

DEM-ES 013

Software Support for Metrology
Best Practice Guide No. 7

Development and Testing of
Spreadsheet Applications

R M Barker, P M Harris
and G I Parkin

Revised: December 2006

National Physical Laboratory | Hampton Road | Teddington | Middlesex | United Kingdom | TW11 0LW

Switchboard 020 8977 3222 | NPL Helpline 020 8943 6880 | Fax 020 8943 6458 | www.npl.co.uk

Software Support for Metrology
Best Practice Guide No 7

Development and Testing
of Spreadsheet Applications

R M Barker, P M Harris and G I Parkin
Mathematics and Scientific Computing Group

December 2006

ABSTRACT

This guide gives best practice on the use of applications implemented as
spreadsheets, so that they may be properly validated. It takes the approach
that development and testing of spreadsheet applications should be founded
on proper software engineering principles, bearing in mind that
spreadsheets have aspects that are not found in normal software
development and testing.

© Crown Copyright 2001, 2004, 2006
Reproduced with the permission of the Controller of HMSO

 and Queen's Printer for Scotland

ISSN 1744–0475

National Physical Laboratory
Hampton Road, Teddington, Middlesex, United Kingdom. TW11 0LW

Extracts from this report may be reproduced provided the source is
acknowledged and the extract is not taken out of context.

We gratefully acknowledge the financial support of the UK Department
of Trade and Industry (National Measurement System Directorate)

Approved on behalf of the Managing Director, NPL by
Jonathan Williams, Knowledge Leader of the Electrical and Software team

 i

Table of Contents
1. Introduction...2
1.1 Overview... 2
1.2 Glossary .. 4
1.3 Issues in development of the guide ... 6

1.3.1 Assumptions ... 6
1.3.2 What’s going on inside... 7
1.3.3 Further observations ... 8
1.3.4 Testing spreadsheet applications .. 9
1.3.5 Problems in testing spreadsheet applications ... 9

2. Elements of spreadsheet development and testing............12
2.1 Why spreadsheets are a problem... 12
2.2 Risk analysis ... 13
2.3 Software development... 14

2.3.1 Aims of software development... 14
2.3.2 Rapid Application Development .. 14
2.3.3 Lifecycle ... 15

2.4 Testing of spreadsheet applications .. 17
2.4.1 Problems in testing of spreadsheet applications....................................... 17
2.4.2 Conventional approach to testing of spreadsheet applications................. 17
2.4.3 Built-in testing of spreadsheet applications.. 18
2.4.4 Tools for testing.. 18

3. Techniques and issues for spreadsheet applications20
3.1 Should the application be implemented as a spreadsheet? 20
3.2 Which spreadsheet package should be used?.. 20
3.3 Spreadsheet application integrity .. 20
3.4 Ensuring testability of the application .. 21
3.5 Layout of worksheets .. 21
3.6 Avoiding formulae .. 22
3.7 Coding conventions... 22
3.8 Procedure and function design.. 23
3.9 Use of packages and libraries.. 23
3.10 Data checking and error handling ... 24
3.11 Self-checking code.. 24
3.12 Dates.. 24
3.13 Program headers.. 25
3.14 Comments ... 25
3.15 Review of spreadsheet code.. 26
3.16 Review of spreadsheet text ... 26
3.17 Execution monitoring.. 26
3.18 Links to other applications.. 26

 ii

3.19 Dynamically changing the spreadsheet layout.. 27
3.20 Understanding the effects of user interaction ... 27
3.21 Useful generic macros... 28
3.22 Avoiding spreadsheets altogether ... 28

4. Checklists for spreadsheet development and testing32
4.1 What to develop .. 32
4.2 What to validate .. 32
4.3 What to test ... 33
4.4 Spreadsheet organisation and layout... 33
4.5 Spreadsheet code review... 34
4.6 Organisational requirements ... 34
4.7 Other issues ... 35

Appendix A Procedures for spreadsheet application
development..38

A.1 Purpose/Scope of the procedure.. 38
A.2 Management of the spreadsheet application development process 38
A.3 Development of spreadsheet applications... 38

A.3.1 Introduction .. 38
A.3.2 Specification of spreadsheet applications... 39
A.3.3 Code design and implementation ... 40
A.3.4 Reviews .. 40

A.4 Testing... 40
A.5 Procedures for use... 41
A.6 Configuration Management and Version Control... 41
A.7 Documentation .. 41
A.8 Use of other packages and add-ins.. 41

Appendix B EUnit – test harness for Excel42
B.1 Introduction... 42
B.2 Writing the tests .. 42

B.2.1 Test procedures... 43
B.2.2 setUP and tearDown ... 43
B.2.3 Test results.. 44
B.2.4 assertTrue ... 45
B.2.5 assertEquals .. 46
B.2.6 fail... 46

B.3 Running the tests... 47
B.3.1 Installing EUnit .. 47
B.3.2 Using the GUI... 47
B.3.3 Running tests .. 48
B.3.4 Displaying details of tests... 49

References ...50

Introduction to
Spreadsheet
Applications

IN THIS CHAPTER

11

� Overview — slogans

� Glossary of spreadsheet terms

� Issues in development of the guide

» Assumptions

» What’s going on inside?

» Further observations

» Why test spreadsheet applications?

» Problems in
testing spreadsheet applications

Software Support for Metrology Best Practice Guide No. 7 DEM-ES 013

 2 of 50

1. Introduction

1.1 Overview
This guide was produced as part of the SSfM project “Testing spreadsheets and other
packages used in metrology”. The aim of this project is to contribute to the
development of an infrastructure, comprising supporting information and guidelines, to
ensure that the use of software, particularly spreadsheets, within metrology is made as
effective as possible. This is to be achieved in two ways: firstly, by investigating the
numerical accuracy of the intrinsic and in-built functions provided by spreadsheets; and
secondly, by giving best practice on the development of spreadsheets, including how to
enable users to test their spreadsheet implementations against a design. This guide
addresses the latter issue; the issue of testing numerical accuracy is addressed in earlier
reports from the SSfM programme [1-3] (also see [4-6] for further work relating to
numerical testing of spreadsheets). It is hoped that by addressing the two aspects,
numerical accuracy and software design for testability, the quality of the measurement
results delivered by spreadsheets used in the day-to-day operations of measurement and
calibration laboratories can be assured.

To enable a spreadsheet application to be tested, it must have been developed properly;
so that testing and (where appropriate) validation can become part of the development
process. This leads to the main slogan of this guide:

“creating a spreadsheet is software development and
should follow sound software engineering principles.”

The needs of testing must be addressed during the design and development of a
spreadsheet application and we aim to give guidance on the design and development of
spreadsheet applications with testing in mind – so the second slogan is “design for
testability”. The complexity of the underlying spreadsheet package precludes very
rigorous validation of spreadsheet applications and so spreadsheets should not be used
for high integrity applications.

The guide pays attention to the way in which spreadsheet applications are often
developed, starting with some typical data and seeing, by trial and error, what
calculations are sensible and what layouts of input and output are appealing. This trial
and error approach to implementation has been legitimised by the name “rapid
prototyping” by software engineers [7]. This approach gives the application writer a
great deal of understanding of the nature of the problem to be solved by the application:
from requirements, through specification and design, to testing and validation. One of
the aims of the guide is to put “rapid prototyping” spreadsheet application development
within the framework of software development.

This guide is not aimed at any particular existing spreadsheet package but aims to give
practical advice in terms of existing spreadsheet technology, while allowing for
improvements in the technology; indeed some of the suggestions may not be possible in
existing packages. The facilities provided by spreadsheet packages are increasing all
the time: a spreadsheet application developer should be willing to use whatever
technology in spreadsheet packages is introduced, if this technology will improve the

DEM-ES 013 Development and Testing of Spreadsheet Applications

 3 of 50

ease, with which the application is developed, or the usability, testability and
maintainability of the application.

The next section describes the terms used (in this guide and elsewhere) in discussing
spreadsheets. The final section of the introduction gives our thoughts (as software
engineers) on how we approached the development of the guide. Chapter two describes
the central issues for a software engineering approach to spreadsheet applications: risk
analysis, software development lifecycle and the testing of spreadsheet applications.
Chapter three describes techniques that can be used to answer particular issues raised in
chapter two, including a radical technique to migrate the application away from using
spreadsheets. Chapter four gives checklists that can be used to determine if the
requirements have been met in particular aspects of spreadsheet application
development and testing, with reference to the techniques in chapter three.

Appendix A is a template for procedures for the production of spreadsheet applications
following the guide, with references to chapters two, three and four. Appendix B
describes the NPL test harness for Excel – EUnit. Appendix C gives references to
documents that were used in developing the guide and documents that may provide
further useful guidance.

Acknowledgements
This guide was produced under the Software Support for Metrology programme, which
is managed on behalf of the DTI by the National Physical Laboratory. For more
information on the Software Support for Metrology programme visit the SSfM website
at www.npl.co.uk/ssfm or, contact the programme manager by phone (on
020 8943 7100), email (ssfm@npl.co.uk) or by post to National Physical Laboratory,
Teddington, Middlesex, UK TW11 0LW.

Practical examples of procedures for the design, development and testing of
spreadsheets were provided by Ted Scorer (then of Glaxo-Wellcome), and we gratefully
acknowledge his help in this work. The guide was originally produced in 2000 and
revised in 2004, following comments from staff in NPL’s Centre for Mathematics and
Scientific Computing, in particular Edward Johnson.

This revision was produced in 2006 with a changed layout. The revision to the guide
followed comments from the accompanying course “Developing Spreadsheet
Applications for Measurement” held in November 2005 and November 2006: we thank
the participants for their input.

http://www.npl.co.uk/ssfm

Software Support for Metrology Best Practice Guide No. 7 DEM-ES 013

 4 of 50

1.2 Glossary
NOTE

Confusing terms for spreadsheets

These boxes are used to highlight difficult and important
sections. Many terms are used in connection with spreadsheet
applications, the same terms (e.g. “spreadsheet” itself) for
different concepts, and many different terms for the same
concepts.

It is necessary to define some terms that will be used throughout the guide. Some terms
(e.g. “spreadsheet”) can be used with different meaning depending on the context: to
avoid this confusion, the terms below will be used consistently. The glossary also
defines some terms that are also used to refer to spreadsheet concepts but which, as
stated below, are not used in this guide; the terms are included here to show how they
relate to terms used in the guide. The qualifying words {in brackets} may be omitted if
they are clear from the context.

{spreadsheet}
application

software developed by a user of a spreadsheet package,
consisting of a program and input data

{spreadsheet} code both (1) formulae in cells,
and (2) the definitions of functions and procedures

{spreadsheet
application} developer

a developer of a spreadsheet application

{spreadsheet} end-user an alternative term for “operator” (not used in this
guide)

data numbers and text that appear in a spreadsheet

function a user defined operation that returns a value to be used
in a cell formula

input data data entered into cells by the operator

intermediate data data produced by formulae as an intermediate step in the
data processing

macro a user-defined operation which can be called to
manipulates the spreadsheet directly (rather than
returning a value in a formula) – a procedure without
parameters

macro language the programming language that is used to define user-
defined operations, including macros and user-defined
functions

{spreadsheet} model a computer model implemented as a spreadsheet
application (not used in this guide)

DEM-ES 013 Development and Testing of Spreadsheet Applications

 5 of 50

operator a simple user of a spreadsheet application: enters data
but cannot change the application (see “end-user”
above)

output data data produced by formulae as the final step of data
processing

{spreadsheet} package software for creating and developing spreadsheets

procedure a user-defined operation that does not return a value

{spreadsheet
application} program

worksheets with program data, formulae, functions and
procedures.

program data data entered into cells by the developer: constants used
by the program, which are not to be changed by the
operator

spreadsheet a spreadsheet package in use by a user, with worksheets
containing data, formulae, macros, functions, etc.

{spreadsheet} tool or
{spreadsheet} toolkit

a spreadsheet package (not used in this guide)

{spreadsheet} user someone who uses a spreadsheet package to process
data, by entering data and/or adding/amending
formulae/code; thus, they may take on the roles of
operator and developer.

user-defined function a function that can be called by formula in a cell

worksheet an individual page/sheet/table of a spreadsheet

Some confusing terms:

• spreadsheet

A spreadsheet can mean a spreadsheet package (such as Excel, Lotus, etc.), a
collection of related worksheets, a particular file containing such a collection, or a
spreadsheet application. We use “spreadsheet” to mean a spreadsheet package when
it is being used by a user. A “spreadsheet” is therefore a dynamic object, perhaps
only partially completed with data, formulae, etc. A “spreadsheet” is distinguished
from a “spreadsheet package” in that it has undergone interaction with the user; and a
“spreadsheet application” is distinguished from a “spreadsheet” in that an application
is seen as a finished product.

• user

A user of a spreadsheet package will usually enter both code and data, and is
therefore developing a spreadsheet application. This can be confusing, as traditional
software engineering sees “user” and “developer” as distinct. We use “spreadsheet
application developer” to mean someone (i.e. a spreadsheet user) who uses a
spreadsheet package to create spreadsheet applications; and use “operator” to mean

Software Support for Metrology Best Practice Guide No. 7 DEM-ES 013

 6 of 50

the user of the spreadsheet application, someone who only enters data into the
application. The term “user” will be used in the generic sense of a user of a
spreadsheet package.

• macro, macro language, procedure, function, and user-defined function

Spreadsheet packages allow the user to define their own operations, these are defined
in terms of the “macro language”; operations that can be called directly (because
they have no parameters and return no values) are called “macros”. The term
“macros” is also used for all user-defined operations.

The “macro language” (e.g. VBA for Excel) is used to define all user-defined
operations. There are two sorts of operations: “procedures” change the spreadsheet
(or its environment) and do not return a value, procedures may take parameters –
“macros” are procedures without parameters; and “functions” which return a value,
including “user-defined functions”, which can be used in formulae (and do not
change the spreadsheet.) Functions are useful in the proper development of
spreadsheets as software, as a more manageable replacement for cell formulae.

• data

We use the term “data” to refer to any numerical or string values that are displayed in
cells in the spreadsheets. This includes both data entered into cells by the user (as
developer or operator) and data produced by the spreadsheet application by formulae
in the cells. Data that are entered into cells are of two types: program data entered
by the developer and fixed in the finished spreadsheet application, and input data
entered by the operator when using the application. We also distinguish two types of
data produced by formulae: output data, which are the final results of the spreadsheet
application, and intermediate data, which are any other values produced by
formulae.

• code

We use the term “code” as defined above, when referring to spreadsheet applications.
When referring to general software engineering, “code” means source code. The
message of this guide is that spreadsheet application development should treat
spreadsheet code in the same way the traditional software development treats source
code. Hence, we use the same term throughout.

1.3 Issues in development of the guide

1.3.1 Assumptions
We started the development of this guide with a number of working assumptions on
how spreadsheet applications should be developed, as follows:

1. Using a spreadsheet package is software development (see, for example, [11]).

Therefore, you must use software development techniques in order to use
spreadsheet packages properly.

2. Assumption 1 is not obvious: this fact is the key to our approach to the development
of this guide.

DEM-ES 013 Development and Testing of Spreadsheet Applications

 7 of 50

We have to explain best practice for spreadsheet application development in simple
terms. We must be aware that what may be obvious to software engineers may not
be obvious to spreadsheet users (who may not see themselves as software
developers).

3. You can't get “inside” a spreadsheet package to find out how it works, you can only
see the contents of the worksheets (see section 1.3.2).

Software development techniques may not be easy to apply if you don’t have any
real conceptual model for how the spreadsheet package (supporting the application
being developed) operates.

4. Risk analysis is critical to determining what level of rigour is necessary in
developing and testing a spreadsheet application.

1.3.2 What’s going on inside
When we discussed the problems of applying software development techniques to
spreadsheet application development, we realised that it is not known by users how a
spreadsheet package works. The operation of a given spreadsheet package is known
only by the developers of that commercial product. For this guide, we developed a
limited model of how a spreadsheet package operates.

For conventional software, a simple-minded model is based on the notion of stepping
through the code line-by-line: executing a line of code involves changing the values
stored in memory or jumping to another line of code; the whole process is essentially
sequential. For most programming languages, there is literature explaining how code is
supposed to operate; indeed for some languages there are formal standards defining the
meaning of code (i.e. a language definition).

For spreadsheets, there are no standards and no obvious model of how functions in the
worksheets will be executed. It is difficult to analyse the code in a spreadsheet when
you don’t have a sequential picture of how the code is executed. It may be difficult to
get a usable printout of the code in order that code can be reviewed.

We have developed a simple execution model for how a spreadsheet package operates.
We are proposing a model that we expect developers to work within, i.e. any
programming that assumes more about the execution model should be avoided.

1. We assume all the relationships between cells are purely functional, i.e. each
function returns the same value for given inputs: the value does not depend on other
variables or values from outside the spreadsheet. Then our model is that the values
in the cells are a solution of the system of equations implied by the functional
relationships between cells; but we have no way of dealing with the case where this
system of equations has no solution or has more than one solution.

2. We assume further that there is a strict hierarchy of cells based on their
interdependencies, where the value of cells at one level only depends on cells lower
in the hierarchy (no “circular references”). In this case, the value of all the cells is
uniquely determined by the fixed values and we can model the execution of the
spreadsheet from the bottom up.

Software Support for Metrology Best Practice Guide No. 7 DEM-ES 013

 8 of 50

There can still be ambiguity about which functions at a given level are executed first
but the assumptions mean that the order of execution will be irrelevant.

3. However, observation suggests that when a spreadsheet is modified, only formulae
and functions that depend on changed cells are re-executed. This already requires
extensions to the simple execution model outlined above.

4. Our model excludes relationships between cells that are not purely functional: for
instance, cells may depend on external values such as NOW() – an Excel function
that returns the current time. Also, Excel has a random number function that returns
a different result each time it is called.

We have no simple model to explain when such functions are executed and
re-executed, and how interdependencies between such cells are determined. Thus,
we recommend that such functions are avoided if at all possible.

1.3.3 Further observations
1. Data values in spreadsheet applications come from a number of sources. We need to

distinguish between program constants (provided by the application developer),
input data (provided by the operator), and output data (the results of evaluations in
the application).

2. The background to this work is the SSfM programme, which is concerned with high
quality software for measurement. The spreadsheet application, in that context, must
ensure the integrity of the processing from the input to the output.

3. We do not consider the problems of spreadsheet applications that are to be embedded
in other applications.

4. Prototyping is a common way for spreadsheet applications to be developed: we can’t
ignore it and, indeed, we should consider the particular issues for software
development that start from a prototyping stage.

5. We are concerned with data integrity: we are not, however, concerned with real
security issues (e.g. hacking into the operating system via the spreadsheet
application). Macros are a source of insecurity, but this disadvantage of macros is
outweighed by the advantages of using them. Of course, you should avoid using
spreadsheets that do not come from trustworthy sources, especially if they contain
macros.

6. We do not assume it is necessarily right to develop the application as a spreadsheet
application. In many cases, it will be appropriate to abandon the spreadsheet
package as a development environment once the required functionality is clear.
Obviously, the development of applications using approaches other than as
spreadsheet applications is outside the scope of this guide.

DEM-ES 013 Development and Testing of Spreadsheet Applications

 9 of 50

1.3.4 Testing spreadsheet applications
NOTE

Why test spreadsheet applications?

Developers and users of spreadsheet applications think
spreadsheets are straightforward and easy to understand – they
do not recognise them as software. Hence they do not
recognise the need to verify that the application is working as
expected through testing.

Why test spreadsheets: surely they are simple and do what is expected?

1. Some spreadsheet packages have significant numerical inaccuracies and
instabilities, as can be seen in [1-3].

2. Spreadsheet users create formulae and procedures to process data, so they are
developers doing software development; and the spreadsheets are software, which
needs testing/validation. The only true “users”, in the software engineering sense,
are those who just add data to spreadsheet applications — for which we have
introduced the term “operator”. Spreadsheet users do make errors in developing
applications; see [11, 12].

3. Spreadsheet applications developed by copy-and-modify or by other evolutionary
approaches (e.g. RAD [7], see section 2.3.2) can be poor quality software. In
addition, one person’s experimental calculation can become a company standard.
This “evolved” software can only be deemed usable if it is tested.

4. Good practice schemes (sometimes mandated by regulation) often require standard
operating procedures (SOPs) for development, testing and use of software
(including spreadsheets).

5. Similarly, Quality Management Systems (e.g. the ISO 9000 series or
ISO/IEC 17025) require procedures for proper development, testing and use of
software.

1.3.5 Problems in testing spreadsheet applications
We have stated that spreadsheet application development is software development but
there are problems in spreadsheet testing that do not occur in conventional/traditional
software engineering.

• How do you input the test data and input the expected (reference) output?

• How do you compare the output with the reference output?

• How do you re-initialise the spreadsheet application before entering new test data?

• How do you deliver the test results to the user?

• Spreadsheet applications can have “wide open” user interfaces, which are hard to
test.

• There is a need to supply test scripts (or other testing mechanisms) as part of the
application.

• Few tools exist to support testing of spreadsheets.

Software Support for Metrology Best Practice Guide No. 7 DEM-ES 013

 10 of 50

You can only test spreadsheet applications effectively if the needs of testing are
considered at the design and development stages. Therefore, if applications are
routinely developed in an evolutionary manner, those who regularly develop
spreadsheets that become the basis for applications must understand and allow for the
needs of testing.

Key elements of
spreadsheet
development and
testing

IN THIS CHAPTER

22

� Why spreadsheets are a problem

� Risk analysis

� Software development

» Aims of software development

» Rapid Application Development

» Lifecycle

� Testing of spreadsheet applications

» Problems in
testing of spreadsheet applications

» Conventional approach to
testing of spreadsheet applications

» Built-in testing of spreadsheet applications

» Tools for testing

Software Support for Metrology Best Practice Guide No. 7 DEM-ES 013

 12 of 50

2. Elements of spreadsheet development and testing

2.1 Why spreadsheets are a problem
Many spreadsheet applications are developed by one person and used by that same
person. If such applications are not used for a purpose that impacts the integrity of the
science or the measurement or the business processes of an organisation, there may be
no need to test or validate the spreadsheet application. However, many spreadsheet
applications that are developed by one person for their own use, progress to become
into an application that is used by others, and may be used in ways not envisaged by the
original developer. The later users may use the spreadsheet application for “mission-
critical” purposes, and may assume that the spreadsheet application is suitable for such
use. Before the use of the spreadsheet application gets to this stage the application must
be subjected to the software development process and be tested and validated for use.

A major problem with spreadsheets that are used by many users is that code will be re-
used (either directly or by copy-and-modify) without considering the original purpose
of the code. The original intention of the code will be lost and errors will occur,
because the original developer’s design (however informal) is not being followed.
Spreadsheets that are allowed to develop in this way, without management control, will
be impossible to validate or test properly. This evolutionary process can be controlled
by documentation of design and function code, and by testing of individual functions
that are going to be re-used.

It may be difficult to catch a spreadsheet in its transition from single user (acting as both
developer and operator) to multi-user critical usage: business practice/procedures
should be in-place to assess any software before it is used in critical applications. To be
safe, some testing/validation should occur once another user, different from the original
developer, starts to develop the spreadsheet further. Spreadsheets are versatile and
usable tools that can be used to perform varied programming tasks by trial and error,
with quick results. A balance must be struck between allowing this “experimental” use
of spreadsheets and using spreadsheets as the basis for applications that are critical to
the organisation. Risk analysis of the use of spreadsheets for any given area is the key
to achieving the right balance.

To enable the validation/testing of spreadsheet applications it is necessary for the
development process to have testability build in. Spreadsheet applications are not
inherently easy to test but if the means of testing and the objectives to be tested are
considered from the outset, then testing will be possible and meaningful.

DEM-ES 013 Development and Testing of Spreadsheet Applications

 13 of 50

2.2 Risk analysis
NOTE

The application and the development effort – fit for
purpose

Risk analysis must be used to determine what level of assurance
is to be achieved in the delivered application. The greater the
assurance that is required the more the application will cost to
develop – and the more sophisticated the tools and techniques
that will be needed in development, testing and validation.

Risk analysis applied to software development aims to determine what sort of effort
should go into the lifecycle of the application by looking at the impact of failure of the
software in the application. This is explained in [13] in terms of measurement software
levels: the greater the criticality of the intended usage, the higher the software integrity
required. Spreadsheet packages and spreadsheet applications are not capable of
providing the highest levels of software integrity required for safety-critical applications
(e.g. where software failures can be damaging to human health).

Applied to spreadsheet applications, risk analysis suggests that for any processes that
are important to your business or the integrity of your measurement, they should have
some demonstrable level of software integrity. This implies proper development and
testing are needed: proper development requires an understanding of the software
development lifecycle; proper testing implies understanding how to perform sufficiently
thorough testing of spreadsheet applications. These topics are considered in the rest of
this chapter.

The risks to spreadsheet applications can be managed by having operating procedures
for how the application is to be used. These procedures can restrict the freedom of
users to add to and modify the spreadsheet. For more critical applications these
restrictions should be imposed by the application software, and allowed modifications
should be implemented by macros defined in the application.

For many applications, spreadsheet packages, although good for rapid development,
offer unnecessarily powerful facilities for user interaction. The ability of users to add to
and modify the applications can be useful, but it may conflict with the integrity of the
data in the spreadsheet application, which may be accessed by other applications. Risk
analysis and proper specification of the intended use of the spreadsheet application will
determine how much user interaction with the spreadsheet application is to be allowed.
Where an application may be used to supply data to another application, it is usually
best for the layout and contents of the worksheets to be strictly controlled. If users want
to add extra code to process the data in such an application, they should use a new
spreadsheet that imports data from the original application.

Software Support for Metrology Best Practice Guide No. 7 DEM-ES 013

 14 of 50

2.3 Software development

2.3.1 Aims of software development
The idealised view of software development is that the user defines his requirements;
these are specified as functions the software will perform, from which the code is
designed, and finally the code is written; the software is then tested by producing a test
plan and performing tests. This describes a purely serial process of software
development that is unrealistic, impractical and not strictly necessary or even desirable,
particularly for spreadsheet applications. The important results of software
development are the outputs of the process (user requirements, functional specification,
code design, code, test plan, tests) and the commitment of the user and the developer
that they agree to and understand these outputs.

Spreadsheet applications are not usually developed in a serial manner (as described
above); part of the development process is often determining what it is feasible or
practical for the application to do. In this case, the user requirements to be met by the
final application are not fixed at the start of the development; this will often be the case
where the developer is the intended (initial) operator of the application. For spreadsheet
application development, it is just as important that the various outputs are produced, so
that other operators and other developers can use and maintain the application. For
some spreadsheet applications that are sufficiently complex or critical, it may be
appropriate to require the discipline of serial development: there are no fundamental
difficulties with producing the various outputs of the software development process in
the “proper” order.

An issue for spreadsheet application development, which is peculiar to spreadsheets, is
the confusion between data and program. Other software starts with the code (program)
and then applies the code to input data. Spreadsheet application development starts
with (sample) input data and performs operations on the data. The program consists of
the operations that will be performed on similar input data. As the spreadsheet is
developed, cells can change from one type of data (i.e.
program/input/intermediate/output) to another, and this can be a source of confusion for
the developer. It is important that the distinction between data and program is clear in
the finished application and in the spreadsheet application development outputs.

2.3.2 Rapid Application Development
“Rapid Prototyping” and “Rapid Application Development” (RAD) are terms used to
describe the process of producing a prototype application that demonstrates the
feasibility and basic functionality of an intended application with little or no regard for
traditional engineering principles [7]. It is a development method that is particularly
attractive for the development of spreadsheets. For the rapid prototyping phase of the
software development to be useful, there must be a way to extract something
(requirements, specification, design, code, test cases) from the process or from the
prototype itself. Having extracted the useful elements from the rapid prototyping
process, it is usually best to throw away the prototype and produce the finished product
(specification, design, coding, and testing) from scratch!

DEM-ES 013 Development and Testing of Spreadsheet Applications

 15 of 50

It is a feature of rapid prototyping that the (initial) user and developer are the same,
trying to move their work forward without having a fixed problem/requirement to
overcome. The user must realise that if the spreadsheet is useful there will be other
users, and there will be the need for enhancement/maintenance by other developers.
Rapid prototyping must meet the needs of other (future) users by providing suitable
documentation.

The development process must ensure that future maintenance and enhancement of the
application are possible. It should make future development easy. Maintenance and
enhancement of the application are themselves software development processes.
Migration of a spreadsheet application to a new version of the underlying spreadsheet
package is also part of the development process: here the crucial issue is to determine
which features of the spreadsheet package have been changed and what their impact is
on the application.

2.3.3 Lifecycle
A typical software lifecycle is outlined in figure 1: boxes represent the key stages, the
lighter arrows show the main development path, and the darker arrows are the possible
iteration loops.

Figure 1: Typical software lifecycle

Implementation

Requirements
definition

System
specification

System design

Operation and
maintenance

Integration and
system testing

Unit testing

Software Support for Metrology Best Practice Guide No. 7 DEM-ES 013

 16 of 50

The following should be noted:

• This is an outline and for larger projects, each stage could be split into many smaller
stages. For small projects, some stages could be amalgamated.

• The order of the various stages is not important but all would be expected to be
performed.

• The arrows indicate a typical expected order and that the stages will be repeated if
needed.

• All stages should be documented. The mapping between the various stages should
be described in this documentation. For example, each requirement should be
traceable to a specific part of the implementation.

• All stages of the system need to be placed under configuration management, i.e.
version control.

Table 1 briefly describes the stages of the software lifecycle and includes terms used to
describe these in this guide.

Stage of lifecycle Description Other terms
used in this guide

Requirements
definition

Overall description of what the system
is to do.

User requirements

System specification Detailed description of what the system
is to do.

Functional
specification

System design Describes how the system will be
implemented.

Code design

Implementation Describes the implementation.

Code / Program

Unit testing Describes the tests for parts of the
implementation and the expected
results.

Test plan /
Testing

Integration and system
testing

Describes the tests for the whole system
and the expected results.

Test plan /
Testing

Operation and
maintenance

Describes how the system is to be used
and maintained, including bug
reporting.

—

Table 1: Parts of the software lifecycle

DEM-ES 013 Development and Testing of Spreadsheet Applications

 17 of 50

2.4 Testing of spreadsheet applications
NOTE

Why are spreadsheet applications difficult to test?

Spreadsheets are used primarily by having user data entered by
hand, but software applications are tested by having the test
routines enter test data automatically. So a spreadsheet
application is not usually created in a way that makes automatic
testing easy.

2.4.1 Problems in testing of spreadsheet applications
The issue here is how do you test a spreadsheet application. The usual method of
testing is for (input) data to be entered into some cells and the values of other cells (the
output data) checked against the expected values. The input data can be entered by
hand or read from a file; the latter is necessary if testing is to be automated. Other
methods of testing are possible, depending on the mode of operation of the spreadsheet
application, but it is important that some form of testing is possible.

This is a central message of this guide: if a spreadsheet application is to be used in a
process that is to be validated, then some form of repeatable testing must be possible;
also, the design of the spreadsheet application must allow for testing a broad range of
the functionality of the application.

2.4.2 Conventional approach to testing of spreadsheet applications
Conventional testing is best suited to applications that operate in distinct invocations,
each invocation taking input and returning output. For a spreadsheet application, the
supporting spreadsheet package is continually invoked and cells change in response to
various events. It is not necessarily possible to identify a “one shot" invocation of a
spreadsheet application. Where the application is one that acts on the data in input cells
to produce data in output cells, one can identify an invocation as the process in which
the input data is entered, the output cells are updated and the output data is read. This
type of application can be tested by conventional tests that consist of input data and the
known values of the corresponding output data. Furthermore, if the spreadsheet
application can be invoked automatically and can read and write its data to files, then
the testing can be automated. This automated testing can be performed by a test harness
that controls the test data and spreadsheet application and by delivering to the user the
results of running the various tests. The approach used to test the numerical functions
of spreadsheet packages [1-6] has been to use macros in a spreadsheet application to read
the reference data from files.

The question remains: how do you test spreadsheet applications that do not match this
operational model (input cells to output cells in a distinct invocation)? The answer is
that a means of testing must be developed to fit the normal operation of the application,
so that the intended use of the application can be checked. Depending on the
spreadsheet application and the means by which it is to be tested, it may be possible to
perform the testing process automatically.

Software Support for Metrology Best Practice Guide No. 7 DEM-ES 013

 18 of 50

2.4.3 Built-in testing of spreadsheet applications
The cleanest approach is to have test data in worksheets in the spreadsheet application,
and a macro that fills the input data cells with a test data set and verifies the contents of
the output data cells against the expected results. This allows the normal operation of
the spreadsheet application to be tested, and allows the test data to be kept with the
application. This approach also allows for a minimal set of tests to be run each time the
spreadsheet application is “started-up”, by calling a macro that runs a minimal set of
tests to ensure the application is working properly, before initialising the input cells for
data entry.

2.4.4 Tools for testing
Few tools exist to support the development of spreadsheet applications. Most of the
existing tools for spreadsheets support the analysis of spreadsheets, otherwise referred
to as auditing e.g. finding values where is should be formulas. This spreadsheet auditing
would correspond to the use static analysis in software engineering.

Even fewer tools exist to support testing (sometimes confused with analysis) of
spreadsheet applications. Nevertheless, this guide advocates testing as part of a
software engineering approach to the development of spreadsheet applications. So, to
support testing of spreadsheet applications, NPL has developed a simple test harness for
Excel, called “EUnit”. EUnit has been developed to test Excel applications, based on
unit testing, which has become an industry standard for object-orientated software
development. Unit testing was developed initially for Java (as JUnit [10]).

EUnit for Excel consists of a workbook (spreadsheet) that is referenced from the
workbook to be tested. The tests are written in VBA (the Excel macro language) and
placed in modules. EUnit supplies a test harness that, when given the names of the
modules, will execute all the tests in these modules, saying which tests pass or do not
pass. The test harness allows a tester to concentrate on the writing of the tests rather
than on how to execute the tests and record the results.

For further details see Appendix B.

Techniques and
issues for
spreadsheet
applications

IN THIS CHAPTER

33

� Should the application be implemented as a
spreadsheet?

� Which spreadsheet package should be used?

� Spreadsheet application integrity – Check-sums

� Ensuring testability of the application

� Layout of worksheets

� Avoiding formulae

� Coding conventions

� Macro and function design

� Use of packages and libraries

� Data checking and error handling

� Self-checking code

� Dates

� Program headers

� Comments

� Review of spreadsheet code

� Review of spreadsheet text

� Execution monitoring

� Links to other applications

� Dynamically changing the spreadsheet layout

� Understanding the effects of user interaction

� Useful generic macros

� Avoiding spreadsheets altogether

Software Support for Metrology Best Practice Guide No. 7 DEM-ES 013

 20 of 50

3. Techniques and issues for spreadsheet applications

3.1 Should the application be implemented as a spreadsheet?
The tabular layout of a spreadsheet gives a powerful and intuitive means of expressing
user requirements and the functional specification of an application. Even if the
requirements and functionality are expressed in the language of spreadsheets, this does
not mean they should be implemented as a spreadsheet application – there may well be
a better way. Also, if a prototype has been developed as a spreadsheet application, a
spreadsheet may nevertheless not be the best way of implementing the final version of
the application. (See sections 2.1, 2.2, 2.3.2.)

For the developers to answer this question, they need to draw on their experience of
developing spreadsheets and their knowledge of other development environments. For
any possible development environment, the developers need to consider what it can and
cannot do, when they should or should not use it.

3.2 Which spreadsheet package should be used?
This may be determined by what is available to the developer and/or operators. Even if
a prototype has been developed in one package, it may be right to switch to another
package; e.g., because it offers different functionality or improved numerical accuracy.
Again, the developers should call on their experience and knowledge of the different
packages available.

3.3 Spreadsheet application integrity
Spreadsheet applications can be altered during use, either accidentally or intentionally
(maliciously?), which is a problem not found with an application consisting of a
compiled program. The operator should be constrained to only be able to change the
input data to the application; indeed input data cells can be identified as cells the
operator is supposed to change.

Techniques that can be used to prevent the operator from changing other cells include:
locking formulae, protecting sheets with a password, or hiding data (e.g. closed/shrunk
rows and columns, apparently blank cells, cells off-screen).

It is important that such techniques are used when appropriate to constrain what the
operator can do. However, it is also important that the use of these techniques is itself
validated (by testing) to avoid inadvertently over-containing the operator, and thereby
preventing the operator from changing cells that they need to change.

Check-sums
Whatever is done to prevent modification of the spreadsheet application program, it is
still important that there is a way to check that a spreadsheet application in use is the
same as the original version. The most useful technique is to calculate a check-sum (or
hash value) of the program and compare this with a check-sum of the original version.
A check-sum is a way of reducing a large amount of data to a single number in such a
way that the check-sum will usually change if the data changes. A check-sum is

DEM-ES 013 Development and Testing of Spreadsheet Applications

 21 of 50

calculated using a hashing algorithm that interactively calculates a value from
successive blocks of data.

The check-sum can be done internally by a macro that calculates a check-sum of all the
code in the spreadsheet application (ignoring the input data cells) and comparing the
check-sum with the original check-sum. Such a macro could be called each time the
application is initialised. Alternatively, the check-sum could be calculated by an
external tool, having first cleared the input data cells or set them all to fixed values.
This operation could be part of a co-ordinated approach to configuration management
(see section 2.3.3).

3.4 Ensuring testability of the application
NOTE

Think about testing as early as possible

Testing spreadsheet applications is difficult – it is less difficult if
the developer thinks about testing – the earlier in the
development that testing is considered the easier it will be.
Remember the slogan:

Design for testability

In general, spreadsheet applications are not amenable to automated testing because they
are designed for manual data input. To ensure that a spreadsheet application can be
properly tested, the developer should ensure input data can be read from a file or a
worksheet associated with the application (or in other ways read automatically). If data
input is usually manual, it may be necessary to implement a different way of operating
that is used solely for testing (see section 2.4).

3.5 Layout of worksheets
Different worksheets might be used for input, intermediate results and displaying the
output. Different kinds of data within a worksheet should be in distinct areas of the
worksheet, and visually distinguished (by colours or borders). The layout of each
worksheet should be planned as part of the design stage; a suggested layout is in [9].
Modules should be used to define procedures or functions, where this is appropriate, to
avoid complicated expressions in the formulae in cells and to minimise the use of
formulae in cells.

It is best for worksheets to grow downwards rather than sideways. Cells lower down
the page should depend on cells higher up, so that the logical flow is downwards. If the
worksheet covers at least two full screens, the data should probably be split between
two or more worksheets. More generally, new worksheets should be added if the
operator will have to scroll large distances; if scrolling is necessary then this should be
indicated on the worksheet.

Spreadsheets can be used to generate output in the form of printouts of worksheets and
graphs. The layout of worksheets must ensure that the required data are in cells that
will appear in the printed output. Graphs must also include the right information and
printed graphs should not be used to obtain measurements, unless great care is taken to
validate the process by which graphs are generated and printed.

Software Support for Metrology Best Practice Guide No. 7 DEM-ES 013

 22 of 50

It is important that when the spreadsheet application is opened by an operator, it opens
at the right place: this may require the application to be saved in a particular way. The
“right place” for the application to open means the most appropriate worksheet and
most appropriate cells within that worksheet. This should be either the program header
and instructions (see section 3.13) or the cells for input data.

3.6 Avoiding formulae
NOTE

Use a “macro language” functions instead of a cell
formula

Formulae in cells are very immediate for the developer but very
difficult for anyone (including the developer) to review and test.

Replacing any formula by a function call means the code can be
clearly laid out in a code module – the code is easy to read and
can be tested as a function.

Development, review and maintenance can be made easier if formulae in cells are
replaced by function calls. This means that the “meat” of a formula appears in a
function definition worksheet, so is easier to read, to comment, and to change. It is also
easier to add error checking to the code, or to add diagnostic “print statements” for
purposes of debugging/tracing/logging. The use of function calls, instead of formulae
in cells, may also make it harder for the operator to modify the code (accidentally or
deliberately) when locking the cell is not feasible, for some reason.

The argument to the function should include all the cells referred to in the original
formulae, either listed as individual arguments or one argument as a range of cells that
includes all the cells originally referenced. Otherwise, if the function refers to cells
directly, this dependence will be hidden from the spreadsheet package and the cells that
contain the function call will not be updated when the referenced cells are altered.

This example is explained in terms of an Excel spreadsheet and VBA functions
If cell A2 contains the formula “=2*A1”, this could be replaced by “=DoubleIt(A1)”,
where the function is defined in table 2.

If, instead, the formula was replaced by “=DoubleA1()”, defined in table 3, when the
value in A1 is changed then the value in A2 would not change automatically.

Function DoubleIt (ByVal x As Double) As Double
DoubleIt = 2 * x

End Function

Table 2: An Excel/VBA function to replace the formula “= 2 * A1”

Function DoubleA1() As Double
DoubleA1 = 2 * Range("A1").Value

End Function

Table 3: Another function to replace the formula “= 2 * A1”

DEM-ES 013 Development and Testing of Spreadsheet Applications

 23 of 50

3.7 Coding conventions
It is good for a development team or organisational group to develop common
conventions for how applications are coded. These include rules for naming/labelling
of cells and worksheets, use of particular colour or shading for given types of cells (i.e.
input, output, intermediate results, documentation, and program constants).

Predetermined coding conventions should be recorded at the outset of a project; and
usages that develop during development should be agreed within the development team
and recorded, preferably on a worksheet of the application.

3.8 Procedure and function design
Procedure and function development should follow standard software development
practice, for instance by following the development process outlined above (see section
2.3). All the inputs (i.e. cells) to a function and procedure should be identified as
arguments and given when the function/procedure is called; this allows for easier re-use
of functions and procedures and allows the spreadsheet package to identify
dependencies between cells. As an exception, macros that are called from menus or
buttons cannot take arguments.

There are two ways that function and procedures can be defined by the user:

• Most packages allow functions and procedures to be written as code in a
programming language (referred to as the spreadsheet package “macro
language”);

• Some packages have a Record Macro feature, which record the effects of
keystrokes and mouse movements, and generates the corresponding source code.

The Record Macro technique can be invaluable as starting point but should be used as a
first pass, to see how the user interaction is translated into code. Once the generated
code is available, it should be examined and edited to meet the same coding conventions
that apply to manually produced code. The generated code can be use for the body of
functions, and procedures with parameters, not just macros. When the code from
Record Macro has been edited, further development of that macro (or
function/procedure) can only be done by further editing of the macro language code – it
will not be possible to use the Record Macro feature for the further development of that
macro.

3.9 Use of packages and libraries
The use of reliable software packages and libraries is strongly encouraged. This avoids
re-coding algorithms that have already been properly coded and tested. Code in
different languages can be imported by using wrapper functions and dynamically linked
libraries (DLLs).

The documentation should record the source of software packages used in the
application, and the version being used (including the version number of the underlying
spreadsheet package).

Software Support for Metrology Best Practice Guide No. 7 DEM-ES 013

 24 of 50

3.10 Data checking and error handling
The extensive use of functions, rather than formulae, makes it much easier to check the
consistency of the input data and to handle errors that arise. It is very important for
spreadsheet applications to check that the input data has the form that the program is
expecting; and that it conforms to the developers’ assumptions as to what data the
program should handle. Indeed, the code that checks the input data can be a definitive
record of those assumptions. Errors arise when inconsistencies occur in calculations.
The program should trap (where possible) errors produced by internal functions and
report the errors to the operator, in as meaningful a form as possible.

3.11 Self-checking code
It is possible to trap many coding errors by building consistency checks into the
spreadsheet application (see [8]). For instance, the sum of the totals of the rows of
some data should be the sum of the totals of the columns. These totals should be
checked and an error reported (see section 3.10) if they differ. For large programs, it
may be best to collect all checks reported in one place on the spreadsheet.

3.12 Dates
NOTE

Confusions in date formats

04/05/06 is that the fourth of May or fifth of April this year, or
sixth of May 2004, or something else? To avoid ambiguity we
recommend using an unambiguous format for input and output:
either ISO format 2006-05-04 or US military 4 May 2006.

Spreadsheet applications usually contain date information, if only to indicate when the
data was input. There are a number of problems with the use of dates in spreadsheets
(and software in general), the most famous of which is (hopefully) behind us.

• Two digit and four digit years

It is usual to write years as two digits and leave it to the context to deal with any
possible ambiguities. Spreadsheet packages allow the entry of two digit years and
tend to use a windowing algorithm to determine the century, i.e. they assume the
year is within plus-or-minus some number of years of the current date. However,
different packages and different versions of the “same” package use different
algorithms, so there is no reliable way of getting a predictable four digit year when
entering a two digit year. The conclusion is obvious: all dates should be entered as
four digit years and all date calculations should work with four digit years.

• “Year 2000” problems

The “Year 2000” problems are problems related to inputting, storing, manipulating
and displaying dates from the year 2000 onwards. If the spreadsheet package or the
underlying hardware platform has “Year 2000” problems then they should not be
used for spreadsheet applications. The use of four digit years (previous bullet)
should eliminate any potential for continuing “Year 2000” problems in spreadsheet
applications.

DEM-ES 013 Development and Testing of Spreadsheet Applications

 25 of 50

• Day/Month confusion

In some parts of the world (in particular the US) dates are commonly displayed as
MM/DD/YYYY (i.e. 6/20/2000) rather than the common UK format of
DD/MM/YYYY (e.g. 20/6/2000). This can cause confusion for dates in the first
twelve days of each month, especially as spreadsheet packages often display US
format by default. Organisations should ensure that a fixed date format is used for
all its applications and there is some benefit in using less ambiguous formats, such as
ISO format YYYY/MM/DD (e.g. 2000-06-20) or US military date format, e.g. 20-
JUN-2000.

3.13 Program headers
The spreadsheet application as a whole (and each worksheet) should identify itself,
including (as appropriate) its name, purpose, authors, dates of creation and
modification, version number, instructions for use, etc. If the program is small, the
program header should appear at the top of the first worksheet; otherwise, there should
be a header at the top of each worksheet and the first worksheet should be dedicated to
documenting the application, including the program header.

The program header should make clear the assumptions the application makes about
how it will be used and what the input data is. These assumptions should be expressed
in the spreadsheet or there should be a reference to the program documentation. The
values of program constants should also be included with the program header, so that
they can be located easily.

3.14 Comments
The code should be documented properly so that it is clear what the relevant formulae
and procedures do. What is not so clear for spreadsheet applications is where the
comments can appear. Some possibilities are listed below (not all of these may be
possible in a given spreadsheet package):

• text in cells on a worksheet,

• text attached to cells as notes or comments,

• text embedded in procedure/function definition code.

It is not usually possible to put comments in formulae – e.g. you can’t do:
= A1 + A2 /* sum */

 – and such comments would probably not be readable. If it is necessary to make
comments on cell formulae, it is probably best to put the formula code in a function and
replace the formula in the cell by a function call (see section 3.19). It is also possible,
in some spreadsheet packages, to attach notes to cells but the user will not always know
to read these notes. If it is possible to have the notes appear by default, this should be
done.

Software Support for Metrology Best Practice Guide No. 7 DEM-ES 013

 26 of 50

3.15 Review of spreadsheet code
The spreadsheet code should be reviewed against the code design but this is not so
straightforward. For traditional programming, the code is available as a printout and the
individual modules and functions can be read to ensure they meet the design. To review
spreadsheet code, it is necessary to review the formulae in place (by selecting cells) or
to obtain a printout of all the formulae in their cells. Neither of these is really practical,
especially for complex cell formulae, and so complex formulae in cells should be
avoided in favour of function calls (see section 3.6). Review of spreadsheet code is
easier if references to other cells are written using “labels” rather than cell co-ordinates.
(See section 2.3.3).

3.16 Review of spreadsheet text
The text in the spreadsheet should be reviewed to ensure it is consistent with the
specification. This includes static text in cells that may be instructions to the operators,
and labels for rows and columns. It is import to review all text that appears in (printed)
output from the spreadsheet application: no only text in cells on the worksheets
containing the output data, but also headers and footers in print layout for worksheets
and graphs. The latter headers and footers are not usually visible when the spreadsheet
is being developed and maintained, and it is easy to forget to update then when
modifying a version of a spreadsheet application.

3.17 Execution monitoring
It is useful to be able to monitor the execution of a spreadsheet application; this can be
used to supplement spreadsheet code review, to aid debugging, and to provide
traceability from the execution of the application by logging significant “events”.
Various mechanisms may be available in the spreadsheet package to enable logging, for
instance the use of triggering events to cause messages to be printed; it will normally be
possible to print logging information from macro calls.

3.18 Links to other applications
A powerful facility provided by spreadsheet packages is the ability for one spreadsheet
to refer to data in another spreadsheet. This is a useful technique to allow users to
perform additional calculations on data in a given spreadsheet application, without
having to modify the existing application. The user sets up a new spreadsheet
application, which makes a copy of the relevant data in the original application, by
references, and can perform new calculations on the copied data. The user has the
freedom to use the data from the original application without threatening the integrity of
that application.

However, there can be problems with references to data in other spreadsheets. The
main problem is maintenance: if the referenced application is changed then all
references to that application may become invalid, requiring all such references to be
checked and corrected. Another issue is how references are updated when data is
changed in the referenced application. The user of an application needs to be sure that
the values of references have been updated from the referenced application before
relying on the data in the referencing application. It is probably unwise to assume that

DEM-ES 013 Development and Testing of Spreadsheet Applications

 27 of 50

data from references will be necessarily correct if two spreadsheet applications
reference one another.

It is best to use references to another spreadsheet application only if the referenced
application is stable and the data in the referenced application changes infrequently.
Work on the referencing application should not be done while the referenced
application is changing and references to the referenced application should be updated
explicitly at the start of the work. This avoids both maintenance issues and questions of
when updates happen from one application to another.

3.19 Dynamically changing the spreadsheet layout
It can be necessary in the use of a spreadsheet application for the operator to change the
layout of one or more worksheets, for instance to accommodate more rows of input data
than the original worksheet allowed. It is not recommended to allow the operator to add
new rows by hand: it will not always be easy for the operator to see what is needed and
the effects of changes (and operator mistakes) may not be visible or predictable. It is
better to write a macro that adds the rows/columns automatically and updates the
formulae accordingly, but even this is not very satisfactory as the effects of such macros
are difficult to test.

If the operator is allowed to change the spreadsheet while entering input data, the
allowed user interaction should be carefully documented and included in the operator
instructions. If these allowed interactions include adding rows/columns, the steps the
operator is to follow should also be detailed precisely.

3.20 Understanding the effects of user interaction
When the operator is provided with macros to interact with a spreadsheet application, it
can be difficult for the developer to understand the combined effects of sequences of
macro calls. A powerful technique to understand these effects is to model the user
interaction as a state machine.

A state machine has states, corresponding to the different configurations that the
application can get into, and transitions between states, corresponding to macros that
can be used to change the configuration. A diagram of the state machine should be
simple enough that it can be drawn on paper as part of the documentation. The
developer should use such a diagram to check the code design against the functional
specification to ensure that the allowed user interaction provides all the desired
functionality, and no more.

A user interaction state machine model is also invaluable in testing the user interface.
The tests on the user interface should be designed so that every state in the state
machine is visited. More rigorous testing would test every transition from every state:
testing that allowed transitions have the right effect, and that disallowed transitions are
disabled.

Software Support for Metrology Best Practice Guide No. 7 DEM-ES 013

 28 of 50

3.21 Useful generic macros
There are three generic macros that are useful to any spreadsheet application developer.

1. A “clear all” macro that removes all input data leaving just the program. Input data
cells are left clear or replaced with default values, as appropriate.

2. A “testing” macro to read in reference data or regression test data and check known
outputs.

3. An “initialisation” macro to check the integrity of the spreadsheet application (see
section 3.3), and perform a self-test and then clear the input data cells.

These are generic in the sense of their functionality being application independent but
they are not provided by the spreadsheet packages. The developer will need to write
their own version of these macros and adapt the macros for the layout and testing
infrastructure of each spreadsheet application.

3.22 Avoiding spreadsheets altogether
NOTE

Perhaps the application should not be a spreadsheet

Developing and maintaining a spreadsheet application following
sound software engineering is not well supported by the
spreadsheet packages and is difficult for the developer.

It may be best to regard the initial spreadsheet application as a
prototype that captures the required functionality and some of
the right code design, and re-implement the application as
software in a real programming language, with real tool support.

The technique above “Avoiding formulae” (section 3.6) can be extended and
generalised, moving code and intermediate results into functions and values passed
between functions. The ultimate situation is a spreadsheet application where the output
data values are calculated by a function from the input data, and all the code and
intermediate data are in the functions. The spreadsheet exists only for input and output:
storing and displaying input and output data.

If the language for writing functions (the “macro language”), or a related language (with
similar syntax and semantics), can be used to create standalone applications, then the
application can, by this route, be made standalone. This would allow an alternative
mechanism for input/output to be used for the application. The application would no
longer be reliant on the spreadsheet package that had been used for the development.
This is available from Excel, by using the VBA procedures and functions as the basis
for a standalone application in Visual Basic.

Another development technique is “spreadsheet automation”, where a standalone
application is developed that interacts with spreadsheet data (using spreadsheet package
functions “under the hood”), while not exposing the spreadsheet to the operator. Again,
this is an option for Excel, where a Visual Basic application can create and manipulate a
spreadsheet object using OLE. (Microsoft’s system for Object Linking and Embedding)

DEM-ES 013 Development and Testing of Spreadsheet Applications

 29 of 50

This technique offers another development route, rather than developing the application
as a spreadsheet or developing the application (from scratch) in a new language. These
different approaches are illustrated in figure 2.

Software Support for Metrology Best Practice Guide No. 7 DEM-ES 013

 30 of 50

Figure 2: Possible development paths from a prototype spreadsheet application

D
ev

el
op

 a
pp

lic
at

io
n

in
 a

 d
iff

er
en

t l
an

gu
ag

e

Ex
po

se

sp
re

ad
sh

ee
t t

o
us

er
?

A
PP

LI
C

A
TI

O
N

co

nt
ai

ni
ng

 sp
re

ad
sh

ee
t

fo
r e

xa
m

pl
e:

 V
is

ua
l

Ba
si

c
us

in
g

O
LE

A
PP

LI
C

A
TI

O
N

in

 n
ew

 la
ng

ua
ge

fo

r e
xa

m
pl

e:
 J

av
a

SP
R

EA
D

SH
EE

T
A

PP
LI

C
A

TI
O

N

fo
r e

xa
m

pl
e:

 E
xc

el

us
in

g
VB

A

A
PP

LI
C

A
TI

O
N

in

 re
la

te
d

la
ng

ua
ge

fo

r e
xa

m
pl

e:
 V

is
ua

l
Ba

si
c,

 fr
om

 V
BA

 c
od

e

PR
O

TO
TY

PE

SP
R

EA
D

SH
EE

T

D
ev

el
op

 a
pp

lic
at

io
n

in
 m

ac
ro

 la
ng

ua
ge

 –

or
 a

 re
la

te
d

la
ng

ua
ge

D
ev

el
op

 a
pp

lic
at

io
n

as
 a

 w
ra

pp
er

 a
ro

un
d

sp
re

ad
sh

ee
t

C
on

tin
ue

 to
 d

ev
el

op

as
 a

 sp
re

ad
sh

ee
t

ap
pl

ic
at

io
n

D
ev

el
op

as

 sp
re

ad
sh

ee
t

?

U
se

 e
xi

st
in

g
fu

nc
tio

n
co

de
?

N
O

Y
ES

N
O

N
O

Y
ES

Y

ES

Checklists for
spreadsheet
development and
testing

IN THIS CHAPTER

44

� What to develop

� What to validate

� What to test

� Spreadsheet organisation and layout

� Spreadsheet code review

� Organisational requirements

Software Support for Metrology Best Practice Guide No. 7 DEM-ES 013

 32 of 50

4. Checklists for spreadsheet development and testing

4.1 What to develop
These are questions to decide whether or not it is worth the investment of resources to
develop an application as a spreadsheet application, and to determine whether it can be
developed properly and validated (see sections 3.1 and 3.2). There can be good reasons
to develop an application as a spreadsheet application. For instance:

• spreadsheets give an intuitive presentation of data;
• spreadsheets allow the creation of summaries and graphs (which

can be especially good for measurement results and uncertainties); and
• spreadsheets are also a valuable aid to understanding, through data exploration.

This checklist is designed to ensure you do not develop an application using a
spreadsheet package when it is not appropriate to do so. Spreadsheets are not the right
solution for all applications even if the developer is used to using spreadsheets.
Spreadsheets offer some obstacles for the sound development of applications and the
decision to develop an application as a spreadsheet should be a conscious one. Some of
the questions may seem obvious – but they are worth thinking about.

1. Will the spreadsheet application be an effective solution to the problem?

If not, then it may not be best to develop the solution as a spreadsheet application.

2. Does the spreadsheet application provide functionality that is widely applicable?

If the functionality is widely applicable, that functionality should not be
implemented in a spreadsheet application – but instead should be implemented as
an application that makes the functionality widely available to other applications.

3. Does the spreadsheet application perform calculations that are repeated frequently
or are numerically highly complex?

Frequent or complex numerical calculations are not very efficiently implemented in
a spreadsheet package and so if they are present in the application, development as
a spreadsheet application is best avoided.

4. Does the spreadsheet application provide new functionality not duplicated by an
existing (properly developed and validated) application/system?

If the functionality is available in an existing application or system, the new
application should be developed to re-use the existing solution. If the existing
solution can be re-used by in a spreadsheet application then the new application
should not be developed as a spreadsheet.

4.2 What to validate
The following items should be validated, if applicable:

1. system requirements and functionality;

2. functions and procedures (see section 4.3: items 4 and 5);

DEM-ES 013 Development and Testing of Spreadsheet Applications

 33 of 50

3. algorithms and parameters (see section 4.3: items 2 and 3);

4. numerical integrity (robustness), accuracy and reliability (see section 4.3: item 1);

5. application integrity via calculating a check-sum (see section 3.3) — internal or
external;

6. operational procedures;

7. training of operators;

8. change control and configuration management.

4.3 What to test
This section gives a list of the items that should be tested, if applicable.

For testing the numerical calculations:

1. test the accuracy of calculations using standard, or reference, test data (see section
3.4);

2. test the correct treatment of parameters by using test data with values of the
parameters in range, on the edge of the range and outside the range of
allowed/expected values (see section 3.10);

3. test the logic of calculations by using a test data set that causes conditional
expressions in the code to become true and false, respectively; more rigorous testing
would test all paths through the different branches in the code (see section 3.11).

For testing the user interface:

4. test the functionality of each function;

5. test the functionality of each command/button;

6. test the effects of combinations of interdependent macros (see section 3.20);

7. test the accuracy of plotted graphs (see section 3.5);

8. check that the application identifies itself in its output;

9. test the printing of each printable worksheet.

4.4 Spreadsheet organisation and layout
The following recommendations are made regarding spreadsheet layout (see section
3.5), where applicable:

1. use colouring or shading of cells to distinguish status, be wary of using colours that
will give problems to colour-blind operators (particularly red and green);

2. lock cells that are not for input data;

3. protect worksheets and workbooks by password;

4. provide operator instructions on the worksheet which takes input data OR on their
own worksheet (see section 3.13);

Software Support for Metrology Best Practice Guide No. 7 DEM-ES 013

 34 of 50

5. arrange either operator instructions or data input to appear on the visible portion of
the first worksheet;

6. set the format of cells appropriately for the data that is to appear in them.

In addition, the following recommendations are made regarding the spreadsheet
application interface, to be applied where applicable:

7. remove unused worksheets;

8. provide each worksheet with a meaningful name (not “Sheet1”, “Sheet2”, etc.);

9. the spreadsheet application should open at the right place (see the final paragraph of
section 3.5 and items 4 & 5 above);

10. hide rows/columns that the operator need not see;

11. use separate worksheets for data that the operator need not see;

12. simplify, as far as possible, the input screen and menus;

13. disable “drag and drop”, to avoid cells being filled accidentally.

4.5 Spreadsheet code review
The following list indicates what to check in a review of spreadsheet code. All aspects
should to be reviewed against the user requirements and the functional specification
(see section 3.15):

1. the implementation of the calculations is correct;

2. repeated calculations have been correctly copied;

3. rounding has been done at the appropriate place in the calculation — usually in
displaying the output data;

4. review function and procedure code (standard source code review);

5. review input for usability and fitness for purpose;

6. review output for readability and correctness of layout, headings, labels, etc.;

7. review instructions and documentation.

4.6 Organisational requirements
For the given criticality of the application and complexity of calculation, the
organisational requirements should be specified under each of the following headings:

1. roles and responsibilities of staff;

2. documentation;

3. testing requirements;

4. version control and configuration management mechanisms;

5. audit mechanisms.

DEM-ES 013 Development and Testing of Spreadsheet Applications

 35 of 50

4.7 Other issues
The following is a list of miscellaneous other issues that should be considered (not all
will necessarily be required):

1. document the source of equations, calculations, and algorithms;

2. can the spreadsheet application interface to other systems — e.g. Laboratory
Information Management Systems (LIMS)?

3. for invalid or non-existent data, can the spreadsheet package or application
distinguish between the following cell contents: clear (no data entered), “”, 0;
e.g. when a data value is zero, as opposed to no data value having been entered.

Appendices

IN THESE APPENDICES

AA

� Defining Procedures for
spreadsheet application development

» Purpose/Scope

» Management of the process

» Development

» Testing

» Procedures for use

» Configuration Management

and Version Control

» Documentation

» Use of other packages and add-ins

� EUnit – Excel test harness

� Useful references

Software Support for Metrology Best Practice Guide No. 7 DEM-ES 013

 38 of 50

Appendix A
Procedures for spreadsheet application development
This appendix describes the procedures for spreadsheet application development in a
form that can be used as a template for drawing up real procedures in a real
organisation. This material was produced by reviewing quality procedures for software
development against the particular requirements of this Best Practice Guide. Normal
text at the beginning of each section defines what that section should contain; italicised
text is suggested text that might appear in the actual procedures. We also give
references to the relevant sections in the previous chapters.

The procedures should start with a short introduction:

In order to allow proper testing of spreadsheet applications, the applications shall be
developed according to sound software engineering procedures. Some procedures
translate easily from conventional software engineering to spreadsheet application
development; but other procedures require reformulation in terms of spreadsheet
concepts to make the requirements clear.

A.1 Purpose/Scope of the procedure
The purpose of this procedure is to describe best practice for the development of
spreadsheet applications that will process measurement data.

• The application needs to be able to process correct data and trap invalid data. (See
section 3.10.)

• The application should be easy to maintain and enhance. (See section 2.3.)

• Further guidance should be sought if the spreadsheet application is to be used as
embedded software within another system.

A.2 Management of the spreadsheet application development
process
The development process is a project, either a separate project or as part of a larger
project: as such, the process should be planned and managed. There should be
someone responsible for the spreadsheet application being developed; this person
should approve the installation/release of the implementation. The development
process should be documented and records kept. Staff employed on the development
project should have the necessary training, experience, skills, and/or qualifications for
the task. (See sections 2.3 and 4.6.)

A.3 Development of spreadsheet applications

A.3.1 Introduction
The introduction should explain why spreadsheet applications should be developed in
accordance with this procedure (see section 2.3).

DEM-ES 013 Development and Testing of Spreadsheet Applications

 39 of 50

A.3.2 Specification of spreadsheet applications
The specification of a spreadsheet application consists of documents used to develop
and maintain the application. These documents are the user requirements, the
functional specification, the code design and the test plan.

The first three documents are in order from high level down to low level. Each
document should be reviewed to see that it captures the requirements of the preceding
document, as well as detailing requirements/functionality/code in sufficient detail.

The test plan validates the application against the user requirements but will go down to
a lower level of the code in defining the tests. The test plan should be reviewed against
the other specification documents to see that it includes tests for the important
requirements/functionality/code given in the other documents.

User requirements
The user requirements document specifies why the application is needed, the
problem that is solved, the functions provided to the operator, and how it should be
used. One particular issue for spreadsheet applications is how input data is to be
entered into the application: is it read from a file or another application, or is it
entered by hand into a spreadsheet worksheet, or by some other means? (See section
2.3.3.)

Functional specification
The functional specification should spell out the algorithmic or mathematical
relationship between the input and output data. It should also define how the
application interacts with the environment: both the computer environment
(operating system, file system, other spreadsheets, etc.) and the real world (e.g.
human user interface, measurement instrumentation). (See section 2.3.3.)

Code design
The code design covers how the relationship between inputs and outputs will be
implemented. This will be given in terms of intermediate data to be calculated,
modules to perform specific calculations, and organisation of data and calculations
within the spreadsheet worksheets. However, the first question for code design is
should the application be implemented as a spreadsheet. (See sections 3.5 and 3.6.)

Test plan
The test plan should show how each testable element of the requirement,
functionality and code is to be tested. The tests should show the correct operation of
the application and should include data that might reveal errors in the application:
e.g. invalid data that should be trapped, or values that are close to boundaries in the
functionality. (See sections 2.4 and 3.4.)

Note on vocabulary
There may be some difficulty in finding the appropriate language to talk about elements
of spreadsheet design and implementation, as this has not been the subject of technical

Software Support for Metrology Best Practice Guide No. 7 DEM-ES 013

 40 of 50

literature. There is a need for the various application specification documents to use a
common language. In the absence of any other source, they should use the terms used
in the documentation of the spreadsheet package to be used for the implementation of
the application (once this is known). Alternatively, the application development should
maintain its own glossary/vocabulary; the glossary/vocabulary of this guide could
provide a starting point.

A.3.3 Code design and implementation
This section should describe the techniques to be adopted for producing the code and
structure of the application. The following should be considered:

1. Choice of implementation platform: should the application be implemented as a
spreadsheet? If so, which spreadsheet package should be used?

2. Coding conventions: procedure/function design, comments, use of cell formulae.

3. Dependencies: identify libraries, error handling, and versions of packages to be used.

4. How to ensure the integrity of code: prevention and detection of changes to the
application.

5. Ensuring testability of the application.

6. Structure of the application: the different spreadsheet worksheets, the layout of cells
within each worksheet, program and worksheet headers.

A.3.4 Reviews
The various outputs from the spreadsheet application development process should be
reviewed for consistency to ensure traceability from the user requirements to the code
and the tests. The following reviews are necessary:

1. Design Review

There should be a chain of traceability from the user requirements document,
through the functional specification, to the code design. Reviewing these documents
and their inter-relationships is a paper exercise. (See section 4.4.)

2. Code Review

The code should be reviewed against the code design (see section 4.5).

3. Review of application execution: debugging/tracing/logging (see section 3.17).

4. Test review

The test plan and test objectives should be reviewed against the specification and
requirements and the individual test cases should be reviewed against the objectives
for the individual tests. (See sections 4.2 and 4.3.)

A.4 Testing
This section should describe how spreadsheet applications are to be tested either
externally or by self-testing (see section 3.4).

DEM-ES 013 Development and Testing of Spreadsheet Applications

 41 of 50

A.5 Procedures for use
This section should describe how applications are to be used (see sections 3.5 and 3.13).

The operating procedures provided in the spreadsheet application should be followed.
Data should be entered in the input data cells only; no attempt should be made to alter
formulae, or change procedure or function code, or call macros except as explicitly
allowed in the operating procedures.

A.6 Configuration Management and Version Control
Configuration management is used to control the components of an application. This
can be complicated where the components of an application are in different files, but
the components of a spreadsheet application are normally the worksheets within one
spreadsheet file. If this is the case, configuration management is simply a matter of
version control. (See section 2.3.3.)

Version numbers are used to uniquely identify the different versions of an application.
It is useful for users to be able to refer to different versions by a simple number, which
should be noted in the program header and updated when new versions of the software
are made available.

A.7 Documentation
User documentation is needed for operators to be able to use the application: even the
original developer will need documentation to use an application that they have not
used for some time. When writing user documentation, the developer should imagine
someone trying to use the application in a year’s time and having no one to ask for
help.

Design documentation is needed for the developer to be able to maintain and enhance
the application: even the original developer will need documentation to redevelop the
application that they have not modified for some time. When writing design
documentation, the developer should imagine someone trying to modify the application
in a year’s time and having no one to ask for help.

(See section 2.3.)

A.8 Use of other packages and add-ins
Spreadsheet applications may use other packages for some of their interaction with the
computing environment or with the operator. Equally, they may use add-ins (such as
dynamically linked libraries) to implement some of the required functionality. Where
this involves the use of reliable packages and libraries, this is to be encouraged: it does
not make sense to implement, in a spreadsheet package, facilities that are better
implemented by an existing package or library. However, the developer should test
such packages and add-ins to ensure they are fit for purpose. The documentation
should record the version numbers of packages and libraries that are used and further
testing should be done before modifying the spreadsheet application to use later
versions.

(See section 3.9.)

Software Support for Metrology Best Practice Guide No. 7 DEM-ES 013

 42 of 50

Appendix B EUnit – test harness for Excel

B.1 Introduction
EUnit is a test harness to implement unit testing for Excel. EUnit is specific to Excel
and is implemented as part of Excel, so it cannot be used with other spreadsheet
packages. Therefore, unlike the rest of this guide, this appendix is only applicable to
Excel and not to other spreadsheet packages.

A test harness is a piece of software that allows a selection of tests to be run, and the
results recorded, without further interaction with the tester. Unit testing is a method of
testing where each code unit (module, function, etc.) is tested, rather than testing the
software as a whole. EUnit is design for unit testing of Excel applications, but can also
used for system testing.

The implementation of unit testing in EUnit follows that of JUnit, for testing Java [10],
including the choice of names for the testing procedures. JUnit uses Java exception
handling to handle errors in tests, but it was not possible to mimic this in EUnit: instead
global variables are used to record execution failures in tests.

Tests are written as procedures that ultimately call “assert” procedures that are used to
indicate whether the tests pass or fail. The test procedures reside in code modules,
which can also contain set-up and tear-down procedures that are run before and after
each test in the module. Having written the tests, they are run using the EUnit GUI.
The GUI allows you to select the tests, run the tests and display the results. The
following sections describe how to write the tests and how to run them.

A beta release of EUnit is available from:
http://www.npl.co.uk/ssfm/download/documents/software/eunit/eunit-beta-1.3.zip

B.2 Writing the tests
The test procedures reside in code modules, these code module can contain other code
and the test procedures are distinguished by having a name beginning with “test”
(case does not matter). The code modules containing test can also include special
procedures, “setUp” and “tearDown”, to be run before and after each test in the
module. The modules can contain other functions and procedures, perhaps to be used to
support the test procedures, as long as their names do not match the test procedures.

http://www.npl.co.uk/ssfm/download/documents/software/eunit/eunit-beta-1.3.zip

DEM-ES 013 Development and Testing of Spreadsheet Applications

 43 of 50

B.2.1 Test procedures
All test procedures should have the following structure:

Public Sub testNameOfTest()
 On Error GoTo traperrors
 ' The test code goes here
 Exit Sub
traperrors:
 Call fail("Failed executing the test", _
 Err.Description, _
 Err.Source, _
 Err.Number)
End Sub

The trapping of errors within a test is vital; otherwise the test harness (as a whole) could
fail.

This is a simple example test procedure

Public Sub testMultiply()
 On Error GoTo traperrors
 Range("A1").Value = 2
 Range("B1").Value = 3
 Range("C1").Formula = "=A1*B1"
 Call assertEquals(Range("C1").Value, _
 6, , "Multiply two numbers")
 Exit Sub
traperrors:
 Call fail("Failed executing the test", _
 Err.Description, _
 Err.Source, _
 Err.Number)
End Sub

Only test procedures, starting with “test”, will be executed as tests by the harness, all
other procedures will not be executed (unless called by a test).

B.2.2 setUP and tearDown
Two other procedures can be part of a test module setUP and tearDown; these are
executed respectively before and after each test in a module is executed. Their structure
is similar to the test procedures and is shown below:

Public Sub setUP()
 On Error GoTo traperrors
 ' initialisation code goes here
 Exit Sub
traperrors:
 Call fail("Failed set up", _
 Err.Description, _
 Err.Source, _
 Err.Number)
End Sub

Software Support for Metrology Best Practice Guide No. 7 DEM-ES 013

 44 of 50

Public Sub tearDown()
 On Error GoTo traperrors
 ' termination code goes here
 Exit Sub
traperrors:
 Call fail("Failed tear down", _
 Err.Description, _
 Err.Source, _
 Err.Number)
End Sub

Here is an example of the use of setUP and tearDown to save and restore cells from
the worksheet that are overwritten by the test (for example, testMuliply defined
above).

Option Explicit
Dim a, b, c

Public Sub setUP()
 On Error GoTo traperrors
 a = Range("A1")
 b = Range("B1")
 c = Range("C1")
 Range("A1:C1").ClearContents
 Exit Sub
traperrors:
 Call fail("Failed set up", _
 Err.Description, _
 Err.Source, _
 Err.Number)
End Sub

Public Sub tearDown()
 On Error GoTo traperrors
 Range("A1:C1").ClearContents
 Range("A1") = a
 Range("B1") = b
 Range("C1") = c
 Exit Sub
traperrors:
 Call fail("Failed tear down", _
 Err.Description, _
 Err.Source, _
 Err.Number)
End Sub

B.2.3 Test results
Each test must have one (or more) of the several “assert methods” that assign the test
result; these are described in the next sections. If a test has failed, this is recorded as the
final result of that test, although the test may continue to execute (and if in an infinite
loop will remain in it!).

DEM-ES 013 Development and Testing of Spreadsheet Applications

 45 of 50

A test can result in one of four results, which are explained in the table below:

Possible test result Meaning
Pass The test has passed.
Fail The test has failed at some assert method.
Abort No assertions have been made in the test.
Error This should not occur – error in EUnit.

Table 4: Test results for EUnit tests

B.2.4 assertTrue
Test based on a Boolean expression.

Name assertTrue

Exp Boolean M Boolean expression which if true the
assertion is then true

TestDescription String O Description of the test
Description String O Usually Err.Decription
Source String O Usually Err.Source Pa

ra
m

et
er

s

Number Long O Usually Err.Number
Examples:
Call assertTrue(True, _
 "Captured a deliberate error in the test", _
 Err.Description, _
 Err.Source, _
 Err.Number)
Call assertTrue(Result, "setUP test 1")

Software Support for Metrology Best Practice Guide No. 7 DEM-ES 013

 46 of 50

B.2.5 assertEquals
Test if two values are equal.

Name assertEquals

Expected Variant M Expected result – Can be Double, Single,
Integer, Long, Byte, Decimal or String

Actual Variant M Actual result – Can be Double, Single,
Integer, Long, Byte, Decimal or String

Delta Double O Used when comparing Double or Single,
has a default value of
4.94065645841247E-324

Pa
ra

m
et

er
s

TestDescription String O Description of the test
Examples:
Call assertEquals(XY, _
 Worksheets("testSheet1").Range("XY"), _
 , _
 "Test 1: integer")
Call assertEquals(5.75, _
 Worksheets("testSheet1").Range("XY"), _
 0.001, _
 "Test 2: double/single")
Call assertEquals("Hello World", _
 Worksheets("testSheet1").Range("XYs"), _
 , _
 "Test 4: strings")

B.2.6 fail
This is used when test have failed – it is equivalent to assertTrue(False, …).

Name fail

TestDescription String O Description of the test
Description String O Usually Err.Decription
Source String O Usually Err.Source

Pa
ra

m
et

er
s

Number Long O Usually Err.Number
Examples:
Call fail("Failed executing the test", _
 Err.Description, _
 Err.Source, _
 Err.Number)
Call fail("Fail to capture the error")

DEM-ES 013 Development and Testing of Spreadsheet Applications

 47 of 50

B.3 Running the tests

B.3.1 Installing EUnit
Before the tests can be run, EUnit must be attached to the spreadsheet application as a
reference. The tests can then be executed through the supplied GUI.

From the Microsoft Visual Basic toolbar: Tools → References → Browse → EUnit.xls.

B.3.2 Using the GUI
The GUI is activated by calling the macro EUnit.xls!showallresults,
in the workbook with the tests in it, in which case you should see the following figure.

Figure 3: EUnit panel

Software Support for Metrology Best Practice Guide No. 7 DEM-ES 013

 48 of 50

B.3.3 Running tests
The top part of the GUI contains a list of all the possible code modules in the workbook.
Select those with the tests and click on the yellow button. The results will appear, in the
part of the GUI labelled Results, see below:

Figure 4: EUnit test results

DEM-ES 013 Development and Testing of Spreadsheet Applications

 49 of 50

B.3.4 Displaying details of tests
For any test further details can be obtained by clicking on it:

Figure 5: EUnit test detail

Software Support for Metrology Best Practice Guide No. 7 DEM-ES 013

 50 of 50

References
These are books and articles we found useful and relevant. They cover the application
of software engineering practice to spreadsheet application development and rapid
application development.

1. Cook, H.R., M.G. Cox, M.P. Dainton, and P.M. Harris. A methodology for
testing spreadsheets and other packages used in metrology. Report to the
National Measurement System Policy Unit, Department of Trade and Industry,
from the UK Software Support for Metrology Programme. NPL Report CISE
25/99, NPL, September 1999. http://www.npl.co.uk/ssfm/download/#cise25_99

2. Cook, H.R., M.G. Cox, M.P. Dainton, and P.M. Harris. Testing spreadsheets
and other packages used in metrology: A case study. Report to the National
Measurement System Policy Unit, Department of Trade and Industry, from the
UK Software Support for Metrology Programme. NPL Report CISE 26/99, NPL,
September 1999. http://www.npl.co.uk/ssfm/download/#cise26_99

3. Cook, H.R., M.G. Cox, M.P. Dainton, and P.M. Harris. Testing spreadsheets
and other packages used in metrology: Testing the intrinsic functions of Excel.
Report to the National Measurement System Policy Unit, Department of Trade
and Industry, from the UK Software Support for Metrology Programme. NPL
Report CISE 27/99, NPL, September 1999.
http://www.npl.co.uk/ssfm/download/#cise27_99

4. Cox, M.G., M.P. Dainton, and P.M. Harris. Testing functions for the calculation
of standard deviation. NPL Report CMSC 07/00, October 2000.

5. Cox, M.G., M.P. Dainton, and P.M. Harris. Testing functions for linear
regression. NPL Report CMSC 08/00, October 2000.

6. Cox, M.G., P.M. Harris, E.G. Johnson, P.D. Kenward, and G.I. Parkin. Testing
the numerical correctness of software. NPL Report CMSC 34/04, January 2004.

7. DACS, Rapid Application Development (RAD). Software Tech News, 1998.
2(1).

8. ICA. Spreadsheet Design., Institute of Chartered Accountant in England and
Wales, 1994.

9. McDowall, R.D., C. Burgess, and B. Hardcastle, Spreadsheets: heaven or hell.
Scientific Data Management, 1999. 3(3): p. 8-17.

10. Object Mentor. JUnit: 2006. http://www.junit.org
11. Panko, R.R. and R.P. Halverson Jr. Spreadsheets on Trial: A Survey of Research

on Spreadsheet Risks. in 29th Annual Hawaii International Conference on
System Sciences. 1996. Hawaii: IEEE.

12. Panko, R.R., What we know about spreadsheet errors. Journal of End User
Computing, 1998. 10(2): p. 15-21.

13. Wichmann, B.A., R.M. Barker, and G.I. Parkin. Validation of Software in
Measurement Systems. Software Support for Metrology Best Practice Guide No.
1, NPL, March 2004. http://www.npl.co.uk/ssfm/download/bpg.html#ssfmbpg1

