on', ... 'neigs',4, ... 'shift',0, ... 'krylovdim',0, ... 'maxeigit',300, ... 'etol',0.0, ... 'linsolver','spooles', ... 'thresh',0.1, ... 'preorder','mmd', ... 'uscale','auto', ... 'mcase',0); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',1, ... 'phase',(0)*pi/180, ... 'title','lambda(1)=3.553327e8 Surface: log10(ElecMagSqrd+1e-2)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59341317365269,13.4065868263473,-4.4,4.4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=3.532667e8 Surface: log10(ElecMagSqrd+1e-2)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.79468438538206,4.79468438538206,-1,1]); % Application mode 1 clear appl appl.mode.class = 'FlPDEW'; appl.mode.type = 'cartesian'; appl.dim = {'Hrad','Hazi','Haxi','Hrad_t','Hazi_t','Haxi_t'}; appl.sdim = {'r','z','z2'}; appl.name = 'Axisymmetric'; appl.shape = {'shlag(2,''Hrad'')','shlag(2,''Hazi'')','shlag(2,''Haxi'')'}; appl.gporder = 4; appl.cporder = 2; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_Axisymmetric'; clear prop prop.elemdefault='Lag2'; prop.wave='off'; prop.frame='rz'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm1','lm2','lm3','lm4','lm5','lm6'}; prop.weakconstr = weakconstr; appl.prop = prop; clear pnt pnt.weak = {{'0';'0';'0'}}; pnt.dweak = {{'0';'0';'0'}}; pnt.constr = {{'0';'0';'0'}}; pnt.ind = [1,1,1,1,1,1,1,1,1,1,1]; appl.pnt = pnt; clear bnd bnd.weak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.dweak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.constr = {{'Hrad*nr+Haxi*nz';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'0';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'Hrad*nr+Haxi*nz';'0';'0'},{'Haxi*nr-Hrad*nz';'Hazi';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'Haxi*nr-Hrad*nz';'Hazi';'0'},{'0';'0';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'-i*cMW*Hazi*k*mf+(cEW*(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r))/r'; ... '-i*cEW*(-Haxir+Hradz)+cMW*k*mf*(Haxi*nr-Hrad*nz)';'0'},{'0';'0';'0'}}; bnd.name = {'electric_wall','normal_D','tangential_H','magnetic_wall','normal_H', ... 'tangential_D','radiation_match','null'}; bnd.ind = [3,3,3,8,3,8,3,3,8,8,8,8]; appl.bnd = bnd; clear equ equ.gporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.init = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.shape = {[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3]}; equ.weak = {{'-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz))'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'((test(Hazi)*Hazi-M*(test(Hazi)*Hrad+Hazi*test(Hrad))+M^2*(test(Hrad)*Hrad+test(Haxi)*Haxi))/r+(test(Hazir)*(Hazi-M*Hrad)+Hazir*(test(Hazi)-M*test(Hrad)))-M*(test(Haxi)*Haziz+Haxi*test(Haziz))+r*(test(Hazir)*Hazir+((test(Haxir)-test(Hradz))*(Haxir-Hradz)+Haziz*test(Haziz))))/e1'; ... 'alpha*((test(Hrad)*Hrad-M*(test(Hazi)*Hrad+Hazi*test(Hrad))+M^2*test(Hazi)*Hazi)/r+(test(Haxiz)+test(Hradr))*(Hrad-M*Hazi)+(test(Hrad)-M*test(Hazi))*(Hradr+Haxiz)+r*(test(Hradr)+test(Haxiz))*(Hradr+Haxiz))'; ... '0'},{'(-(epara1*Haziz*M*test(Haxi))+eperp1*Hazir*test(Hazi)+eperp1*Hazi*test(Hazir)-eperp1*Hrad*M*test(Hazir)-epara1*Haxi*M*test(Haziz)-eperp1*Hazir*M*test(Hrad))/(epara1*eperp1)+(epara1*Haxi*M^2*test(Haxi)+eperp1*Hazi*test(Hazi)-eperp1*Hrad*M*test(Hazi)-eperp1*Hazi*M*test(Hrad)+eperp1*Hrad*M^2*test(Hrad))/(epara1*eperp1*r)+(r*(epara1*(Haxir-Hradz)*test(Haxir)+eperp1*Hazir*test(Hazir)+epara1*Haziz*test(Haziz)-epara1*Haxir*test(Hradz)+epara1*Hradz*test(Hradz)))/(epara1*eperp1)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara2*Haziz*M*test(Haxi))+eperp2*Hazir*test(Hazi)+eperp2*Hazi*test(Hazir)-eperp2*Hrad*M*test(Hazir)-epara2*Haxi*M*test(Haziz)-eperp2*Hazir*M*test(Hrad))/(epara2*eperp2)+(epara2*Haxi*M^2*test(Haxi)+eperp2*Hazi*test(Hazi)-eperp2*Hrad*M*test(Hazi)-eperp2*Hazi*M*test(Hrad)+eperp2*Hrad*M^2*test(Hrad))/(epara2*eperp2*r)+(r*(epara2*(Haxir-Hradz)*test(Haxir)+eperp2*Hazir*test(Hazir)+epara2*Haziz*test(Haziz)-epara2*Haxir*test(Hradz)+epara2*Hradz*test(Hradz)))/(epara2*eperp2)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'}}; equ.dweak = {{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'}}; equ.usage = {1,1,1,1,1}; equ.constr = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'}}; equ.cporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.dinit = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.name = {'dielectric_0:vacuum','isotrop_diel_1','isotrop_diel_2','uniaxial_diel_1', ... 'uniaxial_diel_2'}; equ.ind = [1,2]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'rz'}; % Simplify expressions fem.simplify = 'on'; fem.border = 1; fem.units = 'SI'; % Subdomain expressions clear equ equ.ind = [1,2]; equ.dim = {'Hrad','Hazi','Haxi'}; equ.var = {}; equ.expr = {'erel',{'1','e1'}}; fem.equ = equ; % Global expressions fem.expr = {'DivH','(Hrad-Hazi*M+(Haxiz+Hradr)*r)/r', ... 'MagEnDens','Hrad*Hrad+Hazi*Hazi+Haxi*Haxi', ... 'Drad','(Haxi*M-Haziz*r)/r', ... 'Dazi','-Haxir+Hradz', ... 'Daxi','(Hazi-Hrad*M+Hazir*r)/r', ... 'Erad','Drad/erel', ... 'Eazi','Dazi/erel', ... 'Eaxi','Daxi/erel', ... 'ElecMagSqrd','Erad*Erad+Eazi*Eazi+Eaxi*Eaxi', ... 'ElecEnDens','Erad*Drad+Eazi*Dazi+Eaxi*Daxi', ... 'AbsMagEnDens','abs(Hrad)^2+abs(Hazi)^2+abs(Haxi)^2', ... 'MagNrmlHSqrd','2*pi*r*abs(Haxi*nz+Hrad*nr)^2', ... 'MagTngHSqrd','2*pi*r*(1*abs(Hazi)^2+1*abs(Haxi*nr-Hrad*nz)^2)', ... 'AbsElecSqrd','abs(Erad)^2+abs(Eazi)^2+abs(Eaxi)^2'}; % Descriptions clear descr descr.expr= {'Eaxi','axial component of electric field strength','DivH','divergence of magnetic field (should be zero!)','ElecEnDens','electric energy density','ElecMagSqrd','electric field strength magnitude squared','Eazi','azimuthal component of electric field strength','Drad','radial component of electric displacement','Dazi','azimuthal component of electric displacement','Erad','radial component of electric field strength','Daxi','axial component of electric displacement','MagEnDens','magnetic energy density'}; fem.descr = descr; % Functions clear fcns fem.functions = {}; % Descriptions descr = fem.descr; descr.const= {'e_293K_alumina','relative permittivity of alumina at room temperature','e2','ditto for isotropic_dielectric_2','eperp2','relative permittivity of uniaxial_dielectric_2 perpendicular to cylindrical axis','eperp_293K_sapph','nominal room temperature values for same','eperp_4K_sapph_UWA','UWA values for cryogenic HEMEX sapphire','c','speed of light (exact!)','delta_e','fractional increment (for determining filling factors)','mixing_angle','Electric-Magnetic Mixing Angle (in degrees)','epara1','relative permittivity of uniaxial_dielectric_1 parallel to cylindrical axis','delta_epara1','fractional increment (for determining filling factors)','epara2','ditto but parallel to cylindrical axis','M','azimuthal mode order','n_silica','refractive index of thermally grown silica (Fig B.2, p. 172 of Kippenberg''s thesis)','fc','constant used internally --do not modify','e1','relative permittivity of isotropic_dielectric_1','eperp1','relative permittivity of uniaxial_dielectric_1 perpendicular to cylindrical axis','cEW','Electric-Wall-ness','cMW','Magnetic-Wall-ness','n_AlGaAs','average refractive index of GaAs and AlGaAs layers (p. 172 of Srinivasan)','mf','match frequency','delta_eperp1','fractional increment (for determining filling factors)','eperp_4K_sapph_NPL','NPL values','alpha','penalty coefficient on Div H'}; fem.descr = descr; % Solution form fem.solform = 'weak'; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem,'geoms',[1],'eqvars','on','cplbndeq','on','cplbndsh','off'); % Solve problem fem.sol=femeig(fem, ... 'method','eliminate', ... 'nullfun','auto', ... 'blocksize',5000, ... 'complexfun','off', ... 'solfile','off', ... 'conjugate','off', ... 'symmetric','on', ... 'solcomp',{'Hazi','Haxi','Hrad'}, ... 'outcomp',{'Hazi','Haxi','Hrad'}, ... 'rowscale','on', ... 'neigs',4, ... 'shift',0, ... 'krylovdim',0, ... 'maxeigit',300, ... 'etol',0.0, ... 'linsolver','spooles', ... 'thresh',0.1, ... 'preorder','mmd', ... 'uscale','auto', ... 'mcase',0); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',1, ... 'phase',(0)*pi/180, ... 'title','lambda(1)=3.553327e8 Surface: log10(ElecMagSqrd+1e-2)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59341317365269,13.4065868263473,-4.4,4.4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=3.532667e8 Surface: log10(ElecMagSqrd+1e-2)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.79468438538206,4.79468438538206,-1,1]); % Application mode 1 clear appl appl.mode.class = 'FlPDEW'; appl.mode.type = 'cartesian'; appl.dim = {'Hrad','Hazi','Haxi','Hrad_t','Hazi_t','Haxi_t'}; appl.sdim = {'r','z','z2'}; appl.name = 'Axisymmetric'; appl.shape = {'shlag(2,''Hrad'')','shlag(2,''Hazi'')','shlag(2,''Haxi'')'}; appl.gporder = 4; appl.cporder = 2; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_Axisymmetric'; clear prop prop.elemdefault='Lag2'; prop.wave='off'; prop.frame='rz'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm1','lm2','lm3','lm4','lm5','lm6'}; prop.weakconstr = weakconstr; appl.prop = prop; clear pnt pnt.weak = {{'0';'0';'0'}}; pnt.dweak = {{'0';'0';'0'}}; pnt.constr = {{'0';'0';'0'}}; pnt.ind = [1,1,1,1,1,1,1,1,1,1,1]; appl.pnt = pnt; clear bnd bnd.weak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.dweak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.constr = {{'Hrad*nr+Haxi*nz';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'0';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'Hrad*nr+Haxi*nz';'0';'0'},{'Haxi*nr-Hrad*nz';'Hazi';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'Haxi*nr-Hrad*nz';'Hazi';'0'},{'0';'0';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'-i*cMW*Hazi*k*mf+(cEW*(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r))/r'; ... '-i*cEW*(-Haxir+Hradz)+cMW*k*mf*(Haxi*nr-Hrad*nz)';'0'},{'0';'0';'0'}}; bnd.name = {'electric_wall','normal_D','tangential_H','magnetic_wall','normal_H', ... 'tangential_D','radiation_match','null'}; bnd.ind = [3,3,3,8,3,8,3,3,8,8,8,8]; appl.bnd = bnd; clear equ equ.gporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.init = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.shape = {[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3]}; equ.weak = {{'-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz))'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara1*Haziz*M*test(Haxi))+eperp1*Hazir*test(Hazi)+eperp1*Hazi*test(Hazir)-eperp1*Hrad*M*test(Hazir)-epara1*Haxi*M*test(Haziz)-eperp1*Hazir*M*test(Hrad))/(epara1*eperp1)+(epara1*Haxi*M^2*test(Haxi)+eperp1*Hazi*test(Hazi)-eperp1*Hrad*M*test(Hazi)-eperp1*Hazi*M*test(Hrad)+eperp1*Hrad*M^2*test(Hrad))/(epara1*eperp1*r)+(r*(epara1*(Haxir-Hradz)*test(Haxir)+eperp1*Hazir*test(Hazir)+epara1*Haziz*test(Haziz)-epara1*Haxir*test(Hradz)+epara1*Hradz*test(Hradz)))/(epara1*eperp1)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara2*Haziz*M*test(Haxi))+eperp2*Hazir*test(Hazi)+eperp2*Hazi*test(Hazir)-eperp2*Hrad*M*test(Hazir)-epara2*Haxi*M*test(Haziz)-eperp2*Hazir*M*test(Hrad))/(epara2*eperp2)+(epara2*Haxi*M^2*test(Haxi)+eperp2*Hazi*test(Hazi)-eperp2*Hrad*M*test(Hazi)-eperp2*Hazi*M*test(Hrad)+eperp2*Hrad*M^2*test(Hrad))/(epara2*eperp2*r)+(r*(epara2*(Haxir-Hradz)*test(Haxir)+eperp2*Hazir*test(Hazir)+epara2*Haziz*test(Haziz)-epara2*Haxir*test(Hradz)+epara2*Hradz*test(Hradz)))/(epara2*eperp2)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'}}; equ.dweak = {{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'}}; equ.usage = {1,1,1,1,1}; equ.constr = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'}}; equ.cporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.dinit = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.name = {'dielectric_0:vacuum','isotrop_diel_1','isotrop_diel_2','uniaxial_diel_1', ... 'uniaxial_diel_2'}; equ.ind = [1,2]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'rz'}; % Simplify expressions fem.simplify = 'on'; fem.border = 1; fem.units = 'SI'; % Subdomain expressions clear equ equ.ind = [1,2]; equ.dim = {'Hrad','Hazi','Haxi'}; equ.var = {}; equ.expr = {'erel',{'1','e1'}}; fem.equ = equ; % Global expressions fem.expr = {'DivH','(Hrad-Hazi*M+(Haxiz+Hradr)*r)/r', ... 'MagEnDens','Hrad*Hrad+Hazi*Hazi+Haxi*Haxi', ... 'Drad','(Haxi*M-Haziz*r)/r', ... 'Dazi','-Haxir+Hradz', ... 'Daxi','(Hazi-Hrad*M+Hazir*r)/r', ... 'Erad','Drad/erel', ... 'Eazi','Dazi/erel', ... 'Eaxi','Daxi/erel', ... 'ElecMagSqrd','Erad*Erad+Eazi*Eazi+Eaxi*Eaxi', ... 'ElecEnDens','Erad*Drad+Eazi*Dazi+Eaxi*Daxi', ... 'AbsMagEnDens','abs(Hrad)^2+abs(Hazi)^2+abs(Haxi)^2', ... 'MagNrmlHSqrd','2*pi*r*abs(Haxi*nz+Hrad*nr)^2', ... 'MagTngHSqrd','2*pi*r*(1*abs(Hazi)^2+1*abs(Haxi*nr-Hrad*nz)^2)', ... 'AbsElecSqrd','abs(Erad)^2+abs(Eazi)^2+abs(Eaxi)^2'}; % Descriptions clear descr descr.expr= {'Eaxi','axial component of electric field strength','DivH','divergence of magnetic field (should be zero!)','ElecEnDens','electric energy density','ElecMagSqrd','electric field strength magnitude squared','Eazi','azimuthal component of electric field strength','Drad','radial component of electric displacement','Dazi','azimuthal component of electric displacement','Erad','radial component of electric field strength','Daxi','axial component of electric displacement','MagEnDens','magnetic energy density'}; fem.descr = descr; % Functions clear fcns fem.functions = {}; % Descriptions descr = fem.descr; descr.const= {'e_293K_alumina','relative permittivity of alumina at room temperature','e2','ditto for isotropic_dielectric_2','eperp2','relative permittivity of uniaxial_dielectric_2 perpendicular to cylindrical axis','eperp_293K_sapph','nominal room temperature values for same','eperp_4K_sapph_UWA','UWA values for cryogenic HEMEX sapphire','c','speed of light (exact!)','delta_e','fractional increment (for determining filling factors)','mixing_angle','Electric-Magnetic Mixing Angle (in degrees)','epara1','relative permittivity of uniaxial_dielectric_1 parallel to cylindrical axis','delta_epara1','fractional increment (for determining filling factors)','epara2','ditto but parallel to cylindrical axis','M','azimuthal mode order','n_silica','refractive index of thermally grown silica (Fig B.2, p. 172 of Kippenberg''s thesis)','fc','constant used internally --do not modify','e1','relative permittivity of isotropic_dielectric_1','eperp1','relative permittivity of uniaxial_dielectric_1 perpendicular to cylindrical axis','cEW','Electric-Wall-ness','cMW','Magnetic-Wall-ness','n_AlGaAs','average refractive index of GaAs and AlGaAs layers (p. 172 of Srinivasan)','mf','match frequency','delta_eperp1','fractional increment (for determining filling factors)','eperp_4K_sapph_NPL','NPL values','alpha','penalty coefficient on Div H'}; fem.descr = descr; % Solution form fem.solform = 'weak'; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem,'geoms',[1],'eqvars','on','cplbndeq','on','cplbndsh','off'); % Solve problem fem.sol=femeig(fem, ... 'method','eliminate', ... 'nullfun','auto', ... 'blocksize',5000, ... 'complexfun','off', ... 'solfile','off', ... 'conjugate','off', ... 'symmetric','on', ... 'solcomp',{'Hazi','Haxi','Hrad'}, ... 'outcomp',{'Hazi','Haxi','Hrad'}, ... 'rowscale','on', ... 'neigs',4, ... 'shift',0, ... 'krylovdim',0, ... 'maxeigit',300, ... 'etol',0.0, ... 'linsolver','spooles', ... 'thresh',0.1, ... 'preorder','mmd', ... 'uscale','auto', ... 'mcase',0); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum',1, ... 'phase',(0)*pi/180, ... 'title','lambda(1)=3.553328e8 Surface: log10(ElecMagSqrd+1e-2)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59341317365269,13.4065868263473,-4.4,4.4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=3.532667e8 Surface: log10(ElecMagSqrd+1e-2)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.81066666666667,4.81066666666667,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=3.532667e8 Surface: log10(ElecMagSqrd+1e-2)', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.81066666666667,4.81066666666667,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'maxminsub','Hrad', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=3.532667e8 Surface: log10(ElecMagSqrd+1e-2) Subdomain marker: Hrad', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.81066666666667,4.81066666666667,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'maxminsub','ElecEnDens', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=3.532667e8 Surface: log10(ElecMagSqrd+1e-2) Subdomain marker: ElecEnDens', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.81066666666667,4.81066666666667,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'maxminsub','ElecEnDens', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=3.532667e8 Surface: log10(ElecMagSqrd+1e-2) Subdomain marker: ElecEnDens', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.81066666666667,4.81066666666667,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'maxminsub','ElecEnDens', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=3.532667e8 Surface: log10(ElecMagSqrd+1e-2) Subdomain marker: ElecEnDens', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.81066666666667,4.81066666666667,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'maxminsub','ElecEnDens', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=3.532667e8 Surface: log10(ElecMagSqrd+1e-2) Subdomain marker: ElecEnDens', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.81066666666667,4.81066666666667,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Hazi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecEnDens', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title't`,'lambda(4)=3.532667e8 Surface: log10(ElecMagSqrd+1e-2) Arrow: Hrad,Hazi Subdomain marker: ElecEnDens', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.81066666666667,4.81066666666667,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecEnDens', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=3.532667e8 Surface: log10(ElecMagSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecEnDens', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.81066666666667,4.81066666666667,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecEnDens', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=3.532667e8 Surface: log10(ElecMagSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecEnDens', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.81066666666667,4.81066666666667,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecEnDens', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=3.532667e8 Surface: log10(ElecMagSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecEnDens', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.81066666666667,4.81066666666667,-1,1]); % Application mode 1 clear appl appl.mode.class = 'FlPDEW'; appl.mode.type = 'cartesian'; appl.dim = {'Hrad','Hazi','Haxi','Hrad_t','Hazi_t','Haxi_t'}; appl.sdim = {'r','z','z2'}; appl.name = 'Axisymmetric'; appl.shape = {'shlag(2,''Hrad'')','shlag(2,''Hazi'')','shlag(2,''Haxi'')'}; appl.gporder = 4; appl.cporder = 2; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_Axisymmetric'; clear prop prop.elemdefault='Lag2'; prop.wave='off'; prop.frame='rz'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm1','lm2','lm3','lm4','lm5','lm6'}; prop.weakconstr = weakconstr; appl.prop = prop; clear pnt pnt.weak = {{'0';'0';'0'}}; pnt.dweak = {{'0';'0';'0'}}; pnt.constr = {{'0';'0';'0'}}; pnt.ind = [1,1,1,1,1,1,1,1,1,1,1]; appl.pnt = pnt; clear bnd bnd.weak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.dweak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.constr = {{'Hrad*nr+Haxi*nz';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'0';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'Hrad*nr+Haxi*nz';'0';'0'},{'Haxi*nr-Hrad*nz';'Hazi';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'Haxi*nr-Hrad*nz';'Hazi';'0'},{'0';'0';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'-i*cMW*Hazi*k*mf+(cEW*(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r))/r'; ... '-i*cEW*(-Haxir+Hradz)+cMW*k*mf*(Haxi*nr-Hrad*nz)';'0'},{'0';'0';'0'}}; bnd.name = {'electric_wall','normal_D','tangential_H','magnetic_wall','normal_H', ... 'tangential_D','radiation_match','null'}; bnd.ind = [1,1,1,8,1,8,1,1,8,8,8,8]; appl.bnd = bnd; clear equ equ.gporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.init = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.shape = {[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3]}; equ.weak = {{'-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz))'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara1*Haziz*M*test(Haxi))+eperp1*Hazir*test(Hazi)+eperp1*Hazi*test(Hazir)-eperp1*Hrad*M*test(Hazir)-epara1*Haxi*M*test(Haziz)-eperp1*Hazir*M*test(Hrad))/(epara1*eperp1)+(epara1*Haxi*M^2*test(Haxi)+eperp1*Hazi*test(Hazi)-eperp1*Hrad*M*test(Hazi)-eperp1*Hazi*M*test(Hrad)+eperp1*Hrad*M^2*test(Hrad))/(epara1*eperp1*r)+(r*(epara1*(Haxir-Hradz)*test(Haxir)+eperp1*Hazir*test(Hazir)+epara1*Haziz*test(Haziz)-epara1*Haxir*test(Hradz)+epara1*Hradz*test(Hradz)))/(epara1*eperp1)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara2*Haziz*M*test(Haxi))+eperp2*Hazir*test(Hazi)+eperp2*Hazi*test(Hazir)-eperp2*Hrad*M*test(Hazir)-epara2*Haxi*M*test(Haziz)-eperp2*Hazir*M*test(Hrad))/(epara2*eperp2)+(epara2*Haxi*M^2*test(Haxi)+eperp2*Hazi*test(Hazi)-eperp2*Hrad*M*test(Hazi)-eperp2*Hazi*M*test(Hrad)+eperp2*Hrad*M^2*test(Hrad))/(epara2*eperp2*r)+(r*(epara2*(Haxir-Hradz)*test(Haxir)+eperp2*Hazir*test(Hazir)+epara2*Haziz*test(Haziz)-epara2*Haxir*test(Hradz)+epara2*Hradz*test(Hradz)))/(epara2*eperp2)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'}}; equ.dweak = {{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'}}; equ.usage = {1,1,1,1,1}; equ.constr = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'}}; equ.cporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.dinit = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.name = {'dielectric_0:vacuum','isotrop_diel_1','isotrop_diel_2','uniaxial_diel_1', ... 'uniaxial_diel_2'}; equ.ind = [1,2]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'rz'}; % Simplify expressions fem.simplify = 'on'; fem.border = 1; fem.units = 'SI'; % Subdomain expressions clear equ equ.ind = [1,2]; equ.dim = {'Hrad','Hazi','Haxi'}; equ.var = {}; equ.expr = {'erel',{'1','e1'}}; fem.equ = equ; % Global expressions fem.expr = {'DivH','(Hrad-Hazi*M+(Haxiz+Hradr)*r)/r', ... 'MagEnDens','Hrad*Hrad+Hazi*Hazi+Haxi*Haxi', ... 'Drad','(Haxi*M-Haziz*r)/r', ... 'Dazi','-Haxir+Hradz', ... 'Daxi','(Hazi-Hrad*M+Hazir*r)/r', ... 'Erad','Drad/erel', ... 'Eazi','Dazi/erel', ... 'Eaxi','Daxi/erel', ... 'ElecMagSqrd','Erad*Erad+Eazi*Eazi+Eaxi*Eaxi', ... 'ElecEnDens','Erad*Drad+Eazi*Dazi+Eaxi*Daxi', ... 'AbsMagEnDens','abs(Hrad)^2+abs(Hazi)^2+abs(Haxi)^2', ... 'MagNrmlHSqrd','2*pi*r*abs(Haxi*nz+Hrad*nr)^2', ... 'MagTngHSqrd','2*pi*r*(1*abs(Hazi)^2+1*abs(Haxi*nr-Hrad*nz)^2)', ... 'AbsElecSqrd','abs(Erad)^2+abs(Eazi)^2+abs(Eaxi)^2'}; % Descriptions clear descr descr.expr= {'Eaxi','axial component of electric field strength','DivH','divergence of magnetic field (should be zero!)','ElecEnDens','electric energy density','ElecMagSqrd','electric field strength magnitude squared','Eazi','azimuthal component of electric field strength','Drad','radial component of electric displacement','Dazi','azimuthal component of electric displacement','Erad','radial component of electric field strength','Daxi','axial component of electric displacement','MagEnDens','magnetic energy density'}; fem.descr = descr; % Functions clear fcns fem.functions = {}; % Descriptions descr = fem.descr; descr.const= {'e_293K_alumina','relative permittivity of alumina at room temperature','e2','ditto for isotropic_dielectric_2','eperp2','relative permittivity of uniaxial_dielectric_2 perpendicular to cylindrical axis','eperp_293K_sapph','nominal room temperature values for same','eperp_4K_sapph_UWA','UWA values for cryogenic HEMEX sapphire','c','speed of light (exact!)','delta_e','fractional increment (for determining filling factors)','mixing_angle','Electric-Magnetic Mixing Angle (in degrees)','epara1','relative permittivity of uniaxial_dielectric_1 parallel to cylindrical axis','delta_epara1','fractional increment (for determining filling factors)','epara2','ditto but parallel to cylindrical axis','M','azimuthal mode order','n_silica','refractive index of thermally grown silica (Fig B.2, p. 172 of Kippenberg''s thesis)','fc','constant used internally --do not modify','e1','relative permittivity of isotropic_dielectric_1','eperp1','relative permittivity of uniaxial_dielectric_1 perpendicular to cylindrical axis','cEW','Electric-Wall-ness','cMW','Magnetic-Wall-ness','n_AlGaAs','average refractive index of GaAs and AlGaAs layers (p. 172 of Srinivasan)','mf','match frequency','delta_eperp1','fractional increment (for determining filling factors)','eperp_4K_sapph_NPL','NPL values','alpha','penalty coefficient on Div H'}; fem.descr = descr; % Solution form fem.solform = 'weak'; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem,'geoms',[1],'eqvars','on','cplbndeq','on','cplbndsh','off'); % Solve problem fem.sol=femeig(fem, ... 'method','eliminate', ... 'nullfun','auto', ... 'blocksize',5000, ... 'complexfun','off', ... 'solfile','off', ... 'conjugate','off', ... 'symmetric','on', ... 'solcomp',{'Hazi','Haxi','Hrad'}, ... 'outcomp',{'Hazi','Haxi','Hrad'}, ... 'rowscale','on', ... 'neigs',4, ... 'shift',0, ... 'krylovdim',0, ... 'maxeigit',300, ... 'etol',0.0, ... 'linsolver','spooles', ... 'thresh',0.1, ... 'preorder','mmd', ... 'uscale','auto', ... 'mcase',0); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecEnDens', ... 'solnum',1, ... 'phase',(0)*pi/180, ... 'title','lambda(1)=3.55333e8 Surface: log10(ElecMagSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecEnDens', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59341317365269,13.4065868263473,-4.4,4.4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecEnDens', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=3.532667e8 Surface: log10(ElecMagSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecEnDens', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.81066666666667,4.81066666666667,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecEnDens', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=3.532667e8 Surface: log10(ElecMagSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecEnDens', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.81066666666667,4.81066666666667,-1,1]); % Application mode 1 clear appl appl.mode.class = 'FlPDEW'; appl.mode.type = 'cartesian'; appl.dim = {'Hrad','Hazi','Haxi','Hrad_t','Hazi_t','Haxi_t'}; appl.sdim = {'r','z','z2'}; appl.name = 'Axisymmetric'; appl.shape = {'shlag(2,''Hrad'')','shlag(2,''Hazi'')','shlag(2,''Haxi'')'}; appl.gporder = 4; appl.cporder = 2; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_Axisymmetric'; clear prop prop.elemdefault='Lag2'; prop.wave='off'; prop.frame='rz'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm1','lm2','lm3','lm4','lm5','lm6'}; prop.weakconstr = weakconstr; appl.prop = prop; clear pnt pnt.weak = {{'0';'0';'0'}}; pnt.dweak = {{'0';'0';'0'}}; pnt.constr = {{'0';'0';'0'}}; pnt.ind = [1,1,1,1,1,1,1,1,1,1,1]; appl.pnt = pnt; clear bnd bnd.weak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.dweak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.constr = {{'Hrad*nr+Haxi*nz';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'0';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'Hrad*nr+Haxi*nz';'0';'0'},{'Haxi*nr-Hrad*nz';'Hazi';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'Haxi*nr-Hrad*nz';'Hazi';'0'},{'0';'0';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'-i*cMW*Hazi*k*mf+(cEW*(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r))/r'; ... '-i*cEW*(-Haxir+Hradz)+cMW*k*mf*(Haxi*nr-Hrad*nz)';'0'},{'0';'0';'0'}}; bnd.name = {'electric_wall','normal_D','tangential_H','magnetic_wall','normal_H', ... 'tangential_D','radiation_match','null'}; bnd.ind = [1,1,1,8,1,8,1,1,8,8,8,8]; appl.bnd = bnd; clear equ equ.gporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.init = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.shape = {[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3]}; equ.weak = {{'-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz))'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara1*Haziz*M*test(Haxi))+eperp1*Hazir*test(Hazi)+eperp1*Hazi*test(Hazir)-eperp1*Hrad*M*test(Hazir)-epara1*Haxi*M*test(Haziz)-eperp1*Hazir*M*test(Hrad))/(epara1*eperp1)+(epara1*Haxi*M^2*test(Haxi)+eperp1*Hazi*test(Hazi)-eperp1*Hrad*M*test(Hazi)-eperp1*Hazi*M*test(Hrad)+eperp1*Hrad*M^2*test(Hrad))/(epara1*eperp1*r)+(r*(epara1*(Haxir-Hradz)*test(Haxir)+eperp1*Hazir*test(Hazir)+epara1*Haziz*test(Haziz)-epara1*Haxir*test(Hradz)+epara1*Hradz*test(Hradz)))/(epara1*eperp1)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara2*Haziz*M*test(Haxi))+eperp2*Hazir*test(Hazi)+eperp2*Hazi*test(Hazir)-eperp2*Hrad*M*test(Hazir)-epara2*Haxi*M*test(Haziz)-eperp2*Hazir*M*test(Hrad))/(epara2*eperp2)+(epara2*Haxi*M^2*test(Haxi)+eperp2*Hazi*test(Hazi)-eperp2*Hrad*M*test(Hazi)-eperp2*Hazi*M*test(Hrad)+eperp2*Hrad*M^2*test(Hrad))/(epara2*eperp2*r)+(r*(epara2*(Haxir-Hradz)*test(Haxir)+eperp2*Hazir*test(Hazir)+epara2*Haziz*test(Haziz)-epara2*Haxir*test(Hradz)+epara2*Hradz*test(Hradz)))/(epara2*eperp2)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'}}; equ.dweak = {{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'}}; equ.usage = {1,1,1,1,1}; equ.constr = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'}}; equ.cporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.dinit = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.name = {'dielectric_0:vacuum','isotrop_diel_1','isotrop_diel_2','uniaxial_diel_1', ... 'uniaxial_diel_2'}; equ.ind = [1,2]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'rz'}; % Simplify expressions fem.simplify = 'on'; fem.border = 1; fem.units = 'SI'; % Subdomain expressions clear equ equ.ind = [1,2]; equ.dim = {'Hrad','Hazi','Haxi'}; equ.var = {}; equ.expr = {'erel',{'1','e1'}}; fem.equ = equ; % Global expressions fem.expr = {'DivH','(Hrad-Hazi*M+(Haxiz+Hradr)*r)/r', ... 'MagEnDens','Hrad*Hrad+Hazi*Hazi+Haxi*Haxi', ... 'Drad','(Haxi*M-Haziz*r)/r', ... 'Dazi','-Haxir+Hradz', ... 'Daxi','(Hazi-Hrad*M+Hazir*r)/r', ... 'Erad','Drad/erel', ... 'Eazi','Dazi/erel', ... 'Eaxi','Daxi/erel', ... 'ElecMagSqrd','Erad*Erad+Eazi*Eazi+Eaxi*Eaxi', ... 'ElecEnDens','Erad*Drad+Eazi*Dazi+Eaxi*Daxi', ... 'AbsMagEnDens','abs(Hrad)^2+abs(Hazi)^2+abs(Haxi)^2', ... 'MagNrmlHSqrd','2*pi*r*abs(Haxi*nz+Hrad*nr)^2', ... 'MagTngHSqrd','2*pi*r*(1*abs(Hazi)^2+1*abs(Haxi*nr-Hrad*nz)^2)', ... 'AbsElecSqrd','abs(Erad)^2+abs(Eazi)^2+abs(Eaxi)^2'}; % Descriptions clear descr descr.expr= {'Eaxi','axial component of electric field strength','DivH','divergence of magnetic field (should be zero!)','ElecEnDens','electric energy density','ElecMagSqrd','electric field strength magnitude squared','Eazi','azimuthal component of electric field strength','Drad','radial component of electric displacement','Dazi','azimuthal component of electric displacement','Erad','radial component of electric field strength','Daxi','axial component of electric displacement','MagEnDens','magnetic energy density'}; fem.descr = descr; % Functions clear fcns fem.functions = {}; % Descriptions descr = fem.descr; descr.const= {'e_293K_alumina','relative permittivity of alumina at room temperature','e2','ditto for isotropic_dielectric_2','eperp2','relative permittivity of uniaxial_dielectric_2 perpendicular to cylindrical axis','eperp_293K_sapph','nominal room temperature values for same','eperp_4K_sapph_UWA','UWA values for cryogenic HEMEX sapphire','c','speed of light (exact!)','delta_e','fractional increment (for determining filling factors)','mixing_angle','Electric-Magnetic Mixing Angle (in degrees)','epara1','relative permittivity of uniaxial_dielectric_1 parallel to cylindrical axis','delta_epara1','fractional increment (for determining filling factors)','epara2','ditto but parallel to cylindrical axis','M','azimuthal mode order','n_silica','refractive index of thermally grown silica (Fig B.2, p. 172 of Kippenberg''s thesis)','fc','constant used internally --do not modify','e1','relative permittivity of isotropic_dielectric_1','eperp1','relative permittivity of uniaxial_dielectric_1 perpendicular to cylindrical axis','cEW','Electric-Wall-ness','cMW','Magnetic-Wall-ness','n_AlGaAs','average refractive index of GaAs and AlGaAs layers (p. 172 of Srinivasan)','mf','match frequency','delta_eperp1','fractional increment (for determining filling factors)','eperp_4K_sapph_NPL','NPL values','alpha','penalty coefficient on Div H'}; fem.descr = descr; % Solution form fem.solform = 'weak'; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem,'geoms',[1],'eqvars','on','cplbndeq','on','cplbndsh','off'); % Solve problem fem.sol=femeig(fem, ... 'method','eliminate', ... 'nullfun','auto', ... 'blocksize',5000, ... 'complexfun','off', ... 'solfile','off', ... 'conjugate','on', ... 'symmetric','on', ... 'solcomp',{'Hazi','Haxi','Hrad'}, ... 'outcomp',{'Hazi','Haxi','Hrad'}, ... 'rowscale','on', ... 'neigs',4, ... 'shift',0, ... 'krylovdim',0, ... 'maxeigit',300, ... 'etol',0.0, ... 'linsolver','spooles', ... 'thresh',0.1, ... 'preorder','mmd', ... 'uscale','auto', ... 'mcase',0); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecEnDens', ... 'solnum',1, ... 'phase',(0)*pi/180, ... 'title','lambda(1)=3.553331e8 Surface: log10(ElecMagSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecEnDens', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.81066666666667,4.81066666666667,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecEnDens', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=3.532667e8 Surface: log10(ElecMagSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecEnDens', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.81066666666667,4.81066666666667,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecEnDens', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=3.532667e8 Surface: log10(ElecMagSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecEnDens', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.81066666666667,4.81066666666667,-1,1]); % Application mode 1 clear appl appl.mode.class = 'FlPDEW'; appl.mode.type = 'cartesian'; appl.dim = {'Hrad','Hazi','Haxi','Hrad_t','Hazi_t','Haxi_t'}; appl.sdim = {'r','z','z2'}; appl.name = 'Axisymmetric'; appl.shape = {'shlag(2,''Hrad'')','shlag(2,''Hazi'')','shlag(2,''Haxi'')'}; appl.gporder = 4; appl.cporder = 2; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_Axisymmetric'; clear prop prop.elemdefault='Lag2'; prop.wave='off'; prop.frame='rz'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm1','lm2','lm3','lm4','lm5','lm6'}; prop.weakconstr = weakconstr; appl.prop = prop; clear pnt pnt.weak = {{'0';'0';'0'}}; pnt.dweak = {{'0';'0';'0'}}; pnt.constr = {{'0';'0';'0'}}; pnt.ind = [1,1,1,1,1,1,1,1,1,1,1]; appl.pnt = pnt; clear bnd bnd.weak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.dweak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.constr = {{'Hrad*nr+Haxi*nz';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'0';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'Hrad*nr+Haxi*nz';'0';'0'},{'Haxi*nr-Hrad*nz';'Hazi';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'Haxi*nr-Hrad*nz';'Hazi';'0'},{'0';'0';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'-i*cMW*Hazi*k*mf+(cEW*(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r))/r'; ... '-i*cEW*(-Haxir+Hradz)+cMW*k*mf*(Haxi*nr-Hrad*nz)';'0'},{'0';'0';'0'}}; bnd.name = {'electric_wall','normal_D','tangential_H','magnetic_wall','normal_H', ... 'tangential_D','radiation_match','null'}; bnd.ind = [2,2,2,8,2,8,2,2,8,8,8,8]; appl.bnd = bnd; clear equ equ.gporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.init = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.shape = {[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3]}; equ.weak = {{'-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz))'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara1*Haziz*M*test(Haxi))+eperp1*Hazir*test(Hazi)+eperp1*Hazi*test(Hazir)-eperp1*Hrad*M*test(Hazir)-epara1*Haxi*M*test(Haziz)-eperp1*Hazir*M*test(Hrad))/(epara1*eperp1)+(epara1*Haxi*M^2*test(Haxi)+eperp1*Hazi*test(Hazi)-eperp1*Hrad*M*test(Hazi)-eperp1*Hazi*M*test(Hrad)+eperp1*Hrad*M^2*test(Hrad))/(epara1*eperp1*r)+(r*(epara1*(Haxir-Hradz)*test(Haxir)+eperp1*Hazir*test(Hazir)+epara1*Haziz*test(Haziz)-epara1*Haxir*test(Hradz)+epara1*Hradz*test(Hradz)))/(epara1*eperp1)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara2*Haziz*M*test(Haxi))+eperp2*Hazir*test(Hazi)+eperp2*Hazi*test(Hazir)-eperp2*Hrad*M*test(Hazir)-epara2*Haxi*M*test(Haziz)-eperp2*Hazir*M*test(Hrad))/(epara2*eperp2)+(epara2*Haxi*M^2*test(Haxi)+eperp2*Hazi*test(Hazi)-eperp2*Hrad*M*test(Hazi)-eperp2*Hazi*M*test(Hrad)+eperp2*Hrad*M^2*test(Hrad))/(epara2*eperp2*r)+(r*(epara2*(Haxir-Hradz)*test(Haxir)+eperp2*Hazir*test(Hazir)+epara2*Haziz*test(Haziz)-epara2*Haxir*test(Hradz)+epara2*Hradz*test(Hradz)))/(epara2*eperp2)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'}}; equ.dweak = {{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'}}; equ.usage = {1,1,1,1,1}; equ.constr = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'}}; equ.cporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.dinit = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.name = {'dielectric_0:vacuum','isotrop_diel_1','isotrop_diel_2','uniaxial_diel_1', ... 'uniaxial_diel_2'}; equ.ind = [1,2]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'rz'}; % Simplify expressions fem.simplify = 'on'; fem.border = 1; fem.units = 'SI'; % Subdomain expressions clear equ equ.ind = [1,2]; equ.dim = {'Hrad','Hazi','Haxi'}; equ.var = {}; equ.expr = {'erel',{'1','e1'}}; fem.equ = equ; % Global expressions fem.expr = {'DivH','(Hrad-Hazi*M+(Haxiz+Hradr)*r)/r', ... 'MagEnDens','Hrad*Hrad+Hazi*Hazi+Haxi*Haxi', ... 'Drad','(Haxi*M-Haziz*r)/r', ... 'Dazi','-Haxir+Hradz', ... 'Daxi','(Hazi-Hrad*M+Hazir*r)/r', ... 'Erad','Drad/erel', ... 'Eazi','Dazi/erel', ... 'Eaxi','Daxi/erel', ... 'ElecMagSqrd','Erad*Erad+Eazi*Eazi+Eaxi*Eaxi', ... 'ElecEnDens','Erad*Drad+Eazi*Dazi+Eaxi*Daxi', ... 'AbsMagEnDens','abs(Hrad)^2+abs(Hazi)^2+abs(Haxi)^2', ... 'MagNrmlHSqrd','2*pi*r*abs(Haxi*nz+Hrad*nr)^2', ... 'MagTngHSqrd','2*pi*r*(1*abs(Hazi)^2+1*abs(Haxi*nr-Hrad*nz)^2)', ... 'AbsElecSqrd','abs(Erad)^2+abs(Eazi)^2+abs(Eaxi)^2'}; % Descriptions clear descr descr.expr= {'Eaxi','axial component of electric field strength','DivH','divergence of magnetic field (should be zero!)','ElecEnDens','electric energy density','ElecMagSqrd','electric field strength magnitude squared','Eazi','azimuthal component of electric field strength','Drad','radial component of electric displacement','Dazi','azimuthal component of electric displacement','Erad','radial component of electric field strength','Daxi','axial component of electric displacement','MagEnDens','magnetic energy density'}; fem.descr = descr; % Functions clear fcns fem.functions = {}; % Descriptions descr = fem.descr; descr.const= {'e_293K_alumina','relative permittivity of alumina at room temperature','e2','ditto for isotropic_dielectric_2','eperp2','relative permittivity of uniaxial_dielectric_2 perpendicular to cylindrical axis','eperp_293K_sapph','nominal room temperature values for same','eperp_4K_sapph_UWA','UWA values for cryogenic HEMEX sapphire','c','speed of light (exact!)','delta_e','fractional increment (for determining filling factors)','mixing_angle','Electric-Magnetic Mixing Angle (in degrees)','epara1','relative permittivity of uniaxial_dielectric_1 parallel to cylindrical axis','delta_epara1','fractional increment (for determining filling factors)','epara2','ditto but parallel to cylindrical axis','M','azimuthal mode order','n_silica','refractive index of thermally grown silica (Fig B.2, p. 172 of Kippenberg''s thesis)','fc','constant used internally --do not modify','e1','relative permittivity of isotropic_dielectric_1','eperp1','relative permittivity of uniaxial_dielectric_1 perpendicular to cylindrical axis','cEW','Electric-Wall-ness','cMW','Magnetic-Wall-ness','n_AlGaAs','average refractive index of GaAs and AlGaAs layers (p. 172 of Srinivasan)','mf','match frequency','delta_eperp1','fractional increment (for determining filling factors)','eperp_4K_sapph_NPL','NPL values','alpha','penalty coefficient on Div H'}; fem.descr = descr; % Solution form fem.solform = 'weak'; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem,'geoms',[1],'eqvars','on','cplbndeq','on','cplbndsh','off'); % Solve problem fem.sol=femeig(fem, ... 'method','eliminate', ... 'nullfun','auto', ... 'blocksize',5000, ... 'complexfun','off', ... 'solfile','off', ... 'conjugate','on', ... 'symmetric','on', ... 'solcomp',{'Hazi','Haxi','Hrad'}, ... 'outcomp',{'Hazi','Haxi','Hrad'}, ... 'rowscale','on', ... 'neigs',4, ... 'shift',0, ... 'krylovdim',0, ... 'maxeigit',300, ... 'etol',0.0, ... 'linsolver','spooles', ... 'thresh',0.1, ... 'preorder','mmd', ... 'uscale','auto', ... 'mcase',0); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecEnDens', ... 'solnum',1, ... 'phase',(0)*pi/180, ... 'title','lambda(1)=3.027518e7 Surface: log10(ElecMagSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecEnDens', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59341317365269,13.4065868263473,-4.4,4.4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecEnDens', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=2.544217e7 Surface: log10(ElecMagSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecEnDens', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.81066666666667,4.81066666666667,-1,1]); % Application mode 1 clear appl appl.mode.class = 'FlPDEW'; appl.mode.type = 'cartesian'; appl.dim = {'Hrad','Hazi','Haxi','Hrad_t','Hazi_t','Haxi_t'}; appl.sdim = {'r','z','z2'}; appl.name = 'Axisymmetric'; appl.shape = {'shlag(2,''Hrad'')','shlag(2,''Hazi'')','shlag(2,''Haxi'')'}; appl.gporder = 4; appl.cporder = 2; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_Axisymmetric'; clear prop prop.elemdefault='Lag2'; prop.wave='off'; prop.frame='rz'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm1','lm2','lm3','lm4','lm5','lm6'}; prop.weakconstr = weakconstr; appl.prop = prop; clear pnt pnt.weak = {{'0';'0';'0'}}; pnt.dweak = {{'0';'0';'0'}}; pnt.constr = {{'0';'0';'0'}}; pnt.ind = [1,1,1,1,1,1,1,1,1,1,1]; appl.pnt = pnt; clear bnd bnd.weak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.dweak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.constr = {{'Hrad*nr+Haxi*nz';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'0';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'Hrad*nr+Haxi*nz';'0';'0'},{'Haxi*nr-Hrad*nz';'Hazi';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'Haxi*nr-Hrad*nz';'Hazi';'0'},{'0';'0';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'-i*cMW*Hazi*k*mf+(cEW*(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r))/r'; ... '-i*cEW*(-Haxir+Hradz)+cMW*k*mf*(Haxi*nr-Hrad*nz)';'0'},{'0';'0';'0'}}; bnd.name = {'electric_wall','normal_D','tangential_H','magnetic_wall','normal_H', ... 'tangential_D','radiation_match','null'}; bnd.ind = [2,2,2,8,2,8,2,2,8,8,8,8]; appl.bnd = bnd; clear equ equ.gporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.init = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.shape = {[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3]}; equ.weak = {{'-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz))'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara1*Haziz*M*test(Haxi))+eperp1*Hazir*test(Hazi)+eperp1*Hazi*test(Hazir)-eperp1*Hrad*M*test(Hazir)-epara1*Haxi*M*test(Haziz)-eperp1*Hazir*M*test(Hrad))/(epara1*eperp1)+(epara1*Haxi*M^2*test(Haxi)+eperp1*Hazi*test(Hazi)-eperp1*Hrad*M*test(Hazi)-eperp1*Hazi*M*test(Hrad)+eperp1*Hrad*M^2*test(Hrad))/(epara1*eperp1*r)+(r*(epara1*(Haxir-Hradz)*test(Haxir)+eperp1*Hazir*test(Hazir)+epara1*Haziz*test(Haziz)-epara1*Haxir*test(Hradz)+epara1*Hradz*test(Hradz)))/(epara1*eperp1)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara2*Haziz*M*test(Haxi))+eperp2*Hazir*test(Hazi)+eperp2*Hazi*test(Hazir)-eperp2*Hrad*M*test(Hazir)-epara2*Haxi*M*test(Haziz)-eperp2*Hazir*M*test(Hrad))/(epara2*eperp2)+(epara2*Haxi*M^2*test(Haxi)+eperp2*Hazi*test(Hazi)-eperp2*Hrad*M*test(Hazi)-eperp2*Hazi*M*test(Hrad)+eperp2*Hrad*M^2*test(Hrad))/(epara2*eperp2*r)+(r*(epara2*(Haxir-Hradz)*test(Haxir)+eperp2*Hazir*test(Hazir)+epara2*Haziz*test(Haziz)-epara2*Haxir*test(Hradz)+epara2*Hradz*test(Hradz)))/(epara2*eperp2)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'}}; equ.dweak = {{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'}}; equ.usage = {1,1,1,1,1}; equ.constr = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'}}; equ.cporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.dinit = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.name = {'dielectric_0:vacuum','isotrop_diel_1','isotrop_diel_2','uniaxial_diel_1', ... 'uniaxial_diel_2'}; equ.ind = [1,2]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'rz'}; % Simplify expressions fem.simplify = 'on'; fem.border = 1; fem.units = 'SI'; % Subdomain expressions clear equ equ.ind = [1,2]; equ.dim = {'Hrad','Hazi','Haxi'}; equ.var = {}; equ.expr = {'erel',{'1','e1'}}; fem.equ = equ; % Global expressions fem.expr = {'DivH','(Hrad-Hazi*M+(Haxiz+Hradr)*r)/r', ... 'MagEnDens','Hrad*Hrad+Hazi*Hazi+Haxi*Haxi', ... 'Drad','(Haxi*M-Haziz*r)/r', ... 'Dazi','-Haxir+Hradz', ... 'Daxi','(Hazi-Hrad*M+Hazir*r)/r', ... 'Erad','Drad/erel', ... 'Eazi','Dazi/erel', ... 'Eaxi','Daxi/erel', ... 'ElecMagSqrd','Erad*Erad+Eazi*Eazi+Eaxi*Eaxi', ... 'ElecEnDens','Erad*Drad+Eazi*Dazi+Eaxi*Daxi', ... 'AbsMagEnDens','abs(Hrad)^2+abs(Hazi)^2+abs(Haxi)^2', ... 'MagNrmlHSqrd','2*pi*r*abs(Haxi*nz+Hrad*nr)^2', ... 'MagTngHSqrd','2*pi*r*(1*abs(Hazi)^2+1*abs(Haxi*nr-Hrad*nz)^2)', ... 'AbsElecSqrd','abs(Erad)^2+abs(Eazi)^2+abs(Eaxi)^2'}; % Descriptions clear descr descr.expr= {'Eaxi','axial component of electric field strength','DivH','divergence of magnetic field (should be zero!)','ElecEnDens','electric energy density','ElecMagSqrd','electric field strength magnitude squared','Eazi','azimuthal component of electric field strength','Drad','radial component of electric displacement','Dazi','azimuthal component of electric displacement','Erad','radial component of electric field strength','Daxi','axial component of electric displacement','MagEnDens','magnetic energy density'}; fem.descr = descr; % Functions clear fcns fem.functions = {}; % Descriptions descr = fem.descr; descr.const= {'e_293K_alumina','relative permittivity of alumina at room temperature','e2','ditto for isotropic_dielectric_2','eperp2','relative permittivity of uniaxial_dielectric_2 perpendicular to cylindrical axis','eperp_293K_sapph','nominal room temperature values for same','eperp_4K_sapph_UWA','UWA values for cryogenic HEMEX sapphire','c','speed of light (exact!)','delta_e','fractional increment (for determining filling factors)','mixing_angle','Electric-Magnetic Mixing Angle (in degrees)','epara1','relative permittivity of uniaxial_dielectric_1 parallel to cylindrical axis','delta_epara1','fractional increment (for determining filling factors)','epara2','ditto but parallel to cylindrical axis','M','azimuthal mode order','n_silica','refractive index of thermally grown silica (Fig B.2, p. 172 of Kippenberg''s thesis)','fc','constant used internally --do not modify','e1','relative permittivity of isotropic_dielectric_1','eperp1','relative permittivity of uniaxial_dielectric_1 perpendicular to cylindrical axis','cEW','Electric-Wall-ness','cMW','Magnetic-Wall-ness','n_AlGaAs','average refractive index of GaAs and AlGaAs layers (p. 172 of Srinivasan)','mf','match frequency','delta_eperp1','fractional increment (for determining filling factors)','eperp_4K_sapph_NPL','NPL values','alpha','penalty coefficient on Div H'}; fem.descr = descr; % Solution form fem.solform = 'weak'; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem,'geoms',[1],'eqvars','on','cplbndeq','on','cplbndsh','off'); % Solve problem fem.sol=femeig(fem, ... 'method','eliminate', ... 'nullfun','auto', ... 'blocksize',5000, ... 'complexfun','off', ... 'solfile','off', ... 'conjugate','on', ... 'symmetric','on', ... 'solcomp',{'Hazi','Haxi','Hrad'}, ... 'outcomp',{'Hazi','Haxi','Hrad'}, ... 'rowscale','on', ... 'neigs',4, ... 'shift',0, ... 'krylovdim',0, ... 'maxeigit',300, ... 'etol',0.0, ... 'linsolver','spooles', ... 'thresh',0.1, ... 'preorder','mmd', ... 'uscale','auto', ... 'mcase',0); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecEnDens', ... 'solnum',1, ... 'phase',(0)*pi/180, ... 'title','lambda(1)=3.027518e7 Surface: log10(ElecMagSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecEnDens', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59341317365269,13.4065868263473,-4.4,4.4,-1,1]); % Application mode 1 clear appl appl.mode.class = 'FlPDEW'; appl.mode.type = 'cartesian'; appl.dim = {'Hrad','Hazi','Haxi','Hrad_t','Hazi_t','Haxi_t'}; appl.sdim = {'r','z','z2'}; appl.name = 'Axisymmetric'; appl.shape = {'shlag(2,''Hrad'')','shlag(2,''Hazi'')','shlag(2,''Haxi'')'}; appl.gporder = 4; appl.cporder = 2; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_Axisymmetric'; clear prop prop.elemdefault='Lag2'; prop.wave='off'; prop.frame='rz'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm1','lm2','lm3','lm4','lm5','lm6'}; prop.weakconstr = weakconstr; appl.prop = prop; clear pnt pnt.weak = {{'0';'0';'0'}}; pnt.dweak = {{'0';'0';'0'}}; pnt.constr = {{'0';'0';'0'}}; pnt.ind = [1,1,1,1,1,1,1,1,1,1,1]; appl.pnt = pnt; clear bnd bnd.weak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.dweak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.constr = {{'Hrad*nr+Haxi*nz';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'0';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'Hrad*nr+Haxi*nz';'0';'0'},{'Haxi*nr-Hrad*nz';'Hazi';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'Haxi*nr-Hrad*nz';'Hazi';'0'},{'0';'0';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'-i*cMW*Hazi*k*mf+(cEW*(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r))/r'; ... '-i*cEW*(-Haxir+Hradz)+cMW*k*mf*(Haxi*nr-Hrad*nz)';'0'},{'0';'0';'0'}}; bnd.name = {'electric_wall','normal_D','tangential_H','magnetic_wall','normal_H', ... 'tangential_D','radiation_match','null'}; bnd.ind = [3,3,3,8,3,8,3,3,8,8,8,8]; appl.bnd = bnd; clear equ equ.gporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.init = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.shape = {[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3]}; equ.weak = {{'-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz))'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara1*Haziz*M*test(Haxi))+eperp1*Hazir*test(Hazi)+eperp1*Hazi*test(Hazir)-eperp1*Hrad*M*test(Hazir)-epara1*Haxi*M*test(Haziz)-eperp1*Hazir*M*test(Hrad))/(epara1*eperp1)+(epara1*Haxi*M^2*test(Haxi)+eperp1*Hazi*test(Hazi)-eperp1*Hrad*M*test(Hazi)-eperp1*Hazi*M*test(Hrad)+eperp1*Hrad*M^2*test(Hrad))/(epara1*eperp1*r)+(r*(epara1*(Haxir-Hradz)*test(Haxir)+eperp1*Hazir*test(Hazir)+epara1*Haziz*test(Haziz)-epara1*Haxir*test(Hradz)+epara1*Hradz*test(Hradz)))/(epara1*eperp1)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara2*Haziz*M*test(Haxi))+eperp2*Hazir*test(Hazi)+eperp2*Hazi*test(Hazir)-eperp2*Hrad*M*test(Hazir)-epara2*Haxi*M*test(Haziz)-eperp2*Hazir*M*test(Hrad))/(epara2*eperp2)+(epara2*Haxi*M^2*test(Haxi)+eperp2*Hazi*test(Hazi)-eperp2*Hrad*M*test(Hazi)-eperp2*Hazi*M*test(Hrad)+eperp2*Hrad*M^2*test(Hrad))/(epara2*eperp2*r)+(r*(epara2*(Haxir-Hradz)*test(Haxir)+eperp2*Hazir*test(Hazir)+epara2*Haziz*test(Haziz)-epara2*Haxir*test(Hradz)+epara2*Hradz*test(Hradz)))/(epara2*eperp2)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'}}; equ.dweak = {{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'}}; equ.usage = {1,1,1,1,1}; equ.constr = {{'0';'0';'0'},{'0't`;'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'}}; equ.cporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.dinit = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.name = {'dielectric_0:vacuum','isotrop_diel_1','isotrop_diel_2','uniaxial_diel_1', ... 'uniaxial_diel_2'}; equ.ind = [1,2]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'rz'}; % Simplify expressions fem.simplify = 'on'; fem.border = 1; fem.units = 'SI'; % Subdomain expressions clear equ equ.ind = [1,2]; equ.dim = {'Hrad','Hazi','Haxi'}; equ.var = {}; equ.expr = {'erel',{'1','e1'}}; fem.equ = equ; % Global expressions fem.expr = {'DivH','(Hrad-Hazi*M+(Haxiz+Hradr)*r)/r', ... 'MagEnDens','Hrad*Hrad+Hazi*Hazi+Haxi*Haxi', ... 'Drad','(Haxi*M-Haziz*r)/r', ... 'Dazi','-Haxir+Hradz', ... 'Daxi','(Hazi-Hrad*M+Hazir*r)/r', ... 'Erad','Drad/erel', ... 'Eazi','Dazi/erel', ... 'Eaxi','Daxi/erel', ... 'ElecMagSqrd','Erad*Erad+Eazi*Eazi+Eaxi*Eaxi', ... 'ElecEnDens','Erad*Drad+Eazi*Dazi+Eaxi*Daxi', ... 'AbsMagEnDens','abs(Hrad)^2+abs(Hazi)^2+abs(Haxi)^2', ... 'MagNrmlHSqrd','2*pi*r*abs(Haxi*nz+Hrad*nr)^2', ... 'MagTngHSqrd','2*pi*r*(1*abs(Hazi)^2+1*abs(Haxi*nr-Hrad*nz)^2)', ... 'AbsElecSqrd','abs(Erad)^2+abs(Eazi)^2+abs(Eaxi)^2'}; % Descriptions clear descr descr.expr= {'Eaxi','axial component of electric field strength','DivH','divergence of magnetic field (should be zero!)','ElecEnDens','electric energy density','ElecMagSqrd','electric field strength magnitude squared','Eazi','azimuthal component of electric field strength','Drad','radial component of electric displacement','Dazi','azimuthal component of electric displacement','Erad','radial component of electric field strength','Daxi','axial component of electric displacement','MagEnDens','magnetic energy density'}; fem.descr = descr; % Functions clear fcns fem.functions = {}; % Descriptions descr = fem.descr; descr.const= {'e_293K_alumina','relative permittivity of alumina at room temperature','e2','ditto for isotropic_dielectric_2','eperp2','relative permittivity of uniaxial_dielectric_2 perpendicular to cylindrical axis','eperp_293K_sapph','nominal room temperature values for same','eperp_4K_sapph_UWA','UWA values for cryogenic HEMEX sapphire','c','speed of light (exact!)','delta_e','fractional increment (for determining filling factors)','mixing_angle','Electric-Magnetic Mixing Angle (in degrees)','epara1','relative permittivity of uniaxial_dielectric_1 parallel to cylindrical axis','delta_epara1','fractional increment (for determining filling factors)','epara2','ditto but parallel to cylindrical axis','M','azimuthal mode order','n_silica','refractive index of thermally grown silica (Fig B.2, p. 172 of Kippenberg''s thesis)','fc','constant used internally --do not modify','e1','relative permittivity of isotropic_dielectric_1','eperp1','relative permittivity of uniaxial_dielectric_1 perpendicular to cylindrical axis','cEW','Electric-Wall-ness','cMW','Magnetic-Wall-ness','n_AlGaAs','average refractive index of GaAs and AlGaAs layers (p. 172 of Srinivasan)','mf','match frequency','delta_eperp1','fractional increment (for determining filling factors)','eperp_4K_sapph_NPL','NPL values','alpha','penalty coefficient on Div H'}; fem.descr = descr; % Solution form fem.solform = 'weak'; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem,'geoms',[1],'eqvars','on','cplbndeq','on','cplbndsh','off'); % Solve problem fem.sol=femeig(fem, ... 'method','eliminate', ... 'nullfun','auto', ... 'blocksize',5000, ... 'complexfun','off', ... 'solfile','off', ... 'conjugate','on', ... 'symmetric','on', ... 'solcomp',{'Hazi','Haxi','Hrad'}, ... 'outcomp',{'Hazi','Haxi','Hrad'}, ... 'rowscale','on', ... 'neigs',4, ... 'shift',0, ... 'krylovdim',0, ... 'maxeigit',300, ... 'etol',0.0, ... 'linsolver','spooles', ... 'thresh',0.1, ... 'preorder','mmd', ... 'uscale','auto', ... 'mcase',0); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecEnDens', ... 'solnum',1, ... 'phase',(0)*pi/180, ... 'title','lambda(1)=3.553327e8 Surface: log10(ElecMagSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecEnDens', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59341317365269,13.4065868263473,-4.4,4.4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecEnDens', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=3.532667e8 Surface: log10(ElecMagSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecEnDens', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.79468438538206,4.79468438538206,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecEnDens', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=3.532667e8 Surface: log10(ElecMagSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecEnDens', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.81066666666667,4.81066666666667,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecEnDens', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=3.532667e8 Surface: log10(ElecMagSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecEnDens', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.01084745762712,13.9891525423729,-5.42915254237288,4.5342372881356,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecEnDens', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=3.532667e8 Surface: log10(ElecMagSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecEnDens', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.44357172385283,13.5564282761472,-5.42915254237288,4.5342372881356,-1,1]); % Constants fem.const = {'c','299792458', ... 'k','2*pi/c', ... 'fc','k^2', ... 'alpha','1.0', ... 'M','93', ... 'delta_e','0.0', ... 'e1','n_silica^2*(1+delta_e)', ... 'e2','1.0', ... 'delta_eperp1','0*1e-3', ... 'eperp1','e1*(1+delta_eperp1)', ... 'delta_epara1','0*1e-3', ... 'epara1','e1*(1+delta_epara1)', ... 'eperp2','1.0', ... 'epara2','1.0', ... 'e_293K_alumina','9.8', ... 'eperp_4K_sapph_UWA','9.2725', ... 'epara_4K_sapph_UWA','11.3486', ... 'eperp_293K_sapph','9.407', ... 'epara_293K_sapph','11.62', ... 'eperp_4K_sapph_NPL','9.2848', ... 'epara_4K_sapph_NPL','11.3660', ... 'n_silica','1.4457', ... 'n_AlGaAs','3.36', ... 'mf','2.374616e14', ... 'ttgH','1', ... 'ttgE','0', ... 'rectangle_mf','2.376629e14', ... 'circle_mf','2.374616e14', ... 'mixing_angle','45', ... 'cMW','sin(mixing_angle * pi /180)', ... 'cEW','cos(mixing_angle * pi /180)', ... 'tngM','1', ... 'tngE','0'}; % Application mode 1 clear appl appl.mode.class = 'FlPDEW'; appl.mode.type = 'cartesian'; appl.dim = {'Hrad','Hazi','Haxi','Hrad_t','Hazi_t','Haxi_t'}; appl.sdim = {'r','z','z2'}; appl.name = 'Axisymmetric'; appl.shape = {'shlag(2,''Hrad'')','shlag(2,''Hazi'')','shlag(2,''Haxi'')'}; appl.gporder = 4; appl.cporder = 2; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_Axisymmetric'; clear prop prop.elemdefault='Lag2'; prop.wave='off'; prop.frame='rz'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm1','lm2','lm3','lm4','lm5','lm6'}; prop.weakconstr = weakconstr; appl.prop = prop; clear pnt pnt.weak = {{'0';'0';'0'}}; pnt.dweak = {{'0';'0';'0'}}; pnt.constr = {{'0';'0';'0'}}; pnt.ind = [1,1,1,1,1,1,1,1,1,1,1]; appl.pnt = pnt; clear bnd bnd.weak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.dweak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.constr = {{'Hrad*nr+Haxi*nz';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'0';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'Hrad*nr+Haxi*nz';'0';'0'},{'Haxi*nr-Hrad*nz';'Hazi';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'Haxi*nr-Hrad*nz';'Hazi';'0'},{'0';'0';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'-i*cMW*Hazi*k*mf+(cEW*(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r))/r'; ... '-i*cEW*(-Haxir+Hradz)+cMW*k*mf*(Haxi*nr-Hrad*nz)';'0'},{'0';'0';'0'}}; bnd.name = {'electric_wall','normal_D','tangential_H','magnetic_wall','normal_H', ... 'tangential_D','radiation_match','null'}; bnd.ind = [3,3,3,8,3,8,3,3,8,8,8,8]; appl.bnd = bnd; clear equ equ.gporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.init = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.shape = {[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3]}; equ.weak = {{'-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz))'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara1*Haziz*M*test(Haxi))+eperp1*Hazir*test(Hazi)+eperp1*Hazi*test(Hazir)-eperp1*Hrad*M*test(Hazir)-epara1*Haxi*M*test(Haziz)-eperp1*Hazir*M*test(Hrad))/(epara1*eperp1)+(epara1*Haxi*M^2*test(Haxi)+eperp1*Hazi*test(Hazi)-eperp1*Hrad*M*test(Hazi)-eperp1*Hazi*M*test(Hrad)+eperp1*Hrad*M^2*test(Hrad))/(epara1*eperp1*r)+(r*(epara1*(Haxir-Hradz)*test(Haxir)+eperp1*Hazir*test(Hazir)+epara1*Haziz*test(Haziz)-epara1*Haxir*test(Hradz)+epara1*Hradz*test(Hradz)))/(epara1*eperp1)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara2*Haziz*M*test(Haxi))+eperp2*Hazir*test(Hazi)+eperp2*Hazi*test(Hazir)-eperp2*Hrad*M*test(Hazir)-epara2*Haxi*M*test(Haziz)-eperp2*Hazir*M*test(Hrad))/(epara2*eperp2)+(epara2*Haxi*M^2*test(Haxi)+eperp2*Hazi*test(Hazi)-eperp2*Hrad*M*test(Hazi)-eperp2*Hazi*M*test(Hrad)+eperp2*Hrad*M^2*test(Hrad))/(epara2*eperp2*r)+(r*(epara2*(Haxir-Hradz)*test(Haxir)+eperp2*Hazir*test(Hazir)+epara2*Haziz*test(Haziz)-epara2*Haxir*test(Hradz)+epara2*Hradz*test(Hradz)))/(epara2*eperp2)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'}}; equ.dweak = {{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'}}; equ.usage = {1,1,1,1,1}; equ.constr = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'}}; equ.cporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.dinit = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.name = {'dielectric_0:vacuum','uniaxial_diel_1','isotrop_diel_1','isotrop_diel_2', ... 'uniaxial_diel_2'}; equ.ind = [1,2]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'rz'}; % Simplify expressions fem.simplify = 'on'; fem.border = 1; fem.units = 'SI'; % Subdomain expressions clear equ equ.ind = [1,2]; equ.dim = {'Hrad','Hazi','Haxi'}; equ.var = {}; equ.expr = {'erel',{'1','e1'}}; fem.equ = equ; % Global expressions fem.expr = {'DivH','(Hrad-Hazi*M+(Haxiz+Hradr)*r)/r', ... 'MagEnDens','Hrad*Hrad+Hazi*Hazi+Haxi*Haxi', ... 'Drad','(Haxi*M-Haziz*r)/r', ... 'Dazi','-Haxir+Hradz', ... 'Daxi','(Hazi-Hrad*M+Hazir*r)/r', ... 'Erad','Drad/erel', ... 'Eazi','Dazi/erel', ... 'Eaxi','Daxi/erel', ... 'ElecMagSqrd','Erad*Erad+Eazi*Eazi+Eaxi*Eaxi', ... 'ElecEnDens','Erad*Drad+Eazi*Dazi+Eaxi*Daxi', ... 'AbsMagEnDens','abs(Hrad)^2+abs(Hazi)^2+abs(Haxi)^2', ... 'MagNrmlHSqrd','2*pi*r*abs(Haxi*nz+Hrad*nr)^2', ... 'MagTngHSqrd','2*pi*r*(1*abs(Hazi)^2+1*abs(Haxi*nr-Hrad*nz)^2)', ... 'AbsElecSqrd','abs(Erad)^2+abs(Eazi)^2+abs(Eaxi)^2'}; % Descriptions clear descr descr.expr= {'Eaxi','axial component of electric field strength','DivH','divergence of magnetic field (should be zero!)','ElecEnDens','electric energy density','ElecMagSqrd','electric field strength magnitude squared','Eazi','azimuthal component of electric field strength','Drad','radial component of electric displacement','Dazi','azimuthal component of electric displacement','Erad','radial component of electric field strength','Daxi','axial component of electric displacement','MagEnDens','magnetic energy density'}; fem.descr = descr; % Functions clear fcns fem.functions = {}; % Descriptions descr = fem.descr; descr.const= {'e_293K_alumina','relative permittivity of alumina at room temperature','e2','ditto for isotropic_dielectric_2','eperp2','relative permittivity of uniaxial_dielectric_2 perpendicular to cylindrical axis','eperp_293K_sapph','nominal room temperature values for same','eperp_4K_sapph_UWA','UWA values for cryogenic HEMEX sapphire','c','speed of light (exact!)','delta_e','fractional increment (for determining filling factors)','mixing_angle','Electric-Magnetic Mixing Angle (in degrees)','epara1','relative permittivity of uniaxial_dielectric_1 parallel to cylindrical axis','delta_epara1','fractional increment (for determining filling factors)','epara2','ditto but parallel to cylindrical axis','M','azimuthal mode order','n_silica','refractive index of thermally grown silica (Fig B.2, p. 172 of Kippenberg''s thesis)','fc','constant used internally --do not modify','e1','relative permittivity of isotropic_dielectric_1','eperp1','relative permittivity of uniaxial_dielectric_1 perpendicular to cylindrical axis','cEW','Electric-Wall-ness','cMW','Magnetic-Wall-ness','n_AlGaAs','average refractive index of GaAs and AlGaAs layers (p. 172 of Srinivasan)','mf','match frequency','delta_eperp1','fractional increment (for determining filling factors)','eperp_4K_sapph_NPL','NPL values','alpha','penalty coefficient on Div H'}; fem.descr = descr; % Solution form fem.solform = 'weak'; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem,'geoms',[1],'eqvars','on','cplbndeq','on','cplbndsh','off'); % Solve problem fem.sol=femeig(fem, ... 'method','eliminate', ... 'nullfun','auto', ... 'blocksize',5000, ... 'complexfun','off', ... 'solfile','off', ... 'conjugate','on', ... 'symmetric','on', ... 'solcomp',{'Hazi','Haxi','Hrad'}, ... 'outcomp',{'Hazi','Haxi','Hrad'}, ... 'rowscale','on', ... 'neigs',4, ... 'shift',0, ... 'krylovdim',0, ... 'maxeigit',300, ... 'etol',0.0, ... 'linsolver','spooles', ... 'thresh',0.1, ... 'preorder','mmd', ... 'uscale','auto', ... 'mcase',0); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecEnDens', ... 'solnum',1, ... 'phase',(0)*pi/180, ... 'title','lambda(1)=3.553327e8 Surface: log10(ElecMagSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecEnDens', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59341317365269,13.4065868263473,-4.4,4.4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecEnDens', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=3.532667e8 Surface: log10(ElecMagSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecEnDens', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.79468438538206,4.79468438538206,-1,1]); % Constants fem.const = {'c','299792458', ... 'k','2*pi/c', ... 'fc','k^2', ... 'alpha','1.0', ... 'M','93', ... 'delta_e','0.0', ... 'e1','n_silica^2*(1+delta_e)', ... 'e2','1.0', ... 'delta_eperp1','0*1e-3', ... 'eperp1','9.2725*(1+delta_eperp1)', ... 'delta_epara1','0*1e-3', ... 'epara1','11.3486*(1+delta_epara1)', ... 'eperp2','1.0', ... 'epara2','1.0', ... 'e_293K_alumina','9.8', ... 'eperp_4K_sapph_UWA','9.2725', ... 'epara_4K_sapph_UWA','11.3486', ... 'eperp_293K_sapph','9.407', ... 'epara_293K_sapph','11.62', ... 'eperp_4K_sapph_NPL','9.2848', ... 'epara_4K_sapph_NPL','11.3660', ... 'n_silica','1.4457', ... 'n_AlGaAs','3.36', ... 'mf','2.374616e14', ... 'ttgH','1', ... 'ttgE','0', ... 'rectangle_mf','2.376629e14', ... 'circle_mf','2.374616e14', ... 'mixing_angle','45', ... 'cMW','sin(mixing_angle * pi /180)', ... 'cEW','cos(mixing_angle * pi /180)', ... 'tngM','1', ... 'tngE','0'}; % Application mode 1 clear appl appl.mode.class = 'FlPDEW'; appl.mode.type = 'cartesian'; appl.dim = {'Hrad','Hazi','Haxi','Hrad_t','Hazi_t','Haxi_t'}; appl.sdim = {'r','z','z2'}; appl.name = 'Axisymmetric'; appl.shape = {'shlag(2,''Hrad'')','shlag(2,''Hazi'')','shlag(2,''Haxi'')'}; appl.gporder = 4; appl.cporder = 2; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_Axisymmetric'; clear prop prop.elemdefault='Lag2'; prop.wave='off'; prop.frame='rz'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm1','lm2','lm3','lm4','lm5','lm6'}; prop.weakconstr = weakconstr; appl.prop = prop; clear pnt pnt.weak = {{'0';'0';'0'}}; pnt.dweak = {{'0';'0';'0'}}; pnt.constr = {{'0';'0';'0'}}; pnt.ind = [1,1,1,1,1,1,1,1,1,1,1]; appl.pnt = pnt; clear bnd bnd.weak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.dweak = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}; bnd.constr = {{'Hrad*nr+Haxi*nz';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'0';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {'Hrad*nr+Haxi*nz';'0';'0'},{'Haxi*nr-Hrad*nz';'Hazi';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'Haxi*nr-Hrad*nz';'Hazi';'0'},{'0';'0';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'-i*cMW*Hazi*k*mf+(cEW*(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r))/r'; ... '-i*cEW*(-Haxir+Hradz)+cMW*k*mf*(Haxi*nr-Hrad*nz)';'0'},{'0';'0';'0'}}; bnd.name = {'electric_wall','normal_D','tangential_H','magnetic_wall','normal_H', ... 'tangential_D','radiation_match','null'}; bnd.ind = [3,3,3,8,3,8,3,3,8,8,8,8]; appl.bnd = bnd; clear equ equ.gporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.init = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.shape = {[1;2;3],[1;2;3],[1;2;3],[1;2;3],[1;2;3]}; equ.weak = {{'-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz))'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara1*Haziz*M*test(Haxi))+eperp1*Hazir*test(Hazi)+eperp1*Hazi*test(Hazir)-eperp1*Hrad*M*test(Hazir)-epara1*Haxi*M*test(Haziz)-eperp1*Hazir*M*test(Hrad))/(epara1*eperp1)+(epara1*Haxi*M^2*test(Haxi)+eperp1*Hazi*test(Hazi)-eperp1*Hrad*M*test(Hazi)-eperp1*Hazi*M*test(Hrad)+eperp1*Hrad*M^2*test(Hrad))/(epara1*eperp1*r)+(r*(epara1*(Haxir-Hradz)*test(Haxir)+eperp1*Hazir*test(Hazir)+epara1*Haziz*test(Haziz)-epara1*Haxir*test(Hradz)+epara1*Hradz*test(Hradz)))/(epara1*eperp1)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e2'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'},{'(-(epara2*Haziz*M*test(Haxi))+eperp2*Hazir*test(Hazi)+eperp2*Hazi*test(Hazir)-eperp2*Hrad*M*test(Hazir)-epara2*Haxi*M*test(Haziz)-eperp2*Hazir*M*test(Hrad))/(epara2*eperp2)+(epara2*Haxi*M^2*test(Haxi)+eperp2*Hazi*test(Hazi)-eperp2*Hrad*M*test(Hazi)-eperp2*Hazi*M*test(Hrad)+eperp2*Hrad*M^2*test(Hrad))/(epara2*eperp2*r)+(r*(epara2*(Haxir-Hradz)*test(Haxir)+eperp2*Hazir*test(Hazir)+epara2*Haziz*test(Haziz)-epara2*Haxir*test(Hradz)+epara2*Hradz*test(Hradz)))/(epara2*eperp2)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'; ... '0'}}; equ.dweak = {{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'},{'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; ... '0';'0'}}; equ.usage = {1,1,1,1,1}; equ.constr = {{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... '0';'0'}}; equ.cporder = {{1;1;1},{1;1;1},{1;1;1},{1;1;1},{1;1;1}}; equ.dinit = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; equ.name = {'dielectric_0:vacuum','isotrop_diel_1','uniaxial_diel_1','isotrop_diel_2', ... 'uniaxial_diel_2'}; equ.ind = [1,2]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.frame = {'rz'}; % Simplify expressions fem.simplify = 'on'; fem.border = 1; fem.units = 'SI'; % Subdomain expressions clear equ equ.ind = [1,2]; equ.dim = {'Hrad','Hazi','Haxi'}; equ.var = {}; equ.expr = {'erel',{'1','e1'}}; fem.equ = equ; % Global expressions fem.expr = {'DivH','(Hrad-Hazi*M+(Haxiz+Hradr)*r)/r', ... 'MagEnDens','Hrad*Hrad+Hazi*Hazi+Haxi*Haxi', ... 'Drad','(Haxi*M-Haziz*r)/r', ... 'Dazi','-Haxir+Hradz', ... 'Daxi','(Hazi-Hrad*M+Hazir*r)/r', ... 'Erad','Drad/erel', ... 'Eazi','Dazi/erel', ... 'Eaxi','Daxi/erel', ... 'ElecMagSqrd','Erad*Erad+Eazi*Eazi+Eaxi*Eaxi', ... 'ElecEnDens','Erad*Drad+Eazi*Dazi+Eaxi*Daxi', ... 'AbsMagEnDens','abs(Hrad)^2+abs(Hazi)^2+abs(Haxi)^2', ... 'MagNrmlHSqrd','2*pi*r*abs(Haxi*nz+Hrad*nr)^2', ... 'MagTngHSqrd','2*pi*r*(1*abs(Hazi)^2+1*abs(Haxi*nr-Hrad*nz)^2)', ... 'AbsElecSqrd','abs(Erad)^2+abs(Eazi)^2+abs(Eaxi)^2'}; % Descriptions clear descr descr.expr= {'Eaxi','axial component of electric field strength','DivH','divergence of magnetic field (should be zero!)','ElecEnDens','electric energy density','ElecMagSqrd','electric field strength magnitude squared','Eazi','azimuthal component of electric field strength','Drad','radial component of electric displacement','Dazi','azimuthal component of electric displacement','Erad','radial component of electric field strength','Daxi','axial component of electric displacement','MagEnDens','magnetic energy density'}; fem.descr = descr; % Functions clear fcns fem.functions = {}; % Descriptions descr = fem.descr; descr.const= {'e_293K_alumina','relative permittivity of alumina at room temperature','e2','ditto for isotropic_dielectric_2','eperp2','relative permittivity of uniaxial_dielectric_2 perpendicular to cylindrical axis','eperp_293K_sapph','nominal room temperature values for same','eperp_4K_sapph_UWA','UWA values for cryogenic HEMEX sapphire','c','speed of light (exact!)','delta_e','fractional increment (for determining filling factors)','mixing_angle','Electric-Magnetic Mixing Angle (in degrees)','epara1','relative permittivity of uniaxial_dielectric_1 parallel to cylindrical axis','delta_epara1','fractional increment (for determining filling factors)','epara2','ditto but parallel to cylindrical axis','M','azimuthal mode order','n_silica','refractive index of thermally grown silica (Fig B.2, p. 172 of Kippenberg''s thesis)','fc','constant used internally --do not modify','e1','relative permittivity of isotropic_dielectric_1','eperp1','relative permittivity of uniaxial_dielectric_1 perpendicular to cylindrical axis','cEW','Electric-Wall-ness','cMW','Magnetic-Wall-ness','n_AlGaAs','average refractive index of GaAs and AlGaAs layers (p. 172 of Srinivasan)','mf','match frequency','delta_eperp1','fractional increment (for determining filling factors)','eperp_4K_sapph_NPL','NPL values','alpha','penalty coefficient on Div H'}; fem.descr = descr; % Solution form fem.solform = 'weak'; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem,'geoms',[1],'eqvars','on','cplbndeq','on','cplbndsh','off'); % Solve problem fem.sol=femeig(fem, ... 'method','eliminate', ... 'nullfun','auto', ... 'blocksize',5000, ... 'complexfun','off', ... 'solfile','off', ... 'conjugate','on', ... 'symmetric','on', ... 'solcomp',{'Hazi','Haxi','Hrad'}, ... 'outcomp',{'Hazi','Haxi','Hrad'}, ... 'rowscale','on', ... 'neigs',4, ... 'shift',0, ... 'krylovdim',0, ... 'maxeigit',300, ... 'etol',0.0, ... 'linsolver','spooles', ... 'thresh',0.1, ... 'preorder','mmd', ... 'uscale','auto', ... 'mcase',0); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecEnDens', ... 'solnum',1, ... 'phase',(0)*pi/180, ... 'title','lambda(1)=3.553327e8 Surface: log10(ElecMagSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecEnDens', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.18213173652695,13.8178682634731,-5.31066666666667,4.31066666666667,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecEnDens', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=3.532667e8 Surface: log10(ElecMagSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecEnDens', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.58533333333333,13.4146666666667,-5.31066666666667,4.31066666666667,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecEnDens', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=3.532667e8 Surface: log10(ElecMagSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecEnDens', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-5.31066666666667,4.31066666666667,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecEnDens', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=3.532667e8 Surface: log10(ElecMagSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecEnDens', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.59341317365269,13.4065868263473,-4.4,4.4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ... 'triedgestyle','none', ... 'trifacestyle','interp', ... 'tribar','on', ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecEnDens', ... 'solnum','end', ... 'phase',(0)*pi/180, ... 'title','lambda(4)=3.532667e8 Surface: log10(ElecMagSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecEnDens', ... 'refine',3, ... 'geom','on', ... 'geomnum',[1], ... 'sdl',{[1,2]}, ... 'axisvisible','on', ... 'axisequal','on', ... 'grid','off', ... 'axis',[4.6,13.4,-4.81066666666667,4.81066666666667,-1,1]); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.3a (COMSOL 3.3.0.511, $Date: 2007/02/02 19:05:58 $) % Some geometry objects are stored in a separate file. % The name of this file is given by the variable 'flbinaryfile'. % COMSOL version clear vrsn vrsn.name = 'COMSOL 3.3'; vrsn.ext = 'a'; vrsn.major = 0; vrsn.build = 511; vrsn.rcs = '$Name: $'; vrsn.date = '$Date: 2007/02/02 19:05:58 $'; fem.version = vrsn; flbinaryfile=''; % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'FlPDEW'; appl.dim = {'Hrad','Hazi','Haxi','Hrad_t','Hazi_t','Haxi_t'}; appl.sdim = {'r','z','z2'}; appl.name = 'Axisymmetric'; appl.gporder = 4; appl.cporder = 2; appl.assignsuffix = '_Axisymmetric'; clear bnd bnd.name = {'electric_wall','normal_D','tangential_H','magnetic_wall','normal_H', ... 'tangential_D','radiation_match','null'}; bnd.constr = {{'Hrad*nr+Haxi*nz';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {0;'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... 'Hrad*nr+Haxi*nz',{'Haxi*nr-Hrad*nz';'Hazi';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'Haxi*nr-Hrad*nz';'Hazi'},{0;0;'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'-i*cMW*Hazi*k*mf+(cEW*(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r))/r'; ... '-i*cEW*(-Haxir+Hradz)+cMW*k*mf*(Haxi*nr-Hrad*nz)'},0}; bnd.ind = [3,3,3,8,3,8,3,3,8,8,8,8]; appl.bnd = bnd; clear equ equ.dweak = 'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; equ.name = {'dielectric_0:vacuum','isotrop_diel_1','uniaxial_diel_1','isotrop_diel_2', ... 'uniaxial_diel_2'}; equ.weak = {{'-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz))'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'}, ... {'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'}, ... {'(-(epara1*Haziz*M*test(Haxi))+eperp1*Hazir*test(Hazi)+eperp1*Hazi*test(Hazir)-eperp1*Hrad*M*test(Hazir)-epara1*Haxi*M*test(Haziz)-eperp1*Hazir*M*test(Hrad))/(epara1*eperp1)+(epara1*Haxi*M^2*test(Haxi)+eperp1*Hazi*test(Hazi)-eperp1*Hrad*M*test(Hazi)-eperp1*Hazi*M*test(Hrad)+eperp1*Hrad*M^2*test(Hrad))/(epara1*eperp1*r)+(r*(epara1*(Haxir-Hradz)*test(Haxir)+eperp1*Hazir*test(Hazir)+epara1*Haziz*test(Haziz)-epara1*Haxir*test(Hradz)+epara1*Hradz*test(Hradz)))/(epara1*eperp1)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'}, ... {'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e2'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'}, ... {'(-(epara2*Haziz*M*test(Haxi))+eperp2*Hazir*test(Hazi)+eperp2*Hazi*test(Hazir)-eperp2*Hrad*M*test(Hazir)-epara2*Haxi*M*test(Haziz)-eperp2*Hazir*M*test(Hrad))/(epara2*eperp2)+(epara2*Haxi*M^2*test(Haxi)+eperp2*Hazi*test(Hazi)-eperp2*Hrad*M*test(Hazi)-eperp2*Hazi*M*test(Hrad)+eperp2*Hrad*M^2*test(Hrad))/(epara2*eperp2*r)+(r*(epara2*(Haxir-Hradz)*test(Haxir)+eperp2*Hazir*test(Hazir)+epara2*Haziz*test(Haziz)-epara2*Haxir*test(Hradz)+epara2*Hradz*test(Hradz)))/(epara2*eperp2)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'}}; equ.ind = [1,2]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Subdomain settings clear equ equ.ind = [1,2]; equ.dim = {'Hrad','Hazi','Haxi'}; % Subdomain expressions equ.expr = {'erel',{1,'e1'}}; fem.equ = equ; % Scalar expressions fem.expr = {'DivH','(Hrad-Hazi*M+(Haxiz+Hradr)*r)/r', ... 'Drad','(Haxi*M-Haziz*r)/r', ... 'Dazi','-Haxir+Hradz', ... 'Daxi','(Hazi-Hrad*M+Hazir*r)/r', ... 'Erad','Drad/erel', ... 'Eazi','Dazi/erel', ... 'Eaxi','Daxi/erel', ... 'comment','1', ... 'MagAziSqrd_2_pi_r','2*pi*r*(imag(Hazi)^2)', ... 'MagTransSqrd_2_pi_r','2*pi*r*(real(Haxi)^2+real(Hrad)^2)', ... 'ElecAziSqrd_2_pi_r','2*pi*r*(real(Eazi)^2)', ... 'ElecTransSqrd_2_pi_r','2*pi*r*(imag(Eaxi)^2+imag(Erad)^2)'}; % Descriptions clear descr descr.expr= {'ElecAziSqrd_2_pi_r','azimuthal component of electric field squared times 2 pi r','Daxi','axial component of electric displacement','MagAziSqrd_2_pi_r','azimuthal component of magnetic field squared times 2 pi r','MagTransSqrd_2_pi_r','transverse component of magnetic field squared times 2 pi r','DivH','divergence of magnetic field (should be zero!)','ElecTransSqrd_2_pi_r','transverse component of electric field squared times 2 pi r','Erad','radial component of electric field strength','Drad','radial component of electric displacement','comment','elemental volume = 2 pi r d_r d_phi','Eaxi','axial component of electric field strength','Dazi','azimuthal component of electric displacement','Eazi','azimuthal component of electric field strength'}; fem.descr = descr; % Descriptions descr = fem.descr; descr.const= {'n_silica','refractive index of thermally grown silica (Fig B.2, p. 172 of Kippenberg''s thesis)','eperp1','relative permittivity of uniaxial_dielectric_1 perpendicular to cylindrical axis','e_293K_alumina','relative permittivity of alumina at room temperature','c','speed of light (exact!)','delta_epara1','fractional increment (for determining filling factors)','delta_eperp1','fractional increment (for determining filling factors)','eperp2','relative permittivity of uniaxial_dielectric_2 perpendicular to cylindrical axis','M','azimuthal mode order','fc','constant used internally --do not modify','eperp_4K_sapph_UWA','UWA values for cryogenic HEMEX sapphire','delta_e','fractional increment (for determining filling factors)','e1','relative permittivity of isotropic_dielectric_1','epara1','relative permittivity of uniaxial_dielectric_1 parallel to cylindrical axis','e2','ditto for isotropic_dielectric_2','epara2','ditto but parallel to cylindrical axis','cMW','Magnetic-Wall-ness','alpha','penalty coefficient on Div H','eperp_293K_sapph','nominal room temperature values for same','eperp_4K_sapph_NPL','NPL values','mf','match frequency','n_AlGaAs','average refractive index of GaAs and AlGaAs layers (p. 172 of Srinivasan)','cEW','Electric-Wall-ness','mixing_angle','Electric-Magnetic Mixing Angle (in degrees)'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem, ... 'linshape',[]); % Solve problem fem.sol=femeig(fem, ... 'conjugate','on', ... 'symmetric','on', ... 'solcomp',{'Hazi','Hrad','Haxi'}, ... 'outcomp',{'Hazi','Hrad','Haxi'}, ... 'neigs',4, ... 'linsolver','spooles'); % Save current fem structure for restart purposes fem0=fem; % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'FlPDEW'; appl.dim = {'Hrad','Hazi','Haxi','Hrad_t','Hazi_t','Haxi_t'}; appl.sdim = {'r','z','z2'}; appl.name = 'Axisymmetric'; appl.gporder = 4; appl.cporder = 2; appl.assignsuffix = '_Axisymmetric'; clear bnd bnd.name = {'electric_wall','normal_D','tangential_H','magnetic_wall','normal_H', ... 'tangential_D','radiation_match','null'}; bnd.constr = {{'Hrad*nr+Haxi*nz';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {0;'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... 'Hrad*nr+Haxi*nz',{'Haxi*nr-Hrad*nz';'Hazi';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'Haxi*nr-Hrad*nz';'Hazi'},{0;0;'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'-i*cMW*Hazi*k*mf+(cEW*(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r))/r'; ... '-i*cEW*(-Haxir+Hradz)+cMW*k*mf*(Haxi*nr-Hrad*nz)'},0}; bnd.ind = [3,3,3,8,3,8,3,3,8,8,8,8]; appl.bnd = bnd; clear equ equ.dweak = 'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; equ.name = {'dielectric_0:vacuum','isotrop_diel_1','uniaxial_diel_1','isotrop_diel_2', ... 'uniaxial_diel_2'}; equ.weak = {{'-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz))'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'}, ... {'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'}, ... {'(-(epara1*Haziz*M*test(Haxi))+eperp1*Hazir*test(Hazi)+eperp1*Hazi*test(Hazir)-eperp1*Hrad*M*test(Hazir)-epara1*Haxi*M*test(Haziz)-eperp1*Hazir*M*test(Hrad))/(epara1*eperp1)+(epara1*Haxi*M^2*test(Haxi)+eperp1*Hazi*test(Hazi)-eperp1*Hrad*M*test(Hazi)-eperp1*Hazi*M*test(Hrad)+eperp1*Hrad*M^2*test(Hrad))/(epara1*eperp1*r)+(r*(epara1*(Haxir-Hradz)*test(Haxir)+eperp1*Hazir*test(Hazir)+epara1*Haziz*test(Haziz)-epara1*Haxir*test(Hradz)+epara1*Hradz*test(Hradz)))/(epara1*eperp1)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'}, ... {'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e2'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'}, ... {'(-(epara2*Haziz*M*test(Haxi))+eperp2*Hazir*test(Hazi)+eperp2*Hazi*test(Hazir)-eperp2*Hrad*M*test(Hazir)-epara2*Haxi*M*test(Haziz)-eperp2*Hazir*M*test(Hrad))/(epara2*eperp2)+(epara2*Haxi*M^2*test(Haxi)+eperp2*Hazi*test(Hazi)-eperp2*Hrad*M*test(Hazi)-eperp2*Hazi*M*test(Hrad)+eperp2*Hrad*M^2*test(Hrad))/(epara2*eperp2*r)+(r*(epara2*(Haxir-Hradz)*test(Haxir)+eperp2*Hazir*test(Hazir)+epara2*Haziz*test(Haziz)-epara2*Haxir*test(Hradz)+epara2*Hradz*test(Hradz)))/(epara2*eperp2)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'}}; equ.ind = [1,2]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Subdomain settings clear equ equ.ind = [1,2]; equ.dim = {'Hrad','Hazi','Haxi'}; % Subdomain expressions equ.expr = {'erel',{1,'e1'}}; fem.equ = equ; % Scalar expressions fem.expr = {'DivH','(Hrad-Hazi*M+(Haxiz+Hradr)*r)/r', ... 'Drad','(Haxi*M-Haziz*r)/r', ... 'Dazi','-Haxir+Hradz', ... 'Daxi','(Hazi-Hrad*M+Hazir*r)/r', ... 'Erad','Drad/erel', ... 'Eazi','Dazi/erel', ... 'Eaxi','Daxi/erel', ... 'comment','1', ... 'MagAziSqrd','imag(Hazi)^2', ... 'MagTransSqrd','real(Haxi)^2+real(Hrad)^2', ... 'ElecAziSqrd','real(Eazi)^2', ... 'ElecTransSqrd','imag(Eaxi)^2+imag(Erad)^2'}; % Descriptions clear descr descr.expr= {'MagTransSqrd','transverse component of magnetic field squared','ElecTransSqrd','transverse component of electric field squared','ElecAziSqrd','azimuthal component of electric field squared','MagAziSqrd','azimuthal component of magnetic field squared','Daxi','axial component of electric displacement','DivH','divergence of magnetic field (should be zero!)','Erad','radial component of electric field strength','Drad','radial component of electric displacement','comment','elemental volume = 2 pi r d_r d_phi','Eaxi','axial component of electric field strength','Dazi','azimuthal component of electric displacement','Eazi','azimuthal component of electric field strength'}; fem.descr = descr; % Descriptions descr = fem.descr; descr.const= {'n_silica','refractive index of thermally grown silica (Fig B.2, p. 172 of Kippenberg''s thesis)','eperp1','relative permittivity of uniaxial_dielectric_1 perpendicular to cylindrical axis','e_293K_alumina','relative permittivity of alumina at room temperature','c','speed of light (exact!)','delta_epara1','fractional increment (for determining filling factors)','delta_eperp1','fractional increment (for determining filling factors)','eperp2','relative permittivity of uniaxial_dielectric_2 perpendicular to cylindrical axis','M','azimuthal mode order','fc','constant used internally --do not modify','eperp_4K_sapph_UWA','UWA values for cryogenic HEMEX sapphire','delta_e','fractional increment (for determining filling factors)','e1','relative permittivity of isotropic_dielectric_1','epara1','relative permittivity of uniaxial_dielectric_1 parallel to cylindrical axis','e2','ditto for isotropic_dielectric_2','epara2','ditto but parallel to cylindrical axis','cMW','Magnetic-Wall-ness','alpha','penalty coefficient on Div H','eperp_293K_sapph','nominal room temperature values for same','eperp_4K_sapph_NPL','NPL values','mf','match frequency','n_AlGaAs','average refractive index of GaAs and AlGaAs layers (p. 172 of Srinivasan)','cEW','Electric-Wall-ness','mixing_angle','Electric-Magnetic Mixing Angle (in degrees)'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem, ... 'linshape',[]); % Solve problem fem.sol=femeig(fem, ... 'conjugate','on', ... 'symmetric','on', ... 'solcomp',{'Hazi','Hrad','Haxi'}, ... 'outcomp',{'Hazi','Hrad','Haxi'}, ... 'neigs',4, ... 'linsolver','spooles'); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'log10(ElecTransSqrd+1e-2)','cont','internal'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecTransSqrd', ... 'solnum',1, ... 'title','lambda(1)=3.532667e8 Surface: log10(ElecTransSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecTransSqrd', ... 'axis',[3.9701431492842536,18.97873210633947,-6.154601226993865,6.370552147239264,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecTransSqrd+1e-2)','cont','internal'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecTransSqrd', ... 'solnum',1, ... 'title','lambda(1)=3.532667e8 Surface: log10(ElecTransSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecTransSqrd', ... 'axis',[4.58200408997955,18.366871165644174,-6.154601226993865,6.370552147239264,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecTransSqrd+1e-2)','cont','internal'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecTransSqrd', ... 'solnum',1, ... 'title','lambda(1)=3.532667e8 Surface: log10(ElecTransSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecTransSqrd', ... 'axis',[4.58200408997955,18.366871165644174,-6.154601226993865,6.370552147239264,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecTransSqrd+1e-2)','cont','internal'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecTransSqrd', ... 'solnum',1, ... 'title','lambda(1)=3.532667e8 Surface: log10(ElecTransSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecTransSqrd', ... 'axis',[4.58200408997955,18.366871165644174,-6.154601226993865,6.370552147239264,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecTransSqrd+1e-2)','cont','internal'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecTransSqrd', ... 'solnum',1, ... 'title','lambda(1)=3.532667e8 Surface: log10(ElecTransSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecTransSqrd', ... 'axis',[4.58200408997955,18.366871165644174,-6.154601226993865,6.370552147239264,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecTransSqrd+1e-2)','cont','internal'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecTransSqrd', ... 'solnum',1, ... 'phase',(90)*pi/180, ... 'title','lambda(1)=3.532667e8 Surface: log10(ElecTransSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecTransSqrd', ... 'axtB!is',[4.58200408997955,18.366871165644174,-6.154601226993865,6.370552147239264,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecTransSqrd+1e-2)','cont','internal'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecTransSqrd', ... 'solnum',1, ... 'phase',(90)*pi/180, ... 'title','lambda(1)=3.532667e8 Surface: log10(ElecTransSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecTransSqrd', ... 'axis',[4.6,18.348875255623724,-6.154601226993867,6.370552147239266,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecTransSqrd+1e-2)','cont','internal'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecTransSqrd', ... 'solnum',1, ... 'phase',(90)*pi/180, ... 'title','lambda(1)=3.532667e8 Surface: log10(ElecTransSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecTransSqrd', ... 'axis',[4.6,18.348875255623724,-6.154601226993867,6.370552147239266,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecTransSqrd+1e-2)','cont','internal'}, ... 'trimap','jet(1024)', ... 'contdata',{'log10(ElecTransSqrd+1e-2)','cont','internal'}, ... 'contlevels',20, ... 'contlabel','off', ... 'contmap','cool(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecTransSqrd', ... 'solnum',1, ... 'phase',(90)*pi/180, ... 'title','lambda(1)=3.532667e8 Surface: log10(ElecTransSqrd+1e-2) Contour: log10(ElecTransSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecTransSqrd', ... 'axis',[4.6,18.348875255623724,-6.154601226993867,6.370552147239266,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecTransSqrd+1e-2)','cont','internal'}, ... 'trimap','jet(1024)', ... 'contdata',{'log10(ElecTransSqrd+1e-2)','cont','internal'}, ... 'contlevels',10, ... 'contlabel','off', ... 'contmap','cool(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecTransSqrd', ... 'solnum',1, ... 'phase',(90)*pi/180, ... 'title','lambda(1)=3.532667e8 Surface: log10(ElecTransSqrd+1e-2) Contour: log10(ElecTransSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecTransSqrd', ... 'axis',[4.6,18.348875255623724,-6.676925353434016,6.892876273679415,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecTransSqrd+1e-2)','cont','internal'}, ... 'trimap','jet(1024)', ... 'contdata',{'log10(ElecTransSqrd+1e-2)','cont','internal'}, ... 'contlevels',10, ... 'contlabel','off', ... 'contmap','cool(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecTransSqrd', ... 'solnum',1, ... 'phase',(90)*pi/180, ... 'title','lambda(1)=3.532667e8 Surface: log10(ElecTransSqrd+1e-2) Contour: log10(ElecTransSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecTransSqrd', ... 'axis',[4.6,18.348875255623724,-6.676925353434016,6.892876273679415,-1,1]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'FlPDEW'; appl.dim = {'Hrad','Hazi','Haxi','Hrad_t','Hazi_t','Haxi_t'}; appl.sdim = {'r','z','z2'}; appl.name = 'Axisymmetric'; appl.gporder = 4; appl.cporder = 2; appl.assignsuffix = '_Axisymmetric'; clear bnd bnd.name = {'electric_wall','normal_D','tangential_H','magnetic_wall','normal_H', ... 'tangential_D','radiation_match','null'}; bnd.constr = {{'Hrad*nr+Haxi*nz';'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... {0;'-Haxir+Hradz';'-(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r)/r'}, ... 'Hrad*nr+Haxi*nz',{'Haxi*nr-Hrad*nz';'Hazi';'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'Haxi*nr-Hrad*nz';'Hazi'},{0;0;'-(Haxi*M*nr+Hazi*nz-Hrad*M*nz-Haziz*nr*r+Hazir*nz*r)/r'}, ... {'-i*cMW*Hazi*k*mf+(cEW*(Hazi*nr-Hrad*M*nr-Haxi*M*nz+Hazir*nr*r+Haziz*nz*r))/r'; ... '-i*cEW*(-Haxir+Hradz)+cMW*k*mf*(Haxi*nr-Hrad*nz)'},0}; bnd.ind = [3,3,3,8,3,8,3,3,8,8,8,8]; appl.bnd = bnd; clear equ equ.dweak = 'fc*r*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))'; equ.name = {'dielectric_0:vacuum','isotrop_diel_1','uniaxial_diel_1','isotrop_diel_2', ... 'uniaxial_diel_2'}; equ.weak = {{'-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz))'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'}, ... {'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e1'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'}, ... {'(-(epara1*Haziz*M*test(Haxi))+eperp1*Hazir*test(Hazi)+eperp1*Hazi*test(Hazir)-eperp1*Hrad*M*test(Hazir)-epara1*Haxi*M*test(Haziz)-eperp1*Hazir*M*test(Hrad))/(epara1*eperp1)+(epara1*Haxi*M^2*test(Haxi)+eperp1*Hazi*test(Hazi)-eperp1*Hrad*M*test(Hazi)-eperp1*Hazi*M*test(Hrad)+eperp1*Hrad*M^2*test(Hrad))/(epara1*eperp1*r)+(r*(epara1*(Haxir-Hradz)*test(Haxir)+eperp1*Hazir*test(Hazir)+epara1*Haziz*test(Haziz)-epara1*Haxir*test(Hradz)+epara1*Hradz*test(Hradz)))/(epara1*eperp1)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'}, ... {'(-(Haziz*M*test(Haxi))+Hazir*test(Hazi)+Hazi*test(Hazir)-Hrad*M*test(Hazir)-Haxi*M*test(Haziz)-Hazir*M*test(Hrad)+(Haxi*M^2*test(Haxi)+(Hazi-Hrad*M)*(test(Hazi)-M*test(Hrad)))/r+r*((Haxir-Hradz)*test(Haxir)+Hazir*test(Hazir)+Haziz*test(Haziz)-Haxir*test(Hradz)+Hradz*test(Hradz)))/e2'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'}, ... {'(-(epara2*Haziz*M*test(Haxi))+eperp2*Hazir*test(Hazi)+eperp2*Hazi*test(Hazir)-eperp2*Hrad*M*test(Hazir)-epara2*Haxi*M*test(Haziz)-eperp2*Hazir*M*test(Hrad))/(epara2*eperp2)+(epara2*Haxi*M^2*test(Haxi)+eperp2*Hazi*test(Hazi)-eperp2*Hrad*M*test(Hazi)-eperp2*Hazi*M*test(Hrad)+eperp2*Hrad*M^2*test(Hrad))/(epara2*eperp2*r)+(r*(epara2*(Haxir-Hradz)*test(Haxir)+eperp2*Hazir*test(Hazir)+epara2*Haziz*test(Haziz)-epara2*Haxir*test(Hradz)+epara2*Hradz*test(Hradz)))/(epara2*eperp2)'; ... 'alpha*(Hrad*test(Haxiz)-Hazi*M*test(Haxiz)-Haxiz*M*test(Hazi)-Hradr*M*test(Hazi)+Haxiz*test(Hrad)+Hradr*test(Hrad)+(-(Hrad*M*test(Hazi))+Hazi*M^2*test(Hazi)+Hrad*test(Hrad)-Hazi*M*test(Hrad))/r+Hrad*test(Hradr)-Hazi*M*test(Hradr)+r*(Haxiz*test(Haxiz)+Hradr*test(Haxiz)+Haxiz*test(Hradr)+Hradr*test(Hradr)))'}}; equ.ind = [1,2]; appl.equ = equ; fem.appl{1} = appl; fem.sdim = {'r','z'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Subdomain settings clear equ equ.ind = [1,2]; equ.dim = {'Hrad','Hazi','Haxi'}; % Subdomain expressions equ.expr = {'erel',{1,'e1'}}; fem.equ = equ; % Scalar expressions fem.expr = {'DivH','(Hrad-Hazi*M+(Haxiz+Hradr)*r)/r', ... 'Drad','(Haxi*M-Haziz*r)/r', ... 'Dazi','-Haxir+Hradz', ... 'Daxi','(Hazi-Hrad*M+Hazir*r)/r', ... 'Erad','Drad/erel', ... 'Eazi','Dazi/erel', ... 'Eaxi','Daxi/erel', ... 'comment','1', ... 'MagAziSqrd','imag(Hazi)^2', ... 'MagTransSqrd','real(Haxi)^2+real(Hrad)^2', ... 'ElecAziSqrd','real(Eazi)^2', ... 'ElecTransSqrd','imag(Eaxi)^2+imag(Erad)^2'}; % Descriptions clear descr descr.expr= {'MagTransSqrd','transverse component of magnetic field squared','ElecTransSqrd','transverse component of electric field squared','ElecAziSqrd','azimuthal component of electric field squared','MagAziSqrd','azimuthal component of magnetic field squared','Daxi','axial component of electric displacement','DivH','divergence of magnetic field (should be zero!)','Erad','radial component of electric field strength','Drad','radial component of electric displacement','comment','elemental volume = 2 pi r d_r d_phi','Eaxi','axial component of electric field strength','Dazi','azimuthal component of electric displacement','Eazi','azimuthal component of electric field strength'}; fem.descr = descr; % Descriptions descr = fem.descr; descr.const= {'n_silica','refractive index of thermally grown silica (Fig B.2, p. 172 of Kippenberg''s thesis)','eperp1','relative permittivity of uniaxial_dielectric_1 perpendicular to cylindrical axis','e_293K_alumina','relative permittivity of alumina at room temperature','c','speed of light (exact!)','delta_epara1','fractional increment (for determining filling factors)','delta_eperp1','fractional increment (for determining filling factors)','eperp2','relative permittivity of uniaxial_dielectric_2 perpendicular to cylindrical axis','M','azimuthal mode order','fc','constant used internally --do not modify','eperp_4K_sapph_UWA','UWA values for cryogenic HEMEX sapphire','delta_e','fractional increment (for determining filling factors)','e1','relative permittivity of isotropic_dielectric_1','epara1','relative permittivity of uniaxial_dielectric_1 parallel to cylindrical axis','e2','ditto for isotropic_dielectric_2','epara2','ditto but parallel to cylindrical axis','cMW','Magnetic-Wall-ness','alpha','penalty coefficient on Div H','eperp_293K_sapph','nominal room temperature values for same','eperp_4K_sapph_NPL','NPL values','mf','match frequency','n_AlGaAs','average refractive index of GaAs and AlGaAs layers (p. 172 of Srinivasan)','cEW','Electric-Wall-ness','mixing_angle','Electric-Magnetic Mixing Angle (in degrees)'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem, ... 'linshape',[]); % Solve problem fem.sol=femeig(fem, ... 'conjugate','on', ... 'symmetric','on', ... 'solcomp',{'Hazi','Hrad','Haxi'}, ... 'outcomp',{'Hazi','Hrad','Haxi'}, ... 'neigs',4, ... 'linsolver','spooles'); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'log10(ElecTransSqrd+1e-2)','cont','internal'}, ... 'trimap','jet(1024)', ... 'contdata',{'log10(ElecTransSqrd+1e-2)','cont','internal'}, ... 'contlevels',10, ... 'contlabel','off', ... 'contmap','cool(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecTransSqrd', ... 'solnum',1, ... 'phase',(90)*pi/180, ... 'title','lambda(1)=3.532667e8 Surface: log10(ElecTransSqrd+1e-2) Contour: log10(ElecTransSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecTransSqrd', ... 'axis',[4.541935483870968,13.458064516129033,-4.4,4.4,-1,1]); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.3a (COMSOL 3.3.0.511, $Date: 2007/02/02 19:05:58 $) % Some geometry objects are stored in a separate file. % The name of this file is given by the variable 'flbinaryfile'. % COMSOL version clear vrsn vrsn.name = 'COMSOL 3.3'; vrsn.ext = 'a'; vrsn.major = 0; vrsn.build = 511; vrsn.rcs = '$Name: $'; vrsn.date = '$Date: 2007/02/02 19:05:58 $'; fem.version = vrsn; flbinaryfile=''; % Plot solution postplot(fem, ... 'tridata',{'log10(ElecTransSqrd+1e-2)','cont','internal'}, ... 'trimap','jet(1024)', ... 'contdata',{'log10(ElecTransSqrd+1e-2)','cont','internal'}, ... 'contlevels',10, ... 'contlabel','off', ... 'contmap','cool(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecTransSqrd', ... 'solnum',1, ... 'phase',(90)*pi/180, ... 'title','lambda(1)=3.532667e8 Surface: log10(ElecTransSqrd+1e-2) Contour: log10(ElecTransSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecTransSqrd', ... 'axis',[3.48994996273821,14.510050037261793,-4.958309379325032,4.95830937932503,-1,1]); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.3a (COMSOL 3.3.0.511, $Date: 2007/02/02 19:05:58 $) % Some geometry objects are stored in a separate file. % The name of this file is given by the variable 'flbinaryfile'. % COMSOL version clear vrsn vrsn.name = 'COMSOL 3.3'; vrsn.ext = 'a'; vrsn.major = 0; vrsn.build = 511; vrsn.rcs = '$Name: $'; vrsn.date = '$Date: 2007/02/02 19:05:58 $'; fem.version = vrsn; flbinaryfile=''; % Plot solution postplot(fem, ... 'tridata',{'log10(ElecTransSqrd+1e-2)','cont','internal'}, ... 'trimap','jet(1024)', ... 'contdata',{'log10(ElecTransSqrd+1e-2)','cont','internal'}, ... 'contlevels',10, ... 'contlabel','off', ... 'contmap','cool(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecTransSqrd', ... 'solnum',1, ... 'phase',(90)*pi/180, ... 'title','lambda(1)=3.532667e8 Surface: log10(ElecTransSqrd+1e-2) Contour: log10(ElecTransSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecTransSqrd', ... 'axis',[3.313379310344827,14.686620689655173,-4.4,4.4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'log10(ElecTransSqrd+1e-2)','cont','internal'}, ... 'trimap','jet(1024)', ... 'contdata',{'log10(ElecTransSqrd+1e-2)','cont','internal'}, ... 'contlevels',10, ... 'contlabel','off', ... 'contmap','cool(1024)', ... 'arrowdata',{'Hrad','Haxi'}, ... 'arrowxspacing',15, ... 'arrowyspacing',13, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,1.0,1.0], ... 'maxminsub','ElecTransSqrd', ... 'solnum',1, ... 'phase',(90)*pi/180, ... 'title','lambda(1)=3.532667e8 Surface: log10(ElecTransSqrd+1e-2) Contour: log10(ElecTransSqrd+1e-2) Arrow: [Hrad, Haxi] Subdomain marker: ElecTransSqrd', ... 'axis',[4.181241379310344,13.818758620689657,-4.4,4.4,-1,1]); uq~pt6clear mfile clear vrsn vrsn.name = 'COMSOL 3.2'; vrsn.ext = ''; vrsn.major = 0; vrsn.build = 224; vrsn.rcs = '$Name: $'; vrsn.date = '$Date: 2005/10/24 07:30:19 $'; mfile.version=vrsn; mfile.fem='fem'; mfile.stored={'fem0','fem1'}; mfile.tags={'g2','g1','g6','g5'}; mfile.types={'draw','draw','draw','draw'}; x

 n>d?>Ίc>3f0>z>++F>9>9>>(+>ClQ;U>w> ƙ>m6a>h1>|Ț>*)x>ňUo>"I >D۵>oqDnj>dc4>܂+>z*X>Z8)P>hu> >=V>1MR*v> WU>xk>ƾ2q>ccK<>%٩>R >@> +>P>7dݚ>*,H>w S?Rp)?$y?ԼRg2% ?Ѝ;~V>s|r=>! .>ԃD>D3>Xx?2?J?p|B ?.:Ҳ?^L§ ? ? _;?Z?۾b?6 dR?ͳS>>}>ci ?c?fDB> E>I<=>1L>(MU1>05_>tAd>&z">~>i?#4>MW6 >k >&t->䟋b>-:x>Ŵ]i>1;>>>_TGP>1k>m۱"8>X~X>>DN>pY>q܍> m_ >]Cg>kR؟w#>^tf>M>?>I29v>6Bʘ>qli> <">n#>١.>vLa>.(>7, >Ci5>CLM >;6\z>(ך>ǧ ρ>ؤȜ>y}{>"C8> +>q>GKr>XyVś>b_b>~ >p,>XAj)> ?>*+μ>0#y>uJ >=R>uF>>;c>,YA>$qe4>~8>[%d>qP>||>y2(_>¡N>Sdn> /^D>&>ʱJ]>CLR>AJ> >(,<>\>;a܌>z`>Q֒8z> ke>Y<-c>j0>I2g >芈>Nn>MZQ.> rո>?D>En#u>ZT>pNNa!>#>m'&>AB5M\> \> ;>@I>^{n>ŐT桖>|n>7қ2> C>$aG>>Z >Ҫش>WTЧ>у>\\|>S~> ?>3mt->Kз>:.>L0bt>8r>$_B5>8LwϜ>G2܂>U>@>h+>>YP.|R> "Fo>al>>C2>JЋA>֎0>f¨>4 >w>¼>B>/3I>[D>uuK?Z1>ݺO>@t>_J>j8A>A >ƄS> ;>4A>ҕ>:d>%q>հB>X5>Rvn>(5͞>Y?>$*?2>6Pss?#intTW?{ԓ?ݢu#>9TVD>!??nFO]?g ?RNja?;x׬?&?ja?z `?D 3? [?yVC?6*P2w'F?&AG?GOA?a;E?qH?pkLv @?L# Ti;?WUB>?#&$~:?k7suZ9?:&Ϯ4? 78?O!<G9?]DE? nD?qD?i@XH?<*۩m1C?2݁=?7?Bj*1?Oպ˫/?-*+?Њ(?M7~լ(?8Y2?BU1?儽o`U2?=51?o̍&?a`*?E>?O?g,"_!?yT$?l!jʠ"?ံr!?X͂? Rp?!*W?h!\1?Z%6.?(_ )?γM$?w&ѥ?\ۈ#?,CC?96&ZJ?U[?G)??VdX$?O-/ ?UP~6?Omv0V?GQe? y"?ar2(?!?ǒw3:?", ,? fsh2?{ru0?T](?=!? 0. #?2%'?\:-?ĉU0?^*S/?".?~ f6?d\{3?#d1?DLM4?GS7?wM Lc?jnVP?,{K?i_T?SS?!z|Z?]Vt?Y?A8y{Z?*w\?ரc'_\?AX? /nZ?끆V[?2Ch`?fCN`?J]fH`?=]~v]?v/a6a?7Va?)h`?hU4`?j۹`?Д’_?`C^?kta?t[?FEW?cqMW?fR?r9A[?w?V?[ !U?]j!^[?DZ5X?R qLZ?UH]?{܆^?'d\?HwZ?GBW?WZ?mNE4W?|oVB vT? ߸}U?GU=T?ېJ"Q?޳ -T?tuYQ?hQ>*O?V48F?=#DS?gpTL? _:/G?d}sD?SG?`7lPrV?,twU? \?xpZ?E JW?撟K[^?ܝ`?&a?ya?"a?pmeE`?8j_?V`?3;Y]?KZY?::ߩ^?d  [?cGNMY?Ok6`?fF$s_?ˬ^?[\?SC [?YC y4[?uOwY?!~Y?%x\X?.XHV?8VT?ACS? >*W?wP?90'WQ?[qjS?uT?,ǣU?` S?9#P?!)~8Q?b*nL?kcaO?LmtG?\x9I?erJ?i=D?k<$B?9PORvo<^|ΏΧu+s5=B=bF^! Z>{!>H=+ > >mx؎m1>WRVK>_ݡY>捆|> i>ӻeP>fSX>$~W>%le>_YE>~8>S@;>u-b>>xSG~>"xu>.ikS>ǚ|WF4>,d;>-ubϵ>Pf>;IS5>QWb>>ۈk>c+>9>q}:D>>mZ>[>q2, ?`Z7?N5=#$-9B<>Qm<8, =%<@=/Z->7\_J>S3>?3U&>YD(=UU)뭁pd< ġbǶGu(?g=_(<=⁼TE>US=!=29t=" \=Ajc_~>W=9>^lG>T+^>[A ;Ҵ>wF>#>$y> ,>c$+>],C>F>$Ɓ9?ۃ:3>x?I>XYbC>a1jyr> XB>[T> A>sfQs><45>tB>5Lя>3 |>'J(t>x>cS3`>ʱ-M> =Mc>Q Ee>)0>>{P?I5>)$W'>>%'>%> J>@4\P>x$g>+@j"?jhC?ɜ?:t)?ļ-)?n ?Y>}% ?UFp?ň5a>>8>5C>yc>o >7#r Ǖ>̈= ?%6>.7j>F >)a,>$M\m??1_Ze,?Hs+?lqd?+jU?)g$>hŷ>Q(>B6ܱ>l[ >8|>4m>~l˸>|d>$GR>nT8|>ߛg>٦>≵K>>J>b>ErK>uZp>8:#c{>w>U>>f?>,>PN)q>&IZ>p(8t>?f&>`>>mR)>֣>Ww>Ҁ,?}W+>@j>%|7>޲/> >8Hο?8?>$0>$*4>aq7ي>tI].>^>3?F">}H}>E+^>J l|$>cB|A>Zɯ=@mYj=gL>M\>Xx#>`G;>%e>k J>R>/Ʊ>s |?F$ ?Q!>[>6N['?,$?+ #?h+!?|! >3>`*[>@%H>buh>)OP>\ 乊a>}w{>8-j>Y>c[É> ϻ#>'K %>\(>^%̄>p>VV}9 ?i|?/yTT?ȯ*n?Z'Q?0./-?1?J#n6)?/`#?y |?nR-/>zU?Ppȃ ?UR>۱>E$.> DHR>#>]l>iFX >huU>`q@>u8*o>׵>#b>Yu`>I=>ʂUH>`d?ߝg]?bv>|4r>ubξ> >FTX>>62>kJ?>^F>>B,%>uԄ S> fz>oݡ>- #v>^F<>KňPҾ>Gu>0{>}]Ds>N>@El>9%i> )T>Aw{0u>M[p>x["=?$>=2o8>{ʧ~}>,y>i<ﹹ>o?ry?mUF ?>`1>V>lE`>*dZ9> yT>u.|L>3LxT6>W*j>;TL@?BZ o0?ݿB>'?t<?V|?6_B?ۿи?G0?ݘ2 ?S t"?ɰ?N>i?Yf*?,MIOC?8ʂ=?"@?1L?X4M?SO6N?>O,W?q")U?A"Nv.R?^GC^G? y(sD?}OeJ? 600"R? UV?0b`<\?e!\?S^_?3a?Qk`?nc٥U?imQH? 0F?w㗩:?ܢtc3? tiE?GnbqA?<[=ٙU5>zW>Tw?.>L`;Sy ?Nbf>@;? aex?{r{>ky>@>[4(>b NT>D.>>~n䀽>l>9O>~~>r:1 >= >aǃe>i8I>2Ѥ>r+,>>QHkx>-"1՚y> f>0O{>'r4>7 u&>ܴ>Lj^\>T:r>!4k.ClW=A;ZH=pJδ=y|>'z5z>yple>/n0M x/?6$?NS ?## ?>2e J>p誇0>{Sg}>qޯ)N>*85->e~t> ,> )>ƀa7H>)?/ ?Х ? R?a4>VkOo>Ei&>Mp4> >2*>,!¢>VU؄>ZQQJ>>L:(Vc>' >pg>1 !y>"p_>i>'rHI>Y<⟔>[>L@m'>a>gY>Tx>>l} ? A|? {?-@^|"?s c0?*œJ? 65A?pF6??eV}>?sp1?sK+?S1/?xJu "?n0n%?^H?p}O?vmm52?QW0?PeS5? 8?/H?\ZHM?pE?rp@A? Өz;??W~A?(R?9-Q?T?(d1@ɫW?vAmtZ?XY]?'FpQ?d6T?^jHN?&D _?Ȣ`?cc-v[?9Z?\فfV?*d4O?{yg}_?<^>X?k@a2W?tQ U?/d%M?UW<_ZgV1</QW%- {yf@Z_d'/=s<(:D u9Y(l=ܥd1G=J-ze=3S3=7=:k3e=. U=]A+3=\vo*=Rl[< P =&=D6tM=Č_=W5=ρR=!&@=3qK=8=b=GG=ꑣF =*!u^t=>q n(=g=z=C.힌=#F%ˎ=ɺz=atЧ=G=6 =^#==F24 >T˛Yk">-٭ؙ.>&Ro>%ر=Q<=W/=5B>.=#>;7ӧ >/t>b=Kd9>NR_>)pg/h> .rlnI>lYxHTJ>_Qq>6Lr>ٍ@>Tp/y>4p>le{ GPK>9G1>2ȰlP[>ѝq>=Els>͏<>Ւs>>.F66>ݜb>{:>J=tS>1f =h~em={M=5e~ Ǘ=g}3=9WO=/[^M$=cƽX=}`=V!#We=bhf=٤|T}=f={@sӔ=/ B=7UC=?{j=*+M=%Qu>wu,=Yw! >$fY3>6J%=++xL=elx>]!p#>U'L>*vG> ׍nX>֜]1r>yx >>O|>L:b>pI>Ik]%>L/(,>.BO>ޒ*Q>=^{(u>%(2le>fr;W>R>JT>jL>-7>t(ׄ>Ehyo>/e>$m>0^>>WJQqS>:&h>چD>&"}>R$7>SN%>5U>jc>fB>/?R>Z.v>}C> %\>EpG\>d"#y>:۶ך>q b>ٺ!">1 >]U>e^xj)>Gd> :}S ?~ ?gP,>AbU?gt? Я: ?Y6B>XΏ=g]=(y=a=j>=բYu>B+^>uL ҕ=Oo>F_k<>VƬ>׶=sw?=q |=Ck=yxk= hD=;>=!-_=@[o=!138^== =a=uQ~D=d(G=$xdW=#Ee=s:Dn=sHEQ]=Nrx=m6={'tT={oT=Om]?=9<Ƴl<퐐P,2Ͻ#>MMŀu>k4=g>D=z]y >r >24="= r=G X=dc /s=Br7d=3V=a=R=!5={͌<ۍ.<7,muj< lpe=v7;>kO9>rA>`: >Eu\(=,=/9!= ]F;;=ר>o%{>(pM{>x8>/E>E,'nt>~1as>]@Lq>ۯ_a>:̓0>SAz>1)xE4H>4;b>!qi>r G]>&wQOi>m>*N6 >_r86><>s@>vP>Gڵ>ƺa>|t>+nO>C>M! >ɷ>x >p%^+>Go.>^1(?xY?zRog? $!?Y><]2>@=_eB>M~>Rj>/;҈>=c&>V~>OYd>N${a1>R>IW~볦>X߅>gg>RR}D>y"V>5sg>'>!n>~> [j'>٫Wg>m7Xp>aN*B>HV!G>2$>Ft =>|L >H ΃>pc47>ŻQb>D|>{#OZ>Bc/r>#80 >SZ> yR>2YgR>Dh>䮅v>4?}Q%?_g=,?PkZ1#?r7VE?# ܧz.)?ȽJ{ń1?&cX+?C[_ '"?3?VMm>:;O ?'F C> >">?AC>39H2> >`N?;>q;>${>㜢{ ?n{?7]f?ZXlG#?ft,?8lBc&?W7p,?2?E?6t0V?iK?8W->Ճ>f{/s>)Q>)>4~>s5>7)>/v>#3)>^d">L;>bo:P>>v7|>V>Ɔu'>"B^~S>b|ƨ>(,>jn>:>7u?>-־>O|֯>'i%>18>@el>he>*̚o>PvUe_>ؔ:>, 0>/>_ >C>s>;[ә>/HO>&88>sPua>=$I>jO>ctk>8 ;˜>;P>Py>j~>c[>>c/~Ԟ>F+>e}>Ug0{*>J[t1q>3:~>'TQU>o軓>ϧ>ex>ct>gNJj>Se>M3">F4e*1{>][>)?>٥><s#w>zśּ>s>x qڗ>m}>bQ;/ݘ>S2b;b>-T>WY>r C>=hv>{9>T>VX>^^O>dM> >*R>qQSS>jY>D.oK>Y0^g>l>E(i>2>]g@>`?f# ??e6i"?!~?.ɻ>]5j>; >B)>LeA>Y>jVK6>f"8>fG^>=>Z>6?V C?>.>#I>PD>v%>i >PQ1>|*}>TSv/U>iiP+]>#Tr A>+`Ij>;pBNWq>ΓHlx>oIy_>-o3V7K>#?B>*F<V>$UcE>=cXf$>P@2H0>*'5>zG%/>5n8>l[>6 >x>  =A~rc>D>R7 >Dl[*>5Y 5>F>;6L:=xbb=4ha=+W=$E8[=#=[Yٰ=TČ=N=,!p=FN=`= 6>5HmB=.ɇ>!ڝX$>ŷϣ>=#Sd>'E=k >eI>F,}E>췂:Y> k>>U[ag\>%bY6>@bJL;>D4F8>5L1>Nz{26>$- S>U!ea>J~o`p>| z>w >*zV%>ޚH h>>S)>Hd\p>X6z>Õ> &>}&s.֚>⍈ 8>$^>>{ߤ>ern;>Qer>.҆bw>jf>GψRL>b}sDM>:}gBV>aF2Ll> tr>Y[mi>/\>V3h> < t>uNIk1}~>F'>ݧv>)+>'[ɍި> >٬\>FꕵƸ>D>pxiB>KGA >X>SG>C$-&A>fM>TgB?_b>Gb+>^H>4>@O>:>M>Vf>xɋ> >l>N>C 3>&>2E6>#8>Qd> cMR>ʴ|> I-^>'#Gj>}H>W>. ¯> ї*>݃B>E:>04>k~5>f+P1>0!>>{a>>R>c'z>?:Y>d >7([>>n>? rd?!ط>lɂ>+x_>!n>CڟO>>sfW>a{>`>-ȑh&?(Z?96.?<'Y4? L?hO?ar?TqڗB?2Fb ??K%[?p ?`(4 ?@G?_Vy?N PM?#?7u"Ny ?Y?~+n?f#??w3?T ?89"?n=$?ap_!?w@ ?*4'!?ff8%?޹a$?XGAs!? m ?@%3"?*}m?6?a?}ə ?m> ?4 Bh?"P?>N?H9?2u\?ya,d_ ?uo[>dЇ??~¹jϘ>-څ>}p-$>\8l>:>U'>=RA>zb>g5h>@fa>0 2;>d11>`wbl)>'OS>'fЃ>>_ >OTϿ>#>)x>f>'>Z3~> ퟊\>vDQe?/v> y&?dF? ?A(*oS?8OF&>`|>jAm̀>\Wp?>1`S`>R.>T t/>p=j>mӻ >.Fޟ>v,b>U!v>ӪbN>j>s ?~{>*D4>rY>bZ>vq>WX>ojʜ>|߶ ?_&[1 ?Qan`?a 8W1? "TN?8?4Y"?eJV?tCY?1+ ?e? &S> ?`F`f?)Q%?E'K ?ꂒ;?ݤ? w ?sR;$?!#o&?9J)?lk}"?X1=(x%?Fr%?i+Yt&?Y$'?9Dd"?ZƜ!?e$`y$?8ۙy?ZNQ?3X& ?#?C^?`wV?~7"}?U ?z\k ?8|cK?!??3!? 9$?ˊ%?&ʡ&?a\#?ulՂ&?t"?y?J" o#?{q9>$?j=6"?⢵?&!?hg^o?dNϿ?|ܘ?V?.R? ?H?) ?UyGǚ?"?e耷?>d|]6?G3wB.?Ԭ ?%;O& ?>?j>6>s>j[>w>oe.> N> )Dc?,i>wQp>]_n>goI <>i&tv>o>|> ڻ>g>QlWi(>yɼ>-R>>E! `>|n3>>/׭>΄>HJ`0>K>©{>(Y>CƅN>ڼ2>>ˤ1r>zn6> e>`ǵ>w!>;oKL>_ҿ6>6Xu?ZY>{o&>ct> >q4?FwO> >)z&[>4R>-gM>+a>5ޙ>H!>wUٰ>>A'P>Z - >JϦ>يN>sk>_>XAT>a ; >;$HN>_>_6?>fG=l>2a>\>{ S>'^n> 3%>)iL>WS.?,z`[> 3>a 9?{"?Ew?BbN4?4\4?4N)?BB3?9Sp"?z^^F ?ּ8J%?tiT"?B,o.?'P w?3M?5EjyK_>~ ?0gt}2*?!Qj?*?B7xg?@r>gl>M]%>T-Ru>GT>o />2>I>Q$<>y->}%P\>2/>A4ո>H ~A>J\>ؑ=>NB>* l ?;-?ߝe?wf?V^w>"O6 ?9Q>R> >^9Q>Ϻ>E>/>CNW>Y*>6> Z (>tO >F[n8> >g>]⋆>-%Cí>:+ z>(Wm>H7>9">b@>Pwv>s>"2_y> Xr> f>1ă>V痋>>YI@> 1Z3Ƌ>XEDW\>IMD>J >UB3>3wS= >}̾>ר >>I{&>>>A 9>i"ϧ>ԈZ>X[*]Y>ʰ>y2ӥ>z>%TN>fF>s>>/Q>-%>jκW>N`ʁ>0kz>ha>Aπ3E>r˜>CE> ]O>Tx>'4^>hwwk>Gd>O?U>O9P>+9>}>>aV 7G>qL>aV6P>~6rs3u>~uAkk>TlCf>yyU>g5c>9GW>0|| K>-aK>Ԝ1Ni>> >SV]5l>rl>fc)V>Ss<>]Ƃ \> 76>Uڜ6>07>kT/>oR5=frlp@>Af>fW>Rb+>H3E/>uI\n<>U,8>ָ&>rn$>.W6>ס>e[wv=#=l>ʒ=q g=FD=w$`=t=O`=h(=cCۑ=||='F IP>1T{bS>60A>}Vu_5>jp(>!7e4>K(.;>3SP>}+^>Lύb>熥f{>v<{>ZQGvq>7;>Rр'>xfE~>Wǘ>&1짍>#|>8l>eԽ>ց`q>ۗȜP>zIB<>ڽ>S~2>q>$2? B>\8~>0tQ>.K>"B{>sf|>82>)V+*>kSU ^>M;R>D7->ne9ۺ>*] >̄*4>8ŗ> | >S(6 >1>I> @}V>aJ߲>X,S>Goa>z>aO5XC> >:M+>gwb>ol>&E>|k 4>S7m>edY>6C=N>6>bgI>;Y C>>AqCQ?.JwD+?{XG%?m*4 ?̱3 G?!'?:i)?q#?0,?6z? b?Gu?Un&?ޏb?2 ܚ?xZ?ՠ#? kG9?t+?+?u a?#%\?svD ?,?b/9?Cs?I>I>ht>5p>3U>]=9>y^xz>x+}>PS>P%R)>(V>L;(,>O~;?̘i>t}>bE>@4w> rY>Xj>{D4>6Gp$*>06%N>2tN>{>>ր[Җ>ya> @c>¾>,{(oW>qhP>+>*L!?vgUP$2?̦2?)?{Vɿ^.?#Ocs?3??3<?-o(?g{>.>W@/?aK ?Ԉ_?bb;?E%܄?0M ?9}v?F\?(O)?8$="?G=8?fwP?1S?eB}8H?=A?ihH?X"CP?0U%`G?m}@R?KO?3stqU?X?\5ΞEO]?MZ?E2'V?&[?2_6a?vIKVa??maS?`V?8eO?Z~@bD?H%>? :S :?D0??/-gKH?|lC?r1>47?j{'?;p2?E(?~?E ?kȊ١%?| 62?x0 Q9*?,e ?C9c ?,>Z_@>P{>Ą>>&>\~\>k!>]@|)>̘d?OFVO?ܷ;?{)1?{7!<?* |X?!>dV@>F.c>HZ>,nJݗ>.2&> ];|>:I>>]QG=>>+Ģ/zֳ>E>p칖> AzM{>՘`>:>84Ue8>+`1e>-W>{!>auǵ> 5&wV>5#P>v8.>-?s><,I>)A>7c/>a^~>f)>G)c> g>z2Br>W`yR>pL8`>ۢ6/*>#:] >MB_Y=u=XӜ=\ʥ=*=i=9.\l>Ļ< =:V5=oW(U<ų<6<|ad<3*<"ٺ6=7/ҳ=* ;<V<,kK6<ս}&=.7K=|]= I=)rh=Yd?={9L=~'=iO>j5!>qN8E>} R> r>ir\L5t>Dۋ>dp> {F>o rP>E>c >_/@;0?O&g {>oJH럋>vHӒ>ޕw>C{>-wư>6sDy> 8>y) >(9>>,><0>Q)>o%y>cs>>+q > S,?`sW2?ie>E?eJI?YU?6M.?=Qb>ϓ!>c >^>E/>-s>v;>">2'>ՕwfT>HϬ>-A>7>KnB>ga,l>^ݒA>sç>$.䁹>T0ٸ>N`>TtЃ>©).>s>5I.m>:M1r>b~>)ܨ>ꨁ>T(J>AWY>AȨ>>/H~j>2w{>z N]>$#>аۑ>ֺ>Rj>K78>HԱX<>9½G ?Xg@? ?yN ?h?0y>Hp%?t$n$?x *?7ޢ2?DZB?;tt6?2b:?ftC?-]=7?E +/?z0?mAq,?ArJA#x??9Z#?{qA+?WU?Ʊa?f?0?%?Rί*?&mr1?_:?PM5??? H?dW=J?oci O7?@?Hp{~"{A?D?mҍN>?uFA?};F?2cRO?H nX8+R?30NSW?L]?CnAW?⭳Q?^(3N?@g4V?ZP?!1H?Q[M?{gU{X?Ir[?'him^?/z4^?LFNWa?6@fR?RzV?Q?.^?:Z?DW?V wO?ĒKI?R3R?=A?o<K?R?_+sR?v)Q `?`?s[?ʨzE\?$F1Y?=HU?c5m,P?)bx I??PM?5@;qU?C8Q?hD?ʋ@?oDy ;X؏$<ȷr<}\_| Uys)b]ν< j T<q<s=~.D6=qW 7Z=hVZ*yk=Y\Pw=`^B$=$:PY=[R2 =ݷ:=$O=l5+^=7'Nr=|KysU=Vѳ=$-="=o=&| =xj%%=hYu >F[x1>=RX>5x! >WN>V*I>JP>ೲ)>vsXd=p+oe=1=s*y=CvQ=s0=Q@">ɚ2 =h0(@>+7(>^fJ->R>(9S8i`>FxN>~4}>x]Ӟɀ>Y}w>xɋT>a@E{@>Ǭ#>c2L>`>V_^i>QکR>]l=d6>Pr>Ϝ>J]y>X^ >|>o>ҜE>.qz>;BO>`.F>==> &>ݚ>~kW>B);>>˨D>!>J{>3XO>o2"~>PeQ>?]">K>%&>` ->E_rk ?l$bz>p,?|HRH=KmQ>?=Ƴ7eD#>N=9=7tYtZ=Sfv=\=.<p<ƭt!=㝫 p}=D2|=CKey=պm{L=tY#=)l! =|u=~0B='\I=5!=uJU=x:@A=v=Z3=׸=q= eX=bb=BSg`?,>&.>bo<>FK2>.J> k=Epj=9oA=3Q=|Y U=vQ2=`~ =35CQa=.>H=&Yf=|c"(d=3dʫ4=`= DU`a=Kq.q=I =̪'}8=f;=mpx6>z |> )/>L߉"=W{ >+.N>FfG>>Xp>9>3>S>׵Z7>>*>K><`i>Ygj>i8fE>>">ߦƤ>4$Ա>>y0al>`ê>m&lX`>$CM>ޠg>_O?kϽC ?$s2 ?8?D}7/>X >Eo`> >5>rg><}sy>}>ixE{ >u˚>jF>R@>Ȧ{>Z2:y>Q>n]Q>Gσ > n >8=J>ڦ>m!/Ok>MU>H1i>E_T>0IT>199>yX1/> T5=3 > ayF>'=M)>|?>'^>[|uˇ>N${f`>v}axq>}@s>?]F*Y>VZU>`7m(?jj4 ?A7?lkE.?`*?Ly1&?_G ?{D7#(/ ?M??i"l ?!>{a>@֓>HOF>C><h>AH >4M`>"y6ҩ>zAF>S3@?S2?̀?t8 ?81<1?ezu0?NYo0?}#?-Vd#?# ?':J?z;p>:1>70Y>t>Œop>sY>%d>ϲ>pW1>| >{y?>Q}\>e@>eys>fUQD>Ukэ>ag>(8)>?->z,?>]h ͡>1)>TkX=Μ>ʮ$F>M>'f>/]]>5΢>wԂ>ό>52J>>Uy>~ P>Ȥ/5>c*`>{[g>H&)j>#HO >]1]>GoE>8<>:>ۙ9KN>\I>w>̲> s>+'\h>f-f>@Cy>>GtS>7_l>p>W>=$>w݇>lo)>d>WN >+?i>%.(|> xS ?!)!?|Hpq`?;o`o?#W?4K>$B>0:f>n3>>"7>I=s*>L=2>3vg>K%߈װ>'o >Tqϡ>oų>gp>oGF>exKi>D?MC E>0uLP>n)A>N#k$>-2>O#h<>Jպ< >)L=1İ==Ѭޚ=*1V2=2Y />Zm^>Wc;R>]X 3p>We>N;R>HRi>!Ә$u>7̇>D #>ۓo>ɦ>oda>A/yC>kF>ϸ~Ta>%k>Y%/b>|/>AyBG,>qOIF>픉>U;O>εFO>pvO>`9>P3?=>]?#>(—>ܢF+>\R6>rVEbɱ>:7hL> S>>WV?h>%c>Bw>jL>3%>ڮ?>/>:c>/P*>{a]?3W% ?T'\?zuJ?lw^?l%&J?_u?4ʇұ?ybΉ?ȵE]3?TZ"?lIT ?R`\ ?_/?i? ?@ ?,??ڀ.[>ә`T>a?>u>yܥ>W_@>?\w>ȓ`٧>9d>ۅ>$2>:x#?BMR?O $? ? ?f?Һwd?ӱU?ߗA4 ??m!?4n&?p/)?@s'?F _(?R'|(?ۢѽ_$?E6Z"? ?GH0 ?} ?*ͼ ? ny3?昝;?.{#??;(?tޔ#?SvN?OBQ5?g&[?Vk? 6?N"??i=??.΍%>0%>ɒ?S>5~`>|>=Eغ>W<>t2f|>>*~>f>/GRJ>";B>%ڻ>Pp>/>Rc8Wܷ>t]>ŷ7>h3 >wK?>$x>/9>9h>Kki>^p>KGœ>}ON*>0>[I8.>>\s綒;>Yd>a8OV>uj?пH=B?~n? -$>?|>])j?!?i`(?$?:Čo0?-2?a:(1?z)/?Sna9$?y %?rZ/=*?2>?)1 ?# ?_ >ad?cР?:FQ!?z]ݭ!?>LWR>|K(>\W>u6>;>>w;<>`@7>b>?>~GL>$ w> ̭Bڸ>|8>` e>"lsQ>T(>:i6">5? >->y{,nI>KC?ݩ} B?G??RQFD? :>6l*>}Vt >_/>v>@>%ZN7>5+v'M>׷3>%AM>T>5>vF>X>VQ~>K=3>id3>\PR>>>}Җ8%> >0lݐ>RECN8z>0ӥ >_g5?>p>Wn>tO9>X> ?w>(s>CD >tu~>j#ˉ>fT>8]i> gj>ĥ>קȇ>W1yl>?]$`>-=+C>"gM>hAWp>o_]>1Jim]>S!=j>w>_DL>~/bP>w?W;>aƀ>;Eh>ؠ>c:=2>r0>+O?0>e ;&>H~hC>#=q/=!=4c=c;˸=>5=% =8k 0>L>5M Z>TAO>2 j>+E/{>o0>ͤw=>ΐv>},2v>3**>@[> &ﮁ>aW2>x\>WD>N>b%V>P驻> _~ē>iq[m3>'oM>CH>t2C>PcC>ly?Dbb?ěE8?TOɦ?#P?&8?~ *? w?Dr>ٝ7>GEEy>A3>炥dPϩ>U]>?muu>ce:y>i%I:> {>7z>ss>3?,> b>[{x>/` >)z/0?Qe0?^{*?9?P,6#?j|37?֏%?Swܟ?ei!?(Ik5??D2 ?kYʧ?O#?#}[ ?tQG?6}? ',?Jy86?#5?F. ;?-;A?`l[ 0?Q ,%?㸕u6?)iߪ D?(A?Qi̒??J@?H@?'N?p2J?N?9lO( W?(kS?m5Z4|P?'HJ?wF?=l&B?NxM? ӲG?*S?5Wk;>_ɛw>:z>FJn> ->Q3m!>\_?:u?fF ?ω?<1. A6?0G"?PD> Bi>ٗF9>8D+>>'>I' >6G>T>Ggٽ>v\g>Vm]i>צ5>eQ>Jݝ>VIˎ>r{¤>*rA>rT ->/oA>Z=;> @F>SRc>*A >>&h]> vgR>X4|J>5fiiC>qu(>>hA>mȷa?j>vS8> > ,=~`xj=J'=bZ=y^@= {f_<*.kX='Lyo= 5>*>[Z>O