
Some Remarks about Random Testing

B A Wichmann,
National Physical Laboratory,

Teddington, Middlesex, TW11 0LW, UK
E-mail: baw@cise.npl.co.uk

May 1998

1 Introduction

The use of a pseudo-random number generator to produce test cases for software ap-
pears not to be widely used, although the method has been reported in the literature for
many years [1, 2, 4]. This paper draws on experience with this technique in two areas:
compilers and software components.

The use of a pseudo-random number generator to produce test cases which are
expected to reflect actual usage of the software is not discussed here (we would call
this statistical testing). Although such testing would have the advantage that reliability
data could be produced, in practice with most software of any complexity, it is not
possible to model accurately enough the distribution of real input data. Hence the
test case generation considered here is for conventional testing purposes, rather than
predicting reliability.

All the work here has exploited a portable and efficient random number generator
[5]. Use of this generator has the advantage that one can reproduce test cases from
the three integer seed values, which are input to the test case generator, no matter how
complex the test cases are.

2 Compiler Stress Testing

Testing compilers is difficult due to the complexity of the processing they perform and
also since it is virtually impossible to test components of a compiler in isolation.

One ‘standard’ method of compiler testing is to apply a fixed set of tests designed to
show compliance with the international standard. Such validation suites are available
for the standard languages such as Pascal [3] or Ada [7]. Both these validations suites
are quite comprehensive, but it is nevertheless possible to have many simple errors in
an immature compiler that passes these tests.

Using a test generator which produces self-checking, semantically correct pro-
grams is an attractive alternative to supplement the validation suites. In fact, although
validation suites can (and do) check the front-end of compilers reasonably well, the
back-end is much more difficult to test effectively.

One can gain some insight into back-end compiler bugs from a bug located in the
Algol W compiler many years ago. Here, the registers were allocated in increasing
order for the stack pointers, and decreasing order for temporaries in an expression. If

1



the registers were exhausted, the compiler issued an error message to state that the
program was too complex. The error came when an odd-even pair of registers was
required for integer divideandthe number of registers left was very near to exhaustion.
Incorrect code was produced, which remained undetected for ten years! This illustrates
that back-end errors in a compiler can have a very complex relationship with the source
text which makes in infeasible to test that back-end by conventional means via hand-
written source text input. Equally, the errors cannot be found by testing the back-end
in isolation, since the front-end is the only effective means of producing input for the
back-end.

Bearing in mind the above problem, I wrote a Pascal Program Generator which
wouldhave found the Algol W type of error in a Pascal compiler. The idea behind this
was to supplement the Validation Suite in the testing of Pascal compilers.

The only major problem with producing language generators is to ensure the pro-
gram produced is semantically correct. For instance, one must ensure that expressions
do not overflow. Having produced such a generator, stress testing a compiler is straight-
forward. A summary of the results from many tests run at NPL is in Table 1.

NPL has produced language generators for Pascal [9], Ada 83, Haskell, CHILL and
a subset of Pascal. Three demanding sets of tests were applied to three different Ada
compilers with amazingly good results — only minor bugs were found. In contrast,
all the other generators when applied to relevant compilers found ‘safety’ bugs very
quickly. By a safety bug, I mean generating incorrect object code from correct source
code.

Developing the Ada generator was much more work than the others, since the static
semantics of the language is larger, and the goal was to generate all the major parts of
the language. Two problems have arisen with the generator: firstly, it has not yet been
updated for Ada 95, and secondly, the generator very occasionally generates incorrect
Ada (in fact, not observing restrictions on staticness which are different for Ada 83 and
Ada 95). This later point is not a significant barrier to the use of the tool, since the
incorrect Ada programs are rejected by the compiler (and even if they were not due to
an error in the compiler, the run-time checks would still be ‘correct’).

All these test case generators contain facilities to adjust the length and complexity
of the source code so that the compiler can be conveniently stress-tested. Some compil-
ers limit the complexity of programs that can be compiled to quite modest limits which
restricts the stress-testing that can be undertaken. The definition of stress-testing from
the IEEE glossary reads: ‘Testing conducted to evaluate a system or component at or
beyond the limits of its specified requirements’. However, compilers typically do not
specify the limits on the complexity of the programs they will handle and therefore the
‘requirements’ issue is unresolved.

Once such a generator is available, the testing soon reveals the quality of a com-
piler. Programs can be generated which are several orders of magnitude more complex
than users would write. If such programs are handled correctly by a compiler, one
can have great confidence in the product provided the generator covers the necessary
language features. One compiler included an artificial limit on the complexity of ex-
pressions that could be handled which reduced the ability of the test generator to test
the product — fortunately, this approach is rarely used and compilers are typically good
at handling complex expressions. Of course, it is quite acceptable for compilers to re-
ject very complex expressions; although this could cause problems if an expression has
been generated by a symbolic algebra package (for instance) in order to solve a real
application (as opposed to stress-testing).

The testing of the compiler for a Pascal subset for AWE is of interest in its own

2



right, since the complete compiler was formally specified in Z and the implementation
derived from that, but written in Prolog. In spite of this highly rigorous development,
additional testing was thought worthwhile since the compiler has only one user. A
pre-release of the compiler was checked by means of the generator which revealed two
bugs: in the operatormod, and 2-dimensional array access. Unlike many parts of the
compiler, these parts had not been subject to formal proof.

The experience so far with stress-testing compilers by NPL is summarised below.

Language Compiler Test Results
Pascal 5 unnamed Informal, 1988 4/5 had safety bugs
Pascal For a PC Informal, 1996 safety bugs found
Pascal For Unix Informal, 1996 safety bugs found
Pascal subset pre-release, AWE Formal, 1996 two safety bugs

CHILL pre-release, Unix Informal, 1994
major defects
(now corrected)

Haskell Glasgow, unopt Informal, 1992 safety bugs
Ada Telesoft 386 Formal, 1993 minor defects

Ada Alsys, Transputer V5.4.8 Formal, 1994
minor defects/
capacity defects

Ada Alsys RISCAda V3 Formal, 1995 minor defects
Ada AONIX Sun4 V5.5.2 Formal, 1998 two safety bugs

Table 1: Summary of compiler stress-testing

In the table, we mean:

(in)formal testing. Formal testing implies an extensive set of tests undertaken in a
repeatable and reproducible manner with a test report.

safety bug. Compiling a correct program incorrectly without warning. This is detected
by the failure of an internal check on execution.

minor defects. Failing to compile a correct program containing an unusual construct.

capacity defect. Failing to compile programs of modest size and complexity.

major defects. Safety bugs plus other defects so that few programs are apparently
handled correctly. (The CHILL compiler has since been extensively tested and
has been successfully used for critical projects.)

The conclusion of this experience is that this form of compiler stress testing is
effective. Unfortunately, the approach is not widely adopted so that several languages
have validation suites but no stress testing capability. Producing tests which cannot be
checked by execution does not seem worthwhile, since this only exercises the front-end
of the compiler. Applying stress-testing very early in the development of a compiler
is also not effective, since too many programs are rejected. The other problem with
the method is that the generated programs typically report the same error many times,
potentially hiding other errors. Of course, this is only a problem when errors have been
detected.

3



3 Component Testing

The application of randomly constructed test sets to software components would ap-
pear to offer the same benefits as for compilers. Hence the author considered the im-
plications of adding random testing to the British Computer Society component testing
standard [8].

The use of such testing is certainly accepted in the sense that published material
uses the method. For instance, random argument values are computed for the applica-
tion of tests of the standard mathematical functions (sin, cos etc) in the Pascal Valida-
tion Suite [3]. However, the use of this technique is effective due to the ease with which
automatic acceptance checking can be applied. With such a process, a large number
of tests can be run automatically. Hand analysis of the few that fail (if any) can then
be undertaken. According to the strength of the acceptance logic, the testing can be
very thorough. Even when the acceptance criterion is merely that the program does not
crash, confidence in this property is obtained at modest cost.

The strength of conventional component testing is assessed by metrics such as state-
ment coverage. With random testing, the number of random tests is of little value un-
less the distribution is a reasonable fraction of the entire input domain. This presents
a problem with the BCS standard, since a key aspect of the standard is the testedness
metric. The approach taken below is that the coverage of the input domain is measured
by means of the equivalence partitions used for equivalent partition testing, together
with the number of tests run.

The paper of Th́evenod-Fosse et al[10], gives strong support for the use of random
testing. Moreover, the method of biasing the random numbers to include powers of
two and end-points more frequently (which is used in the NPL compiler stress-testers)
is also supported.

The appendix to this note contains the proposal made to the BCS component testing
group. The illustration is a simplified version of the testing undertaken in the Pascal
Validation Suite for the square root function.

4 Conclusions

The author thinks that random testing is a test method which is under-exploited in
practice.

5 Acknowledgements

Details from the Haskell stress-tester was provided by Nick North. Steve Austin un-
dertook the formal testing of the three Ada compilers. I am grateful to AWE plc and
Alcatel for permission to publish the testing of the Pascal subset and CHILL compilers,
respectively.

4



References

[1] F Bazzichi and I Spadafora. An automatic generator for compiler testing. IEEE
Trans on Software Engineering SE-8. 1982, pp343-353.

[2] D L Bird and C U Munoz. Automatic generation of random self-checking test
cases. IBM Systems Journal 1983 pp229-245.

[3] B A Wichmann and Z J Ciechanowicz (editors). Pascal Compiler Validation. Wi-
ley. 1983.

[4] K V Hanford. Automatic generation of test cases. IBM Systems Journal. 1970.
pp242-257.

[5] B A Wichmann and I D Hill. An efficient and portable pseudo-random number
generator. Applied Stats. 31. 1982. pp118-190.

[6] S M Austin, D R Wilkins and B A Wichmann. An Ada Program Test Generator.
TriAda Conference Proceedings. ACM. October 1991.

[7] The Ada Compiler Validation Capability. Details available on the Internet:
http://www.informatik.uni-stuttgart.de/ifi/ps/ada-software/html/evaluation.html

[8] British Computer Society Specialist Group in Software Testing. Standard for
Software Component Testing (Working Draft 3.3). Glossary of terms used in soft-
ware testing (Working Draft 6.2). April 1997.

[9] B A Wichmann and M Davies. Experience with a compiler testing tool. NPL
Report DITC 138/89. March 1989.

[10] P Th́evenod-Fosse, H Waeselynck and Y Crouzet. Software Structural Testing:
An Evaluation of the Efficiency of Deterministic and Random Test Data. Pre-
dictably Dependable Computing Systems Report No 57. December 1991.

5



A Component Testing:
an addition for random test cases

This appendix is a proposal, first drafted for discussion by the SIGTEST Working
Party, for the addition of Random Testing to the existing component testing standard
[8] (version 3.0).

It may be possible to use this as an example of how proposals for additional tech-
niques should be prepared.

A.1 Addition/Changes to Clause 3

Add:

3.13 Random Testing

3.13.1 Analysis

Random testing uses a model of the component that partitions the input
values of the component. These partitions may the same as that used for
equivalence partitioning (see 3.1.1).

The model shall contain input values. Both valid and invalid values are
partitioned in this way.

3.13.2 Design

Test cases shall be designed to exercise partitions. The input values for
each test case within a partition shall be constructed using a repeatable
random process.

For each partition, the following shall be specified:

• The distribution function of the random input values.

• The number of random values used (and their values or the specifi-
cation of the process used for their construction).

Test cases are designed to exercise partitions of valid and invalid input
values.

A.2 Addition/Changes to Clause 4

Add:

4.13 Random Testing

4.13.1 Coverage Items

Coverage items are the partitions described in the model (see 3.13.1).

6



4.13.2 Coverage Calculation

Two calculations are defined: partition coverage (see 4.1.2) and the num-
ber of test cases used.

A.3 Addition/Changes to Annex B

Add:

B.13 Random Testing

Introduction

Random testing is a black-box technique and hence is useful when no
information on the internal structure of the software can be used. Clause 3
is written so that the random values could be determined manually as well
as by use of a pseudo-random number generator. To ensure the tests are
repeatable, it is not acceptable to use a pseudo-random number generator
which cannot be re-run to produce the same values (when the test values
have not been recorded).

In practice, the use of the technique is most effective when the output from
the result of each test can be automatically checked. In this situation, very
many tests can be run without manual intervention.

In ideal circumstances, it may be possible to derive some reliability data
from the result of random testing if it can be shown that the distribution
used corresponds to that which would arise in actual use of the component.

Example

Consider a component,sqrt , whose specification is as follows:

The functionsqrt has a single floating point parameter,x and
produces a single floating point result,y. If x > 0, then

(1− ε)x ≤ y2 ≤ (1 + ε)x, whereε = 10−9.

In this case, we have a simple means to determine that the result of the
function is correct, according to the above specification. Hence random
testing is a reasonable technique to apply.

The analysis of the above specification reveals three input partitions:
x = 0, x < 0, andx > 0. The only partition for which random testing
is useful is the valid partition containing many values, namely the positive
values.

The random values forx used in the test are taken from a uniform distri-
bution in the range 1.0 to 2.0. The complete test program to undertake this
in Pascal is:

7



program rtest(output);

const
Ntests = 10000; { Number of random tests to perform }
eps = 1.0E-9;

var
ix, iy, iz: integer;
{ Seeds for the pseudo-random number generator }

count: integer;
x, y: real;

procedure RandomStart;
begin
ix := 1; iy := 2; iz := 3;
end;

function Random: real;
{ Returns random value 0.0 <= Random <= 1.0 }
var

rndm : real;
begin
ix := 171 * ix mod 30269;
iy := 172 * iy mod 30307;
iz := 170 * iz mod 30323;
rndm := ix/30269.0 + iy/30307.0 + iz/30323.0;
Random := rndm - trunc(rndm)
end;

begin
RandomStart;
for count := 1 to Ntests do

begin
x := 1.0 + Random;
y := sqrt(x);
if ((1.0-eps)*x > y*y) or (y*y > (1.0+eps)*x) then

writeln(’Tests failed: x, sqrt(x), number’,
x, y, count);

end;
writeln(Ntests:1, ’ random tests executed’);
end.

Notes

This method of testing is that used in the Pascal Validation Suite to check
all the standard functions. The 10,000 tests in this example only take a few
seconds to execute.

The usual method to implement the square root function implies that using
just the range from 1.0 to 2.0 is not a significant defect.

8



A.4 Addition/Changes to Glossary

Add:

random testing: A test case design techniquewhich uses input values
for a specified inputequivalence class. The input values are random
values from a specified distribution.

A.5 Version of Random Testing now in the BCS standard

It was agreed that random testing as a method should be added to the BCS component
testing standard, but some differences were made from that presented here as follows:

1. The concept of using the equivalence partitions above was removed in favour of
considering all input values.

2. The proposal here explicitly mentions invalid input values, while the agreed ver-
sion is silent on this issue.

3. The input distribution is either based upon the known actual distribution or a
uniform distribution (rather than allowing any defined distribution as above).

4. The BCS standard does not define any coverage measure.

5. The BCS standard has a different example, for which uniform distribution over
the entire set of input values makes better sense.

6. The Glossary (version 6.2) does not define random testing.

9


