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ABSTRACT

This guide provides best practice in the evaluation of uncertainty within metrology, and in
the support to this topic given by statistical modelling. It is motivated by two principle
considerations. The first is that although the primary guide on uncertainty evaluation, the
‘Guide to the expression of uncertainty in measurement’ (GUM), published by ISO, can
be expected to be very widely applicable, the approach it predominantly endorses contains
some limitations. The other is that on the basis of the authors’ considerable contact with
practitioners in the metrology community it is evident that important classes of problem are
encountered that are subject to these limitations. A further consideration is that measure-
ment models are encountered in practice that lie outside the scope of the model type (viz.,
univariate, explicit and real) that is the focus of the presentation given in the GUM.

Central to consideration is the need to carry out uncertainty evaluation in as scientific a
manner as economically possible. Although several approaches to uncertainty evaluation
exist, the GUM has been very widely adopted (and is strongly supported by the authors
of the current guide). The emphasis of this guide is on making good use of the GUM, on
aspects that yield greater generality, and especially on the provision in some cases of mea-
surement uncertainties that are more objectively based and numerically more sustainable.
The guide is also concerned with validating the current usage of the GUM in circumstances
where there is doubt concerning its applicability. The relationship of this guide to the work
being carried out by the Joint Committee on Guides in Metrology to prepare Supplements
to the GUM is indicated.
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Chapter 1

Scope

1.1 Structure of the Guide

This best-practice guide provides information relating to

1. The objective of uncertainty evaluation (Chapter 2)

2. A statement of the main problem addressed in the area of uncertainty evaluation
(Chapter 3)

3. The main stages of uncertainty evaluation, including a generally applicable procedure
(Chapter 4)

4. Approaches to uncertainty evaluation and particularly for determining a coverage in-
terval for the quantity subject to measurement (Chapter 5)

5. A classification of the main model types and guidance on the application to these
models of the law of propagation of uncertainty (Chapter 6)

6. Details of a general numerical procedure, a Monte Carlo method, as an implementa-
tion of the propagation of distributions for uncertainty evaluation (Chapter 7)

7. A facility that enables the results of the law of propagation of uncertainty and the
assumptions of the Central Limit Theorem to be validated, thus providing assurance
that that approach can legitimately continue to be used in appropriate circumstances
(Chapter 8)

8. Examples to illustrate the various aspects of this guide (Chapter 9).
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1.2 Summary

This guide provides best practice in the evaluation of uncertainty within metrology, and
in the support to this discipline given by statistical modelling. Central to consideration is
a measurement system or process, having input quantities that are (invariably) inexactly
known, and an output quantity that consequently is also inexactly known. The input quanti-
ties relate to measurement processes or represent information obtained from sources such as
manufacturers’ specifications, calibration certificates and tabulated data. The output quan-
tity represents a well-defined physical quantity to be measured (sometimes known as the
measurand).1 The objective of uncertainty evaluation is to quantify the extent and nature of
the knowledge of the output quantity given the model of the system, including knowledge of
the model input quantities to account for the nature of their inexactness.2 Knowledge of the
model input quantities is encoded by the assignment of probability density functions (PDFs)
to those quantities.3 Knowledge of the model output quantity is determined by deriving a
PDF for that quantity. For this reason, the problem of uncertainty evaluation is formulated
as one of propagating distributions through the measurement model. A main requirement
is to ascribe to the output quantity a so-called coverage interval that contains a specified
proportion, e.g., 95 %, of the distribution of values that could reasonably be attributed to
that quantity.4

The key document in the area of uncertainty evaluation is the ‘Guide to the expression of
uncertainty in measurement’ (GUM) [10]. The GUM provides a procedure, summarized
in GUM Clause 8 and Section 5.3 of this guide, for evaluating uncertainty that has been
adopted by many bodies. The procedure is based on representing the model input quantities
by estimates and standard uncertainties associated with the estimates. The estimates and
the associated uncertainties are ‘propagated’ through (a linearized version of) the model to
provide an estimate of the output quantity and the associated standard uncertainty. A means
for obtaining a coverage interval for the output quantity is provided. The procedure also
accounts for the correlation effects that arise if the model input quantities are mutually de-
pendent. The (complete) procedure, involving (a) the application of the law of propagation
of uncertainty to obtain an estimate of the output quantity and the associated uncertainty,
and (b) the assumptions of the Central Limit Theorem to obtain a coverage interval, is one
implementation of the propagation of distributions. Henceforth, we will refer to the proce-
dure summarized in GUM Clause 8 as the GUM uncertainty framework. This is consistent
with the way the term is used within the first Supplement [9] to the GUM.

1In some instances the output quantities may not individually have physically meaning. An example is the
set of coefficients in a polynomial representation of a calibration curve. Together, however, the set of quantities
(coefficients) define a meaningful entity, the calibration curve.

2Model validation, viz., the process of ascertaining the extent to which the model is adequate, is not treated
in this guide. Detailed information on model validation is available [2].

3The assignment may be on the basis of a (statistical) analysis of a set of indications of the input quantities,
referred to in the GUM as a ‘Type A evaluation’, or by some other means, referred to in the GUM as a ‘Type
B’evaluation.

4There may be more than one output quantity, in which case a coverage region may be required.
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In order to make the GUM more immediately applicable to a wider range of problems, a
classification of model types is provided in this guide. The classification is based on

1. Whether there is one or more than one output quantity

2. Whether the model is explicit or implicit, viz., whether or not it is possible to express
the output quantity as a direct calculation involving the input quantities, or whether
some indirect, e.g., iterative process, is necessitated

3. Whether the model or the quantities within it are real or complex, the latter arising
particularly in electrical, acoustical and optical metrology.

Guidance on uncertainty evaluation based on the law of propagation of uncertainty is pro-
vided for each model type within the classification.

The model employed in the GUM is an input-output model, i.e., it expresses the output
quantity in terms of the input quantities. For relatively simple measurements, this form can
straightforwardly be obtained. In other cases, this form does not arise immediately, and
must be derived. Consideration is therefore given to statistical modelling, a process that
relates the measurement data to the required measurement results and the knowledge of
the various input quantities concerned. This form of modelling can then be translated into
the ‘GUM model’, in which the knowledge of the input quantities are summarized by best
estimates and uncertainties. Statistical modelling also covers the probabilistic and statistical
analysis of the model input quantities.

Although the GUM as a whole is a very rich document, there is much evidence that the
GUM uncertainty framework is the approach that is adopted by most practitioners as an
implementation of the propagation of distributions. It is therefore vital that the fitness for
purpose of this approach (and of any other approach) is assessed, generally and in individ-
ual applications. There are some limitations and assumptions inherent in the GUM uncer-
tainty framework and there are applications in metrology in which users of the GUM are
unclear whether the limitations apply or the assumptions can be expected to hold in their cir-
cumstances. In particular, the limitations and assumptions at the basis of the ‘easy-to-use’
formula inherent in the law of propagation of uncertainty are highlighted.

The GUM (in Clause G.1.5) does permit the practitioner to employ ‘other analytical or nu-
merical methods’. However, if such methods are to be used they must have certain creden-
tials in order to permit them to be applied in a sensible way. Part of this guide is concerned
with such methods, their properties and their credentials.

It is natural, in examining the credentials of any alternative scientific approach, to re-visit es-
tablished techniques to confirm or otherwise their appropriateness. In that sense it is appro-
priate to re-examine the principles of the GUM uncertainty framework to discern whether
they are fit for purpose. This task is not possible as a single ‘general health check’. The
reason is that there are circumstances when the principles of the GUM uncertainty frame-
work cannot be bettered by any other candidate technique, but there are others when the
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quality of the approach is not quantified. The circumstances in which the GUM uncertainty
framework is unsurpassed are when the model relating the input quantities X1, . . . , XN to
the output quantity Y is linear, viz.,

Y = c1X1 + · · ·+ cNXN ,

for any constants c1, . . . , cN , any value of N , however large or small, and when the in-
put quantities Xi are assigned Gaussian distributions.5 In other circumstances, the GUM
uncertainty framework generally provides an approximate solution: the quality of the ap-
proximation depends on the model, the estimates of its input quantities and the magnitudes
of the uncertainties associated with the estimates. The approximation may in many cases
be perfectly acceptable for practical application. In some circumstances this may not be so.
See the statement in Clause G.6.6 of the GUM.

The concept of a model remains central to alternative approaches to implementing the prop-
agation of distributions. This guide advocates the use of an alternative approach in circum-
stances where there is doubt concerning the applicability of the GUM uncertainty frame-
work. Guidance is provided for this approach. The approach is numerical, being based on
a Monte Carlo method. It is thus computationally intensive, but nevertheless the calcula-
tion times taken are often only seconds or sometimes minutes on a PC, unless the model is
especially complicated.

It is shown how the alternative approach can also be used to validate the GUM uncertainty
framework and thus in any specific application confirm (or otherwise) that this use of the
GUM is fit for purpose, a central requirement of the Quality Management Systems operated
by many organizations. In instances where the approach indicates that the use of the GUM
uncertainty framework is invalid, the approach can itself subsequently be used for uncer-
tainty evaluation, in place of the GUM uncertainty framework, in that it is consistent with
the general principles (Clause G.1.5) of the GUM.

An overall attitude taken to uncertainty evaluation in this guide is that it consists of several
stages. The first stage, formulation, constitutes building the model and quantifying proba-
bilistically the knowledge of its input quantities. The second stage, propagation, consists
of using this information to quantify probabilistically the knowledge of the model output
quantity. The final stage, summarizing, involves obtaining from this information about the
model output quantity the required results, including an estimate of the output quantity, the
associated standard uncertainty and a coverage interval containing the output quantity with
a specified probability.

The concepts presented are demonstrated by examples, some chosen to emphasize a spe-
cific point and others taken from particular areas of metrology. Each of these examples
illustrates the GUM uncertainty framework or the recommended alternative approach or
both, including the use of the latter as a validation facility for the former.

5A joint (multivariate) Gaussian distribution is assigned in the case that some or all of the input quantities
are mutually dependent.
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Currently, work related to the GUM is taking place under the auspices of the Joint Com-
mittee for Guides in Metrology (JCGM).6 This work is concerned with amplifying and
emphasizing key aspects of the GUM in order to make the GUM more readily usable and
more widely applicable. Revision by the JCGM of the GUM itself will start in October
2006 [7] in parallel with work on Supplements to the GUM. The approaches to uncertainty
evaluation presented here are consistent with the developments by the JCGM in this respect,
as is the classification of model types given. This best-practice guide will be updated peri-
odically to account for the work of this committee (Section 1.3). It will also account for the
work of standards committees concerned with various aspects of measurement uncertainty,
awareness of requirements in the areas indicated by workshops, etc., organized within the
Software Support for Metrology (SSfM) programme and elsewhere, and technical develop-
ments.

The authors of this guide provide input to the Working Group of the JCGM that is concerned
with the GUM and also to other relevant national or international committees, including

• British Standards Committee Panel SS/6/-/3, Measurement Uncertainty

• CEN/BT/WG 122, Uncertainty of Measurement

• EA Expert Group on Measurement Uncertainty

• ISO/TC 69/SC 6, Measurement Methods and Results.

Readers of this guide will benefit from reasonable familiarity with the GUM or the related
UKAS document M3003 [81]. A companion document [33] provides specifications of rel-
evant software for uncertainty evaluation when applying some of the principles considered
here.

1.3 Document history

The first edition of this best-practice guide was published in March 2001, having been
developed during the first SSfM programme, covering the period April 1998 – March 2001.
During that period Working Group 1, ‘Expression of Uncertainty in Measurement’, of the
Joint Committee for Guides in Metrology, started work, following its first meeting in March
2000, on the first Supplement [9] to the GUM concerned with a Monte Carlo method for
the propagation of distributions. Material from the evolving best-practice guide was used
in various parts of the Supplement and subsequently refined appropriately for consistency
with the latter document.

The second edition was published in March 2004, following revision during the second
SSfM programme, covering the period April 2001 – March 2004. In this second edition,

6The Web address of the JCGM is http://www.bipm.fr/en/committees/jc/jcgm/.

Page 5 of 167



NPL Report DEM-ES-011 Uncertainty Evaluation

material from the drafts of the Supplement prepared during that period that had an origin in
the first edition of the guide were re-used.

The current document (third edition), produced during the third SSfM programme, cover-
ing the period April 2004 – March 2007, reflects the further work of Working Group 1 of
the Joint Committe for Guides in Metrology to prepare Supplements to the GUM. A main
change from the second edition concerns a revision of Chapter 9 Examples to include de-
scriptions of new examples and case studies undertaken during the third SSfM programme.
The guide includes three examples (concerned with mass calibration, comparison loss in
microwave power meter calibration and gauge block calibration) that are included as exam-
ples within the first Supplement [9].

1.4 Acknowledgements

The guide has benefited from many sources of information. These include:

• SSfM workshops

• The Joint Committee for Guides in Metrology

• National and international standards committees

• Consultative Committees of the Comitè International des Poids et Mesures (CIPM)

• National Metrology Institutes (outside the UK)

• The (UK) Royal Statistical Society

• NPL Scientific Groups

• The United Kingdom Accreditation Service

• LGC Ltd

• The National Engineering Laboratory

• The Numerical Algorithms Group Ltd

• UK industry

• Conferences in the Advanced Mathematical and Computational Tools in Metrology
series [17, 18, 20, 22, 16, 19, 21]

• Literature on uncertainty, statistics and statistical modelling

• Many individual contacts.
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Chapter 2

Introduction

2.1 Uncertainty and statistical modelling

Measured values are not perfect. When a quantity is measured by one instrument, the value
obtained will generally be different from that provided by another measuring instrument. If
that quantity were to be measured a number of times by the same instrument, in the same
way and in the same circumstances, a different value each time would in general be ob-
tained.1 These repeated measured values would form a ‘cluster’, the ‘size’ of which would
depend on the nature and quality of the measurement process. The ‘centre’ of the cluster
would provide an estimate of the quantity that generally can be expected to be more reli-
able than individual measured values. The ‘size’ of the cluster would provide quantitative
information relating to the quality of this central value as an estimate of the quantity. It will
not furnish all the information of this type, however. The measuring instrument is likely to
provide values that are influenced by one or more systematic effects.

As an illustration of a systematic effect, consider domestic bathroom scales. If they are not
set such that the display reads zero when there is nobody on the scales, when used to weigh
a person or an object the indicated weight can be expected to be offset from what it should
be. No matter how many times the person’s weight is taken and averaged,2 because the
scatter of values would be centred on an offset value, the effect of this offset is inherently
present in the result.

There are thus two main effects, in this example and in general. The first is a ‘random’
effect associated with the fact that when a measurement is repeated each measured value
will generally be different from the previous value. It is random in that there is no way to
predict from previous measured values exactly what the next one would be.3 The second

1This statement assumes that the recording device has sufficient resolution to distinguish between different
values.

2There is a variety of ways of taking an average, but the choice made does not affect the argument.
3If a prediction were possible, allowance for the effect could be made!
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effect is a systematic effect (a bias) associated with the fact that the measured values contain
an offset.

In practice there can be a number of contributions to the random effect and to the systematic
effect, both in this situation and in many other situations. Depending on the application, the
random effect may dominate, the systematic effect may dominate or the effects may be
comparable.

In order to make a statement concerning the measurement of the quantity of interest it is
typically required to provide an estimate of that quantity and an associated uncertainty.
The estimate is (ideally) a ‘best estimate’ of the quantity and the uncertainty a numerical
measure of the quality of the estimate.

The above discussion concerns the measurement of a particular quantity. However, the
quantity actually measured by the device or instrument used is rarely the result required
in practice. For instance, the display on the bathroom scales does not correspond to the
quantity measured. The raw measured value might be that of the extension of a spring in
the scales whose length varies according to the load (the weight of the person on the scales).

The raw measured value is therefore converted or transformed into a form to provide the
required (output) quantity. For a perfect (linear) spring, the conversion is straightforward,
being based on the fact that the required weight is proportional to the extension of the spring.
The display on the scales constitutes a graduation or calibration of the device. For a domes-
tic mercury thermometer, the raw measured value is the height of a column of mercury. This
height is converted into a temperature using another proportional relationship: a change in
the height of the column is proportional to the change in temperature, again a calibration.

A relationship of types such as these constitutes a rule for converting the raw measured
value into the output quantity. In metrology, there are very many different types of mea-
surement and therefore different rules. Even for one particular type of measurement there
may well be more than one rule, perhaps a simple rule (e.g., a proportional rule) for ev-
eryday domestic use, and a sophisticated rule involving more complicated calculations (a
nonlinear rule, perhaps) that is capable of delivering more accurate results for industrial or
laboratory purposes.

Often, a set of measured values (indications) of the same quantity is obtained under constant
measurement conditions, and those values averaged to obtain a more reliable result.

The situation is frequently more general in another way. There is often a number of different
raw measured values that contribute to the output quantity. Here, the concern is not sim-
ply repeated indications, but intrinsically different measured values, e.g., some relating to
temperature and some to displacement. Also, there may be more than one output quantity.
For instance, by measuring the length of a bar at various temperatures it may be required to
determine the coefficient of expansion of the material of which the bar is made and also to
determine the length of the bar at a temperature at which it may not have been measured,
e.g., 27 ◦C, when measured values were obtained at 20, 22, 24, 26, 28 and 30 ◦C.
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In addition to raw measured values, there is another form of data that is also frequently fed
into a rule in order to provide a measurement result. This additional data relates to a variety
of ‘constants’, each of which can be characterized as having an estimate and a distribution
about it to represent the imperfect knowledge of the quantity concerned. An example is
a material constant such as modulus of elasticity, another is a calibrated dimension of an
artefact such as a length or diameter, and another is a correction arising from the fact that a
measurement was made at, say, 22 ◦C rather than the stipulated 20 ◦C.

The complete set of data items required by the rule to enable a value of the output quantity
to be produced is known as the set of input quantities. The rule is usually referred to as a
model because it is the use of physical modelling (or perhaps empirical modelling or both
types of modelling) [2] of a measurement, measurement system or measurement process
that enables the rule to be established.

This guide is concerned with the problem of determining information about the output quan-
tity given the model and information concerning the input quantities. Some advice is given
on encoding the mentioned information by probability distributions for the input quantities.
Because the form of the model varies enormously over different metrology disciplines, it is
largely assumed that a (physical) model is available (having been derived by the experts in
the appropriate area). The use of statistical modelling is considered, however, in the con-
text of capturing the probabilistic nature of a problem. Model validity is not specifically
addressed. Information is available in a companion publication [2].

In particular, this guide reviews several approaches to the problem, including the widely-
accepted GUM uncertainty framework. It reviews the interpretation of the GUM that is
made by many organisations and practitioners concerned with measurement, the analysis
of measurement data and the presentation of measurement results. The point is made that
this interpretation is subject to limitations that are insufficiently widely recognized. These
limitations have, however, been indicated [80] and are discussed in Chapter 5.

An approach free from these limitations, known as the propagation of distributions, is pre-
sented. A particular implementation of this approach is given, constituting a numerical
procedure based on the use of a Monte Carlo method, and can be used

1. in its own right to quantify probabilistically the knowledge of the output quantity,

2. to validate the approach based on the GUM uncertainty framework.

The described Monte Carlo method itself has deficiencies. They are of a different nature
from those of the GUM uncertainty framework, and to a considerable extent controllable.
They are identified in Chapter 7.

The GUM does not refer explicitly to the use of a Monte Carlo method. However, this
option was recognized during the drafting of the GUM. The ISO/IEC/OIML/BIPM draft
(First Edition) of June 1992, produced by ISO/TAG 4/WG 3, states, as Clause G.1.5:
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If the relationship between Y [the model output] and its input quantities is
nonlinear, or if the values available for the parameters characterizing the prob-
abilities of the Xi [the inputs] (expectation, variance, higher moments) are only
estimates and are themselves characterized by probability distributions, and a
first order Taylor expansion is not an acceptable approximation, the distribution
of Y cannot be expressed as a convolution. In this case, numerical methods
(such as Monte Carlo calculations) will generally be required and the evalua-
tion is computationally more difficult.

In the published version of the GUM [10], this Clause had been modified to read:

If the functional relationship between Y and its input quantities is nonlinear and
a first-order Taylor expansion is not an acceptable approximation (see 5.1.2 and
5.1.5), then the probability distribution of Y cannot be obtained by convolving
the distributions of the input quantities. In such cases, other analytical or nu-
merical methods are required.

The interpretation made here of this re-wording is that ‘other analytical or numerical meth-
ods’ cover any other appropriate approach.4

This interpretation is consistent with that of the National Institute of Standards and Tech-
nology (NIST) of the United States [80]:

[Clause 6.6] The NIST policy provides for exceptions as follows (see Appendix
C):

It is understood that any valid statistical method that is technically justified un-
der the existing circumstances may be used to determine the equivalent of ui

[the standard deviation of the ith input quantity], uc [the standard deviation of
the output], or U [the half-width of a coverage interval for the output, under a
Gaussian assumption]. Further, it is recognised that international, national, or
contractual agreements to which NIST is a party may occasionally require devi-
ation from NIST policy. In both cases, the report of uncertainty must document
what was done and why.

Further, within the context of statistical modelling in analysing the homogeneity of refer-
ence materials, it is stated [50]:

[Clause 9.2.3] ... where lack of a normal distribution is a problem, robust or
non-parametric statistical procedures may be used to obtain a valid confidence
interval for the quantity of interest.

4That this interpretation is correct has been confirmed by JCGM/WG1.
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This guide adheres to these broad views. The most important aspect relates to traceability
of the results of an uncertainty evaluation. An uncertainty evaluation should include

1. all relevant information relating to the model and its input quantities,

2. an estimate of the output quantity and either or both of the standard uncertainty asso-
ciated with this estimate and a coverage interval (or coverage region) for the output
quantity,

3. the manner in which these results were determined, including all assumptions made.

There would also appear to be valuable and relevant interpretations and considerations in the
German standard DIN 1319 [37]. An official English-language translation of this standard
would not seem to be available.

There has been massive investment in the use of the GUM. It is essential that this investment
is respected and that this guide is not seen as deterring the continuation of its use, at least
in circumstances where such usage can be demonstrated to be appropriate. In this respect, a
recommended validation procedure for the GUM uncertainty framework is provided in this
guide. The attitude taken is that if the procedure demonstrates in any particular circumstance
that this usage is indeed valid, the GUM uncertainty framework can legitimately continue to
be used in that circumstance. The results of the validation can be used to record the fact that
fitness for purpose in this regard has been demonstrated. If the procedure indicates that there
is doubt concerning the validity of the GUM uncertainty framework, then there is a case for
investigation. Since in the latter case the recommended procedure forms a constituent part
(in fact the major part) of the validation procedure, this procedure can be used in place of
the GUM uncertainty framework. Such use of an alternative procedure is consistent with
the broader principles of the GUM (Chapter 5 of this guide and above).

There is another vital issue facing the metrologist. For a measurement it is necessary to
characterize the distributions to be assigned to the input quantities and to develop the model
for the output quantity in terms of these quantities. Carrying out these tasks can be far from
easy. Some advice is given in this regard. However, written advice can only be general,
although examples and case studies can assist. In any one circumstance, the metrologist has
the responsibility, perhaps with input from a mathematician or statistician if appropriate,
of characterizing the input quantities and building the model. The procedure based on the
GUM uncertainty framework and the recommended approach using a Monte Carlo method
both utilize this information (but in different ways). As mentioned, the former possesses
some limitations that the latter sets out to overcome.

The attitude taken here is that whatever the nature of the input quantities and the model, even
(and especially) if some subjective decisions are made in their derivation, the distribution
for the output quantity should then follow objectively and without qualification from this
information, rather than in a manner that is subject to limitations, in the form of effects that
are difficult to quantify and beyond the control of the practitioner.
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In summary, the attitude that is generally promoted in this guide is that as far as economi-
cally possible use should be made of all available knowledge. In particular, (a) the available
knowledge of the input quantities should be embodied within the distributions assigned to
them, (b) a model that relates these input quantities to the output quantity should carefully
be constructed, and (c) the calculation of uncertainty associated with the estimate of the
output quantity should be carried out in terms of this information.

2.2 The objective of uncertainty evaluation

Uncertainty evaluation is the generic term used in this guide to relate to any aspect of quanti-
fying the extent of the incomplete knowledge of the output quantity of a model to incomplete
knowledge of the model input quantities. Also, the model itself may be based on incom-
plete knowledge. If that is the case, the nature and extent of the incomplete knowledge
of the model also need to be quantified and its influence on the output quantity established.
The knowledge of the model output quantity is also influenced by any algorithm or software
that is used to determine its value given values of the input quantities. Such software may
incorporate approximate algorithmic techniques that impart an additional uncertainty.

Example 1 Approximate area under a curve defined by spectral data

Consider a model necessitating the determination of an integral representing the area
under a curve defined by spectral data. An algorithm might utilize the trapezoidal
or some other numerical quadrature rule. Numerical approximation errors will be
committed in the use of this rule. They depend on the spacing of the ordinates used and
on the extent of the departure of the curve from linearity. The consequent uncertainties
would need to be evaluated.

The uncertainty evaluation process could be at any level required, depending on the appli-
cation. At one extreme it could involve determining the standard deviation associated with
an estimate of the output quantity for a simple model having a single output quantity. At the
other extreme it might be necessary to determine the joint probability distribution for a set of
output quantities of a complicated complex model exhibiting non-Gaussian behaviour, and
from that deduce a coverage region for the set of output quantities for a stipulated coverage
probability.

The objective of uncertainty evaluation can be stated as follows:

Derive (if not already available) a model relating a set of output quantities to (input) quanti-
ties (estimated by raw measured values, suppliers’ specifications, etc.) that influence them.
Establish distributions for these input quantities. Calculate (in a sense required by con-
text) estimates of the output quantities and evaluate the uncertainties associated with these
estimates.
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A mathematical form for this statement is given in Chapter 3.

This objective may in its context be well defined or not. In a case where it is well defined
there can be little dispute concerning the nature of the results, presuming they have been
obtained correctly. If it is not well defined, it will be necessary to augment the information
available by assumptions or assertions in order to establish a well-defined problem. It will
be necessary to ensure that the assumptions and assertions made are as sensible as reason-
ably possible in the context of the application. It will equally be necessary to make the
assumptions and assertions overt and to record them, so that the results can be reproduced
and defended, and perhaps subsequently improved.

In very many cases the objective of uncertainty evaluation will be to determine a coverage
interval (or coverage region) for the output quantity. Commonly, this coverage interval will
be for a 95 % coverage probability. There is no compelling scientific reason for this choice.
It almost certainly stems from the traditional use of 95 % in statistical hypothesis testing
[15], although the reasons for the choice in that area are very different. The overriding
reason for the use of 95 % in uncertainty evaluation is a practical one. It has become so
well established that for purpose of comparison with other results its use is almost man-
dated. Another strong reason for the use of 95 % is the considerable influence of the Mutual
Recognition Arrangement concerning the comparison of national measurement standards
and of calibration and measurement certificates issued by National Metrology Institutes [8].

Such an interval will be referred to in this guide as a 95 % coverage interval.

It can be argued that if a coverage interval at some other level of probability is quoted, it can
be ‘converted’ into one at some other level. Indeed, a similar operation is recommended in
the GUM, when information concerning the distribution for an input quantity is converted
into a standard deviation (standard uncertainty in GUM parlance). The standard deviations
together with sensitivity coefficients are combined to produce the standard deviation asso-
ciated with an estimate of the output quantity, from which a coverage interval is obtained by
multiplication by a factor. The factor is selected based on the assumption that the distribu-
tion for the output quantity is Gaussian. That this process gives rise to difficulties in some
cases can be illustrated using a simple example.

Example 2 Dominant input quantity

Consider the model Y = X1 + X2 + . . ., where X1, X2, . . . are the input quantities
and Y the output quantity. Assume that all terms but X1 have a small effect, and X1

is assigned a rectangular distribution. The above-mentioned GUM procedure gives a
95 % coverage interval for Y that is longer than the 100 % coverage interval for X1.

Instances of this type would appear to be not uncommon. For instance, an EA guide [38]
gives three examples arising in the calibration area.

This possibility is recognised by the GUM:
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[GUM Clause G.6.5] ... Such cases must be dealt with on an individual basis
but are often amenable to an analytic treatment (involving, for example, the
convolution of a normal distribution with a rectangular distribution ...

The statement that such cases must be dealt with on an individual basis would appear to
be somewhat extreme. Indeed, such a treatment is possible (cf. Sections 5.2 and 5.2.2), but
is not necessary, since a Monte Carlo method (Chapter 7) generally operates effectively in
cases of this type.

The interpretation [81] of the GUM by the United Kingdom Accreditation Service recom-
mends the inclusion of a dominant uncertainty contribution by adding the term linearly to
the remaining terms combined in quadrature. This interpretation gives rise generally to a
more valid result, but remains an approximation. The EA Guide [38] provides some analysis
in some such cases.

It is emphasized that a result produced according to a fixed recipe that is not universally ap-
plicable, such as the GUM uncertainty framework, may well be only approximately correct,
and the degree of approximation difficult to establish.

The concern in this guide is with uncertainty evaluation that is reliable in the sense that the
results will not exhibit inconsistent or anomalous behaviour, however simple or complicated
the model may be.

Appendix A reviews some relevant statistical concepts.

2.3 Standard uncertainties and coverage intervals

Arguably the most important uncertainty information to a metrologist is a coverage interval
corresponding to a specified coverage probability, e.g., an interval that is expected to contain
95 % of the values that could be attributed to the output quantity. This interval is the 95 %
coverage interval considered above.

There is an important distinction between the nature of the information needed to determine
the standard uncertainty associated with an estimate of the output quantity and a coverage
interval for the output quantity.

The expectation and standard uncertainty (standard deviation) can be determined knowing
the distribution for the output quantity (Appendix A.2). The converse is not true.

Example 3 Deducing an expectation and a standard deviation from a distribution, but not
the converse

As an extreme example, consider a random variable X that can take only two values, a
and b, with equal probability. The expectation of X is µ = (a + b)/2 and the standard
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deviation of X is σ = |b − a|/2. However, given only the values of µ and σ, there is
no way of deducing the distribution. If a Gaussian distribution were assumed, it would
be concluded that the interval µ ± 1.96σ contained 95 % of the distribution. In fact,
the interval contains 100 % of the distribution, as does the interval µ±σ, of about half
that length.

Related comments are made in Clause G.6.1 of the GUM. Although knowledge of the
expectation and standard deviation is valuable information, without further information it
conveys nothing about the manner in which the values are distributed.5 If, however, it is
known that the underlying distribution is Gaussian, the distribution for the output quantity is
completely described since just the expectation and standard deviation fully characterize a
Gaussian distribution. A similar comment can be made for some other distributions. Some
distributions require additional parameters to describe them. For instance, in addition to
the expectation and standard deviation, a t–distribution requires the degrees of freedom to
specify it.

Thus, if the form of the distribution is available generically, from analysis, empirically or
from other considerations, the determination of an appropriate number of statistical pa-
rameters will permit it to be quantified. Once the quantified form of the distribution is
available, it is possible to calculate a percentile, i.e., a value for the quantity of concern
such that, according to the distribution, the corresponding percentage of the possible values
of the quantity is smaller than that value. For instance, if the 25-percentile is determined,
25 % of the possible values can be expected to lie below it (and hence 75 % above it). Con-
sider the determination of the 2.5-percentile and the 97.5-percentile. 2.5 % of the values
will lie to the left of the 2.5-percentile and 2.5 % to the right of the 97.5-percentile. Thus,
95 % of the possible values of the quantity lie between these two percentiles. These points
thus constitute the endpoints of a 95 % coverage interval for the quantity.

The 2.5-percentile of a distribution can be thought of as a point a certain number of standard
deviations below the expectation and the 97.5-percentile as a point a certain number of
standard deviations above the expectation. The numbers of standard deviations to be taken
depends on the distribution. They are known as coverage factors. They also depend on the
coverage interval required, 90 %, 95 %, 99.8 % or whatever.

For the Gaussian and the t–distributions, the effort involved in determining the numbers of
standard deviations to be taken has been embodied in tables and software functions.6 Since
these distributions are symmetric about the expectation, the coverage factors for pairs of
percentiles that sum to 100, such as the above 2.5- and 97.5-percentiles, are identical. This
statement is not generally true for asymmetric probability distributions. Indeed, the concept
of a coverage factor is inapplicable in that case.

In order to determine percentiles in general, it is necessary to be able to evaluate the inverse
5See, however, the maximum entropy considerations in Appendix C.2.
6In most interpretations of the GUM, the model output quantity is characterized by a Gaussian distribution

or a distribution related to the t–distribution.
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G−1 of the distribution function G (Appendix A.3). For well-known distributions, such as
Gaussian and t, software is available in many statistical and other libraries for this purpose.
Otherwise, values of xα = G−1(α) can be determined by using a zero finder to solve the
equation G(xα) = α [33]. Alternatively, G(ξ) can be tabulated in advance at an adequate
number of values of ξ, and inverse interpolation used to determine an approximation to
xα = G−1(α) for any required values of α.

The coverage interval is not unique, even in the symmetric case. Suppose that a probability
density function (Appendix A) g(ξ) = G′(ξ) is unimodal (single-peaked), and that a value
of α, 0 < α < 1, is given. Consider any interval [a, b] that satisfies

G(b)−G(a) =
∫ b

a
g(ξ)dξ = 1− α.

Then [70],

1. [a, b] is a 100(1− α) % coverage interval. For instance, if a and b are such that

G(b)−G(a) = 0.95,

95 % of possible values ξ lie between a and b

2. The shortest such interval is given by g(a) = g(b). a lies to the left of the mode (the
value ξ at which g(ξ) is greatest) and b to the right

3. If g(ξ) is symmetric, not only is the shortest such interval given by g(a) = g(b), but
also a and b are equidistant from the mode, which equals the expectation in this case.
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Chapter 3

Uncertainty evaluation

3.1 The problem formulated

As discussed in Section 2.1, regardless of the field of application, the physical quantity of
concern, the model output quantity, can rarely be measured directly. Rather, it is deter-
mined from a number of contributions, or input quantities, that are themselves estimated by
measured values or other information.

The fundamental relationship between the input quantities and the output quantity is the
model. The input quantities, N , say, in number, are denoted by X = (X1, . . . , XN )T and
the output quantity by Y .1 The model

Y = f(X) = f(X1, . . . , XN )

can be a mathematical formula, a step-by-step calculation procedure, computer software or
other prescription. Figure 3.1 shows an input-output model to illustrate the ‘propagation of
uncertainty’ [10]. The model has three input quantities X = (X1, X2, X3)T, where Xi is
estimated by xi with associated standard uncertainty u(xi). It has a single output quantity
Y ≡ Y1, estimated by y = y1 with associated standard uncertainty u(y) = u(y1). In
a more complicated circumstance, the input quantities would be mutually dependent, i.e.,
correlated, and additional information would be needed to quantify the correlations.

There may be more than one output quantity, viz., Y = (Y1, . . . , Ym)T. In this case the
model is

Y = f(X) = f(X1, . . . , XN ),

where f(X) = (f1(X), . . . , fm(X)), a vector of model functions. In full, this ‘vector
model’ is

1A single input quantity (when N = 1) will sometimes be denoted by X (rather than X1).
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x1, u(x1) -

x2, u(x2) -

x3, u(x3) -

f(X) - y, u(y)

Figure 3.1: Input-output model illustrating the propagation of uncertainty. The model has
three input quantities X = (X1, X2, X3)T, estimated by xi with associated standard uncer-
tainty u(xi), for i = 1, 2, 3. There is a single output quantity Y ≡ Y1, estimated by y with
associated standard uncertainty u(y).

Y1 = f1(X1, . . . , XN ),
Y2 = f2(X1, . . . , XN ),

...

Ym = fm(X1, . . . , XN ).

The output quantities Y would almost invariably be mutually dependent in this case, since
in general each output quantity Yj , j = 1, . . . ,m, would depend on several or all of the
input quantities.

A model with a single output quantity Y is known as a univariate model. A model with m
(> 1) output quantities Y is known as a multivariate model.

In statistical parlance all input quantities Xi are regarded as random variables with possible
values ξi, regardless of their source [85]. The output quantity Y is also a random variable
with possible values η. Realizations xi of the Xi are estimates of the input quantities.
f(x1, . . . , xn) provides an estimate of the output quantity. This estimate may be biased,
although it is expected that the bias will be negligible in many cases. The expectation of
the output quantity is unbiased. The bias associated with the estimate f(x1, . . . , xn) of the
output quantity results from the fact that the value of Y obtained by evaluating the model at
the input estimates x is not in general equal to the expectation of Y . These values will be
equal when the model is linear in X , and close if the model is mildly non-linear or if the
uncertainties associated with the estimates of the input quantities are small.

Example 4 Bias associated with the estimate f(x1, . . . , xn) of the output quantity

A demonstration of the bias associated with the estimate f(x1, . . . , xn) of the output
quantity is given by the simple model Y = X2, where X with expectation zero and
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standard deviation u is characterized by a Gaussian distribution. The expectation of X
is zero, and the corresponding value of the output quantity Y is also zero. However,
the expectation of Y cannot be zero, since Y ≥ 0, with equality occurring only when
X = 0. (The probability distribution characterizing Y is in fact a χ2–distribution with
one degree of freedom.)

3.2 The stages of uncertainty evaluation

Uncertainty evaluation consists of three stages, formulation, propagation and summarizing.

In the formulation stage the metrologist derives the model, perhaps in collaboration with
a mathematician or statistician. The metrologist also assigns probability density functions
(PDFs) (rectangular (uniform), Gaussian (normal), etc.) to the model input quantities, de-
fined in terms of the parameters of these functions (e.g., central value and semi-width for a
rectangular PDF, or expectation and standard deviation for a Gaussian PDF), including cor-
relation parameters for joint PDFs. These PDFs are obtained from an analysis of series of
indications [10, Clauses 2.3.2, 3.3.5] or based on scientific judgement using all the relevant
information available [10, Clauses 2.3.3, 3.3.5], [80].

In the case of mutually independent input quantities and a single output quantity, the prop-
agation stage of uncertainty evaluation can be summarised as follows. Given the model
Y = f(X), where X = (X1, . . . , Xn)T, and the PDFs gXi

(ξi) (or the distribution func-
tions GXi

(ξi)) for the input quantities Xi, for i = 1, . . . , N , determine the PDF gY (η) (or
the distribution function GY (η)) for the output quantity Y . Figure 3.2 shows the counterpart
of Figure 3.1 in which the PDFs (or the corresponding distribution functions) for the input
quantities are propagated through the model to provide the PDF (or distribution function)
for the output quantity.

Finally, in the summarizing stage the PDF (or corresponding distribution function) for the
output quantity is used to obtain an estimate of the output quantity, the associated standard
uncertainty, and a coverage interval for the output quantity for a stated coverage probability.
It is reiterated that once the PDF (or distribution function) for Y has been obtained, any
statistical information relating to Y can be produced from it.

When the input quantities are mutually dependent, in place of the N individual PDFs gXi
(ξi)

i = 1, . . . , N , there is a joint PDF gX(ξ), where ξ = (ξ1, . . . , ξN )T. An example of
a joint PDF is the multivariate Gaussian PDF (Section 4.8.2). In practice this joint PDF
may be decomposable. For instance, in some branches of electrical, acoustical and optical
metrology, the input quantities may be complex. The real and imaginary parts of each such
quantity are generally mutually dependent and thus each has an associated 2×2 uncertainty
(covariance) matrix. See Section 6.2.5. Otherwise, the input quantities may or may not be
mutually dependent.

If there is more than one output quantity, Y , these outputs will almost invariably need to
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-

gX3
(ξ3)

-

gX2
(ξ2)

-

gX1
(ξ1)

Y = f(X) -

gY (η)

Figure 3.2: Input-output model illustrating the propagation of distributions. The model has
three input quantities X = (X1, X2, X3)T, where X1 is assigned a Gaussian PDF gX1

(ξ1),
X2 a triangular PDF gX2

(ξ2) and X3 a (different) Gaussian PDF gX3
(ξ3). The single output

quantity Y ≡ Y1 is illustrated as being asymmetric, as can arise for non-linear models
where one or more of the PDFs for the input quantities has a large standard deviation.

be described by a joint PDF gY (η), since each output quantity generally depends on all or
several of the input quantities. See Section 9.9 for an important exception.

The propagation and summarizing stages involve the derivation of the estimate of the output
quantity and the associated uncertainty, given the information provided by the formulation
stage. It is computational and requires no further information from the metrology applica-
tion. The uncertainty is commonly provided as a coverage interval. A coverage interval can
be determined once the distribution function GY (η) (Appendix A) has been derived. The
endpoints of a 95 % coverage interval2 are given (Section 2.3) by the 0.025- and 0.975-
quantiles of GY (η), the α-quantile being the value of η such that GY (η) = α.3

It is usually sufficient to quote the uncertainty associated with the estimate of the output
quantity to one or at most two significant decimal digits. In general, further digits would be
spurious, because the information provided in the formulation stage is typically imprecise,
involving estimates and assumptions. The attitude taken here though is that the propagation
and summarizing stages should not exacerbate the consequences of the decisions made in
the formulation stage.4

The PDF gY (η) for Y cannot generally be expressed in simple or even closed mathematical

295 % coverage intervals are used in this guide, but the treatment applies more generally.
3There are many intervals having a coverage probability of 95 %, a general interval being given by the β-

and (0.95 + β)-quantiles of GY (η), with 0 ≤ β ≤ 0.05. The choice β = 0.025 is natural for a GY (η)
corresponding to a symmetric PDF gY (η). It also has the shortest length for a symmetric PDF and, in fact, for
a unimodal PDF (Section 2.3).

4This attitude compares with that in mathematical physics where a model (e.g., a partial differential equa-
tion) is constructed and then solved. The construction involves idealizations and inexact values for dimensional
quantities and material constants, for instance. The solution process involves the application of hopefully sen-
sible and stable methods in order to make some supported statements about the quality of the solution obtained
to the posed problem.
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form. Formally, if δ(·) denotes the Dirac delta function,

gY (η) =
∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
gX(ξ)δ(y − f(ξ))dξNdξN−1 · · ·dξ1 (3.1)

[27]. Approaches for determining gY (η) or GY (η) are addressed in Chapter 5. That several
approaches exist is a consequence of the fact that the determination of gY (η) and/or GY (η)
ranges from being very simple to extremely difficult, depending on the complexity of the
model and the PDFs for the input quantities.
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Chapter 4

The main stages in uncertainty
evaluation

4.1 Overview

In this guide, uncertainty evaluation is regarded as consisting of the main stages indicated
in Section 3.2.

The formulation stage consists of providing the model and quantifying the PDFs for the
model input quantities. The constituent parts of this stage are the two steps:

1. Develop a model relating the input quantities to the output quantity;

2. Assign PDFs to the input quantities.

The propagation stage consists of using the information provided by the formulation stage
to determine the PDF for the output quantity.

The summarizing stage consists of using the PDF for the output quantity to obtain

1. the expectation of the quantity, taken as an estimate of the quantity,

2. the standard deviation of the quantity, taken as the standard uncertainty associated
with the estimate, and

3. a coverage interval for the quantity corresponding to a stated coverage probability.
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4.2 Statistical modelling

Statistical modelling can be beneficial when a model is complicated, but is not always
needed for simpler models. It is concerned with developing the relationships between the
measurement data obtained, other available information, such as from calibration certifi-
cates, and the input and output quantities.

Example 5 Straight-line calibration

A common example of statistical modelling arises when fitting a calibration curve to
data, representing, say, the manner in which displacement varies with temperature.
The data consists, for i = 1, . . . , N , say, of a measured value of a response vari-
able Xi corresponding to a measured or assigned value of a stimulus or independent
variable Ti. Suppose that the nature of the calibration is such that a straight-line cali-
bration curve is appropriate. Then, as part of the statistical modelling process [2], the
equations

Xi = A1 + A2Ti, i = 1, . . . , N, (4.1)

relate the measured quantities Xi and Ti to the calibration parameters A1 (intercept)
and A2 (gradient) of the line.

In order to establish values for A1 and A2 it is necessary to make an appropriate as-
sumption about the nature of the measurement data [2, 30]. Consider a situation in
which the estimates ti of the Ti have negligible associated uncertainties relative to
those of the estimates xi of the Xi. Furthermore, suppose the uncertainties associated
with the xi are identical. Then, unbiased esimates a1 and a2 of A1 and A2 are given by
least squares. Specifically, a1 and a2 are given by minimizing the sum of the squares
of the residual deviations xi − A1 − Ati, over i = 1, . . . , N , with respect to A1 and
A2, viz.,

min
A1,A2

N∑
i=1

(xi −A1 −A2ti)2.

The model equations (4.1), with the solution criterion (least squares), constitute the
results of the statistical modelling process for this example.

There may be additional criteria. For instance, a calibration line with a negative gradi-
ent may make no sense in a situation where the gradient represents a physical quantity
whose value must always be greater than or equal to zero (or some other specified
constant value). The overall criterion in this case would be to minimize the above
sum of squares with respect to A1 and A2, as before, with the condition that A2 ≥ 0.
This problem is an example of a constrained least-squares problem, for which sound
algorithms exist [2]. In this simple case, however, the problem can be solved more eas-
ily for the parameters, but the uncertainties associated with a1 and a2 require special
consideration. See the example in Section 9.8.
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4.3 Input-output modelling

Input-output modelling is the determination of the model required by the GUM in its ap-
proach to uncertainty evaluation. As indicated in Section 3.1, this model, termed here the
GUM model, is also the model required in this guide.

In the GUM a measurement system is modelled, as in Section 3.1, by a functional rela-
tionship between input quantities X = (X1, . . . , XN )T and the output quantity Y in the
form

Y = f(X). (4.2)

In practice this functional relationship does not apply directly to all measurement systems
encountered, but may instead (a) take the form of an implicit relationship, h(Y, X) = 0,
(b) involve a number of output quantities Y = (Y1, . . . , Ym)T, or (c) involve complex
quantities. Chapter 6 is concerned with the manner in which each model type within this
classification can be treated within the GUM uncertainty framework. Here, the concern is
with the basic form (4.2).

Example 6 How long is a piece of string?

The problem of establishing a simple model for the length of a piece of string, when
measured with a tape, is considered. (An alternative treatment is available [6].) The
output quantity is the length of the string. As part of the formulation stage, a mea-
surement model for string length is established. It depends on several input quantities.
This model is expressed here as the sum of four terms. Each of these terms, apart from
the first, is itself expressed as a sum of terms.1 The model takes the form2

String length = Measured string length (1)
+ Tape length correction (2)
+ String length correction (3)
+ Measurement process correction (4),

where

(1) Measured string length = Average of a number of repeated
indications

(2) Tape length correction = Length deviation due to tape calibration
imperfections

+ Extension in tape due to stretching
(negative if there is shrinking rather
than stretching)

1The model can therefore be viewed as a multi-stage model (Section 4.7), although of course by substitution
it can be expressed as a single model.

2In this formula, the correction terms are to be expressed in a way that ensures each contribution has the
correct numerical (±) sign.
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+ Reduction in effective length of tape
due to bending of the tape

(3) String length correction = Reduction in effective string length due
to string departing from a straight line

+ Reduction in string length as a result
of shrinking (negative if there is
stretching rather than shrinking)

(4) Measurement process correction = Length deviation due to inability to align
end of tape with end of string due to
fraying of the string ends

+ Length deviation due to the tape and the
string not being parallel

+ Deviation due to assigning a
numerical value to the indication
on the tape

+ Deviation due to the statistics of
averaging a finite number of repeated
indications.

Once this model is in place statements can be made about the nature of the various
terms in the model as part of the formulation stage of uncertainty evaluation. The
propagation and summarizing stages can then be carried out to evaluate the uncertainty
associated with an estimate of the string length.

There may be some statistical modelling issues in assigning PDFs to the input quanti-
ties. For instance, a Gaussian distribution (or a distribution related to the t–distribution)
would be assigned to the measured string length (1), based on the average and stan-
dard deviation associated with the average of the repeated indications, with a degrees
of freedom one less than the number of indications. As another instance, a distribution
related to the χ2–distribution3 would be assigned to the quantity describing the reduc-
tion in the effective length of the tape due to bending (2). This quantity, characterized
by such a distribution, does not, as required, have zero expectation, since the minimum
effect of tape bending on the output quantity is zero.

Example 7 Straight-line calibration (re-visited)

For the straight-line calibration example of Section 4.2 (Example 5), the GUM model
constitutes a formula or prescription (not in general necessarily explicit in form) de-
rived from the results of the statistical modelling process. Specifically, the estimates
a = (a1, a2)T of the parameters of the straight-line model are given in terms of the
measurement data x = (x1, . . . , xN )T by an equation of the form

Ha = q. (4.3)
3This degree of sophistication would not be warranted when measuring the length of a piece of string. It can

be important in other applications.
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(Compare [10, Clause H.3], [2].) Here, H is a 2× 2 matrix that depends on the values
ti, and q a 2× 1 vector that depends on the values ti and xi.

By expressing this equation as the formula

a = H−1q, (4.4)

a GUM model for the parameters of the calibration line is obtained. It is, at least
superficially, an explicit expression4 for a. The form (4.3) is also a GUM model, with
a defined implicitly by the equation.

4.4 Example to illustrate the two approaches to modelling

Consider the measurement of two nominally identical lengths under suitably controlled
conditions using a steel rule. Suppose there are two contributions to the uncertainty of
measurement due to

1. imperfection in the manufacture and calibration of the rule, and

2. operator effect in positioning and reading the scale.

Let the lengths be denoted by L1 and L2. Let the measured lengths be denoted by `1 and
`2. Then the measurements may be modelled by

`1 = L1 + e0 + e1,

`2 = L2 + e0 + e2,

where e0 is the imperfection in the steel rule when measuring lengths close to those of
concern, and e1 and e2 are the deviations attributable to the operator in obtaining the mea-
surement data. The deviations between the lengths and their measured values are therefore

`1 − L1 = e0 + e1,

`2 − L2 = e0 + e2.

Make the reasonable assumption that the quantities of which e0, e1 and e2 are realizations
are independent. Then, if u(e0) denotes the standard uncertainty associated with e0 and
u(e) that associated with e1 and e2,

var(`1 − L1) = u2(e0) + u2(e),
var(`2 − L2) = u2(e0) + u2(e),

cov(`1 − L1, `2 − L2) = u2(e0).
4The expression is termed superficially explicit, since the determination of a via a formal matrix inversion is

not recommended [2, 30]. The form (4.4), or forms like it in other such applications, should not be regarded as
an implementable formula. Rather, numerically stable matrix factorization algorithms [46] should be employed.
This point is not purely academic. The instabilities introduced by inferior numerical solution algorithms can
themselves be an appreciable source of computational uncertainty. It is not generally straightforward to quantify
this effect.
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Suppose that it is required to evaluate the difference in the measured lengths and the asso-
ciated uncertainty. From the above equations,

`1 − `2 = (L1 − L2) + (e1 − e2)

and hence, since e1 and e2 are independent,

var(`1 − `2) = var(e1 − e2) = var(e1) + var(e2) = 2u2(e). (4.5)

As expected, the uncertainty associated with the imperfection in the steel rule does not enter
this result.

Compare the above with the input-output modelling approach:

Input quantities. L1 and L2.

Model. Y = L1 − L2.

Estimates of the input quantities. `1 and `2.

Uncertainties associated with the estimates of the input quantities.

u(`1) = u(`2) =
(
u2(e0) + u2(e)

)1/2
, u(`1, `2) = u2(e0).

Partial derivatives of model (evaluated at the estimates of the input quantities).

∂Y/∂L1 = 1, ∂Y/∂L2 = −1.

Estimate of the output quantity.

y = `1 − `2.

Uncertainty associated with the estimate of the output quantity (using GUM Formula (13)).

u2(y) = (∂Y/∂L1)
2 u2(`1) + (∂Y/∂L2)

2 u2(`2) + (∂Y/∂L1) (∂Y/∂L2) u(`1, `2),

the partial derivatives being evaluated at L1 = `1 and L2 = `2 (here they are constants),
giving

u2(y) = (1)2(u2(e0) + u2(e)) + (−1)2(u2(e0) + u2(e)) + 2(1)(−1)u2(e0)
= 2u2(e),

which is the same as the result (4.5) obtained using a statistical-modelling approach.
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4.5 Mutually dependent input quantities

In a range of circumstances some choice is possible regarding the manner in which the
input quantities to the model are provided. A group of input quantities can be mutually
dependent in that each depends on a common effect. It may be possible to re-express such
input quantities so that the common effect appears explicitly as a further input quantity. By
doing so, this cause of correlation is eliminated, with the potential for a simplification of the
analysis. See GUM Clause F.1.2.4. Also, an example in mass comparison [1] illustrates the
principle.

An example of this approach, in the context of measuring the sides of a right-angled triangle,
is given in Section 9.6.

In general, the use of modelling principles, before distributions are assigned or uncertainties
associated with the input quantities are evaluated, is often helpful in understanding correla-
tion effects.

4.6 Constraints in uncertainty evaluation

Constraints in uncertainty evaluations arise as a consequence of physical limits or conditions
associated with the model input or output quantities. Instances include chemical concentra-
tions, departures from perfect form in dimensional metrology and limits of detection.

When chemical concentrations are measured, it will be appropriate to ensure that in cases
where all constituent parts are measured the estimates of the quantities sum to unity (or
100 %). The quantities will inevitably be correlated even if there is no correlation associated
with the raw measured values.

In assessing the departure from perfect form in dimensional metrology, the output quantity
is flatness, roundness, perpendicularity, concentricity, etc. These quantities are defined as
the unsigned departure, assessed in an unambiguously defined way, of a real feature from an
ideal feature, and are often very small, but nonzero. Any uncertainty statement associated
with an estimate of such a quantity that is based on a PDF that can embrace zero is physically
unrealistic.

In triangulation, photogrammetry and similar applications, using theodolites, laser interfer-
ometers and metric cameras, redundancy of measurement ensures that smaller uncertainties
are generally obtained compared with the use of a near-minimal number of measurements.
The various quantities, point co-ordinates, distances, etc. are interrelated by equality condi-
tions deducible from geometrical considerations. The extent of the improvement in uncer-
tainty is limited by inevitable systematic effects.

Within analytical chemistry, measurement of, e.g., trace elements, is often performed at the
limit of detection. At this limit the measurement uncertainty is comparable to the magnitude
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of the measured value. This situation has aspects in common with that in dimensional
metrology above, although there are appreciable contextual differences.

The Eurachem Guide to quantifying uncertainty in analytical measurement states

[42, Appendix F] At low concentrations, an increasing variety of effects be-
comes important, including, for example,

• the presence of noise or unstable baselines,

• the contribution of interferences in the (gross) signal

• . . .

Because of such effects, as analyte concentrations drop, the relative uncertainty
associated with the result tends to increase, first to a substantial fraction of
the result and finally to the point where the (symmetric) uncertainty interval
includes zero. This region is typically associated with the practical limit of
detection for a given method.

. . .

Ideally, therefore, quantitative measurements should not be made in this region.
Nevertheless, so many materials are important at very low levels that it is in-
evitable that measurements must be made, and results reported, in this region.
. . . The ISO Guide to the Expression of Uncertainty in Measurement does not
give explicit instructions for the estimation of uncertainty when the results are
small and the uncertainties large compared to the results. Indeed, the basic
form of the ‘law of propagation of uncertainties’ . . . may cease to apply accu-
rately in this region; one assumption on which the calculation is based is that
the uncertainty is small relative to the value of the measurand. An additional,
if philosophical, difficulty follows from the definition of uncertainty given by
the ISO Guide: though negative observations are quite possible, and even com-
mon in this region, an implied dispersion including values below zero cannot
be ‘reasonably ascribed to the value of the measurand’ when the measurand is
a concentration, because concentrations themselves cannot be negative.

. . .

Observations are not often constrained by the same fundamental limits that
apply to real concentrations. For example, it is perfectly sensible to report an
‘observed concentration’ that is an estimate below zero. It is equally sensible
to speak of a dispersion of possible observations which extends into the same
region. For example, when performing an unbiased measurement on a sample
with no analyte present, one should see about half of the observations falling
below zero. In other words, reports like

observed concentration = 2.4± 8 mg l−1

observed concentration = −4.2± 8 mg l−1
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are not only possible; they should be seen as valid statements.

It is the view of the authors of this guide that these statements by Eurachem are sound.
However, this guide takes a further step, related to modelling the measurement and through
the use of the model defining and making a statement about the output quantity, as opposed
to the observations on which estimates of the input quantities are based. Because a (simple)
model is established, this step arguably exhibits even closer consistency with the GUM.

The Eurachem statements stress that observationss are not often constrained by the same
fundamental limits that apply to real concentrations. It is hence appropriate to demand
that the output quantity, defined to be the real analyte concentration (or its counterpart
in other applications) should be constrained to be non-negative. Also, the observations
should not and cannot be constrained, because they are the values actually delivered by
the measurement method. Further, again consistent with the Eurachem considerations, a
PDF is assigned to the input quantity, analyte concentration, that is symmetric about that
value (unless information to the contrary is available). Thus, the input quantity, X , say,
is unconstrained analyte concentration and is assigned a symmetric PDF, and the output
quantity, Y , say, real analyte concentration, has a PDF to be determined.

In terms of these considerations an appropriate GUM model is5

Y = max(X, 0). (4.6)

The rationale behind this simple choice of model is as follows. Should the average x of
the observed values prove to be non-negative, it would naturally be taken as the estimate
of Y . Such an estimate would conventionally be used at points removed from the limit of
detection. Should x prove to be negative, it cannot be used as a physically feasible estimate
of Y , since by definition Y is the real analyte concentration and hence non-negative. Taking
y = 0 in this case is the optimal compromise between the observed values and feasibility
(the closest feasible value to the average of the observed values.).

Other approaches to accounting for physical knowledge in obtaining measurement results
and associated uncertainties are available [24, 31]. In particular, consideration may be given
to modelling probabilistically (rather than functionally as above) knowledge of the quanti-
ties concerned. A comparison of approaches, including the use of the principle of maximum
entropy, a Bayesian treatment, and the application of the propagation of distributions using
the GUM uncertainty framework and a Monte Carlo method, is available [31].

5Related considerations [57, p129] show that if an observation v is N(θ, 1) distributed, i.e., drawn from
a Gaussian distribution with expectation θ and standard deviation unity, but θ ≥ 0, the maximum likelihood
estimate of θ is max(v, 0).
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4.7 Multi-stage models

Multi-stage models are widespread in metrology. Even the string example (Section 4.3,
Example 6) can be interpreted this way. Any situation in which the output quantities from
one evaluation become the input quantities to a subsequent evaluation constitute (part of)
a multi-stage model. Within a model there are frequently sub-models, and therefore multi-
staging arises also in this context. Examples abound, especially within calibration.

In the first stage of a multi-stage model, the metrologist is responsible for providing all
the input quantities. In subsequent stages, the input quantities constitute some or all of
the output quantities from previous stages plus, possibly, further input quantities from the
metrologist.

Example 8 Example of a multi-stage model in calibration

An example of a multi-stage model occurs regularly in calibration, when it is nec-
essary to establish and use a calibration curve. The following description is in the
context of the GUM uncertainty framework. There would be an analogous description
for circumstances where it was necessary to avoid any limitation of the GUM uncer-
tainty framework and use instead a Monte Carlo method as an implementation of the
propagation of distributions.

Stage 1 involves analysing measurement data that is a function of a second variable,
e.g., displacement as a function of applied force. The displacement values, and perhaps
the values of the applied force, if they are not known accurately, constitute realizations
of the (first-stage) model input quantities. The associated uncertainties, and covari-
ances, if relevant, would be assigned. The model specifies the process of fitting a
calibration curve to the data to provide estimates of the coefficients or parameters of
the curve. These parameters constitute the model output quantities. If there is more
than one parameter (the usual case), they will almost invariably be correlated, since
each parameter estimate will generally be a function of the (same) input data. Thus,
the estimates of the output quantities will have an associated non-diagonal uncertainty
(covariance) matrix.

Stage 2, prediction, involves using the output quantities from Stage 1, viz., the curve
parameters (realized by estimates of these parameters and the associated uncertainty
matrix), as input quantities to a model that constitutes a rule for evaluating the cali-
bration curve (inversely) for appropriate values of the argument (displacement in the
above instance).6 The output quantities will be the curve evaluated at these designated

6In most situations, it is necessary, as here, to use the calibration curve inversely. Typically, the data in
Stage 1 represents a set of standards, e.g., established controls or stimuli. At Stage 2, it is required to use the
calibration curve to determine an estimate of the stimulus corresponding to a measured value of the response.
The mathematical function representing the curve then constitutes an implicit model (Section 6.2.3) (e.g., the
calibration curve may be a fifth-degree polynomial with stimulus as argument).
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points (realized by estimates from the calibration curve together with the associated
uncertainty matrix). Again, because these curve values all depend in general on all the
inputs, i.e., the curve parameters, the uncertainty matrix will be non-diagonal.

There may be no further stage, since the predicted values provided by the calibration
curve may be the primary requirement.

Otherwise, Stage 3 will be the use of the curve values obtained in Stage 2 to provide
further measurement results. As an example, take the area under (a specified portion
of) the calibration curve. Suppose that this area is to be determined by numerical
quadrature because of the impossibility of carrying out the integration analytically.
This result can typically be expressed as a linear combination of the estimates of the
curve values provided as realizations of the input quantities. As another instance, if
more than one measurement result is required, e.g., estimates of gradients to the curve
at various points, these again can typically be expressed as linear combinations of the
estimates of the curve values. They will, for similar reasons to those above, have a
non-diagonal uncertainty matrix.

The concepts described in Chapter 6 can be applied to the above stages. The various
categories within the classification of that chapter would relate to the various types of
calibration model, depending on whether it can be expressed explicitly or implicitly or
is real or complex. The model is almost always multivariate in the sense of Chapter 6,
i.e., it has more than one output quantity.

4.8 Assignment of probability density functions to the input quan-
tities

The provision of PDFs for the model input quantities requires the assignment of appropriate
probability distributions (rectangular, Gaussian, etc.) to the model input quantities. It can
be a challenging step in the formulation stage of uncertainty evaluation. Valuable guidance
is given in the GUM and the first Supplement to the GUM [9] on this matter. Additional
aspects are considered here.

Sometimes these PDFs will be the consequence of a previous ‘uncertainty calculation’
within the context of a multi-stage model (Section 4.7).

In the above straight-line calibration example (Section 4.2, Example 5, and Section 4.3,
Example 7), the PDF for each input quantity would often be taken as Gaussian. There would
be other types of measurement that would be expected to be Poissonian, for example.

Information concerning the underlying distribution should be deduced in any one instance
from all the knowledge that can economically be brought to bear (Appendix C.2).

There is an important class of metrology problems, viz., calibration as described in Sec-
tion 4.7, Example 8 or generally the analysis of experimental data. Suppose that there is a
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large number of measurement data of comparable size, such as in the straight-line calibra-
tion example in Section 4.2. Suppose also that the corresponding quantities can be taken as
mutually independent. For a calibration function that can be expressed as a linear combi-
nation of calibration parameters, the estimates of these parameters can formally be written
as a linear combination of the measured values. For the large number of measurement data
envisaged, the statistics of the situation are such that almost regardless of the nature of the
underlying distribution, the quantity realized by a linear combination of the measurement
data, as here, can be expected to have essentially a Gaussian distribution, as a consequence
of the Central Limit Theorem [68, p165]. When there are several such parameters (output
quantities) they will almost invariably be mutually dependent, since the estimate of each
is a linear combination of the input quantities. These parameters would be described by
a multivariate (joint) Gaussian distribution: see Section 4.8.2. The straight line in Section
4.2, Example 5 would have an intercept and a gradient that are mutually dependent.7

Even if the calibration function depends non-linearly on its parameters, by linearizing this
function about the estimates of the parameters, to a first order approximation similar con-
siderations apply as in the linear case [2]. In cases of doubt the validation procedures of
Chapter 8 should be undertaken to determine whether linearization is justified.

The GUM discriminates between the Type A evaluation of uncertainty—that based on statis-
tical means—and the Type B evaluation of uncertainty—that based on non-statistical means.
Although this terminology is sometimes used in this guide for alignment with the GUM, no
great distinction is made here, since all types of uncertainties can be classified by appeal-
ing to a unifying principle (Appendix C.2). It is sometimes more useful to examine the
distinction between effects that can be regarded as random and those that can be regarded
as systematic. The subdivision into Type A and Type B evaluations of uncertainty will
correspond in some instances to random and systematic effects, respectively, but not in all
circumstances. In some instances a systematic effect can be treated as a bias and handled as
part of statistical modelling (Sections 4.2 and 9.6).

Instances of the assignment of a PDF to an input quantity X for some common circum-
stances are given in Table 4.1.

7It is possible in some applications such as this one to re-express (re-parametrise) the straight line such that
its parameters are mutually independent [2]. Also see Section 4.5. The example in Clause H.3 of the GUM
illustrates this point. Such re-parametrisation is not always a practical proposition, however, because of the
conflict between a numerically or statistically convenient representation and the requirements of the application.
However, the possibility of re-parametrization should always be considered carefully for at least two reasons.
One reason is that the result corresponding to a sound parametrization can be obtained in a numerically stable
manner [2], whereas a poor parametrization can lead to numerically suspect results. Another reason is that
a poor parametrization leads to artificially large correlations associated with the output quantities. Decisions
about the natural correlation present in the results cannot readily be made in terms of these induced correlation
effects.
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All available information con-
cerning quantity X

PDF assigned to X

Estimate x and the associated
standard uncertainty u(x)

Gaussian N(x, u2(x)) (Section
4.8.1)

Estimate x of a multivariate
quantity X and the associated
uncertainty matrix V

Multivariate Gaussian N(x,V )
(Section 4.8.2)

Endpoints a and b of an interval
containing X

Rectangular R(a, b) with end-
points a and b (Section 4.8.3)

Estimate x (> 0) and X is
known to be nonnegative

Exponential Ex(λ) with parame-
ter λ = 1/x, viz., exp(−ξ/x)/x,
for ξ ≥ 0, and zero otherwise

Indications regarded as values
sampled independently from a
Gaussian distribution with un-
known expectation (equal to X)
and unknown variance. From a
sample of size n, an average x̄
and a standard deviation s have
been calculated

Scaled and shifted t-distribution
tν(x̄, s2) with ν = n− 1 degrees
of freedom

Lower and upper limits a and b
of an interval within which X is
known to cycle sinusoidally

Scaled and shifted arc sine
U(a, b) with endpoints a and b,
viz., (2/π)/{(b−a)2−(2ξ−b−
a)2}1/2, for a < ξ < b, and zero
otherwise [59, Section 3.5]

Table 4.1: The assignment of a PDF to an input quantity X based on available information
for some common circumstances.
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4.8.1 Univariate Gaussian distribution

There are many circumstances where measurement quantities are influenced by a large num-
ber of effects and no one effect dominates. In these situations it is reasonable to regard the
quantities as Gaussian. One common instance is a parameter arising from least-squares
fitting to a large number of measured points.

The (univariate) Gaussian or normal distribution N(µ, σ2) assigned to the quantity X with
expectation µ and standard deviation σ, has the PDF

gX(ξ) =
1

σ
√

2π
exp

{
−(ξ − µ)2/(2σ2)

}
, −∞ < ξ < ∞.

The standardized Gaussian distribution assigned to the quantity X with zero expectation
and unit standard deviation is

φ(z) =
1√
2π

exp(−z2/2), −∞ < z < ∞.

Its distribution function, denoted by Φ(z), is

Φ(z) =
∫ z

−∞
φ(ξ)dξ.

The probability that X lies between c and d, where c < d, is

1
σ
√

2π

∫ d

c
exp

{
−(ξ − µ)2/(2σ2)

}
dξ =

∫ (d−µ)/σ

(c−µ)/σ
exp(−z2/2) dz

= Φ((d− µ)/σ)− Φ((c− µ)/σ).

The inverse function Φ−1(p) gives the value of z such that Φ(z) = p, a stated probability.

Tables and software for Φ and its inverse are widely available.

4.8.2 Multivariate Gaussian distribution

In general, multivariate distributions are defined in terms of joint PDFs gX(ξ). The multi-
variate Gaussian distribution (or multinormal distribution) N(µ,V ) assigned to the quan-
tities X = (X1, . . . , XN )T with expectation µ = (µ1, . . . , µN )T and uncertainty (covari-
ance) matrix V of order N has PDF

gX(ξ) =
1

((2π)N det V 1/2
exp

{
−1

2
(ξ − µ)TV −1(ξ − µ)

}
.

The set of parameters arising from least-squares fitting can often be described by such a
distribution.
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4.8.3 Univariate rectangular distribution

It is often assumed that when the value of a model input quantity is given in a manufac-
turer’s specification in the form of a ‘plus/minus accuracy statement’, the corresponding
PDF should be taken as rectangular with limits dictated by the accuracy statement. If there
is no other information available, this attitude is consistent with the Principle of Maximum
Entropy (PME) (Table 4.1 and Appendix C.2).

The rectangular or uniform distribution R(a, b) with endpoints a and b has PDF

gX(ξ) =

{
1/(b− a), a ≤ ξ ≤ b,
0, otherwise.

It states that any value of X in the interval [a, b] is equally probable and that the probability
of a value of X outside this interval is zero.

Consider two values c and d, where c < d. The probability that X lies between c and d is
straightforwardly confirmed to be

∫ d

c
gX(ξ)dξ =



0, d ≤ a,
(d− a)/(b− a), c ≤ a ≤ d ≤ b,
(d− c)/(b− a), a ≤ c < d ≤ b,
(b− c)/(b− a), a ≤ c ≤ b ≤ d,
0, b ≤ c.

Can taking a rectangular PDF be a better model in general than using, say, a Gaussian?
There are indeed genuine instances for the use of a rectangular PDF. An example is the
digital resolution of an instrument, in which the deviation can be regarded as being equally
likely anywhere within plus or minus half a unit in the last displayed digit.8

The quantization error in analogue to digital conversion also falls (with some exceptions)
into this category. There would appear to be few other genuine examples. It would be
desirable, especially in a competitive environment or when particularly reliable uncertainty
statements are required, to approach suppliers to relate the provided accuracy statement to

8This statement is correct for a single indication. There are additional considerations for a sequence of
indications corresponding to a slowly varying signal. The deviations in the resolved sequence are serially
correlated as a consequence of the resolution of the instrument. Figure 4.1 shows the deviations in successive
values displayed by a simulated instrument having a resolution of two decimal places. The values shown are the
differences between the values of sin t that would be displayed by the instrument and the actual values of sin t,
for t = 1.00, 1.01, . . . , 1.10 radians. Any analysis of such data that did not take account of the very obvious
serial correlation would yield a flawed result. The effects of serial correlation depend on the relative sizes of the
uncertainties associated with values of the signal, the instrument resolution and the magnitudes of the changes
in successive values of the signal (the last-mentioned item depending on the sampling rate). In hopefully many
cases they will be negligible, but it is appropriate to establish when this is indeed the case. In the context of
calibration it is stated [38], but the point is more general, that the measurement uncertainty associated with
the calibration of all low-resolution indicating instruments is dominated by the finite resolution provided this
resolution is the only dominant source in the uncertainty budget.
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Figure 4.1: The deviations in successive values displayed by a simulated instrument having
a resolution of two decimal places. The values shown are the differences between the values
of sin t that would be displayed by the instrument and the actual values of sin t, for t =
1.00, 1.01, . . . , 1.10 radians.

the context in which it was made. The supplier might, for example, be speaking loosely,
e.g., to imply a 99 % coverage interval, say, with the previously unmentioned information
that an underlying Gaussian PDF was reasonable. The contextual information might relate,
for example, to reject rates in a production process.

Information is available [14] on a method for reducing the uncertainty associated with in-
strument resolution when a series of indications is taken. It involves randomizing the zero
setting, where this is possible, before taking each indication. The average of a set of q in-
dicated values so obtained can be expected to have an associated uncertainty that is smaller
than that of an individual indication by a factor of

√
q. This result is to be compared with

conventional repeated indications in situations where the uncertainties are dominated by
those of the instrument resolution: the average of the indications has no better property than
the individual indications.

4.8.4 Inexactly specified rectangular distributions

Consider a random variable X , having nominally a rectangular PDF, specified in terms of its
lower limit A and upper limit B. The knowledge about these endpoints may be incomplete.
For instance, suppose the estimates a = −1 and b = 1 are given, only the quoted figures
are reliable, and no other information is available. Then, it can be concluded that A lies
between −1.5 and −0.5 and B between 0.5 and 1.5.9 Thus, X in fact lies in the broader

9If instead the estimates a = −1.0 and b = 1.0 were quoted, it would be concluded that the left endpoint
were between −1.05 and −0.95 and the right endpoint between 0.95 and 1.05.
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Figure 4.2: A rectangular PDF with inexact endpoints. The diagram is conceptual: the
‘height’ of the PDF would in fact vary with the endpoints in order to maintain unit area.

interval [−1.5, 1.5] rather than [−1, 1]. See Figure 4.2. How important is this consideration
in practice? In what manner is X distributed over this interval?

These considerations are a direct counterpart of those in the GUM in which an input stan-
dard uncertainty is obtained from a Type B evaluation and cannot be treated as exactly
known. See GUM Clause G.4.2. There the inexactness is manifested as an effective de-
grees of freedom.

Suppose that the left endpoint is regarded as lying in the interval [a− d, a + d] and that of
the right endpoint in [b− d, b + d]. It is assumed that ‘the d’ is the same for each endpoint.
The treatment can be generalised if needed. It is henceforth assumed that the left endpoint
is equally likely to lie anywhere in [a − d, a + d], with a similar statement for the right
endpoint.10 Thus, the left and right endpoints are taken as rectangular random variables, A
and B, say. It follows that

X = A + (B −A)V,

where A is rectangular over [a − d, a + d], B is rectangular over [b − d, b + d] and V is
rectangular over [0, 1].

An application of a Monte Carlo method using the introductory example, viz., with a =
−1.0, b = 1.0 and d = 0.5 gave the histogram in Figure 4.3, as a scaled estimate of the
PDF for X .

Note the ‘shape’ of the PDF. It is rectangular over the region between the inner extremities

10An alternative approach can be used. It could be assumed, for instance, that each endpoint can be regarded
as a Gaussian (rather than a rectangular) variable, centred on that endpoint, with a stated standard deviation.
The analysis and the result would differ from that here. The choice of approach would be made using expert
judgement.
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Figure 4.3: A histogram produced using an application of a Monte Carlo method for the
model X = A + (B − A)V , where A is rectangular over [a − d, a + d], B is rectangular
over [b − d, b + d] and V is rectangular over [0, 1], with a = −1.0, b = 1.0 and d = 0.5.
Compare with Figure 4.2. The histogram provides a scaled approximation to the PDF for
X . It corresponds to an input quantity which is assigned a rectangular distribution between
inexact limits, each being represented by a rectangular distribution.

of the inexact endpoints, i.e., where there is no doubt concerning their location. Between
the inner and outer extremities it reduces from the rectangular height to zero in what is
approximately a quadratic manner. Beyond the outer extremities the PDF is zero. The
piecewise nature of the PDF is comparable to that for the sum of rectangular PDFs, where
the pieces form polynomial segments [36].

The standard deviation of X , characterized by a rectangular distribution over [−1, 1] and
assuming the exactness of the endpoints (equivalent to taking d = 0), is 1/

√
3 = 0.577.

That for the above finite value of d is 0.625. As might be expected, the inexactness of the
endpoints increases the value. The extent to which this increase (8 %) is important depends
on circumstances.

There will be situations where the inexact endpoints would be expected to ‘move together’,
i.e., the knowledge of one of them would imply the other. In this circumstance the PDF for
X is slightly different. See Figure 4.4. The standard deviation of X is now 0.600 (a 4 %
increase over that for d = 0), roughly halfway between that for the PDF illustrated in Figure
4.3 and the pure rectangular PDF. The flanks of the PDF now have greater curvature.

The final statement to be made here concerning rectangular distributions with inexactly de-
fined endpoints is that the effects of such endpoints on the evaluation of uncertainty increase
with the relative amount of inexactness. This point is qualitatively consistent with the use
of an effective degrees of freedom, as above, in the GUM. Increased inexactness will give
rise to a smaller number and yield greater uncertainty through a larger coverage factor from

Page 39 of 167



NPL Report DEM-ES-011 Uncertainty Evaluation

Figure 4.4: As Figure 4.3 except that the endpoints are related as described in the text.

the t–distribution.

The main message is that inexactness in the information that leads to assigning PDFs not
only modifies the forms of those PDFs, but influences the relevant standard deviations [9,
Clause 6.4.2].

4.8.5 Taking account of the available information

It is beyond the scope, in this edition of the best-practice guide, to state how all information
available can properly be taken into account. Some remarks are made, however, indicating
how the Principle of Maximum Entropy can be used to advantage [31].

If only a lower and an upper limit were available the Principle of Maximum Entropy would
support the choice of a rectangular PDF (Table 4.1 and above.)

Suppose a prior rectangular PDF were available, perhaps from sound knowledge of limits
a and b, and that one measured value x was available. From the Principle of Maximum
Entropy, the rectangular PDF that would be inferred from the limits alone would be modified
by the measured value. The GUM provides (in GUM Clause 4.3.8) the PDF in this case. It
is given by

gX(ξ) =

{
Ae−λ(ξ−x), a ≤ ξ ≤ b,
0, otherwise.

where A and λ are parameters of the distribution that are functions of a, b and x.

Suppose a prior PDF, say a Gaussian, were available, perhaps from historical information
such as that obtained in previous calibrations. Suppose that further measured values were
available. The use of the Principle of Maximum Entropy would permit both sources of
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information to be combined to deliver a t–distribution that could be expected to be more
reliable than the PDF from either source alone.

Other cases can be handled, and give superior results in general than if treated without taking
account of the available information. Appendix C considers some of the issues involved.

It is relevant to note that in the context of the GUM uncertainty framework, which works
only with the standard deviations (and the expectations) of the input quantities, the GUM
states

[GUM Clause E.4.2] When the standard uncertainty of an input quantity can-
not be evaluated by analysis of the results of an adequate number of repeated
observations, a probability distribution must be adopted based on knowledge
that is much less extensive than might be desirable. That does not, however,
make the distribution invalid or unreal; like all probability distributions it is an
expression of what knowledge exists.

This attitude is consistent with a Bayesian view [85].

4.9 Determining the probability density function for the output
quantity

The PDF for the output quantity is completely defined by the model together with the PDFs
assigned to the input quantities. Appropriate analysis or calculation is needed, however, to
determine it. Chapter 5 covers candidate approaches for forming the PDF for the output
quantity in the univariate case, and indicates its counterpart in the multivariate case.

4.10 Providing a coverage interval

The provision of a coverage interval involves the use of the PDF for the output quantity to
determine a lower limit and an upper limit of an interval that can be expected to contain 95 %
(or some other specified proportion) of the values that can reasonably be attributed to the
output quantity. See Chapter 5 for methods for determining the PDF for the output quantity.
See Section 2.3 and Appendix A.3 for information on coverage intervals. Coverage intervals
can be obtained objectively from a PDF. They can also be obtained from coverage factors
and an assumption concerning the PDF.
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4.10.1 Coverage intervals from distribution functions

If the distribution function is known, a coverage interval can be obtained as indicated in
Section 2.3 and Appendix A.3.

4.10.2 Coverage intervals from coverage factors and an assumed form for the
distribution function

The approach based on the GUM uncertainty framework (see GUM Clause G.1.1) to de-
termining a coverage interval is as follows. The aim (using the notation of the GUM) is
to provide, using the estimate y of the output quantity Y and the standard uncertainty u(y)
associated with the estimate, an expanded uncertainty Up = kpu(y). With the estimate y,
this value Up defines an interval [y − Up, y + Up] corresponding to a specified coverage
probability p.

In summarizing its recommendations for determining this coverage interval, the GUM
states:

[GUM Clause G.6.1] The coverage factor kp that provides an interval having
a level of confidence p close to a specified level can only be found if there
is extensive knowledge of the probability distribution of each input quantity
and if these distributions are combined to obtain the distribution of the out-
put quantity. The input estimates xi and their standard uncertainties u(xi) by
themselves are inadequate for this purpose.

Further,

[GUM Clause G.6.2] Because the extensive computations required to combine
probability distributions are seldom justified by the extent and reliability of the
available information, an approximation to the distribution of the output quan-
tity is acceptable. Because of the Central Limit Theorem, it is usually sufficient
to assume that the probability distribution of (y−Y )/uc(y) is the t-distribution
and take kp = tp(νeff), with the t-factor based on an effective degrees of free-
dom νeff of uc(y) obtained from the Welch-Satterthwaite formula ...

The statement11 concerning the extensive computation to combine probability distributions
is no longer tenable, with PCs much faster than 1 GHz being commonplace. Unless the
model is complicated, the determination of the PDF for the output quantity and hence the
required coverage interval to the required number of decimal digits, can, with todays’ PCs,
be carried out in computation times of seconds.

11The GUM uses the notation uc(y) for combined standard uncertainty, i.e., that associated with y. This
guide simply uses u(y).

Page 42 of 167



Uncertainty Evaluation NPL Report DEM-ES-011

4.10.3 Acceptability of an approximation?

The statement from the GUM reproduced in Section 4.10.2 concerning the Central Limit
Theorem demands investigation. It is accepted that it is usually sufficient to assume that
the PDF for (y − Y )/u(y) is a t–distribution. The difficulty lies in deciding when this as-
sumption can be made. The GUM offers no specific guidance in this regard. This document
supports that approach when it can be justified, but recommends that in any case of doubt
the validation approach of Chapter 8 should be employed.

However, the GUM does provide some advice regarding the circumstances when the GUM
uncertainty framework can be expected to hold:

[GUM Clause G.6.6] For many practical measurements in a broad range of
fields, the following conditions prevail:

- the estimate y of the measurand Y is obtained from estimates xi of a signif-
icant number of input quantities Xi that are describable by well-behaved
probability distributions, such as the normal and rectangular distributions;

- the standard uncertainties u(xi) of these estimates, which may be obtained
from either Type A or Type B evaluations, contribute comparable amounts
to the combined standard uncertainty uc(y) of the measurement result y;

- the linear approximation implied by the law of propagation of uncertainty is
adequate (see 5.1.2 and E.3.1);

- the uncertainty of uc(y) is reasonably small because its effective degrees of
freedom νeff has a significant magnitude, say greater than 10.

Under these circumstances, the probability distribution characterized by the
measurement result and its combined standard uncertainty can be assumed to
be normal because of the Central Limit Theorem; and uc(y) can be taken as a
reasonably reliable estimate of the standard deviation of the normal distribution
because of the significant size of νeff.

This advice is sound in a qualitative sense but, again, it is unclear when the circumstances
hold. The problem is that the distinction between the formulation and calculation (propa-
gation and summarizing) stages of uncertainty evaluation, as indicated in Section 3.2, be-
comes blurred. The intention of the subdivision into the stages is to permit all decisions to
be made in the formulation stages and the calculations to be made in the propagation and
summarizing stages.

In terms of the set of conditions in GUM Clause G.6.6, listed above, it is unclear what is
meant by

• ‘a significant number of input quantities’,
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• ‘well-behaved probability distributions’,

• the standard uncertainties of the xi contributing comparable amounts12,

• the adequacy of linear approximation, and

• the output uncertainty being reasonably small.

The concern is that because none of these considerations is explicitly quantified, different
practitioners might adopt different interpretations of the same situation, thus causing diver-
gence of results.

4.11 When the worst comes to the worst

Consider a situation in which no assumption is to be made concerning the PDF for the
output quantity other than an estimate y of its expectation and the standard deviation u(y)
associated with this estimate as its standard deviation. One reason for wishing to make
no assumption is that it may be difficult or impossible to obtain distributional information
about some of the input quantities and it is deemed inappropriate to invoke the Principle of
Maximum Entropy. In such a circumstance, a conservative estimate of a coverage interval
can be obtained using some traditional results from the statistical literature.13 Two results
are possible. One result is general, applying to all distributions. The other relates to in-
stances in which one is prepared to make a single assumption, viz., that the distribution is
symmetric.

4.11.1 General distributions

Suppose that it is required to quote a coverage interval for the output quantity Y correspond-
ing to a coverage probability of 95 %, and that nothing is known about the distribution.

The coverage interval y± ku(y), where k = 4.47, contains at least 95 % of the distribution
of y-values.

This result is derived from Chebyshev’s inequality which states that the probability that Y
lies in the interval y ± ku(y) is at least 1− k−2. The value of k for which 1− k−2 = 0.95

12This statement is taken here to mean that the standard uncertainties associated with the estimates of the
input quantities, when scaled by the magnitudes of the corresponding sensitivity coefficients, contribute com-
parable amounts.

13Such an estimate is inconsistent with the intention of the GUM which promotes the use of a realistic
coverage interval:

[GUM, Clause 0.4] . . . the ideal method for evaluating and expressing uncertainty in measure-
ment should be capable of readily providing such an interval, in particular, one with a coverage
probability or level of probability that corresponds in a realistic way with that required.

There may, however, be special situations where a conservative estimate is useful.
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is 4.47. It is stressed that this result applies regardless of the distribution. By its nature it
cannot be as sharp as an interval derived from knowledge of the PDF for Y , e.g.,

• If Y is characterized by a rectangular distribution this interval is y ± 1.65u(y);

• If Y is characterized by a Gaussian distribution it is y ± 1.96u(y).

The length of the interval derived from Chebyshev’s inequality is 2.7 times the length of
that for a rectangular distribution for Y and 2.3 times that for a Gaussian distribution for Y .

Note. These results apply only if the degrees of freedom is infinite, or in practice large.
Otherwise, the k-factor becomes inflated, as in the case of the t–distribution [72].

4.11.2 Symmetric distributions

If it is known that the distribution is symmetric and unimodal (single-peaked), tighter results
based on Gauss’s inequality are possible.

The coverage interval y± ku(y), where k = 2.98, contains at least 95 % of the distribution
of y-values.

Gauss’s inequality states that the probability that Y lies in the interval y ± ku(y) is at least
1− 4

9k−2. The value of k for which 1− 4
9k−2 = 0.95 is 2.98.

It is noted that this interval is only approximately 50 % longer than that when Y is charac-
terized by a Gaussian distribution.

Note. These results apply only if the degrees of freedom is infinite, or in practice large.
Otherwise, the k-factor becomes inflated, as in the case of the t–distribution.
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Chapter 5

Candidate solution approaches

5.1 Overview

This chapter covers candidate solution procedures for the propagation of distributions in
the propagation stage of the uncertainty evaluation problem formulated in Section 3.1.
The starting point is (i) the availability of a model f or f that relates the input quanti-
ties X = (X1, . . . , XN )T to the scalar output quantity Y or vector output quantity Y =
(Y1, . . . , Ym)T through Y = f(X) or Y = f(X), and (ii) assigned PDFs g1(ξ1), . . . , gN (ξN )
for the input quantities. If the input quantities are mutually dependent, they are assigned a
joint PDF.

It is required to determine the PDF g(η) for the output quantity Y or the (joint) PDF g(η)
for Y .

Once g(η) has been obtained a 95 % coverage interval for the (scalar) output quantity Y can
be derived. Once g(η) has been obtained, a 95 % coverage region for the (vector) output
quantity Y can be derived.

Three approaches to the determination of the PDF for Y or Y are considered and contrasted:

1. Analytical methods

2. The GUM uncertainty framework

3. Numerical methods.

All three approaches are consistent with the GUM. The GUM uncertainty framework is the
procedure that is widely used and summarized in GUM Clause 8. Analytical methods and
numerical methods fall in the category of ‘other analytical and numerical methods’ (GUM
Clause G.1.5). Under the heading of ‘Analytical methods’ below, mention is also made of
‘Approximate analytical methods’.
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5.2 Analytical methods

Analytical methods to obtain the PDF for Y or Y are preferable in that they do not introduce
any approximation, but can be applied in relatively simple cases only. A treatment of such
methods, based essentially on the use of Formula (3.1) is available [36]. Instances that can
be so handled include linear models, Y = c1X1 + . . . + cNXN , where all Xi are Gaussian
or all are rectangular. In the latter case, unless N is small, the multipliers ci must be equal
and the semi-widths of the rectangular PDFs identical1 to avoid formidable algebra.

5.2.1 Single input quantity

The case of a single input quantity (N = 1) is amenable to analytic treatment [68, pp57-61].
If the model function f(X) is differentiable and strictly monotonic, Y has the PDF

gY (η) = gX(f−1(η))|d(f−1(η))/dη|. (5.1)

Example 9 A logarithmic transformation

If the model is Y = lnX with X characterized by a rectangular PDF with limits a
and b, the application of Formula (5.1) gives

GY (η) =


0, η ≤ ln a,
(exp(η)− a)/(b− a), ln a ≤ η ≤ ln b,
1, ln b ≤ η,

(cf. Section 4.8.5). Figure 5.1 depicts the rectangular PDF (left) for X and the corre-
sponding PDF for Y in the case a = 1, b = 3.

This case is important in, say, electromagnetic compatibility measurement, where con-
versions are often carried out between quantities expressed in linear and decibel units
using exponential or logarithmic transformations [82].

Example 10 A linear combination of Gaussian distributions

Suppose the model is
Y = c1X1 + · · ·+ cNXN ,

where c1, . . . , cN are specified constants, and, for i = 1, . . . , N , Xi is characterized by
the Gaussian distribution N(µi, σ

2
i ). Then, Y is described by the Gaussian distribution

N(µ, σ2), where µ = c1µ1 + · · ·+ cNµN and σ2 = c2
1σ

2
1 + · · ·+ c2

Nσ2
N .

1In this case Y has a PDF that is a B-spline with uniform knots (Example 12) [26].
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Figure 5.1: A rectangular PDF (left) for the input quantity X and the corresponding PDF
for the output quantity Y , where Y is related to X by the model Y = ln X .

Example 11 The sum of two rectangular distributions with the same semi-widths

Suppose the model is
Y = X1 + X2

and, for i = 1, 2, Xi with expectation µi and standard deviation a/
√

3 is characterized
by a rectangular distribution (with semi-width a). Then, Y has expectation µ = µ1 +
µ2, standard deviation a

√
2/3 and is described by a symmetric triangular PDF gY (η)

with semi-width 2a. For the case µ1 + µ2 = 0, this PDF takes the form

gY (η) =


0, η ≤ −2a,
(2a + η)/(4a2), −2a ≤ η ≤ 0,
(2a− η)/(4a2), 0 ≤ η ≤ 2a,
0, 2a ≤ η.

For general µ1 and µ2, the PDF is the same, but centred on µ1 + µ2 rather than zero.
Geometrically, this PDF takes the form indicated in Figure 5.2.

Example 12 The sum of N rectangular distributions of the same semi-width

Suppose the model is
Y = X1 + · · ·+ XN

and, for i = 1, . . . , N , Xi with expectation µi and standard deviation a/
√

3 is char-
acterized by a rectangular distribution (with semi-width a). Then, Y has expectation
µ = µ1 + · · ·+ µN and standard deviation a

√
N/3 and is described by a PDF that is

a B-spline of order N (degree N − 1) with uniformly speced knots.
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Figure 5.2: The PDF for the sum Y = X1 + X2 of two rectangular distributions with
identical semi-widths.

Example 13 The sum of two rectangular distributions of arbitrary semi-widths

Suppose the model is
Y = c1X1 + c2X2

and, for i = 1, 2, Xi with expectation µi and standard deviation ai/
√

3 is chracterized
by a rectangular distribution (with semi-width ai). Then, Y has expectation µ =
c1µ1+c2µ2, standard deviation {(c2

1a
2
1+c2

2a
2
2)/3}1/2 and is described by a symmetric

trapezoidal PDF gY (η) with semi-width c1a1 + c2a2. Geometrically, this PDF takes
the form indicated in Figure 5.3.

Analytical solutions in some other simple cases are available [36, 38].

5.2.2 Approximate analytical methods

Approximate analytical methods are approaches that fall part-way between the analytical
methods of this section and the numerical methods of Section 5.4. They are related to the
GUM uncertainty framework (Section 5.3), but take the analysis further in order to provide
approximate analytical expressions for the PDF for the output quantity in cases where a
Gaussian distribution (or t–distribution) obtained in the conventional way would be invalid.

A treatment [38] of some calibration examples using approximate analytic methods pro-
vides PDFs for the output quantity in the form of

1. a rectangular PDF in the calibration of a hand-held digital multimeter,
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Figure 5.3: The PDF for a general linear combination Y = c1X1 +c2X2 of two rectangular
distributions with arbitrary semi-widths. It is symmetric about its midpoint.

2. a symmetric trapezoidal PDF in the calibration of a vernier caliper, and

3. a further trapezoidal PDF in the calibration of a temperature block calibrator.

The first of these examples is used subsequently in this guide (Section 9.5) in the context
of a Monte Carlo approach to uncertainty evaluation and the results compared with those of
[38] and the GUM uncertainty framework.

5.3 The GUM uncertainty framework

The GUM makes the following statement about the PDFs for the input quantities:2

[GUM Clause 4.1.6] Each input estimate xi and its associated uncertainty u(xi)
are obtained from a distribution of possible values of the input quantity Xi.
This probability distribution may be frequency based, that is, based on a se-
ries of indications xi,k of Xi, or it may be an a priori distribution. Type A
evaluations of standard uncertainty components are founded on frequency dis-
tributions while Type B evaluations are founded on a priori distributions. It
must be recognized that in both cases the distributions are models that are used
to represent the state of our knowledge.

2To this statement, the comment must be added that some PDFs may be based on both types of information,
viz., prior knowledge and repeated indications. Evaluations of standard uncertainty in this setting are not purely
Type A or Type B. The GUM gives one such instance (GUM Clause 4.3.8, Note 2.)
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Given the PDFs for the input quantities Xi of the model, the intent of the GUM uncertainty
framework is to derive an estimate y of the output quantity Y , the associated standard un-
certainty u(y), and the effective degrees of freedom ν, and to assign a standard Gaussian
distribution (ν = ∞) or a t–distribution (ν < ∞) to (Y − y)/u(y).

For the approach based on the GUM uncertainty framework, the following steps constitute
the propagation and summarizing stages:

1. Obtain from the PDFs for the input quantities X1, . . . , XN , respectively, the expecta-
tion x = (x1, . . . , xN )T and the standard deviations u(x) = (u(x1), . . . , u(xN ))T.
Use the joint PDF for X instead if the Xi are mutually dependent;

2. Take the covariances (mutual uncertainties) u(xi, xj) as Cov(Xi, Xj), the covari-
ances of mutually dependent pairs (Xi, Xj) of input quantities;

3. Form the partial derivatives of first order of f with respect to the input quantities. See
Section 5.6;

4. Calculate the estimate y of the output quantity by evaluating the model at x;

5. Calculate the model sensitivity coefficients (GUM Clause 5.1) as the above partial
derivatives evaluated at x. See Section 5.6;

6. Determine the standard uncertainty u(y) by combining u(x), the u(xi, xj) and the
model sensitivity coefficients (GUM Formulae (10) and (13)). See Chapter 6;

7. Calculate ν, the effective degrees of freedom of y, using the Welch-Satterthwaite
formula (GUM Formula (G.2b))3;

8. Compute the expanded uncertainty Up, and hence a coverage interval for the output
quantity (having a stipulated coverage probability p), by forming the appropriate mul-
tiple of u(y) through taking the probability distribution of (y−Y )/u(y) as a standard
Gaussian distribution (ν = ∞) or t–distribution (ν < ∞).

A review of the approach based on the GUM uncertainty framework is given in Section 5.5.
Details, procedures and examples are given in Chapter 6.

5.4 Numerical methods

It would rarely be a practical proposition to use the integral expression (3.1) in Chapter 3
as the basis for the numerical determination of gY (η), the PDF for the output quantity. A

3The approach based on the GUM uncertainty framework does not state how ν is to be calculated when the
input quantities are mutually dependent.
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multivariate quadrature rule4 would need to be devised that was capable of delivering gY (η)
to a prescribed numerical accuracy for each choice of η. Further, the quadrature rule would
have to be applied at a sufficiently fine set of η-values to provide gY (η) adequately.

Convolution principles, implemented numerically using the Fast Fourier Transform and its
inverse, provide an approach for the class of linear models with mutually independent input
quantities. For example, for the model Y = X1 + X2 and mutually independent input
quantities X1 and X2, the integral expression (3.1) takes the form of the convolution integral
[12]

gY (η) =
∫ ∞

−∞
gX1

(ξ1)gX2
(η − ξ1)dξ1,

where, for i = 1, 2, gXi
(ξi) is the PDF assigned to Xi. A numerical method to obtain gY (η)

is based on replacing the convolution integral by a convolution sum evaluated using the Fast
Fourier Transform. A discussion of the approach, illustrated with examples, is available
[56].

A Monte Carlo method (Section 5.4.1 and Chapter 7) provides a generally applicable nu-
merical implementation of the propagation of distributions, and is the focus of this guide.

5.4.1 A Monte Carlo method

Rather than attempting to evaluate the integral expression (3.1), an application of a Monte
Carlo method [4, 27, 28, 32, 73, 83] encompasses an entirely different approach, based on
the following considerations. The expected value of the output quantity Y is conventionally
obtained by evaluating the model for the estimated (expected) values x1, . . . , xN of the
input quantities to give the value y. However, since each input quantity is described by a
PDF rather than a single number, a value can alternatively be obtained by drawing a value
at random from this function.

A Monte Carlo method operates in the following manner,5 based on this consideration. Gen-
erate a value at random from the PDF for each input quantity and form the corresponding
value of the output quantity by evaluating the model for these values of the input quantities.
Repeat this process many times, to obtain in all M , say, values of the output quantity. Ac-
cording to the Central Limit Theorem [68, p169], the average y of the values of the output
quantity obtained in this manner converges as 1/M1/2, if the standard deviation u(y) asso-
ciated with y exists. Irrespective of the dimensionality of the problem, i.e., the number N of
input quantities, it is (only) necessary to quadruple M in order to expect to improve the nu-
merical accuracy of y by one binary digit. In contrast, standard numerical quadrature would
require a factor of 2M/2 for this purpose. Thus, this Monte Carlo calculation has reasonable
convergence properties. It is straightforward to implement for simple or even moderately

4A quadrature rule is a numerical integration procedure. Examples in the univariate case are the trapezoidal
rule and Simpson’s rule.

5This description applies to a model with a single output quantity. For a multivariate problem, additional
considerations apply (Section 7.4).
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complicated problems. Its general implementation requires more effort: see Chapter 7. A
broad introduction to Monte Carlo methods is available [49], as is a discussion on uncer-
tainty propagation in Monte Carlo calculations [76].

Details, procedures and examples are given in Chapter 7.

5.5 Discussion of approaches

The approach used for any particular problem needs to be chosen with care. As indicated,
an approach based on the GUM uncertainty framework is the ‘method of choice’ for many
organizations. Analytical methods are in a sense ideal when applicable. Numerical methods
offer flexibility. The described Monte Carlo method is increasingly used by laboratories and
industrial organizations.

5.5.1 Conditions for the GUM uncertainty framework

The GUM uncertainty framework requires

1. the non-linearity of f to be insignificant (Note to GUM Clause 5.1.2)6,

2. the Central Limit Theorem (GUM Clauses G.2.1 and G.6.6) to apply, implying the
representativeness of the PDF for the output quantity by a Gaussian distribution or in
terms of a t–distribution, and

3. the adequacy of the Welch-Satterthwaite formula for calculating the effective degrees
of freedom (GUM Clause G.4.2, [48]).7

5.5.2 When the conditions do or may not hold

In practice, the GUM uncertainty framework is sometimes used in violation of the con-
ditions listed in Section 5.5.1, and the results thus produced can only be regarded as ap-
proximate (with an unquantified degree of approximation). Or, more frequently, it is used
without knowing whether these conditions hold (again with an unquantified degree of ap-
proximation). As indicated in Chapter 7, a basic form of a Monte Carlo method is readily

6If the linearization of the model is not sufficiently accurate, the quality of the evaluated uncertainty is
affected, as is the estimate of the output quantity. The latter point may be less well appreciated in some quarters.
The bias so introduced into the estimate of the output quantity is illustrated in Section 9.7, for example.

7The Welch-Satterthwaite formula is an approximation and assumes that the input quantities are mutually
independent.
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implemented, requiring only model evaluation and random-number generation.8 Because
control can be exercised over the number of digits delivered (see Section 7.2.5), the de-
scribed Monte Carlo method can also be used to validate (i) the results provided by the
GUM uncertainty framework, and (ii) software implementations of the GUM uncertainty
framework. Although many evaluations based on the GUM uncertainty framework may be
sound, it is important to demonstrate that this is so. If (a legitimate implementation of)
the described Monte Carlo method indicated that certain results obtained using the GUM
uncertainty framework were invalid, it is recommended that consideration be given to using
the Monte Carlo method instead.

5.5.3 Probability density functions or not?

The application of the GUM uncertainty framework might not appear to require the speci-
fication of the PDFs for the input quantities per se. It operates in terms of the expectations
and standard deviations of the input quantities characterized by these PDFs (Section 5.3).
The GUM uncertainty framework therefore has the apparent advantage that it is not neces-
sary to provide the PDFs for the model input quantities, i.e., just expectations and standard
deviations would ‘suffice’.

The Type A evaluations of the uncertainties associated with estimates of the input quantities
are obtained by analysing ‘repeated indications’, from which expectations and standard
deviations (but not PDFs) are obtained.

Conversely, for Type B evaluations, the expectations and standard deviations are determined
from known or assigned PDFs (Section 4.8). These PDFs are then used no further.

Thus, for some of the input quantities, the PDFs are not required and for the others they
are not used. This attitude is seen as being incompatible with the Bayesian view that is in-
creasingly used as a consistent basis for uncertainty evaluation. With a Bayesian approach,
a PDF would be assigned to each input quantity, based on whatever information, however
meagre, is available.

As indicated in Section 5.3, the GUM in fact states (in Clause 4.1.6) that the estimate of
each input quantity and the associated standard uncertainty are obtained from a distribution
of possible values of the input quantity. Thus, a distribution is at least implied, although
many practitioners would not obtain or even postulate it, simply computing, for a Type A
evaluation of uncertainty, an estimate and a standard deviation from repeated indications.

This guide encourages the assignment of a PDF to each input quantity. By so doing any of
the candidate solution approaches considered in this section can be applied. They can also
be contrasted, if required. The assignment of these PDFs is addressed in Section 4.8.

8Implementations made by the authors have been applied to explicit and implicit models (where Y can and
cannot be expressed directly in terms of X), and complex models (for electrical metrology), with univariate
and multivariate output quantities.
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5.6 Obtaining sensitivity coefficients

Sensitivity coefficients are the partial derivatives of first order of the model with respect to
the input quantities, evaluated at the estimates of the input quantities. Their determination
can present an algebraically difficult task. There are two stages:

1. Form algebraically the N first-order partial derivatives9;

2. Evaluate these derivatives at the estimates of the input quantities.

These stages constitute Steps 3 and 5, respectively, of the procedure (as outlined in Section
5.3) based on the GUM uncertainty framework.

If the effort of determining these derivatives manually is considerable, there are two alter-
native approaches [11]:

• Finite-difference methods;

• Computer-assisted algebraic methods.

Advice on the use of finite-difference methods is given in Section 5.6.1 and some comments
on computer-assisted algebraic methods in Appendix B.

In the context of the propagation and summarizing stages of the uncertainty evaluation prob-
lem there is no essential concept of sensitivity coefficients. They are of course required in an
implementation of the GUM uncertainty framework (Section 5.3). Independently of the ap-
proach used, they also convey valuable quantitative information about the influences of the
various input quantities on the output quantity (at least in cases where model linearization
is justified). If an approach is used that does not require these coefficients for its opera-
tion, approximations to them can additionally be calculated if needed. Within the context of
the described Monte Carlo method, it is also possible to apply, at least approximately, the
concept of sensitivity coefficients. Some comments are given in Appendix D.

5.6.1 Finite-difference methods

Numerical approximations to the values of derivatives can be obtained using finite-difference
techniques. Given a value i (1 ≤ i ≤ N ), set all X` = x`, apart from Xi, i.e., assign the es-
timates of the input quantities to the input quantities, apart from the ith. Denote the resulting
function of Xi by fi(Xi).

9Expert advice may be required if the model is not continuously differentiable with respect to some or all of
the input quantities.
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A typical finite difference approximation to ∂Y/∂Xi evaluated at x is

∂Y

∂Xi

∣∣∣∣
X=x

≈ fi(xi + hi)− fi(xi)
hi

,

where hi is a ‘suitably small’ increment in xi (see below). Note that fi(xi) ≡ f(x) will
already have been formed in evaluating the model at the estimates x of the input quantities.

The approximation can be perceived as follows. Consider the graph of fi(Xi). The formula
gives the gradient of the chord joining the points (xi, fi(xi)) and (xi + hi, fi(xi + hi)).
This gradient approximates the gradient of the tangent at (xi, fi(xi)) to the graph of the
function, which is the required derivative.

The choice of hi is important. If it is too great, the formula gives a large approximation
error, i.e., the tangent and the chord point in appreciably different directions. If it is too
small, the formula gives a large subtractive cancellation error, since the values of fi(xi) and
fi(xi + hi) will have many common leading figures.

A generally more accurate form, requiring an additional function evaluation, is

∂Y

∂Xi

∣∣∣∣
X=x

≈ fi(xi + hi)− fi(xi − hi)
2hi

.

For a given value of hi, the magnitude of the approximation error is generally reduced
using this form. Thus the value of hi can be larger, affording a better balance between
approximation and cancellation errors.

The GUM, in Clause 5.1.3, suggests the use of the second formula with hi = u(xi). This
choice can generally be expected to be acceptable, although there may be exceptional cir-
cumstances.
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Chapter 6

The law of propagation of
uncertainty

6.1 Overview

In the GUM a measurement system is modelled by a functional relationship between the
input quantities X = (X1, . . . , XN )T and the output quantity Y in the form

Y = f(X). (6.1)

In practice, however, this functional relationship does not apply directly to all measure-
ment systems encountered, but may instead (a) take the form of an implicit relationship,
h(Y, X) = 0, (b) involve a number of output quantities Y = (Y1, . . . , Ym)T, or (c) in-
volve complex quantities. Although measurement models other than the form (6.1) are not
directly considered in the GUM, the same underlying principles may be used to propagate
uncertainties associated with estimates of the input quantities to those associated with the
output quantities.

In Section 6.2 a classification of measurement models is given that is more general than that
considered in the GUM. This classification is motivated by actual measurement systems, ex-
amples of which are given. For each measurement model it is indicated how the uncertainty
associated with the estimate of the output quantity is evaluated. Mathematical expressions
for the uncertainty are stated using matrix-vector notation, rather than the subscripted sum-
mations given in the GUM, because generally such expressions are more compact and more
naturally implemented within modern software packages and computer languages. The law
of propagation of uncertainty based on a first order Taylor series expansion of the measure-
ment model is used throughout this section. Any doubt concerning its applicability should
be addressed as appropriate, for instance by using the concepts of Chapter 8.

The GUM states that whenever the non-linearity of the measurement model is significant,
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higher order terms in the Taylor series expansion of the measurement model must be in-
cluded. The manner in which this can be achieved is indicated in Section 6.3. A detailed
derivation for the case of a measurement model with a single input quantity is given. The
general result for more than one input quantity is conceptually straightforward, but alge-
braically complicated to derive. The law of propagation of uncertainty with higher order
terms is applied to the measurement problems described in Sections 9.10 and 9.11, and the
results compared with those obtained from (a) the law of propagation of uncertainty based
on a linearization of the model, and (b) a Monte Carlo method.

6.2 Measurement models

A classification of measurement models is presented that depends on whether

1. there is one or more output quantity, i.e., Y is a scalar or a vector,

2. the output quantity Y is obtained by evaluating a formula or by solving an equation,
and

3. the input quantities X are real or complex or the model function f is real or complex
or both X and f are real or complex.1

The following information is assumed to be available:

1. Estimates x = (x1, . . . , xN )T of the input quantities X;

2. For i = 1, . . . , N , either

(a) the standard uncertainty u(xi) associated with xi, for mutually independent in-
put quantities, or

(b) for j = 1, . . . , N , the covariance u(xi, xj) associated with xi and xj , for mu-
tually dependent input quantities.2 Note that u(xi, xi) = u2(xi), the variance
associated with xi.

The following eight sub-sections provide matrix expressions for the uncertainty u(y) asso-
ciated with y, in the form of the variance u2(y) associated with y in the scalar case, or the
uncertainty matrix Vy containing the covariances u(yi, yj) associated with yi and yj in the
vector case. Derivation of the formulae and equations is not given here. It is straightforward
using basic statistical concepts and matrix manipulation.

1If X or f is complex, the output quantity Y will in general also be complex.
2Some or many of these covariance values may be zero.
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The concentration is on providing information on the various types of model that appear
in practice, and for each of these types giving relevant advice. The guidance is especially
relevant when software is to be used to help provide uncertainty evaluations [33].3

For the first two model types (univariate, explicit, real and multivariate, explicit, real), the
detail of the manner in which the matrices used are formed is provided through an example.
The remaining model types are treated analogously.

6.2.1 Univariate, explicit, real model

In a univariate, explicit, real model, a single real output quantity Y is related to a number
of real input quantities X = (X1, . . . , XN )T by an explicit functional relationship f in the
form of expression (6.1). This is the model directly considered in the GUM.

The estimate of the output quantity is y = f(x).

The standard uncertainty u(y) associated with y is evaluated from

u2(y) =
N∑

i=1

N∑
j=1

∂f

∂Xi

∣∣∣∣
X=x

u(xi, xj),
∂f

∂Xj

∣∣∣∣∣
X=x

(6.2)

where the partial derivatives ∂f/∂Xi evaluated at X = x are referred to as sensitivity
coefficients.

Write the covariances within the N ×N matrix

Vx =

 u(x1, x1) . . . u(x1, xN )
...

. . .
...

u(xN , x1) . . . u(xN , xN )

 (6.3)

and the sensitivity coefficients as the 1×N (row) vector

cT = [∂f/∂X1, . . . , ∂f/∂XN ]|X=x . (6.4)

Then, a compact way of writing the sum (6.2), which avoids the use of doubly-scripted
summations, is

u2(y) = cTVxc. (6.5)

Example 14 End-gauge calibration

(GUM Example H.1 End-gauge calibration) The length of a nominally 50 mm gauge
block is determined by comparing it with a known gauge block standard of the same

3A supplement to the GUM, based in part on the approach in this chapter, is being developed by
JCGM/WG1.

Page 59 of 167



NPL Report DEM-ES-011 Uncertainty Evaluation

nominal length. An expression for the direct output of the comparison of the two gauge
blocks is the difference

D = {1 + (AS + δA)Θ}L− {1 + AS(Θ− δΘ)}LS (6.6)

in their lengths, where4

• L is the output quantity, viz., the length at 20 ◦C of the gauge block being cali-
brated,

• LS is the length of the standard at 20 ◦C as given in its calibration certificate,

• AS is the coefficient of thermal expansion of the gauge block standard,

• δA = A−As, where A is the coefficient of thermal expansion of the gauge block
being calibrated,

• Θ is the deviation in temperature from the 20 ◦C reference temperature of the
gauge block being calibrated, and

• δΘ = Θ−ΘS, where ΘS is the deviation in temperature from the 20 ◦C reference
temperature of the gauge block standard.

From expression (6.6) the output quantity L can immediately be expressed in terms of
the quantities D, LS, AS, δA, Θ and δΘ as the model

L =
{1 + AS(Θ− δΘ)}LS + D

1 + (AS + δA)Θ
.

In terms of the general formulation above, the input quantities are

X ≡ (D,LS, AS, δA,Θ, δΘ)T

and the output quantity is
Y ≡ L.

The estimates of the input quantities are denoted by

x ≡ (d, `S, αS, δα, θ, δθ)T. (6.7)

The estimate
y ≡ `

of the output quantity L is

` =
{1 + αS(θ − δθ)} `S + d

1 + (αS + δα)θ
.

4This choice of input variables is made for consistency with GUM, Example H.1. Other choices are possible.
See later in this example.
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The partial derivatives of the model with respect to the input quantities are

∂L

∂D
=

1
1 + (AS + δA)Θ

,

∂L

∂LS
=

1 + AS(Θ− δΘ)
1 + (AS + δA)Θ

,

∂L

∂AS
=

(Θ2δA−ΘδΘδA− δΘ)LS −Dθ

{1 + (AS + δA)Θ}2 ,

∂L

∂(δA)
= − [{1 + AS(Θ− δΘ)}LS + D] Θ

{1 + (AS + δA)Θ}2 ,

∂L

∂Θ
=

(AS + δA)(LSASδΘ−D)− LSδA

{1 + (AS + δA)Θ}2 ,

∂L

∂(δΘ)
=

−ASLS

1 + (AS + δA)Θ
.

The substitution (d for D, `S for LS, etc.) of the numerical values of the estimates
(6.7) into these expressions for the partial derivatives yields the values of the sensivity
coefficients.

The set of six sensitivity coefficients, arranged as a row vector, constitutes the row
vector cT in expression (6.5). The variances given by the squares of the standard
uncertainties associated with the estimates of the six input quantities constitute the
diagonal elements of the uncertainty matrix Vx in expression (6.5). The remaining
elements of Vx are taken as zero, since the input quantities are regarded as mutually
independent (GUM, Example H.1). Thus, u2(y) and hence u(y) can be formed from
expression (6.5).

6.2.2 Multivariate, explicit, real model

Although not directly considered in the body of the GUM, instances of measurement sys-
tems are included in that guide for which there is more than one output quantity. This
form of model occurs commonly in metrology, viz., in calibration, instrument design and
experimental data analysis.

Formally, the model takes the form

Y = f(X), (6.8)

where Y = (Y1, . . . , Ym)T is a vector of m output quantities.

The estimates of the output quantities are given by y = f(x).

The uncertainty associated with y is expressed using an uncertainty matrix Vy that contains
the covariances u(yi, yj), and is evaluated by matrix multiplication from

Vy = JxVxJx
T, (6.9)

Page 61 of 167



NPL Report DEM-ES-011 Uncertainty Evaluation

where Jx is the m×N (Jacobian) matrix containing the values of the derivatives ∂fi/∂Xj ,
for i = 1, . . . ,m, j = 1, . . . , N , at X = x.

Example 15 Resistance and reactance of a circuit element

(GUM Example H.2 Simultaneous resistance and reactance measurement) The resis-
tance R and reactance T of a circuit element are determined by measuring the ampli-
tude U of a sinusoidal alternating potential difference applied to it, the amplitude I of
the alternating current passed through it, and the phase shift angle φ between the two
from

R =
U

I
cos φ, T =

U

I
sinφ.

In terms of the above notation, X ≡ (U, I, φ)T and Y ≡ (R, T )T.

The matrix Jx, of dimension 2× 3, is[
∂R
∂U

∂R
∂I

∂R
∂φ

∂T
∂U

∂T
∂I

∂T
∂φ

]
=

[
1
I cos φ − U

I2 cosφ −U
I sinφ

1
I sinφ − U

I2 cos φ U
I cos φ

]
.

evaluated at the estimates x of the input quantities. Given the uncertainty matrix Vx of
order 3 associated with these estimates (cf. Section 6.2.1), the uncertainty matrix Vy

of order 2 associated with the estimates y of the output quantities is given by matrix
multiplication using expression (6.9).

6.2.3 Univariate, implicit, real model

In a univariate, implicit, real model, a single real output quantity Y is related to real input
quantities X in a way that cannot readily or stably be represented by an explicit function.
A model for the measurement system takes the form of an equation relating X and Y :

h(Y, X) = 0. (6.10)

The estimate y of Y is given by the solution of the equation h(y, x) = 0. This equation
is solved numerically for y using a zero-finding algorithm [35, 45], such as the bisection
algorithm in a case where suitable lower and upper bounds for y are known. The standard
uncertainty u(y) associated with y is evaluated from

u2(y)c2
y = cx

TVxc, (6.11)

where cx
T is the row vector of sensitivity coefficients of h with respect to X evaluated at

x and Y = y (cf. expression(6.4)), and

cy =
∂h

∂Y

∣∣∣∣
X=x,Y =y

.
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Example 16 Pressure generated by a pressure balance

The pressure p generated by a pressure balance is defined implicitly by the equation5

p =
M(1− ρa/ρw)g`

A0(1 + λp)(1 + α(T − 20))
, (6.12)

where M is the total applied mass, ρa and ρw are the densities of air and the applied
masses, g` is the local acceleration due to gravity, A0 is the effective cross-sectional
area of the balance at zero pressure, λ is the distortion coefficient of the piston-cylinder
assembly, α is the temperature coefficient, and T is temperature [58].

There are eight input quantities, X ≡ (A0, λ, α, T,M, ρa, ρw, g`)T and a single output
quantity Y ≡ p related by the implicit model6

h(Y, X) = A0p(1 + λp)(1 + α(T − 20))−M(1− ρa/ρw)g` = 0. (6.13)

Given estimates x of X , equation (6.13) is solved for y. The first-order partial deriva-
tives of h, in equation (6.13), with respect to X , evaluated at X = x and Y = y,
provide the elements of the row vector cT in expression (6.11). Together with the un-
certainty matrix Vx associated with the estimates x and the partial derivative ∂h/∂Y
evaluated at X = x and Y = y, this information permits u(y) ≡ u(p) to be formed
using expression (6.11).

6.2.4 Multivariate, implicit, real model

A multivariate, implicit, real model is identical to equation (6.10), but Y is now a vector, in
the form of a vector output quantity Y :

h(Y , X) = 0. (6.14)

The estimate y of Y is given by the solution of the system of equations h(y,x) = 0. This
system is solved numerically for y using an iterative algorithm such as Newton’s method
[45], starting from an approximate solution y(0). The uncertainty matrix Vy associated with
y is related to that, Vx, associated with x by

JyVyJy
T = JxVxJx

T, (6.15)

where Jx is the m×N (Jacobian) matrix containing the values of the derivatives ∂fi/∂Xj ,
for i = 1, . . . ,m, j = 1, . . . , N , at X = x and Y = y, and Jy is the m × m matrix
containing the values of ∂fi/∂Yj , for i = 1, . . . ,m, j = 1, . . . ,m, at X = x and Y = y.
Expression (6.15 defines a system of linear equations that is solved for Vy.7

5More complete models can also be considered [58] that include, for example, a correction to account for
surface tension effects.

6There is not a unique way to write the implicit model. For instance, in place of equation (6.13) the model
given by the difference between the left- and right-hand sides of expression (6.12) could be used. The efficiency
and stability of the solution of the model equation depends on the choice made.

7Using recognised concepts from numerical linear algebra [46], a numerically stable way to form Vy , that
accounts for the fact that Jx is a rectangular matrix and Jy a square matrix, is as follows:
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Example 17 Pressures, generated by a pressure balance, having associated correlation

In the example of Section 6.2.3, let pi, i = 1, . . . ,m, denote the generated pressures
for applied masses Mi and temperatures Ti, with A0, λ, α, ρa, ρw and g` as before.
An estimate of each pi is obtained by solving an equation of the form (6.13) given
estimates of A0, λ, α, Ti,Mi, ρa, ρw and g`. However, the quantities representing the
generated pressures are not mutually independent because they all depend on the mea-
sured quantities A0, λ, α, ρa, ρw and g`. To understand the correlation associated with
the estimates of the quantities pi, it is necessary to model the measurement using a mul-
tivariate implicit function in which X ≡ (A0, λ, α, T1,M1, . . . , Tm,Mm, ρa, ρw, g`)T

is the vector of 2m + 6 input quantities, Y ≡ (p1, . . . , pm)T the vector of m output
quantities, and the model takes the form

hi(Y , X) = A0pi(1+λpi)(1+α(Ti−20))−Mi(1−ρa/ρw)g` = 0, i = 1, . . . ,m.

(cf. equation (6.13). The matrix Vx of order 2m + 6, containing the covariances
associated with the estimates x of the input quantities X , together with the Jacobian
matrices Jx and Jy of derivatives of hi((Y , X), i = 1, . . . ,m, with respect to
Xj , j = 1, . . . , N , and Yj , j = 1, . . . ,m, evaluated at X = x and Y = y, provides
the information needed to solve (6.15) for Vy.

6.2.5 Univariate, explicit, complex model

Let X be a complex quantity written in terms of its real and imaginary parts:

X = XR +
√
−1XI.

The uncertainty associated with an estimate x = xR +
√
−1xI of X is expressed using a

2× 2 matrix

V =

[
u2(xR) u(xR, xI)

u(xR, xI) u2(xI)

]
.

1. Form the Cholesky factor Rx of Vx, i.e., the upper triangular matrix such that Rx
TRx = Vx.

2. Factorize Jx as the product Jx = QxUx, where Qx is an orthogonal matrix and Ux is upper triangular.

3. Factorize Jy as the product Jy = LyUy , where Ly is lower triangular and Uy is upper triangular.

4. Solve the matrix equation Uy
TM1 = I for M1.

5. Solve Ly
TM2 = M1 for M2,

6. Form M3 = Qx
TM2.

7. Form M4 = Ux
TM3.

8. Form M = RxM4.

9. Orthogonally triangularize M to give the upper triangular matrix R.

10. Form Vy = RTR.

It is straightforward to verify this procedure using elementary matrix algebra.
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This is a more complicated data structure than for the case of real X .8 For an N -vector
X of complex quantities, the uncertainty associated with an estimate x of X is expressed
using a 2N × 2N uncertainty matrix Vx:

Vx =

 V 1,1 · · · V 1,n
...

. . .
...

V n,1 · · · V n,n

 , (6.16)

where V i,i is a 2 × 2 sub-matrix containing the uncertainty associated with xi, and V i,j ,
i 6= j, is a 2×2 sub-matrix containing the covariances associated with the real and imaginary
parts of xi and those of xj .

In a univariate, explicit, complex model, a single complex output quantity Y is related to a
number of complex input quantities X by an explicit functional relationship in the form of
(6.1). The uncertainty matrix Vy associated with the estimate y of Y is evaluated from

Vy = JxVxJx
T, (6.17)

where Jx is a 2 × 2N matrix whose first row contains the derivatives of the real part of
f with respect to the real and imaginary parts of X , and in whose second row are the
derivatives of the imaginary part of f , evaluated at X = x

Example 18 Reflection coefficient measured by a calibrated microwave reflectometer

The (complex) reflection coefficient Γ measured by a calibrated microwave reflec-
tometer, such as an automatic network analyser (ANA), is given by

Γ =
aW + b

cW + 1
, (6.18)

where W is the observed (complex) uncorrected reflection coefficient and a, b and c
are (complex) calibration coefficients characterizing the reflectometer [41, 55, 79].

There are four (complex) input quantities X ≡ (a, b, c, W )T and one (complex) output
quantity Y ≡ Γ. Jx is a 2 × 8 matrix containing the derivatives of the real and
imaginary parts of Γ with respect to the real and imaginary parts of a, b, c and W ,
evaluated at the estimates of a, b, c and W . Vy, a matrix of order two containing
the covariances associated with the real and imaginary parts of an estimate y of Y , is
formed using expression (6.17), in which Vx contains the covariances associated with
the real and imaginary parts of estimates x of X .

8The data structure is, however, like that for the vector X = (XR, XI)
T.
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6.2.6 Multivariate, explicit, complex model

In a multivariate, explicit, complex model the measurement system model (6.8) applies with
X and Y complex. The uncertainty associated with y is given by the 2m× 2m uncertainty
matrix Vy (see expression (6.16)) evaluated from

Vy = JxVxJx
T, (6.19)

where Jx is a 2m× 2N matrix containing the derivatives of the real and imaginary parts of
each component of f with respect to the real and imaginary parts of each component of X ,
evaluated at X = x.

Example 19 Calibrated microwave reflectometer used to measure mutually dependent re-
flection coefficients

Let a, b and c be the calibration coefficients for an automatic network analyser (ANA)
as in Example 18. Suppose Wi, i = 1, . . . ,m, are m observed uncorrected reflection
coefficients for which the corresponding ‘corrected’ reflection coefficients are Γi, i =
1, . . . ,m. Estimates of Γi are obtained by evaluating m formulae of the form of (6.18).
However, the corresponding quantitues are not mutually independent because they all
depend on the calibration coefficients. To understand the correlation between these
quantities, it is necessary to model the system using a multivariate explicit function in
which the (complex) vector of input quantities X ≡ (a, b, c, W1, . . . ,Wm)T and the
(complex) vector of output quantities Y ≡ (Γ1, . . . ,Γm)T.

The matrix Vx of order 2m + 6, containing the covariances associated with the real
and imaginary parts of the estimates x of the input quantities X , together with the
2m× (2m+6) Jacobian matrix Jx, provides the information needed to determine Vy

from (6.19).

6.2.7 Univariate, implicit, complex model

In a univariate, implicit, complex model, the measurement model (6.10) applies with Y and
X complex. The uncertainty associated with y is evaluated from

JyVyJy
T = JxVxJx

T, (6.20)

where Jy is a 2 × 2 matrix containing the derivatives of the real and imaginary parts of h
with respect to the real and imaginary parts of Y , evaluated at X = x and evaluated at
Y = y. Compare with Section 6.2.4.

Example 20 Reflection coefficient measured by a calibrated microwave reflectometer
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Another approach to the example given in Example 18 is to relate the input quantities
X ≡ (a, b, c, W )T and the output quantity Y ≡ Γ using the (complex) implicit model

h(Y, X) = Γ(cW + 1)− (aW + b) = 0.

An advantage of this approach is that the calculation of derivatives and thence sensi-
tivity coefficients is easier. The 2 × 2 matrix Jy contains the derivatives of the real
and imaginary parts of h with respect to the real and imaginary parts of Γ, and the
2× 8 matrix Jx the derivatives with respect to the real and imaginary parts of a, b, c
and W , with all derivatives evaluated at the estimates of Γ and a, b, c and W . This
information, together with the matrix Vx of order eight, containing the covariances
associated with the real and imaginary parts of the estimates x of the input quantities
X , is used to determine Vy from expression (6.20).

6.2.8 Multivariate, implicit, complex model

In a multivariate, implicit, complex model, the measurement system model (6.14) applies
with X and Y complex. The uncertainty matrix associated with y is then evaluated from
equation (6.15), which constitutes a linear system for Vy.

Example 21 Calibration of a microwave reflectometer using three standards

The calibration of a reflectometer is undertaken by measuring values W correspond-
ing to a number of standards Γ. Typically, three standards are used, giving the three
simultaneous equations

Γi(cWi + 1)− (aWi + b) = 0, i = 1, 2, 3,

that are solved for estimates of the three calibration coefficients a, b and c. There are
six (complex) input quantities X ≡ (W1,Γ1,W2,Γ2,W3,Γ3)T and three (complex)
output quantities Y ≡ (a, b, c)T related by a model of the form (6.14), where

hi(Y ,X) = Γi(cWi + 1)− (aWi + b) = 0, i = 1, 2, 3.

The 6× 6 matrix Jy contains the derivatives of the real and imaginary parts of hi, i =
1, 2, 3 with respect to the real and imaginary parts of a, b and c, and the 6× 12 matrix
Jx the derivatives with respect to the real and imaginary parts of Γi and Wi, i =
1, 2, 3, with all derivatives evaluated at the estimates of Wi and Γi, i = 1, 2, 3. This
information, together with the matrix Vx of order twelve, containing the covariances
associated with the real and imaginary parts of the estimates x of the input quantities
X , is used to determine Vy from equation (6.15).

Page 67 of 167



NPL Report DEM-ES-011 Uncertainty Evaluation

6.3 The law of propagation of uncertainty with higher order
terms

The GUM states that whenever the non-linearity of the measurement model is significant,
higher order terms in the Taylor series expansion of the measurement model must be in-
cluded. The manner in which this can be achieved is indicated. A detailed derivation for the
case of a measurement model with a single input quantity is given. The general result for
more than one input quantity is conceptually straightforward, but algebraically complicated,
and is not given.

Consider, therefore, a measurement system modelled by a functional relationship between
a single (real) input quantity X and a single (real) output quantity Y of the form

Y = f(X).

Let x denote an estimate of X (the expectation of X) and u = u(x) the standard uncertainty
associated with x (the standard deviation of X). Define random variables δX and δY by

X = x + δX, Y = y + δY = f(x + δX),

where
y = f(x).

Now, δX has expectation
E (δX) = 0,

and variance
var (δX) = u2.

Since
var(δX) = E

(
(δX)2

)
− (E (δX))2 ,

it follows also that
E
(
(δX)2

)
= u2.

Consider, to begin with, a first order Taylor series approximation to the model f about the
estimate x, i.e,

y + δY = f(x) + f ′(x)δX.

Then,
δY = f ′(x)δX, (δY )2 = (f ′(x))2(δX)2,

and, taking expectations,
E (δY ) = f ′(x)E (δX) = 0,

and
E
(
(δY )2

)
= (f ′(x))2E

(
(δX)2

)
= (f ′(x))2u2.
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It follows that
E (Y ) = y + E (δY ) = y (6.21)

and
var (Y ) = E

(
(δY )2

)
− (E (δY ))2 = (f ′(x))2u2. (6.22)

Expression (6.21) says that the expectation of Y , obtained on the basis of a linear approx-
imation to the measurement model, is y. Expression (6.22) is a special case of formula
(6.2) applied to a univariate, explicit, real model with N = 1 (Section 6.2.1). It is straight-
forward to generalise the derivation given here to cope with more than one input quantity
[GUM Clause E.3.1].

Now consider a higher (third) order Taylor series approximation to the model f about the
estimate x, i.e.,

y + δY = f(x) + f ′(x)δX +
1
2
f ′′(x)(δX)2 +

1
6
f ′′′(x)(δX)3.

Then, to a second order approximation,

δY = f ′(x)δX +
1
2
f ′′(x)(δX)2,

and, to fourth order approximation,

(δY )2 = (f ′(x))2(δX)2 + f ′(x)f ′′(x)(δX)3 +
(

1
4
(f ′′(x))2 +

1
3
f ′(x)f ′′′(x)

)
(δX)4.

Taking expectations,

E (δY ) = f ′(x)E (δX) +
1
2
f ′′(x)E

(
(δX)2

)
=

1
2
f ′′(x)u2,

and

E
(
(δY )2

)
= (f ′(x))2E

(
(δX)2

)
+ f ′(x)f ′′(x)E

(
(δX)3

)
+
(

1
4
(f ′′(x))2 +

1
3
f ′(x)f ′′′(x)

)
E
(
(δX)4

)
.

Assume that the distribution assigned to X (and hence to δX) is Gaussian, so that

E
(
(δX)3

)
= 0, E

(
(δX)4

)
= 3u4.

It follows that
E (Y ) = y + E (δY ) = y +

1
2
f ′′(x)u2, (6.23)

and

var (Y ) = E
(
(δY )2

)
− (E (δY ))2

= (f ′(x))2u2 + 3
(

1
4
(f ′′(x))2 +

1
3
f ′(x)f ′′′(x)

)
u4 − 1

4
(f ′′(x))2u4,
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i.e.,

var (Y ) = (f ′(x))2u2 +
(

1
2
(f ′′(x))2 + f ′(x)f ′′′(x)

)
u4. (6.24)

Expression (6.23) says that the expectation of Y , obtained on the basis of a higher order
approximation to the measurement model, is no longer y. Expression (6.24) can be used to
evaluate the standard uncertainty associated with the estimate y accounting for higher order
terms in the Taylor series approximation to the measurement model. Unlike expression
(6.22), which is based on a linearization of the model, the derivation of expression (6.24)
requires knowledge of the distribution assigned to X .9 A generalisation of the result given
by expression (6.24) to more than one input quantity is available; see, e.g., [GUM Note to
Clause 5.1.2]. The result requires that the input quantities are uncorrelated and are assigned
Gaussian distributions.10

9A different result is obtained if a rectangular distribution is assigned to X , since for that distribution
E
(
(δX)4

)
= 9

5
u4.

10In this regard, the conditions stated in the GUM are incomplete, which require only that the distributions
assigned to the input quantities are symmetric.
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Chapter 7

A Monte Carlo method

7.1 Overview

The manner in which a general numerical approach, a Monte Carlo method, can be applied
to uncertainty evaluation is described. Practical implementation considerations are given.1

In the context of uncertainty evaluation, Monte Carlo is a sampling technique that provides
an implementation of the propagation of distributions: the process is undertaken numeri-
cally rather than analytically. The technique is also useful for validating the results returned
by the application of the GUM uncertainty framework, as well as in circumstances where the
assumptions made by the GUM uncertainty framework may not apply. In fact, it provides
much richer information, by propagating the PDFs for the input quantities X (rather than
just the uncertanties associated with estimates of these quantities) through the measurement
model f to provide the PDF for the output quantity Y or the joint PDF for multivariate out-
put quantities Y . From the PDF for the output quantity, coverage intervals (in the univariate
case) can then straightforwardly be produced, as can other statistical information.2

The Monte Carlo method enables account to be taken of the PDFs for the input quantities
that have been derived analytically or otherwise assigned. Such PDFs include asymmetric
densities such as Poisson (counting rates) and Gamma (special cases of which are expo-
nential and chi-squared). The PDFs for the input quantities form the necessary basis for
determining the PDF for an output quantity by a Monte Carlo method. (A calculated ex-
pectation and standard deviation, as provided by the GUM uncertainty framework, do not
alone form such a basis.)

If the model input quantities are mutually dependent, sampling would take place from the
corresponding joint PDF. A general approach to such sampling is available [83].

1A Supplement [9] to the GUM, related to the approach in this chapter, has been developed by JCGM/WG1.
2The determination of coverage regions (for the multivariate case) remains a research problem. See Section

7.4.
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The Monte Carlo method is a step-by-step procedure, like the approach based on the GUM
uncertainty framework. The difference is that in the Monte Carlo method a small number
of steps is repeated very many times, with each repeat constituting a single trial, and the
results obtained aggregated. Hence, computer implementation is essential. Increasingly,
software is used in applying the GUM uncertainty framework, so the use of software for a
Monte Carlo calculation is seen as a practical and acceptable (and more general) alternative.
Specifications for key software units are available [33].

The technique used is that of repeated sampling from the PDFs describing the input quan-
tities. The fact that the sampling is carried out in terms of the provided PDFs, rather than
being based on approximations the quality of which is difficult to quantify, is seen as highly
relevant in removing the influence of uncontrollable limitations.

So, given the model and the PDFs for its input quantities, the Monte Carlo method con-
stitutes a tool to approximate the PDF for the scalar output quantity Y or vector output
quantity Y . The PDF for the output quantity is fundamental to determining any or all
statistics associated with the measurement result.3 From it can be obtained

• expectation4, median, mode and other estimates of location such as the total median
[34],

• standard deviation (standard uncertainty), variance (squared standard deviation), and
higher moments such as skewness and kurtosis5,

• a coverage interval corresponding to some stated coverage probability (the general-
3Recall that the output quantity may become the input quantity to a subsequent stage in a multi-stage model

(Section 4.7), and hence in these circumstances the Monte Carlo method provides valuable problem-specific
information that would not necessarily be provided by more traditional approaches to uncertainty evaluation.

4There is a debate, at the time of publication, in the metrology community concerning whether this value
or the value of the model corresponding to the estimates of the input quantities should be used (GUM Clause
4.1.4). In many instances it will make neglible practical difference. In some cases, however, the difference can
be appreciable. Consider the simple model Y = X2, where X has expectation zero and standard deviation u
and is assigned a symmetric PDF. Taking the expectation of values of Y involves averaging a set of non-negative
values and hence will be positive. In contrast, the value of Y corresponding to the expectation of X is zero.
In this case, the former value is more reasonable, since zero lies at an extremity of the range of possible values
for the output quantity and is hardly representative, as an expectation should be. In other, somewhat more
complicated situations, the expectation of the output quantity constitutes an estimate that contains unwanted
bias. In this circumstance, it can be more meaningful to take instead the value of Y corresponding to the
expectation of X . In general, circumstances should dictate the choice. In one sense the degree of arbitrariness
is genuine. The Monte Carlo method naturally provides quantiles of the distribution function for the output
quantity. In particular the 0.025– and 0.975–quantiles define a 95 % coverage interval for the output quantity.
Such a coverage interval is also given by any other pair of quantiles that differ by 0.95, such as 0.015 and 0.965,
or 0.040 and 0.990. In this setting, it is less meaningful to quote a coverage interval in the form y±U , involving
the ‘expectation’ y. For comparison with a ‘Monte Carlo’ interval, it would instead be appropriate to quote the
interval [y − U, y + U ]. See Section 7.2.4.

5The first moment of a PDF is the expectation, a measure of location, the second is the variance, a measure of
dispersion or spread about the expectation, the third is skewness, a measure of asymmetry about the expectation,
and the fourth is kurtosis, a measure of heaviness of the tails of the PDF or the peakedness in the centre [68,
p143, p329].
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ization of ‘estimate ± expanded uncertainty’ in the case of an output quantity char-
acterized by a Gaussian distribution),and

• any other statistical estimator or derived statistical quantity.

For multivariate output quantities, there would be higher-dimensional counterparts of these
quantities.

The use of a Monte Carlo method is in principle straightforward, but a solid implementation
requires (a) generators (algorithms) to sample from all (joint) PDFs for the input quantities
that are likely to be useful in practice (some of which will be multidimensional because of
mutual dependencies) and (b) consideration of the number of Monte Carlo trials needed to
deliver two (say) correct digits in the standard uncertainty associated with the estimate of
the output quantity. Work is needed in (a) to cater for the variety of possible PDFs. As
indicated, a general approach to such sampling is available [83]. This and other approaches
need to be reviewed carefully for their suitability in the current context. For some of the
commonest PDFs (univariate rectangular, univariate Gaussian and multivariate Gaussian),
generators to carry out the sampling are available [33]. For (b), see Section 7.2.5.

The Monte Carlo method is also valuable for validating the results returned by the appli-
cation of the GUM uncertainty framework (Chapter 8), as well as in circumstances where
the assumptions made by the GUM uncertainty framework do not apply. Further, the fact
that the Monte Carlo method permits general PDFs rather than just estimates and uncer-
tainties to be propagated through measurement-system models cannot be underestimated.
As indicated, all statistical information relating to the variability of measurement data, in-
cluding correlation effects, can be discerned from the distributions for the output quantities.
The quality of this information will depend on that of the model and the input quantities
and, if those are considered acceptable, is only limited by the number of Monte Carlo trials
made. In particular, quantitative results relating to the GUM uncertainty framework can be
obtained from the propagated PDFs. In contrast, the converse is not true: the GUM uncer-
tainty framework cannot be used to derive the PDFs for the output quantities (unless it can
be shown that it is acceptable to characterize them by Gaussian or t-distributions).

The GUM uncertainty framework is based on propagating uncertainties in a first-order ap-
proximation to the model of the measurement system. The Monte Carlo method [39, 40]
provides an alternative approach in which instead the probability distributions are propa-
gated. Although no first-order approximation to the model is made, e.g., the non-linearity
of the model is taken into account, the sampling process introduces a sampling error that
depends on the number of trials taken.

A major distinction is that with the GUM uncertainty framework there is no control over the
extent of the approximation introduced by linearizing the model, or assuming the PDF for
the output quantity is Gaussian, whereas with the Monte Carlo method the sampling error
can be influenced by the number of Monte Carlo trials (Section 7.2.5).
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7.2 A Monte Carlo method for univariate models

Consider first the univariate6 model function

Y = f(X),

where
X = (X1, . . . , XN )T.

Let the PDF for the ith input quantity Xi be gXi
(ξi) and the PDF for Y be gY (η). Let

GY (η) =
∫ η

−∞
gY (z)dz

denote the distribution function (DF) corresponding to gY .

An adequate approximation to GY (η) will permit all the required statistics associated with
Y to be determined.

Advice on a simple implementation of a Monte Carlo method is given in the case of the
univariate model, above. Its use will permit for instance the evaluation of the standard
uncertainty associated with an estimate y of the output quantity Y , and a 95 % coverage
interval for Y .

The procedure is as follows:

1. Select the number M of Monte Carlo trials to be made;

2. Generate M vectors xr by sampling from the PDFs for the (set of N ) input quantities
X . See Section 7.2.1;

3. For each vector xr, evaluate the model to give the corresponding value yr = f(xr)
of the output quantity7;

4. Calculate the estimate y of the output quantity and the associated standard uncertainty
u(y) as the (arithmetic) mean and standard deviation of the model values yr, r =
1, . . . ,M . See Section 7.2.2;

5. Sort the values yr, r = 1, . . . ,M , into non-decreasing order, and use the sorted
values to provide a discrete representation G of the distribution function GY (η) for
the output quantity. See Section 7.2.3;

6A univariate model function (Section 6.2.1, e.g.) has a single (scalar) output quantity Y and an arbitrary
number N of input quantities X = (X1, . . . , XN )T. A multivariate model function (Section 6.2.2, e.g.) has
arbitrary numbers of input and output quantities. The latter is considered in Section 7.4.

7The values yr, r = 1, . . . , M , when assembled into a histogram (with suitable cell widths) provide a
(scaled) approximation to the PDF gY (η) for Y . Most calculations will not be carried out in terms of this his-
togram, the ‘shape’ of which depends sensitively on the choice of cell size [43], but in terms of the distribution
function. The histogram is, however, a useful visual aid to understanding the nature of the PDF.
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6. Use the discrete representation of the distribution function to calculate a 95 % cover-
age interval for the output quantity. See Section 7.2.4.

The number M of Monte Carlo trials is selected initially at Step 1. A variant of the proce-
dure, in which the number is chosen adaptively, i.e., as the procedure is followed, is given
in Section 7.2.5.

7.2.1 Sampling from the probability density functions for the input quantities

This section is concerned with the manner in which vectors xr are drawn from the PDFs
for the input quantities. Consideration is given to PDFs that are univariate or multivariate
(joint).

Univariate probability density functions

Each independent input quantity is characterized by a PDF (GUM Clause G.1.4). Sampling
from the commonest distributions, e.g., rectangular, Gaussian or t, is carried out using a
(pseudo-)random number generator that is appropriate for that PDF. Methods, in the form
of pseudo-random number generators, for sampling from these PDFs are available in a
companion document [33].

Consider now information about an input quantity in the form of a sufficiently large number
of sampled values of the quantity characterized by an unknwon PDF.8 In such a case these
values can be used to approximate the PDF for the quantity.

Consider such an input quantity X , realized by n sampled values x1, . . . , xn. Let x(1), . . . , x(n)

denote these values arranged in non-decreasing order. The piecewise-linear function ĜX(ξ)
joining the points (x(r), (r − 1/2)/n), r = 1, . . . , n, provides an approximation to the
distribution function GX(ξ) for X .

Sampling from this distribution function can be carried out using a rectangular generator
and inverse linear interpolation. Specifically, a sample is given by using

1. a generator to provide a value z from the rectangular PDF defined over zero to one,
and

2. inverse linear interpolation to provide a value x satisfying ĜX(x) = z.

Large numbers of sampled values are needed if coverage intervals corresponding to a large
coverage probability are required, since the tails of the distribution would otherwise not be
well characterized.

8For example, this situation would arise in the case that the sampled values are the result of a previous Monte
Carlo calculation.
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Multivariate probability density functions

Sampling from a joint PDF that is defined continuously is largely a research topic. However,
a joint (multivariate) Gaussian distribution can straightforwardly be handled [33].

Sampling from a joint PDF that is defined by a set of discrete values can be carried out
straightforwardly. Such values are likely to have been obtained from a previous application
of a Monte Carlo method to a multivariate model (Section 7.4). Suppose M Monte Carlo
trials have previously be carried out and m is the number of output quantities in that calcu-
lation. This information will have been preserved as an m×M array of values. It embodies
fully the correlation effects present in those output quantities. A column chosen at random
from the array will be a valid sample accounting for the correlation effects.

7.2.2 Estimate of the output quantity and the associated standard uncertainty

The average ŷ of the values yr, r = 1, . . . ,M , of the output quantity is taken as the esti-
mate y of the output quantity, and the standard deviation u(ŷ) of the values is taken as the
standard uncertainty u(y) associated with y. ŷ is evaluated from

ŷ =
1
M

M∑
r=1

yr, (7.1)

and the standard deviation u(ŷ) from

u2(ŷ) =
1

M − 1

M∑
r=1

(yr − ŷ)2. (7.2)

Advice is available on using an “updating” procedure to evaluate the estimate of the output
quantity and the associated standard uncertainty that avoids the need to store the complete
set of model values [33].

The value of y so obtained yields the smallest mean squared deviation over all possible
choices of the estimate of the output quantity. However, the value will not in general agree
with the model evaluated at the estimates of the input quantities [10, Clause 4.1.4]. Agree-
ment (in a practical sense) will be achieved for a large value of M when the model is linear
in the input quantities. Whether this general lack of agreement is important depends on the
application. The value of y, even in the limit as M → ∞, is not in general equal to the
model evaluated at the expectation values of the input quantities, unless the model is linear
[10, Clause 4.1.4].

7.2.3 Discrete representation of the distribution function

A discrete representation G of the distribution function for the output quantity is obtained
by sorting the values yr, r = 1, . . . ,M , into non-decreasing order. Denoting the sorted
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values by y(r), r = 1, . . . ,M , the discrete representation is given by G = (y(1), . . . , y(M)).
The discrete representation is used as the basis for calculating a coverage interval for the
output quantity (Section 7.2.4). It is also used as the basis for obtaining a (continuous)
approximation to the distribution function for the output quantity (below) that may used,
for example, to obtain random draws from the distribution for the output quantity (in the
manner described in Section 7.2.1).

An approximation ĜY (η) to the distribution function GY (η) for the output quantity is ob-
tained as follows. Assign uniformly spaced cumulative probabilities pr = (r − 1/2)/M ,
r = 1, . . . ,M , to the ordered values y(r) in the discrete representation G of the distribu-
tion function for the output quantity.9 Form ĜY (η) as the piecewise-linear function joining
the M points (y(r), pr), r = 1, . . . ,M :

ĜY (η) =
r − 1/2

M
+

η − y(r)

M(y(r+1) − y(r))
, y(r) ≤ η ≤ y(r+1), (7.3)

for r = 1, . . . ,M − 1.

Formulae (7.1) and (7.2) for the estimate of the output quantity and the associated standard
uncertainty do not in general provide values that are identical to the expectation and standard
deviation of the quantity characterized by the distribution function ĜY (η). The latter values
are given by

ŷ =
1
M

M∑
r=1

′′y(r) (7.4)

and

u2(ŷ) =
1
M

(
M∑

r=1

′′(y(r) − ŷ)2 − 1
6

M−1∑
r=1

(y(r+1) − y(r))
2

)
, (7.5)

where the double prime on the summation in Expression (7.4) and on the first summation
in Expression (7.5) indicates that the first and the last terms are to be taken with weight one
half. However, for a sufficiently large value of M , the values obtained using Expressions
(7.1) and (7.2) are generally indistinguishable for practical purposes from those given by
Expressions (7.4) and (7.5).

7.2.4 Coverage interval for the output quantity

Let α denote any value between zero and 1−p, where p is the required coverage probability
(e.g., 0.95). The endpoints of a 100p % coverage interval for the output quantity are G−1

Y (α)
and G−1

Y (p + α), i.e., the α– and (p + α)–quantiles of GY (η). Here, the β–quantile is the
value of η for which GY (η) = β.

9The values pr , r = 1, . . . , M , are the midpoints of M contiguous probability intervals of width 1/M
between zero and one.
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The choice α = 0.025 gives the coverage interval defined by the 0.025– and 0.975–
quantiles. This choice provides a 95 % coverage interval that is probabilistically symmet-
ric. The probability is 2.5 % that Y is smaller than the left-hand endpoint of the interval
and 2.5 % that it is larger than the right-hand endpoint. If gY (η) is symmetric about its
expectation, this coverage interval is symmetric about the estimate y of the output quantity,
and the left-hand and right-hand endpoints of the coverage interval are equidistant from y.

A value of α different from 0.025 would generally be appropriate were the PDF asymmetric.
Usually the shortest coverage interval is required, because it corresponds to the best possible
location of the output quantity Y for a specified coverage probability. It is given by the value
of α satisfying gY (G−1

Y (α)) = gY (G−1
Y (p + α)), if gY (η) is single-peaked, and in general

by the value of α such that G−1
Y (p + α) − G−1

Y (α) is a minimum. If gY (η) is symmetric,
the shortest coverage interval is given by taking α = (1− p)/2.

The endpoints of a coverage interval can be obtained from the discrete representation of the
distribution function for the output quantity (Section 7.2.3) as follows. Let q = pM , if pM
is an integer, or the integer part of pM + 1/2, otherwise. Then, [ylow, yhigh] = [y(r), y(r+q)]
for any r = 1, . . . ,M − q, is a 100p % coverage interval. The probabilistically symmetric
100p % coverage interval is given by r = (M − q)/2 if (M − q)/2 is an integer, or the
integer part of (M − q + 1)/2, otherwise. The shortest 100p % coverage interval is given
by determining r = r∗ such that, for r = 1, . . . ,M − q, y(r∗+q) − y(r∗) ≤ y(r+q) − y(r).

The endpoints of a coverage interval can also be obtained from the approximation ĜY (η) to
GY (η) obtained in Section 7.2.3. For a sufficiently large value of M , the coverage interval
obtained using the discrete representation G of GY (η) can be expected to be indistinguish-
able for practical purposes from those obtained using the approximation ĜY (η). To find the
left-hand endpoint ylow such that α = ĜY (ylow), identify the index r for which the points
(y(r), pr) and (y(r+1), pr+1) satisfy

pr ≤ α < pr+1.

Then, by inverse linear interpolation,

ylow = y(r) +
(
y(r+1) − y(r)

) α− pr

pr+1 − pr
.

Similarly, the upper endpoint yhigh is calculated from

yhigh = y(s) +
(
y(s+1) − y(s)

) p + α− ps

ps+1 − ps
,

where the index s is identified to satisfy

ps ≤ p + α < ps+1.

The shortest coverage interval can generally be obtained computationally from ĜY (η) by
determining α such that Ĝ−1

Y (p + α)− Ĝ−1
Y (α) is a minimum. A straightforward approach

to determining the minimum is to evaluate Ĝ−1
Y (p + α)− Ĝ−1

Y (α) for a sufficient number
of choices {αk} of α between zero and 1−p, and to choose that value α` from the set {αk}
yielding the minimum value from the set {Ĝ−1

Y (p + αk)− Ĝ−1
Y (αk)}.
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7.2.5 An adaptive Monte Carlo method

A basic implementation of an adaptive Monte Carlo method is described as follows. It is
based on carrying out an increasing number of Monte Carlo trials until the various quantities
of interest have stabilised in a statistical sense. A quantity is deemed to have stabilised if
twice the standard deviation associated with the estimate of its value is less than the degree
of approximation required in the standard uncertainty u(y).

A practical approach consists of carrying out a sequence of Monte Carlo calculations, each
containing a relatively small number, say M = 104, trials. For each Monte Carlo calculation
in the sequence, y, u(y) and the endpoints of a 95 % coverage interval are formed from the
results obtained as in Sections 7.2.2 and 7.2.4. Denote by y(h), u(y(h)), y

(h)
low and y

(h)
high the

values of y, u(y) and the left- and right-hand endpoints of the 95 % coverage interval for
the hth member of the sequence.

After the hth Monte Carlo calculation (apart from the first) in the sequence, the arithmetic
mean of the values y(1), . . . , y(h) and the standard deviation sy associated with this arith-
metic mean are formed. The counterparts of these statistics are determined for u(y), ylow

and yhigh. If the largest of 2sy, 2su(y), 2sylow
and 2syhigh

does not exceed the degree of
approximation required in u(y), the overall computation is regarded as having stabilised.
The results from the total number of Monte Carlo trials taken are then used to provide the
estimate of the output quantity, the associated standard uncertainty and the coverage interval
for the output quantity.

7.2.6 Computation time

An indication of the computation time required for Monte Carlo calculations can be ob-
tained from the following figures.

A problem with a model consisting of the sum of five terms, a cosine, a sine, an inverse
tangent, an exponential and a square root was synthesised. The quantity in each term was
assigned a Gaussian PDF. M = 106 Monte Carlo trials were made. Computation times for
a 1 GHz Pentium 3 PC using Matlab were as follows.

The generation of the 5M Gaussian pseudo-random numbers took 1 s.

The evaluation of the M model values took 1 s.

To sort the M values of the output quantity into non-decreasing order to produce a discrete
representation of the distribution function for the output quantity took 3 s.10

Thus, the computation time totalled 5 s.

10The sorting should be carried out using a sorting algorithm that takes a number of operations proportional
to M log M [74]. A naive sorting algorithm would take a number of operations proportional to M2 and that
might make the computation time unacceptably long.
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This information provides a simple basis for estimating the computation time for other
models, other values of M and other PCs.

7.3 A Monte Carlo method applied to a simple non-linear model

Consider the univariate model Y = X2, where the (single) input quantity X has expectation
1.2 and standard deviation 0.5 and is assigned a Gaussian PDF.

First, the number M of Monte Carlo trials was taken as 500. Values xr, r = 1, . . . ,M , were
sampled from the Gaussian distribution assigned to X . The corresponding values yr = x2

r ,
r = 1, . . . ,M , were calculated according to the model. An approximation to the distribu-
tion function for Y was formed, in accordance with the above procedure, as the piecewise-
linear function joining the points (y(r), pr), r = 1, . . . ,M , where pr = (r − 1/2)/M .
Figure 7.1 shows the approximation to the distribution function so obtained. The figure also
shows a histogram of the values yr, which constitutes a discrete, scaled approximation to
the PDF for Y .

The approximation to the distribution function is a much smoother function than the ap-
proximation to the corresponding PDF. Such a result is generally to be expected, and relates
to the fact that the PDF is the derivative of the distribution function, and that numerical
approximations to the derivative of a function tend to be considerably less accurate than
approximations to the function itself.

The exercise was repeated for M = 50 000 trials. See Figure 7.2. The enhanced smoothness
of the results is evident. Statistics computed from the results corresponding to the larger
number of trials would be much more reliable. It can be expected that increasing the number
of trials by a factor of 100, as here, would yield an additional significant digit of accuracy
in the computed statistics [27].

The enhanced resolution permits a feature to be discerned in the PDF for M = 50 000
(Figure 7.2) that was not evident in that for M = 500 (Figure 7.1). The PDF is bimodal,
there being a narrow peak near the origin, in addition to the main peak. This is not an
artifact introduced by the sampling procedure, but a genuine effect. Its presence is due to
the fact that 0.8 % of the values of X according to its PDF are negative. These values
lie in the left-hand tail of the Gaussian PDF for X , i.e., that with expectation µ = 1.2
and standard deviation σ = 0.5. The above proportion corresponds to the area under the
standardized Gaussian curve (i.e., that with expectation zero and standard deviation unity)
to the left of the value z = (0 − µ)/σ = −2.4. These values when squared, through the
model Y = X2, are aggregated with those arising from small positive values of X . Even
for such a superficially innocent example, there can be a ‘surprise’ such as this!

The estimate of the output quantity and the associated standard uncertainty as provided by
the law of propagation of uncertainty are 1.44 and 1.20. Those provided by the described
Monte Carlo method were 1.70 and 1.26. The standard uncertainty in this example is rea-
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Figure 7.1: An approximation (top) obtained using a Monte Carlo method, with 500 trials,
to the distribution function for the output quantity Y , where Y = X2 and X has expec-
tation 1.2 and standard deviation 0.5 and is assigned a Gaussian distribution. A histogram
(below) of the values used to produce the (approximate) distribution function. It constitutes
a discrete, scaled approximation to the PDF for Y .
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Figure 7.2: As Figure 7.1 but based on 50 000 Monte Carlo trials.
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sonably estimated by the law of propagation of uncertainty, but the expectation is estimated
to be lower than the correct value, which could in fact be calculated explicitly.

A further noteworthy feature arises from this example. In the case M = 50 000, a 95 % cov-
erage interval for Y , determined from the 0.025- and 0.975-quantiles of the (approximate)
distribution function was [0.1, 4.8]. That provided using the GUM uncertainty framework
is [−1.1, 3.9] or, equivalently, 1.4 ± 2.5. The lengths of the coverage interval are simi-
lar. However, the interval provided by the GUM uncertainty framework is shifted to the
left relative to that delivered by the described Monte Carlo method. In fact, the portion
of the coverage interval provided by the GUM uncertainty framework from –0.8 to zero is
infeasible, since, from its definition, Y cannot take negative values.

Coverage intervals at other levels of probability were also obtained using the described
Monte Carlo method and by applying the GUM uncertainty framework. Appreciable differ-
ences were again observed. For instance, for a 99.8 % coverage probability (corresponding
to a coverage factor of 3 under the Gaussian assumption), the coverage interval provided by
the described Monte Carlo method was [0.0, 7.5] and that provided by the GUM uncertainty
framework is [−2.3, 5.2].

Although this example might seem extreme, situations with large uncertainties arise in
metrology areas such as EMC measurement. Instances where the standard uncertainty and
the estimate are of similar size also arise, e.g., in dimensional metrology and in photome-
try and radiometry. There are also problems in limits of detection (Section 9.7), where the
uncertainties involved are comparable to the magnitudes of the quantities measured.

The effect of bias in the evaluated endpoints of the coverage interval constructed in this
way, resulting from the use of a finite sample, can be reduced using so-called bias-corrected
methods [40].11

7.4 A Monte Carlo method for multivariate models

Consider the counterpart of Section 7.2 for multivariate models. The multivariate model is

Y = f(X).

M vectors xr are drawn from the PDFs for the input quantities X as before. For each xr,
evaluate the model as previously, except now the output values yr = f(xr) are m × 1
vectors.

Assemble these output vectors into an m×M matrix:12

Ψ = (y1, . . . ,yM ).
11In the authors’ experience these corrections typically have a small effect. This aspect, however, merits

further study.
12The symbol Ψ is (reluctantly) used to denote the matrix of y-vectors, since Y is used to denote a scalar

output quantity and Y a vector output quantity.
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From this matrix the uncertainty (covariance) matrix Vy associated with estimates y of the
output quantities Y is calculated from

Vy =
1

M − 1
Ψ′(Ψ′)T,

where Ψ′ is Ψ corrected for the sample means over all M trials, i.e., with the arithmetic
mean of the jth row subtracted from all elements in that row, for j = 1, . . . ,M .

This uncertainty matrix contains (generally a more reliable estimate of) the information
that would be delivered by a linear analysis such as based on the law of propagation of
uncertainty. (In fact, it provides more than the law of propagation of uncertainty, since that
procedure does not in general cover multivariate models.) The matrix Ψ provides much
richer information, however, in the following sense. Any column of Ψ corresponds to the
values of the output quantities for one choice (sample) of the input quantities. Any (scalar)
derived quantity can be determined from this single set of output values. This quantity
can be calculated for all columns, the resulting 1 × M row vector being used to provide
a discrete representation of the distribution function for that quantity (as in Section 7.2.3).
In particular, the discrete representation can be used to provide a coverage interval for the
derived quantity (as in Section 7.2.4). Another quantity could be so introduced and the two
row vectors used to compute any statistics required (expectation, median, etc.) and the pair
of vectors used to approximate correlation effects. Thus, the matrix Ψ is a very valuable
array, being the basis of almost unlimited statistical information.

The extension of the approach to the evaluation of coverage regions for multivariate output
quantities is not straightforward, because the operation of sorting multivariate data is gen-
erally not well-defined. Some approaches have been proposed [3], including the ranking of
multivariate data using the metric

(yr − a)TΣ−1(yr − a), (7.6)

where a is a location statistic, such as the expectation or (spatial) median [77], for the set
yr and Σ is a dispersion statistic, such as the uncertainty matrix Vy, for the set.

The provision of coverage regions in general is currently a research topic. A simple, practi-
cal approach is therefore proposed for current purposes. As indicated in Section 3.1, even in
the univariate case the coverage interval is not unique. There is far greater freedom of choice
in the multivariate case, where any domain containing 95 % of the distribution of possible
values constitutes a 95 % coverage region. Moreover, a coverage interval can be expressed
in terms of just two quantities, such as the interval endpoints or the interval midpoint and
the semi-width. In more than one dimension, there is an infinite number of possibilities for
the shape of the region.

A working approach is as follows. For linear or linearized problems the uncertainty ma-
trix associated with an estimate of the multivariate output quantity defines a one-standard-
deviation ellipsoid [68] centred on the point denoting the estimate of the output quantity.
Ellipsoids concentric with this one contain various fractions of the distribution of values
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attributed to the output quantity. For a given coverage probability, 95 %, say, the size of
the ellipsoid from this set can be found (using the theory of multidimensional Gaussian
distributions) that contains 95 % of the possible values of the output quantity. Such an el-
lipsoid can be constructed from the above uncertainty matrix, but its size would be dictated
by the Gaussian assumption and not depend on the actual distribution of Y . An ellipsoid
is required that contains 95 % of the actual distribution. In the univariate case, it is more
valid, as considered in Section 7.2, to derive the coverage interval from an approximation
to the PDF for the output quantity. Similarly, in the multivariate case the points yr define
a cluster of points centered on y. These yr can be expected to reflect faithfully the actual
distribution, as a consequence of the sampling approach used. Therefore, it is recommended
to define a coverage region by the (first-order) ellipsoid that (just) contains 95 % of these
yr.

It is emphasized that this approach will provide a 95 % coverage region. The extent to
which it is appropriate depends on the context. It may be highly inappropriate if the actual
distribution of points yr is, say, star-shaped. However, the approach is consistent with the
use of the metric (7.6) with Σ = Vy.

7.5 Extensions to implicit or complex models

The extension of the above concepts to implicit models is conceptually straightforward.
Instead of forming values yr = f(xr) of the output quantity Y in the univariate case or yr =
f(xr) of Y in the multivariate case, by evaluating a formula or formulae, it is necessary to
solve, respectively, the equation h(yr,xr) = 0 for yr or the equations h(yr,xr) = 0 for
yr.

A model for which the output quantity Y or Y is complex can be treated as a multivariate
model (as in Section 7.4) in which the output quantities are the real and imaginary parts of
Y or Y .

7.6 Properties of the Monte Carlo method

The attributes of the approach, and implementation issues for the approach, are briefly re-
viewed.

1. Availability of pseudo-random number generators. Pseudo-random number genera-
tors are required that are appropriate for the PDFs and joint PDFs assigned to the
input quantities that are likely to arise in metrology.

2. Quality of pseudo-random number generators. Some pseudo-random number gen-
erators are known to yield sequences of values that fail to satisfy standard tests for
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randomness.

3. Repeatability properties. The results may not be repeatable, thus making the testing
of software for the described Monte Carlo method harder. The same random num-
ber generator, using the same seed, must be employed to provide exactly repeatable
results.

4. Complicated models. The computational time required to carry out a sufficient num-
ber of Monte Carlo trials may be prohibitive if the model is complicated. See Section
7.7.

5. Model evaluation. In the described Monte Carlo method the model is evaluated for
each set of sampled input quantities and hence for a range of values (that may be a
number of ‘standard deviations’ away from the estimates of the input quantities). This
is in contrast to the procedure based on the law of propagation of uncertainty in which
the measurement model is evaluated only at the estimates of the input quantities and,
if finite difference approximations are used, also at points perturbed from these esti-
mates by ± one standard uncertainty for each quantity in turn. For this reason some
issues may arise regarding the numerical procedure used to evaluate the model, e.g.,
ensuring its convergence (where iterative schemes are used) and numerical stability.

6. Straightforward use. Software can be implemented such that the user provides infor-
mation concerning just the model and the parameters defining the PDFs assigned to
the input quantities.

7. A discrete representation of the distribution function for the output quantity (for
univariate problems) is provided (rather than a single statistic such as the standard
deviation). Any required statistic (standard deviation, higher-order moments, etc.),
coverage intervals and derived statistics such as the uncertainties associated with an
estimate of any function of the output quantity Y can be calculated from this repre-
sentation.

8. A discrete representation of the (joint) PDF for the output quantities for multivariate
problems is provided. This takes the form of a set of (M ) values (points) of the output
quantities. This information is valuable in the context of multi-stage models in which
the output from one stage becomes the input to the next. Sampling from these points
embodies all the distributional information (including correlation) that is present.

9. Applicability to a wide range of models. The described Monte Carlo method is
broadly applicable regardless of the nature of the model:

(a) The model may be linear, mildly non-linear or strongly non-linear. No initial
analysis of the model is required to decide, for instance, how many terms in the
Taylor-series expansion are required to approximate f adequately for purposes
of determining unbiased estimates of statistics associated with the estimate of
the output quantity.
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(b) The uncertainties associated with estimates of the input quantities may be arbi-
trarily large.

(c) No assumption is made concerning the PDF for the output quantity Y . Thus,
distributions for quantities that cannot be negative for instance, such as a distri-
bution for distance, can be sensibly approximated.

10. Symmetry is not assumed. No assumption is made in using the described Monte Carlo
method concerning the symmetry of the PDFs assigned to the input quantities or of
the PDF for the output quantity. Thus, there is no need to ‘symmetrize’ any PDF, or
indeed any advantage gained from doing so.13

11. Derivatives are not required. There is no need for algebraic expressions for the first-
order partial derivatives of the model with respect to the input quantities and for the
evaluation of these expressions at the estimates of the input quantities.

12. Avoidance of the concept of effective degrees of freedom. The described Monte Carlo
method avoids the concept of effective degrees of freedom: an experimental mean and
a standard deviation of a quantity, for which a Gaussian prior has been assumed, are
described by a posterior density, viz., a linearly transformed t–distribution with the
mean as the location parameter and the standard deviation as the scale parameter.14

13. Linear computing time. The computing time is dominated by the product of the num-
ber of trials and the time to evaluate the model f for a set of input values. Over and
above this, it is independent of the number N of inputs. (This is not the case for
the numerical evaluation of the multivariate integral (3.1) that defines Y , where the
computation time is essentially proportional to CN , for some constant C.)

14. Sensitivities can approximately be calculated. The described Monte Carlo method
does not automatically provide sensitivity coefficients, for two reasons. First, they are
not required for purposes of its operation. Second, for a non-linear model, sensitivity
coefficients are in general approximate, the quality of the approximations worsening
with increased standard uncertainties associated with estimates of the input quantities.
However, simply by holding all input quantities but one fixed at their expected values
the described Monte Carlo method can be used to provide the PDF for the output
quantity for the model having just that input quantity. See Appendix D.

15. Multi-stage models. The described Monte Carlo method can take the output matrix
Ψ of vectors yr from one stage of a multi-stage model, and carry out bootstrap-like
re-sampling at the input to the next.

13The (UK) Royal Society of Chemistry states [23] that ‘Such an assumption [the use of a single parameter–
often taken to be the half-range] is appropriate only if the ‘dispersion of values’ is nearly symmetric about the
measured result. It is easy to think of reasons why this may be false, including the effects of contamination and
of range shifting on instruments’.

14A discussion [47] of this issue suggests that in the case of finite degrees of freedom the standard deviation u
of the Gaussian distribution should also be regarded as a random variable. In this regard, a PDF should also be
attached to u. Because of the Gaussian assumption this PDF is distributed as χ2. An example of pseudo-code
is available [47] that accounts for this effect.
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7.7 Summary remarks on the described Monte Carlo method

The described Monte Carlo method is a tool that is consistent with general GUM philoso-
phy (GUM Clause G.1.5) and also with its interpretation [80] for scientists at the National
Institute for Standards and Technology (NIST) in the United States. The major difference
is that rather than propagating uncertainty through a linearized model, the PDFs for the in-
put quantities are propagated through the model per se to calculate (an approximation to)
the PDF for output quantity. From the PDF for the output quantity a coverage interval is
obtained without making a Gaussian or any other assumption concerning the form of this
PDF.

The described Monte Carlo method can straightforwardly be applied to a range of uncer-
tainty evaluation problems. For the most general such problem, it is emphasized that it
would be necessary to provide

1. Pseudo-random number generators for the univariate and joint PDFs needed in the
application

2. A mechanism for determining coverage regions for multivariate results of measure-
ment.

Recommendations [33] are intended to assist in this regard.

The degree of belief in the PDFs for the input quantities can be considered by repeating a
Monte Carlo calculation after having varied these functions. The sensitivity of the results to
such critical information can thus be investigated.

For simple models the number of Monte Carlo trials can be chosen to be substantially large,
e.g., 106 (Section 7.2.6). A complete uncertainty calculation would take some five seconds
on a 1 GHz Pentium PC. More than half this time is taken with sorting the Monte Carlo
values of the output quantity.

For models of modest complexity, taking say 100 times longer to evaluate, to achieve a
comparable quality of result would take of the order of 200 seconds. The figure is not 500
seconds because the sorting time remains about 3 seconds. Nevertheless the computation
time is now noticeable, particularly if many similar calculations have to be carried out. In
such cases it would be desirable to consider the use of an automatic stopping rule (Section
7.2.5), rather than fixing the number of Monte Carlo trials in advance.

For very complicated models15 it would not be economic to take more than a small number
of trials (say 10). In such a case it would be impossible to provide a coverage interval
reliably. Rather, an expectation and standard deviation should be obtained and a coverage
interval obtained assuming a Gaussian distribution. (Appeal can be made to the Principle
of Maximum Entropy.) For multivariate output quantities an uncertainty matrix from the

15An instance is a model defined by a partial differential equation.
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results can be calculated and a multivariate Gaussian distribution assumed. As always, the
results obtained should be accompanied by a statement that indicates clearly how they were
obtained and what assumptions were made.
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Chapter 8

Validation of the GUM uncertainty
framework

The GUM uncertainty framework has some limitations [10]. Although the procedure can be
expected to work well in many circumstances, it is generally difficult to quantify the effects
of the approximations involved, viz., linearization, the Welch-Satterthwaite formula for the
effective degrees of freedom and the assumption that the output quantity is Gaussian (i.e.,
that the Central Limit Theorem is applicable). Indeed, the degree of difficulty of doing so
would typically be considerably greater than that required to apply a Monte Carlo method.
Therefore, since these circumstances cannot readily be tested, any cases of doubt should be
validated. To this end, it is recommended that both the GUM uncertainty framework and
the described Monte Carlo method are applied and the results compared. If the comparison
is favourable, the GUM uncertainty framework can be used on this occasion and for suf-
ficiently similar problems in the future. Otherwise, consideration can be given to using a
Monte Carlo method instead.

Specifically, it is recommended that the two steps below and the following comparison
process are carried out.

1. Apply the GUM uncertainty framework to yield a 95 % coverage interval y ± U(y)
for the output quantity.

2. Apply the described Monte Carlo method to yield the standard uncertainty u(y) as-
sociated with an estimate of the output quantity and the endpoints ylow and yhigh of a
95 % coverage interval for the output quantity.

A comparison procedure is based on the following objective: determine whether the cover-
age intervals obtained by the GUM uncertainty framework and a Monte Carlo method agree
to a stipulated degree of approximation. This degree of approximation is assessed in terms
of the endpoints of the coverage intervals and corresponds to that given by expressing the
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standard uncertainty u(y) to what is regarded as a meaningful number of significant decimal
digits.

The procedure is as follows:

1. Let nndig denote the number of significant digits regarded as meaningful in the nu-
merical value of u(y). Usually, nndig = 1 or nndig = 2. Express the value of u(y) in
the form a× 10r, where a is an nndig–digit integer and r an integer. The comparison
accuracy is

δ =
1
2
10r.

2. Compare the coverage intervals obtained by the GUM uncertainty framework and the
described Monte Carlo method to determine whether the required number of correct
digits in the coverage interval provided by the GUM uncertainty framework has been
obtained. Specifically, determine the quantities

dlow = |y − U(y)− ylow| (8.1)

and
dhigh = |y + U(y)− yhigh|, (8.2)

viz., the absolute values of the differences of the respective endpoints of the two
coverage intervals. Then, if both these quantities are no larger than δ the comparison
is successful and the GUM uncertainty framework has been validated in this instance.

Example 22 Setting the degree of approximation

The estimate of the mass of a nominally 100 g standard of mass [10, Clause 7.2.2]
is y = 100.021 47 g with associated standard uncertainty u(y) = 0.000 35 g. Thus,
nndig = 2 and u(y) is expressed as 35 × 10−5 g, and so a = 35 and r = −5. Take
δ = 1

2 × 10−5 g = 0.000 005 g.
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Chapter 9

Examples

The examples in this chapter are intended to illustrate the principles contained in the body of
this guide. Where appropriate, two approaches, the GUM uncertainty framework (Section
5.3) and the Monte Carlo method of Chapter 7, are used and contrasted. Analytical solutions
are also obtained in some cases for purposes of further comparison. Some examples are
typical of those that arise in metrology. Others attempt to indicate the considerations that
are necessary when those of ‘normal circumstances’ fail to apply. Perhaps, unfortunately,
such adverse circumstances arise more frequently than would be wished, in areas such as
limit of detection, electromagnetic compliance, photometry and dimensional metrology.

The following examples are presented:

• A simple summation model (Section 9.1) and a logarithmic transformation model
(Section 9.2). Comparisons are made of the results obtained analytically and from
the applications of the GUM uncertainty framework and a Monte Carlo method.

• Flow in a channel (Section 9.3). This example illustrates a multi-stage model with a
sub-model that takes the form of an implicit equation. A Monte Carlo method is used
to validate the GUM uncertainty framework as an approach to uncertainty evaluation.

• Electrical resistance (Section 9.4). This example illustrates an instance where it is
important to take specific account of the PDFs for the input quantities in the model
of measurement in order to ensure that valid results are obtained from an uncertainty
evaluation.

• Calibration of a digital multimeter (Section 9.5). A comparison is made of the results
obtained using a semi-analytical approach and from the application of a Monte Carlo
method.

• Measuring the lengths of the sides of a right-angled triangle (Section 9.6). This exam-
ple illustrates the use of statistical modelling. It also illustrates the manner in which
correlation effects can be removed by the introduction of additional variables.
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• Limit of detection (Section 9.7). This example illustrates how measured values of
analyte concentration at the limit of detection can be analysed to furnish an estimate
of concentration and the associated uncertainty, where the value of concentration is
constrained to be non-negative. It utilizes basic statistical modelling principles.

• Constrained straight-line calibration curve (Section 9.8). This example illustrates
the application of a Monte Carlo method for the problem of determining estimates
from experimental data of the parameters of a calibration curve (or surface). It is
concerned with a problem for which the values of the parameters are required to
satisfy constraints that reflect appropriate physical properties.

• Fourier transform (Section 9.9). This example illustrates the application of the GUM
uncertainty framework for a multivariate model of measurement and a multi-stage
model. It concerns the calculation and subsequent use of the discrete Fourier trans-
form.

• Mass calibration (Section 9.10). A comparison is made of the results obtained from
the application of the GUM uncertainty framework (both with first and second order
terms) and a Monte Carlo method. The example illustrates the use of a Monte Carlo
method to validate the results returned by the GUM uncertainty framework. The
example is included in the first Supplement [9] to the GUM.

• Comparison loss in microwave power meter calibration (Section 9.11). A compar-
ison is made of the results obtained from the application of the GUM uncertainty
framework (both with first and second order terms) and a Monte Carlo method. The
example also illustrates a problem for which there is mutual dependence between the
input quantities in the model. The example is included in the first Supplement [9] to
the GUM.

• Quantities subject to a normalisation constraint (Section 9.12). This example illus-
trates how measured values of the composition of a mixture, such as a certified ref-
erence material used in gas analysis, can be analysed to furnish estimates of the con-
centrations of the components in the mixture that satisfy a normalisation constraint
(that they sum to unity).

• Area under a curve defined by measurement data (Section 9.13). This example con-
cerns the application of the law of propagation of uncertainty to evaluate the uncer-
tainty associated with the result delivered by a quadrature rule used to approximate
the value of a definite integral. The example illustrates how to obtain the sensitivity
coefficients for a linear model defined by a numerical procedure. The example also
illustrates how to use the results of the uncertainty evaluation in a procedure to decide
the order of the quadrature rule.

• Modelling of SIR efficiency curves (Section 9.14). This example illustrates the use
of least-squares to fit a model to observed data, in the case that the model depends on
additional (reference) data for which estimates are available as tabulated values. The
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evaluation of the uncertainties associated with estimates of the model parameters is
treated using the GUM uncertainty framework and the application of a Monte Carlo
method.

• Calibration of a gauge block (Section 9.15). This example corresponds to the example
given in Annex H.1 of the GUM. The example illustrates how information about
each input quantity in a measurement model may be used to assign PDFs for those
quantities. A comparison is also made of the results obtained from the application of
the GUM uncertainty framework and a Monte Carlo method. The example is included
in the first Supplement [9] to the GUM.

Many other examples are given throughout this guide, some to illustrate basic points and
others more comprehensive. More than the one or two significant digits recommended [10,
Clause 7.2.6] are used for reporting the uncertainties in some of the examples for purposes
of comparison.

9.1 Summation model

The model is Y = X1+X2, where, for i = 1, 2, Xi is assigned a rectangular PDF with end-
points ai and bi, with ai < bi. Using convolution principles [68, p93], the PDF (Figure 9.1)
for Y is

gY (η) =
1

λ1 + λ2
min

(
1

λ2 − λ1
max (λ2 − |η − µ|, 0) , 1

)
,

where µ = (a1+a2+b1+b2)/2, λ1 = |a2−a1+b1−b2|/2 and λ2 = (b1+b2−a1−a2)/2.
From this PDF the expectation of Y is taken as y and the variance of Y as u2(y), where

y =
∫ b1+b2

a1+a2

ηgY (η)dη = µ,

and

u2(y) =
∫ b1+b2

a1+a2

(η − y)2gY (η)dη =
λ2

1 + λ2
2

6
.

The PDF for Y is symmetric and hence a coverage interval Ip with endpoints equidistant
from the expectation µ is the shortest such interval (Section 2.3). Hence, for a coverage
probability p,

Ip = µ± ω,

∫ µ+ω

µ−ω
gY (η)dη = p,

from which it follows that

Ip = µ±
{

(λ1 + λ2)p/2, p < 2λ1/(λ1 + λ2),
(λ2 − {(λ2

2 − λ2
1)(1− p)}1/2, otherwise.

A value of p satisfying p < 2λ1/(λ1 + λ2) corresponds to endpoints of Ip lying in the
interval µ± λ1. Otherwise, the endpoints lie outside this interval.
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Figure 9.1: The (trapezoidal) PDF for Y = X1 + X2, where, for i = 1, 2, the PDF for Xi

is rectangular.

Applying the GUM uncertainty framework, for i = 1, 2, the estimate xi of Xi is taken as
the expectation of Xi, viz., xi = (ai + bi)/2, and the associated standard uncertainty u(xi)
as the standard deviation of Xi, viz., (bi − ai)/

√
12. The estimate y of Y is Y evaluated

at X1 = x1 and X2 = x2, i.e., y = µ. The sensitivity coefficients are c1 = c2 = 1. The
law of propagation of uncertainty gives the uncertainty u(y) associated with y from u2(y) =
u2(x1)+u2(x2) = ((b1−a1)2+(b2−a2)2)/12. The PDF assigned to Y is N(y, u2(y)) and
a coverage interval for this value corresponding to a 95 % coverage probability is y±2u(y).

A Monte Carlo method was carried out with M = 106 trials, five times in all in this example,
in order to indicate the dispersion of results obtained.

The results obtained when a1 = 0, b1 = 1, a2 = 0 and b2 = 10, from which µ = 5.5, λ1 =
4.5 and λ2 = 5.5, are shown in Table 9.1. The distribution functions and PDFs obtained
using the GUM uncertainty framework and a Monte Carlo method are shown in Figure 9.2,
in which broken and continuous vertical lines indicate, respectively, the endpoints of the
95 % coverage intervals determined using the two approaches. The (trapezoidal) PDF ob-
tained from the analytical solution is also shown in the figure, and is seen to match well
with the approximation to the PDF obtained using a Monte Carlo method (displayed as a
scaled frequency distribution). In contrast the PDFs obtained from the analytical solution
and the GUM uncertainty framework are very different. Furthermore, the coverage interval
provided by the GUM uncertainty framework is about 10 % longer than that provided by a
Monte Carlo method, and includes infeasible values for Y , i.e., values outside the interval
[0, 11] that are taken by Y with zero probability.

9.2 Logarithmic transformation

The model is Y = lnX , i.e., having a single input quantity X ≡ X1, where X is assigned
a rectangular PDF with endpoints a and b, with 0 < a < b. Such a model arises, e.g.,
when converting electrical quantities from natural to decibel units [82]. The PDF for Y
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Figure 9.2: Distribution functions and (below) PDFs for the summation model obtained
using the GUM uncertainty framework and a Monte Carlo method. The (trapezoidal) PDF
obtained from the analytical solution is shown in the lower graph.
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Method y u(y) Endpoints of 95 %
coverage interval

Analytical 5.50 2.90 0.71 10.29
GUF 5.50 2.90 –0.19 11.19
MCM 1 5.50 2.90 0.73 10.32
MCM 2 5.50 2.90 0.71 10.30
MCM 3 5.50 2.90 0.70 10.28
MCM 4 5.50 2.90 0.73 10.32
MCM 5 5.50 2.90 0.72 10.30

Table 9.1: Results for the summation model from the analytical solution, the GUM un-
certainty framework (GUF) and five runs of a Monte Carlo method (MCM 1–5), each
with M = 106 trials.

is (Section 5.2)

gY (η) =

{
eη/(b− a), ln a ≤ η ≤ ln b,
0, otherwise.

From this PDF the expectation of Y is taken as y and the variance of Y as u2(y), where

y =
∫ ln b

ln a

ηeη

b− a
dη =

b(ln b− 1)− a(ln a− 1)
b− a

,

and

u2(y) =
∫ ln b

ln a

(η − y)2eη

b− a
dη =

b(ln b− y − 1)2 − a(ln a− y − 1)2

b− a
+ 1.

The PDF for Y is a monotonically increasing function over the interval [ln a, ln b], and
hence the shortest coverage interval for Y has yhigh = ln b as its right-hand endpoint. For a
coverage probability p, the left-hand endpoint ylow is such that∫ ln b

ylow

eη

b− a
dη = p,

giving
ylow = ln(pa + (1− p)b).

Applying the GUM uncertainty framework, the estimate x of X is taken as the expectation
of X , viz., x = (a + b)/2, and the associated standard uncertainty u(x) as the standard
deviation of X , viz., (b− a)/

√
12. The estimate y of Y is Y evaluated at X = x, i.e., y =

lnx = ln((a + b)/2). The (single) sensitivity coefficient is c = ∂ lnX/∂X evaluated
at X = x, i.e., c = 1/x = 2/(a + b). The law of propagation of uncertainty gives the
uncertainty associated with y as u(y) = |c|u(x) = (b−a)/((a+ b)

√
3). The PDF assigned

to Y is N(y, u2(y)) and a coverage interval for this value corresponding to a 95 % coverage
probability is y ± 2u(y).
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Table 9.2 gives the results obtained when a = 0.1 and b = 1.1. The distribution func-
tions and PDFs obtained using the GUM uncertainty framework and a Monte Carlo method
with M = 106 trials are shown in Figure 9.3, in which broken and continuous vertical
lines indicate, respectively, the endpoints of the 95 % coverage interval determined using
the two approaches. The (exponential) PDF obtained from the analytical solution is also
shown in the figure, and is seen to match well with the approximation to the PDF obtained
using a Monte Carlo method (displayed as a scaled frequency distribution). In contrast the
PDFs obtained from the analytical solution and the GUM uncertainty framework are very
different. Furthermore, the coverage interval provided by the GUM uncertainty framework
includes infeasible values for Y , i.e., values outside the interval [ln a, ln b] that are taken by
Y with zero probability.

Method y u(y) Endpoints of 95 %
coverage interval

Analytical –0.665 0.606 –1.897 0.095
GUF –0.511 0.481 –1.454 0.432
MCM –0.664 0.606 –1.895 0.095

Table 9.2: Results for the logarithmic transformation model from the analytical solution,
the GUM uncertainty framework (GUF) and a Monte Carlo method (MCM) with M = 106

trials.

9.3 Flow in a channel

This example was provided by the National Engineering Laboratory. It concerns a multi-
stage model arising in channel flow with a sub-model that takes the form of an implicit
equation.

Open channel flows are common in the water and hydroelectric power industries and where
river extraction provides cooling water for industrial processes. Such a flow can be mea-
sured by introducing a specially constructed restriction in the flow channel. The flow is
then a function of the geometry of the restriction (width upstream, throat width and length,
height of the hump in the floor of the restriction) and the depth of water passing through the
restriction.

The model input quantities (and estimates of them) are:

Approach channel width B (2.0 m),
Hump height p (0.25 m),
Nominal head h (1.0 m),
Throat width b (1.0 m),
Throat length L (3.0 m).
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Figure 9.3: Distribution functions and (below) PDFs for the logarithmic transformation
model obtained using the GUM uncertainty framework and a Monte Carlo method. The
(exponential) PDF obtained from the analytical solution is shown in the lower graph.
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The output quantity is the flow rate Q. The model relating Q to the input quantities is

Q = (2/3)3/2g1/2CvCDbh3/2, (9.1)

with g = 9.812 ms−2, the acceleration due to gravity,

CD = (1− 0.006L/b)(1− 0.003L/h)3/2 (9.2)

and

4b2h2C2
v − 27B2(h + p)2(C2/3

v − 1) = 0. (9.3)

To calculate the value of Q for values of the input quantities, it is first necessary to form
CD from the explicit formula (9.2) and Cv from the implicit equation (9.3), which may be
regarded as sub-models (in a multi-stage model) to that defined by (9.1). The equation (9.3)
is in fact a cubic equation in the variable C

2/3
v and, as a consequence, Cv can be expressed

explicitly in terms of B, h and p. Doing so is unwise because of the possible numerical
instability due to subtractive cancellation in the resulting form. Rather, the cubic equation
can be solved using a recognised stable numerical method.

The first four input quantities are geometric dimensions obtained by a series of measure-
ments with a steel rule at various locations across the flume. There are uncertainties associ-
ated with these measurements due to location, rule reading errors and rule calibration. Head
height is measured with an ultrasonic detector, with uncertainties arising from fluctuations
in the water surface and instrument calibration.

All uncertainty sources were quantified and appropriate PDFs assigned to the correspond-
ing input quantities. All PDFs were based on Gaussian or rectangular distributions. The
standard deviations of the model input quantities (standard uncertainties associated with
estimates of the input quantities), characterized by these PDFs, were all less than 0.3 %
relative to the corresponding expectations (estimates of the input quantities).

Both the GUM uncertainty framework and a Monte Carlo method were applied. The results
obtained from the GUM uncertainty framework were validated using a Monte Carlo pro-
cedure, under the requirement that results to two significant digits were required. In fact,
the coverage interval for Q as produced by the GUM uncertainty framework was confirmed
correct (by carrying out further Monte Carlo trials) to three significant digits. To give the
comparison in a relative sense, the quotient of (a) the half-length of the 95 % coverage inter-
val for Q and (b) the standard uncertainty associated with the measurement result was 1.96,
which agrees to three significant digits with the value obtained from the GUM uncertainty
framework, viz., the (Gaussian) coverage factor for 95 % coverage. For further comparison,
the corresponding quotients corresponding to 92.5 % and 97.5 % coverage intervals were
1.78 and 2.24, also in three-digit agreement with results obtained from the GUM uncertainty
framework. It is concluded that the use of the GUM uncertainty framework is validated for
this example for the coverage probabilities indicated.
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9.4 Graded resistors

This example is intended to cover an instance where it would be important to take specific
account of the PDF for an input quantity to help ensure that valid results are obtained from
an uncertainty evaluation.

The uncertainties associated with a mass-produced electrical circuit are to be evaluated. The
circuit contains electrical components of various types. One of these component types, a
resistor, is considered here.

Nominally 1 Ω resistors are graded according to their specification. A-grade resistors are
those that lie within 1 % of nominal, B-grade within 5 % and C-grade within 10 %. The
allocation of resistors to the various grades is decided by measurement. For the purposes of
this example, the uncertainty associated with this measurement is taken as negligible. As
each resistor is measured it is allocated to an A-grade, a B-grade, a C-grade or an unclas-
sified ‘bin’. The allocation is made in the following sequential manner. If a resistor has
resistance in the interval (1.00± 0.01) Ω it is allocated to the A-grade bin. If not, and it has
resistance in the interval (1.00±0.05) Ω, it is allocated to the B-grade bin. If not, and it has
resistance in the interval (1.00± 0.10) Ω, it is allocated to the C-grade bin. Otherwise, it is
allocated to the unclassified bin.

For the circuit application, C-grade resistors are selected. All such resistors have a resis-
tance in the interval [0.90, 0.95] Ω or the interval [1.05, 1.10] Ω. From the knowledge of
the manufacturing process, the expectation of the resistance of a resistor before the alloca-
tion process is carried out is 1.00 Ω, the standard deviation is 0.04 Ω and the PDF for the
resistance can be taken as Gaussian.

Consider the use of three such resistors in series within the circuit to form a (nominally) 3 Ω
resistance. The model for the 3 Ω resistance R is

R = R1 + R2 + R3,

where Ri denotes the resistance of resistor i. Each Ri is assigned a PDF as above. What is
the PDF for R and what is a 95 % coverage interval for R?

The following figures show diagrammatically approximations to the distribution functions
and PDFs obtained using a Monte Carlo method. An analytic or semi-analytic treatment is
possible, but a Monte Carlo method enables results to be provided rapidly. All results are
based on the use of M = 105 Monte Carlo trials.

Figure 9.4 shows the distribution function and PDF for Ri obtained using a Monte Carlo
method. The PDF is basically Gaussian, with the central and tail regions removed as a
consequence of the grading process. The endpoints of the probabilistically symnmetric
95 % coverage interval obtained from the distribution function are indicated by vertical
continuous lines and the corresponding endpoints under the Gaussian assumption by vertical
broken lines.
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No. N of MCM GUF
resistors /Ω /Ω

1 0.91 1.09 0.87 1.13
3 2.78 3.22 2.77 3.23
6 5.69 6.31 5.68 6.32

10 9.58 10.42 9.58 10.42
20 19.41 20.59 19.41 20.59

Table 9.3: The endpoints of the probabilistically symmetric 95 % coverage intervals for
N Grade-C 1 Ω resistors in series evaluated using a Monte Carlo method (MCM) and the
GUM uncertainty framework (GUF).

Figure 9.5 shows the distribution function and PDF for R, three Grade-C resistors in series.
The PDF is multimodal, possessing four maxima. The expectation of R, characterised by
this PDF, is 3.00 Ω, the sum of the expectations of the resistances Ri. This value is, however,
unrepresentative, an ‘expectation’ that could rarely occur. The PDF could be perceived as
an overall bell-shape, with strong structure within it. Indeed, the counterpart of these results
for six resistors in series, as illustrated in Figure 9.6, lies even more in that direction.

Table 9.3 summarises the numerical results, and also includes the results for N = 10 and
20 resistors. It is reassuring that, considering the appreciable departure from normality, the
coverage interval ‘converges’ rapidly to that obtained under the assumption that the PDF
for the output quantity is Gaussian (as in the GUM uncertainty framework). There are no
grounds for complacency, however: there will be situations where the use of the GUM
uncertainty framework is not so favourable.

As stated, an analytical treatment would be possible for this problem. It might be difficult to
justify the effort required, however, unless the analysis provided some general insight that
would give added value to the application. Using existing software implementing a Monte
Carlo method, it required approximately one hour to enter the problem and produce the
numerical and graphical results. The computation time itself was negligible, being a few
seconds in all.

9.5 Calibration of a digital multimeter

A hand-held digital multimeter (DMM) is calibrated at an input of 100 V DC using a mul-
tifunction calibrator as a working standard. A model for the error of indication EX of the
DMM [38] is

EX = ViX − VS + δViX − δVS ,

where the model input quantities and their PDFs are defined and assigned as follows:

DMM reading ViX . The voltage indicated by the DMM (the index i meaning ‘indication’).
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Figure 9.4: Distribution function and (below) PDF for the resistance of a single Grade-C
resistor.
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Figure 9.5: Distribution function and (below) PDF for the resistance R of three Grade-C
resistors in series.
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Figure 9.6: Distribution function and (below) PDF for the resistance of six Grade-C resistors
in series.
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Because of the limited resolution of the device, no scatter is observed in the indicated
values. Therefore, the indicated voltage, 100.1 V, at the calibrator setting of 100 V, is
taken as exact.

Voltage VS generated by the calibrator. The calibration certificate for the calibrator states
that the voltage generated is the value indicated by the calibrator setting and that
the expanded uncertainty of measurement associated with the 100 V setting is U =
0.002 V with a coverage factor of k = 2. In the absence of other knowledge a Gaus-
sian PDF with expectation 100 V and standard deviation 0.001 V (obtained from
U/k = 0.002/2) is therefore assigned to this input quantity.

Correction δViX of the indicated voltage of the DMM. The least significant digit of the
DMM display corresponds to 0.1 V as a consequence of the finite resolution of the
instrument. The correction therefore lies in the interval ±0.05 V, with best estimate
0 V. In the absence of other knowledge, a rectangular PDF with expectation 0 V and
standard deviation 0.029 V (obtained from 0.05/

√
3) is therefore assigned to this

input quantity.

Correction δVS of the calibrator voltage. The calibrator voltage is in principle corrected
for a range of effects including drift, mains power deviations and loading. An analysis
[38] states that the correction lies in the interval ±0.011 V. In the absence of other
knowledge, a rectangular PDF with expectation 0 V and standard deviation 0.006 4 V
(obtained from 0.011/

√
3) is therefore assigned to this input quantity. (Since this

correction is based on a number of effects, it does not seem reasonable to regard the
correction as equally likely to take any value in this interval. However, since the
effect of this input quantity on the model output quantity is relatively small, and since
an intention is to compare the EA approach with that of a Monte Carlo method, the
rectangular form is taken.)

This model was analyzed using a Monte Carlo method (employing 105 trials). The er-
ror of indication of the DMM was found to be 0.100 V with a 95 % coverage interval of
[0.050, 0.151] V. The corresponding result obtained by an approximate analytical treat-
ment [38] was (0.10± 0.05) V, i.e., in agreement to the digits quoted.

Figure 9.7 shows the distribution function and PDF for the error of indication of the DMM
obtained using a Monte Carlo method. The PDF is essentially trapezoidal in shape, to be
compared with the statement [38], made following an approximate analytical treatment,
that the distribution is essentially rectangular. The endpoints of the 95 % coverage interval,
defined by the 2.5- and 97.5-percentiles of the distribution, are indicated in this figure by
vertical lines.
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Figure 9.7: Distribution function and (below) PDF for the error of indication of a DMM.
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9.6 Sides of a right-angled triangle

The sides of a right-angled triangle are repeatedly measured with a length-measuring instru-
ment. Measurement is influenced by random and systematic effects. Use all the measured
values to estimate the sides of the triangle and evaluate the associated uncertainties.

Denote the shorter sides of the triangle by A and B and the hypotenuse by H . Let there be
nA measurements of A, nB of B and nH of H . Let the quantity representing the ith mea-
sured value of A be Ai, with deviation ∆Ai from A, and similarly for B and H . According
to Pythagoras’ theorem, the sides are physically related by

A2 + B2 = H2. (9.4)

For consistency, the solution values (estimates) of A, B and H are to satisfy this condition.
The deviations ∆Ai = Ai − A, etc. are statistically related because the instrumental sys-
tematic effect will manifest itself in all these values. Its ‘presence’ means that the quantities
of which these deviations are realizations are correlated. In order to quantify this corre-
lation, it is conventionally necessary to know the standard uncertainty u(∆L) associated
with the instrumental systematic effect and the standard uncertainty urep associated with
measurement repeatability.

An uncertainty matrix based on this information can be established and solution values
obtained by solving a least-squares problem taking account of this uncertainty matrix. The
uncertainty matrix, of order nA + nB + nH , is built from

1. var(∆Ai) = var(∆Bi) = var(∆Hi) = u2
rep + u2(∆L)

2. All covariances are equal to u2(∆L).

The standard uncertainty u(∆L) associated with the instrumental systematic effects may
not be available explicitly from the calibration certificate of the instrument, but should be
part of the detailed ‘uncertainty budget’ for the calibration. Generic details of the approach,
Gauss-Markov estimation, are available [2]. Formally, the result is in the form of a GUM
model

Y ≡ (A, B)T = f(A1, . . . , AnA , B1, . . . , BnB ,H1, . . . ,HnH ).

The quantities Ai, Bi and Hi that are measured are the input quantities (nA + nB + nH in
number) and A and B are the (two) output quantities. The third side, H , the hypotenuse
of the triangle, is not included as an output quantity, since it can be formed from A and
B using Equation (9.4). f denotes the model. It cannot, at least conveniently, be written
down mathematically, but is defined by the computational procedure that implements the
least-squares solution process.

Propagation of the uncertainty matrix associated with the measured values through the
model to provide the uncertainty matrix associated with estimates of (A, B)T can be car-
ried out as discussed in Chapter 6. The use of Equation (9.4) as a ‘next-stage’ model (cf.

Page 108 of 167



Uncertainty Evaluation NPL Report DEM-ES-011

Section 4.7), providing the output quantity H in terms of (input quantities) A and B, can
then be used to evaluate the uncertainty associated with an estimate of H . The results can
be combined to provide the uncertainty matrix associated with estimates of (A, B, H)T.

Statistical modelling can alternatively be used to provide the required sides and the associ-
ated uncertainties without having to work with mutually dependent quantities and, in this
instance, without prior knowledge of the above standard uncertainties. Regard the system-
atic effect as an unknown deviation ∆L and write

∆Ai = ∆L + δAi,

etc., where δAi is the random deviation associated with Ai, etc. The δAi, etc. are mutually
independent, the associated uncertainty matrix being diagonal with all entries equal to u2

rep.
Best estimates of the sides (and ∆L) are then given by an ordinary least-squares problem
(Gauss estimation). First, it is necessary to incorporate the condition (9.4). There are various
ways to do so in general, but here it is simplest to use the condition to eliminate a variable.
One possibility is to replace H by (A2 +B2)1/2 or, letting θ denote the angle between sides
A and H , set

A = H cos θ (9.5)

and
B = H sin θ. (9.6)

The latter choice gives the least-squares formulation

min
H,θ,∆L

S =
nA∑
i=1

(
ai −H cos θ −∆L

urep

)2

+
nB∑
i=1

(
bi −H sin θ −∆L

urep

)2

+
nH∑
i=1

(
hi −H −∆L

urep

)2

in terms of measured values (estimates) ai, bi and hi, respectively, of Ai, Bi and Hi. Its
solution could be found using the Gauss-Newton algorithm or one of its variants [2]. How-
ever, advantage can be taken as follows of the fact that the problem is linear in two of the
unknowns, H and ∆L. Equate to zero the partial derivatives of S, with respect to H , θ
and ∆L, to give three algebraic equations. Eliminate H and ∆L to give a single nonlinear
equation in θ, and solve this equation using a suitable ‘zero-finder’. Finally, determine H
and ∆L by substitution.

Many such problems would be solved in this manner. In this particular case, by defining
transformed parameters

V1 = H cos θ + ∆L, V2 = H sin θ + ∆L, V3 = H + ∆L (9.7)
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and V = (V1, V2, V3)T, the problem becomes

min
V

[
nA∑
i=1

(ai − V1)2 +
nB∑
i=1

(bi − V2)2 +
nH∑
i=1

(hi − V3)2
]

.

The problem separates into three trivial independent minimization problems, giving the
solution

v1 = ā =
1

nA

nA∑
i=1

ai,

and similarly v2 = b̄ and v3 = h̄.

In terms of the estimate v of V , the equations (9.7) can then straightforwardly be solved for
estimates of H , ∆L and θ, from which estimates of A and B are determined from formulae
(9.5) and (9.6). The associated uncertainties and uncertainty matrices are readily obtained
using the principles of Chapter 6.

Since the value of u2
rep is common to all terms in the sum, the minimizing values of H , θ

and ∆L do not depend on it. The term may therefore be replaced by unity (or any other con-
stant). Thus, the solution can be obtained without knowledge of the uncertainty associated
with random repeatability or that associated with the systematic instrumental effect.

9.7 Limit of detection

This example is intended to provide a simple illustration of how measured values of analyte
concentration at the limit of detection can be analysed to furnish an estimate of concentra-
tion and the associated uncertainty. It utilizes basic statistical modelling principles.1

The framework is as given in Section 4.6 on constraints in uncertainty evaluation. The
model is

Y = max(X, 0),

where the input quantity X is observed (unconstrained) analyte concentration and the output
quantity Y real (constrained) analyte concentration.

X is estimated by x, the average of a number of (unconstrained) indications of analyte
concentration. The standard uncertainty is given by the standard deviation associated with
the average. At or near the limit of detection, some of the indications would be expected to
take negative values. If the measured values related to an analytical blank [42, Clause F2.3],
used subsequently to correct other results, on average as many negative as positive values
would be expected. If the analyte was actually present, a preponderance of positive over
negative values would be expected. Numerical values to represent this latter situation are

1A comparison of approaches to accounting for physical knowledge in obtaining measurement results and
associated uncertainties is available [31].
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Figure 9.8: Gaussian PDF, with expectation x = 1.0 ppm and standard deviation u(x) =
1.0 ppm, for the observed (unconstrained) analyte concentration.

chosen. The treatment is general, however, and can readily be repeated for other numerical
values, even including a negative value for the average indication.

Suppose that nothing is known about the indications other than that they can be regarded as
realizations of independently and identically distributed quantities. The use of the Principle
of Maximum Entropy would indicate that the input quantity X can be regarded as a Gaus-
sian variable with the above expectation and standard deviation. For illustrative purposes,
take the expectation x = 1.0 ppm and the standard deviation u(x) = 1.0 ppm. Figure 9.8
illustrates this Gaussian PDF and indicates the 95 % coverage interval that would conven-
tionally be obtained for the analyte concentration.

The PDF for the input quantity and the model are thus fully defined. Note that other PDFs
can be entertained. The subsequent treatment might not be as simple as that here, but can
be addressed using a Monte Carlo method or other methods as appropriate. The area to the
left of the origin under the Gaussian PDF with expectation x and standard deviation u(x) is
Φ((0− x)/u(x)) (see Section 4.8.1). The fraction of the values of Y = max(X, 0) that is
zero is equal to this value. For the above numerical values, the fraction is Φ(−1.0) = 0.16.
So, 16 % of the distribution of values that can plausibly be ascribed to the output quantity
take the value zero. The PDFs for the input and output quantities are illustrated in Figure
9.9. For the output quantity, 16 % of the area under the curve is concentrated at the origin.
Strictly, this feature should be denoted by a Dirac delta function (having ‘infinite height and
zero width’). For illustrative purposes only, the function is depicted as a ‘tall thin’ solid
rectangle.

The shortest 95 % coverage interval for the output quantity therefore has (a) zero as its left-
hand endpoint, and (b) as right-hand endpoint that value η for which Φ((η − x)/u(x)) =
0.95, viz., η = 2.6 ppm. Thus, the required 95 % coverage interval is [0.0, 2.6] ppm, and
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application of a Monte Carlo method confirms this result.

Figure 9.9 also shows a graph of the distribution function GY (η) for Y . The right-hand
endpoint of the 95 % coverage interval is indicated by a vertical broken line (the left-hand
endpoint is at the origin). GY (η) ‘rises instantaneously’ at η = 0 from zero to 0.16 and
thereafter behaves as the Gaussian distribution function. It is apparent from this graph that
if a 95 % coverage interval with 2.5 % of the distribution in each tail were chosen the
interval would be longer, in fact being [0.0, 3.0] ppm. Of course, since more than 5 % of
the distribution is at η = 0, the left-hand endpoint remains at zero for any 95 % coverage
interval.

The expectation and standard deviation of Y characterised by GY (η) are readily shown to
be y = 1.1 ppm and u(y) = 0.9 ppm. By comparison, the approach based on the GUM
uncertainty framework would yield a result as follows. Since, in the neighbourhood of the
estimate x = 1.0 ppm of the input quantity, the model behaves as Y = max(X, 0) = X ,
the GUM uncertainty framework gives y = 1.0 ppm as an estimate of the output quantity.
Moreover, the sensitivity coefficient c is

∂f

∂X
= 1,

evaluated at X = 1.0 ppm, viz., c = 1. Thus,

u(y) = |c|u(x) = 1.0 ppm.

It follows that a 95 % coverage interval based on the GUM uncertainty framework is (1.0±
2.0) ppm or [−1.0, 3.0] ppm. This interval is more than 50 % longer than the model-
based interval [0.0, 2.6] ppm and extends into the infeasible region. As stated earlier in
this example, such an interval is appropriate for summarising the indications, but not for the
physically constrained output quantity, the real analyte concentration.

Similar principles can be applied to the measurement of the concentrations of a number of
solution constituents. The analysis would be harder, but readily supported by the use of a
Monte Carlo method.

9.8 Constrained straight line

The determination of suitable calibration lines and curves is a widespread requirement in
metrology. The parameters of these lines and curves (and of models in general) may have
to meet stipulated criteria in order that they reflect appropriate physical properties. For
instance, a temperature in kelvin cannot be negative.

Consider the length of a gauge block as its temperature is gradually increased. Suppose that
for each of a sequence of increasing controlled temperature values the length of the block
is measured. It is required to estimate the coefficient of expansion of the metal of which the
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Figure 9.9: Illustration of the PDFs for the input and output quantities (top and middle), and
a graph of the distribution function for the output quantity (bottom), in the limit of detection
problem.
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block is made. The temperatures can be assumed to be known accurately but the measured
lengths are inexact, i.e., the uncertainties associated with estimates of the temperatures are
negligible compared to those associated with other sources of uncertainty. It is assumed
that the quantities of which the measured values are realizations may be assigned Gaussian
PDFs.

A least-squares straight-line fit to the data is appropriate. The estimated gradient of the
line (the rate of change of length with respect to temperature) provides an estimate of the
coefficient of expansion. It can be shown that the gradient is described by a PDF that is
related to the t–distribution (cf. [10]). In terms of this distribution a coverage interval for
the gradient may be obtained.

This process can often be expected to be satisfactory. This statement applies even though
the t–distribution has infinite tails, implying that the left-hand tail includes zero and hence
that there is a finite probability that the gradient is negative. This matter is of little concern
since the tail probability is often very small indeed. There are circumstances, however,
where this aspect may be a concern, especially in the context of a procedure or computer
software that might be used in a wide range of circumstances.

Consider a gauge block made from a material having a very small coefficient of expansion.
In this situation the uncertainty associated with an estimate of the coefficient of expansion
could be comparable in size to the estimate itself. As a consequence, the application of
conventional approaches to determining a coverage interval might produce an interval con-
taining zero.

Alternative approaches, including the application of a Monte Carlo method, can be used to
avoid this anomaly. Suppose that a Monte Carlo method is used to compute many estimates
of the best-fitting straight line and hence estimates of the gradient (expansion coefficient).
Each Monte Carlo trial involves sampling from the Gaussian PDFs assigned to the length
being measured, fitting a constrained line to the data given by these sampled lengths cor-
responding to the fixed values of the independent variable, and taking the gradient so es-
timated as the corresponding measurement result. The set of gradient values so obtained
form the basis for a distribution function for the gradient and hence a coverage interval.

The term ‘constrained line’ is used to indicate the fact that for any set of data a straight line
with an intercept parameter and a gradient parameter must be fitted subject to the condition
that the gradient is not negative. It is straightforward to use conventional fitting procedures
for this purpose. First, a straight line is fitted to the data without imposing the condition.
If the gradient of the line were positive (or zero) the line would automatically satisfy the
condition and would therefore be the required solution. Otherwise, the ‘best’ line that can be
fitted that satisfies the constraint would have a zero gradient. Such a line is a constant. This
constant is easily found, since the best least-squares fit by a constant is the same problem as
finding the average of the data.

Thus the sequence of M , say, values of the gradient so obtained will include some zero
values, the remainder being strictly positive. The distribution function for gradient Y , as
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Figure 9.10: The five gauge block length measured values against temperature (large blobs)
and 100 simulations of these measured values.

that for the limit of detection problem (Section 9.7), therefore has a jump discontinuity at
y = 0, the magnitude of which is the proportion of trials that gave zero gradient, followed
by a ‘smooth’ increase through increasing gradient values.

Application of a Monte Carlo method was carried out. The data used consisted of the points
(18, 23), (19, 24), (20, 26), (21, 27), (22, 28), where the first co-ordinate denotes temperature
in ◦C and the second length measurement in a normalised variable. Figure 9.10 depicts the
five gauge block length measured values against temperature (large blobs) and 100 trials
(small blobs) of these measured values obtained from sampling from assigned Gaussian
PDFs. In this example, the standard uncertainty associated with the length measured values
was taken as 0.005 and used as the standard deviation of the Gaussian PDFs.

For some of the synthesised sets of five measured values the gradient of an unconstrained
least-squares straight line would be negative, were it not infeasible. The results from the
use of a large number (100 000) of trials gave a distribution function for the value of the
gradient very similar to that for the limit of detection problem (Section 9.7).

9.9 Fourier transform

Consider the measurement of a periodic phenomenon. Such a measurement is commonplace
in many branches of metrology. Suppose a complete period is measured, with N values
X = (X1, . . . , XN )T available. These values correspond to the uniformly spaced angles
θ = (θ1, . . . , θN )T, where θi = 2π(i− 1)/N .

A Fourier transform of such data provides information concerning the frequency content of
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the data. Each Fourier coefficient depends on all (or most of) the Xi, regarded as the input
quantities, and is a linear combination of them.

Suppose that the measured values are obtained independently with associated standard un-
certainty σ. The uncertainty matrix associated with estimates xi of the input quantities Xi

is therefore given by
Vx = σ2I, (9.8)

where I is the identity matrix of order N . It is required to evaluate the uncertainties as-
sociated with the Fourier transform of this data, i.e., associated with estimates of the co-
efficients of the Fourier representation of the data. The coefficients constitute the (vector)
output quantity.

The Fourier representation of the data is

h(θ) = a0 + a1 cos θ + b1 sin θ + · · ·+ ar cos rθ + br sin rθ,

where r = bN/2c. (When N is even, the coefficient br of sin rθ is in fact zero.) Let Y =
(Y1, . . . , Y2r+1)T ≡ (a0, a1, b1, . . . , ar, br)T, denote the output quantities. The Fourier
transform Y of X is then given implicitly by

X = AY , (9.9)

where

A =


1 cos θ1 sin θ1 . . . cos rθ1 sin rθ1

1 cos θ2 sin θ2 . . . cos rθ2 sin rθ2
...

...
...

...
...

...
1 cos θN sin θN . . . cos rθN sin rθN


is the matrix of order N of Fourier basis-function values. Formally, the Fourier coefficients
are given in terms of the data using

Y = A−1X (9.10)

or, equivalently, from a formula that expresses the Yi as linear combinations of the Xi,
where the multipliers are sine and cosine terms. In practice, Y would be computed from
X using the fast Fourier transform (FFT) [12]. The FFT gives far greater efficiency than
would be obtained from the application of general-purpose linear-algebra techniques, and
also greater numerical accuracy. In exact arithmetic, the FFT and (9.10) give identical
results, since mathematically they are both legitimate ways of expressing the solution.

Denote the uncertainty matrix associated with estimates y of Y by Vy. The application of
the law of propagation of uncertainty (Chapter 6) to the relationship (9.9) gives

Vx = AVyAT.

This result is exact since the output quantity Y and the input quantity X are related linearly
through the relationship (9.9), and linearization introduces no error in this case. Since A is
invertible,

Vy = A−1VxA−T.
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This expression enables in general the uncertainty associated with the Fourier transform to
be computed from that associated with the data. As a consequence of expression (9.8),

Vy = σ2A−1A−T = σ2
(
ATA

)−1
.

Now, using the fact that the elements of θ are equiangular and the fundamental properties
of the trigonometric functions, it is straightforward to show that

ATA =
N

2
diag

{
2, 1, . . . , 1

}
,

giving

(ATA)−1 =
2
N

diag
{

1
2 , 1, . . . , 1

}
.

Consequently,

Vy =
2
N

σ2diag
{

1
2 , 1, . . . , 1

}
.

This result states that for measured values that are obtained independently with associated
standard uncertainty σ, the Fourier coefficients are (also) realizations of independent quan-
tities, with associated standard uncertainty equal to σ scaled by the factor

√
2/N , where

N is the number of measured values (with the exception of the constant term for which the
factor is

√
1/N ). Moreover, each Fourier coefficient is a linear combination of N measured

values, the multipliers being the products of a constant value and that of values of cosines
and sines (and thus lying between –1 and +1). Consequently, if N is large, regardless of
the statistical distributions of the quantites of which the data are realizations, the Fourier
coefficients can be expected to be very close to realizations of normally distributed quan-
tities. This result is an immediate consequence of the Central Limit Theorem when using
the Fourier transform to analyse large numbers of measured values obtained independently.
Thus, it is valid to regard the resulting Fourier coefficients as if they were realizations of
independent Gaussian-distributed quantities.

The output quantities, the Fourier coefficients, from this process become the input quantities
to a subsequent stage, viz., the evaluation of the Fourier series h(θ) for any value of θ. Now,
since, as shown, the Fourier coefficients are mutually independent,

u2(h(θ)) = u2(a0) + u2(a1) cos2 θ + u2(b1) sin2 θ · · ·+ u2(ar) cos2 rθ + u2(br) sin2 rθ.

Using the results above,

u2(h(θ)) =
σ2

N
+

2σ2

N
cos2 θ +

2σ2

N
sin2 θ + . . . +

2σ2

N
cos2 rθ +

2σ2

N
sin2 rθ, (9.11)

which simplifies to σ2. Thus,
u(h(θ)) = σ,

i.e., the uncertainty associated with the Fourier representation of a data set when evaluated
at any point is identical to the uncertainty associated with the data itself. This property is
remarkable in that the (interpolatory) replacement of data by other functions usually gives
an amplification of the raw data uncertainty, at least in some regions of the data.
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9.10 Mass calibration

Consider the calibration of a weight W of mass density ρW against a reference weight R
of mass density ρR having nominally the same mass, using a balance operating in air of
mass density ρa [65]. Since ρW and ρR are generally different, it is necessary to account
for buoyancy effects. Applying Archimedes’ principle, the model takes the form

mW(1− ρa/ρW) = (mR + δmR)(1− ρa/ρR), (9.12)

where δmR is the mass of a small weight of density ρR added to R to balance it with W.

It is usual to work in terms of conventional masses. The conventional mass mW,c of W is
the mass of a (hypothetical) weight of density ρ0 = 8 000 kg/m3 that balances W in air at
density ρa0 = 1.2 kg/m3. Thus,

mW(1− ρa0/ρW) = mW,c(1− ρa0/ρ0).

In terms of conventional masses mW,c, mR,c and δmR,c, the model (9.12) becomes

mW,c(1−ρa/ρW)(1−ρa0/ρW)−1 = (mR,c+δmR,c)(1−ρa/ρR)(1−ρa0/ρR)−1, (9.13)

from which, to an approximation adequate for most practical purposes,

mW,c = (mR,c + δmR,c)
[
1 + (ρa − ρa0)

(
1

ρW
− 1

ρR

)]
.

Let
δm = mW,c −mnom

be the deviation of mW,c from the nominal mass

mnom = 100 g.

The model used in this example is given by

δm = (mR,c + δmR,c)
[
1 + (ρa − ρa0)

(
1

ρW
− 1

ρR

)]
−mnom. (9.14)

The only information available concerning mR,c and δmR,c is a best estimate and an associ-
ated standard uncertainty for each of these quantities. Accordingly, a Gaussian distribution
is assigned to each of these quantities, with these best estimates used as the expectations of
the corresponding quantities and the associated standard uncertainties as the standard de-
viations [9, Clause 6.4.7.1]. The only information available concerning ρa, ρW and ρR is
lower and upper limits for each of these quantities. Accordingly, a rectangular distribution
is assigned to each of these quantities, with limits equal to the endpoints of the distribution
[9, Clause 6.4.2.1]. The quantity ρa0 in the mass calibration model (9.14) is assigned the
value 1.2 kg/m3 with no associated uncertainty.
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Parameters
Xi Distribution

Expectation Standard Expectation Semi-width
µ deviation σ x = (a + b)/2 (b− a)/2

mR,c N(µ, σ2) 100 000.000 mg 0.050 mg
δmR,c N(µ, σ2) 1.234 mg 0.020 mg

ρa R(a, b) 1.20 kg/m3 0.10 kg/m3

ρW R(a, b) 8× 103 kg/m3 1× 103 kg/m3

ρR R(a, b) 8.00× 103 kg/m3 0.05× 103 kg/m3

Table 9.4: The input quantities Xi and the PDFs assigned to them for the mass calibration
model (9.14).

Table 9.4 summarizes the input quantities and the PDFs assigned. In the table, a Gaussian
distribution N(µ, σ2) is described in terms of expectation µ and standard deviation σ, and a
rectangular distribution R(a, b) with endpoints a and b (a < b) in terms of expectation (a +
b)/2 and semi-width (b− a)/2.

The GUM uncertainty framework and the adaptive Monte Carlo procedure (Section 7.2.5)
were each used to obtain an estimate δm̂ of δm, the associated standard uncertainty u(δm̂),
and the shortest 95 % coverage interval for δm. The results obtained are shown in Table 9.5,
in which GUF1 denotes the GUM uncertainty framework with first-order terms, MCM the
adaptive Monte Carlo procedure, and GUF2 the GUM uncertainty framework with higher-
order terms.

0.72 × 106 trials were taken by the adaptive Monte Carlo procedure for a degree of ap-
proximation of 0.001 required in u(δm̂) (Section 7.2.5). The chosen numerical tolerance
corresponds to a value of δ/5 with δ set for the case where one significant decimal digit
in u(δm̂) is regarded as meaningful (Chapter 8 and below).

Figure 9.11 shows the approximations to the distribution function and the PDF for δm
obtained from the GUM uncertainty framework with first-order terms and a Monte Carlo
method. The continuous curve represents a Gaussian PDF with parameters given by the GUM
uncertainty framework. The inner pair of (broken) vertical lines indicates the shortest 95 %
coverage interval for δm based on this PDF. The histogram is the scaled frequency distribu-
tion obtained using a Monte Carlo method as an approximation to the PDF. The outer pair
of (continuous) vertical lines indicates the shortest 95 % coverage interval for δm based on
the discrete representation of the distribution function provided by a Monte Carlo method.

The results show that, although the GUM uncertainty framework (first order) and a Monte
Carlo method give estimates of δm in good agreement, the numerical values for the asso-
ciated standard uncertainty are noticeably different. The value (0.075 4 mg) of u(δm̂) re-
turned by a Monte Carlo method is 40 % larger than that (0.053 9 mg) returned by the GUM
uncertainty framework (first order). The latter is thus optimistic in this respect. There is
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Method δm̂ u(δm̂) Shortest 95 % dlow dhigh GUF validated
/mg /mg coverage interval /mg /mg /mg (δ = 0.005)?

GUF1 1.234 0 0.053 9 [1.128 4, 1.339 6] 0.045 3 0.042 6 No
MCM 1.234 1 0.075 4 [1.083 1, 1.382 2]
GUF2 1.234 0 0.075 0 [1.087 0, 1.381 0] 0.003 9 0.001 2 Yes

Table 9.5: Results of the calculation stage for the mass calibration model (9.14).

Figure 9.11: Approximations to the distribution function and (below) PDF for the output
quantity δm in the mass calibration model obtained using the GUM uncertainty framework
(first order) and a Monte Carlo method.
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Xi Partial derivative Sensitivity
coefficient

mR,c 1 + (ρa − ρa0)(1/ρW − 1/ρR) 1
δmR,c 1 + (ρa − ρa0)(1/ρW − 1/ρR) 1

ρa (mR,c + δmR,c)(1/ρW − 1/ρR) 0
ρW −(mR,c + δmR,c)(ρa − ρa0)/ρ2

W 0
ρR (mR,c + δmR,c)(ρa − ρa0)/ρ2

R 0

Table 9.6: Sensitivity coefficients for the mass calibration model (9.14).

good agreement between u(δm̂) determined by a Monte Carlo method and that (0.075 0 mg)
provided by the GUM uncertainty framework with higher-order terms.

Table 9.6 contains the partial derivatives of first order for the model (9.14) with respect to
the input quantities together with the sensitivity coefficients, viz. these derivatives evaluated
at the best estimates of the input quantities. These derivatives indicate that, for the purposes
of the GUM uncertainty framework with first-order terms, the model for this example can
be considered as being replaced by the additive model

δm = mR,c + δmR,c −mnom.

A Monte Carlo method makes no such (implied) approximation to the model.

Table 9.5 also shows in the right-most three columns the results of applying the validation
procedure of Chapter 8 in the case where one significant decimal digit in u(δm̂) is regarded
as meaningful. Using the terminology of that Chapter, ndig = 1, since a numerical tolerance
of one significant decimal digit in u(δm̂) is required. Hence, u(δm̂) = 0.08 = 8 × 10−2,
and so a = 8 and r = −2. Thus δ = 1/2 × 10−2 = 0.005. dlow and dhigh denote the
magnitudes of the endpoint differences (8.1) and (8.2), where y there corresponds to δm̂.
Whether the results were validated to one significant decimal digit in u(δm̂) is indicated
in the final column of the table. If only first-order terms are accounted for, the application
of the GUM uncertainty framework is not validated. If higher-order terms are accounted
for [10, Clause 5.1.2 note], the GUM uncertainty framework is validated. Thus, the non-
linearity of the model is such that accounting for first-order terms only is inadequate.

9.11 Comparison loss in microwave power meter calibration

During the calibration of a microwave power meter, the power meter and a standard power
meter are connected in turn to a stable signal generator. The power absorbed by each meter
will in general be different because their complex input voltage reflection coefficients are
not identical. The ratio Y of the power PM absorbed by the meter being calibrated and
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that, PS, by the standard meter is [69]

Y =
PM

PS
=

1− |ΓM|2

1− |ΓS|2
× |1− ΓSΓG|2

|1− ΓMΓG|2
, (9.15)

where ΓG is the voltage reflection coefficient of the signal generator, ΓM that of the me-
ter being calibrated and ΓS that of the standard meter. This power ratio is an instance of
‘comparison loss’ [5, 55].

Consider the case where the standard and the signal generator are reflectionless, i.e. ΓS =
ΓG = 0, and measured values are obtained of the real and imaginary parts X1 and X2

of ΓM = X1 + jX2, where j2 = −1. Since |ΓM|2 = X2
1 + X2

2 , formula (9.15) becomes

Y = 1−X2
1 −X2

2 . (9.16)

Given respectively are best estimates x1 and x2 of the quantities X1 and X2 from measure-
ment and the associated standard uncertainties u(x1) and u(x2). X1 and X2 are often not
independent. Denote by u(x1, x2) the covariance associated with x1 and x2. Equivalently
[10, Clause 5.2.2], u(x1, x2) = r(x1, x2)u(x1)u(x2), where r = r(x1, x2) denotes the
associated correlation coefficient. X = (X1, X2)T is assigned a bivariate Gaussian PDF
in X1 and X2 [9, Clause 6.4.8.1], with expectation and covariance matrix[

x1

x2

]
,

[
u2(x1) ru(x1)u(x2)

ru(x1)u(x2) u2(x2)

]
. (9.17)

Because the magnitudes of X1 and X2 in expression (9.16) are in practice small compared
with unity, the resulting Y is close to unity. Results are accordingly expressed in terms of
the quantity

δY = 1− Y = X2
1 + X2

2 , (9.18)

taken as the model of measurement. For physical reasons, 0 ≤ Y ≤ 1, and hence 0 ≤
δY ≤ 1.2

The determination of an estimate δy of δY , the associated standard uncertainty u(δy), and
a coverage interval for δY are considered for choices of x1, x2, u(x1), u(x2) and r(x1, x2).
All quantities have dimension one. Six cases are considered, in all of which x2 is taken as
zero and u(x1) = u(x2) = 0.005. The first three of these cases correspond to taking x1 = 0,
0.010, and 0.050, each with r(x1, x2) = 0. The other three cases correspond to taking the
same x1, but with r(x1, x2) = 0.9. The various numerical values of x1 (comparable to those
occurring in practice) are used to investigate the extent to which the results obtained using
the considered approaches differ. For the cases in which r = r(x1, x2) = 0, the covariance
matrix given in Formula (9.17) reduces to diag(u2(x1), u2(x2)) and the corresponding joint
distribution for X1 and X2 to the product of two univariate Gaussian distributions for Xi,
for i = 1, 2, with expectation xi and standard deviation u(xi).

2None of the approaches considered constrain the PDF for δY to be no greater than unity. However, for
sufficiently small uncertainties u(x1) and u(x2), as here, the PDF for δY may adequately be approximated by
a simpler PDF defined over all non-negative values of δY . A rigorous treatment, using Bayesian inference [85],
which applies regardless of the magnitudes of u(x1) and u(x2), is possible, but beyond the scope of this guide.
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9.11.1 Zero covariance

The evaluation of uncertainty is treated by applying the propagation of distributions (a) an-
alytically (for purposes of comparison), (b) using the GUM uncertainty framework, and
(c) using a Monte Carlo method. δy and u(δy) can generally be formed analytically as the
expectation and standard deviation of δY , as characterized by the PDF for δY [9, Clause
F.1]. The PDF for δY can be formed analytically when x1 = 0 and, in particular, used
to determine the endpoints of the shortest 95 % coverage interval in that case [9, Clause
F.2]. The GUM uncertainty framework with first-order terms and with higher-order terms
is applied for each of the three estimates x1 in the uncorrelated case [9, Clause F.3]. An
estimate δy of δY is formed in each case [9, Clause 4.1.4] from

δy = x2
1 + x2

2.

A Monte Carlo method is applied in each case with M = 106 trials.

Input estimate x1 = 0

For the input estimate x1 = 0, higher-order terms must be used when applying the law of
propagation of uncertainty, because the partial derivatives of δY with respect to X1 and X2,
evaluated at X1 = x1 and X2 = x2, are identically zero when x1 = x2 = 0. Thus, if
the law of propagation of uncertainty with first-order terms only were applied, the resulting
standard uncertainty would incorrectly be computed as zero.3

Figure 9.12 shows the PDFs for δY determined by applying the propagation of distribu-
tions (a) analytically (the exponentially decreasing curve for δY ≥ 0 and zero elsewhere),
(b) using the GUM uncertainty framework with higher-order terms in order to characterize
the output quantity by a Gaussian PDF (bell-shaped curve), and (c) using a Monte Carlo
method (scaled frequency distribution). It is seen in the figure that the use of the GUM
uncertainty framework with higher-order terms in order to characterize the output quantity
by a Gaussian distribution yields a PDF that is very different from the analytic solution.
The latter takes the form of a particular chi-squared distribution—the sum of squares of two
standard Gaussian variables [9, Clause F.2]. Since the partial derivatives of the model func-
tion (9.18) of order higher than two are all identically zero, the solution obtained essentially
corresponds to taking all Taylor-series terms, i.e. the full non-linearity of the problem, into
account. Thus, the particular Gaussian distribution so determined is the best that is possible
using the GUM uncertainty framework to characterize the output quantity by such a dis-
tribution. It can therefore be concluded that the reason for the departure from the analytic
solution of the results of the use of the approach based on the GUM uncertainty framework
is that the output quantity is characterized by a Gaussian PDF. No Gaussian PDF, however
it is obtained, could adequately represent the analytic solution in this case. It is also seen in
Figure 9.12 that the PDF provided by a Monte Carlo method is consistent with the analytic
solution.

3A similar difficulty would arise for x1 close to zero.
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Figure 9.12: Results for the model of comparison loss in power meter calibration in the
case x1 = x2 = 0, with u(x1) = u(x2) = 0.005 and r(x1, x2) = 0.

The estimates δy determined as the expectation of δY described by the PDFs obtained
(a) analytically, (b) using the GUM uncertainty framework, and (c) applying a Monte Carlo
method are given in columns 2–4 of the row corresponding to x1 = 0.000 in Table 9.7.
Columns 5–8 contain the corresponding u(δy), with those obtained using the GUM uncer-
tainty framework with first-order terms (G1) and higher-order terms (G2).

Estimate Standard uncertainty
x1 δy /10−6 u(δy) /10−6

A G M A G1 G2 M
0.000 50 0 50 50 0 50 50
0.010 150 100 150 112 100 112 112
0.050 2 550 2 500 2 551 502 500 502 502

Table 9.7: Comparison loss results (estimates and associated standard uncertainties), for in-
put estimates with associated zero covariance, obtained analytically (A), and using the GUM
uncertainty framework with first-order terms (G1) and higher-order terms (G2) and a Monte
Carlo method (M).

The estimate δy = 0 obtained by evaluating the model at the input estimates is invalid: the
correct (analytic) gδY (η) is identically zero for δY < 0; this estimate lies on the boundary
of the non-zero part of that function. The estimate provided by a Monte Carlo methid agrees
with that obtained analytically. The law of propagation of uncertainty based on first-order
terms gives the wrong, zero, value for u(δy) already noted. The value (50 × 10−6) from
the law of propagation of uncertainty based on higher-order terms agrees with that obtained
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Shortest 95 % coverage interval for
x1 δY /10−6

A G1 G2 M
0.000 [0, 150] [0, 0] [–98, 98] [0, 150]
0.010 — [–96, 296] [–119, 319] [0, 366]
0.050 — [1 520, 3 480] [1 515, 3 485] [1 597, 3 551]

Table 9.8: Comparison loss results (endpoints of the shortest 95 % coverage interval), for in-
put estimates with associated zero covariance, obtained analytically (A), and using the GUM
uncertainty framework with first-order terms (G1) and higher-order terms (G2) and a Monte
Carlo method (M).

analytically and from a Monte Carlo method.4

Figure 9.12 also shows the shortest 95 % coverage intervals for the corresponding approxi-
mations to the distribution function for δY . The 95 % coverage interval, indicated by dotted
vertical lines, as provided by the GUM uncertainty framework is infeasible: it is symmet-
ric about δY = 0 and therefore erroneously implies there is a 50 % probability that δY is
negative. The continuous vertical lines are the endpoints of the shortest 95 % coverage in-
terval derived from the analytic solution [9, Clause F.2]. The endpoints of the shortest 95 %
coverage interval determined using a Monte Carlo method are indistinguishable to graph-
ical accuracy from those for the analytic solution. The endpoints of the shortest coverage
intervals are given in columns 2–5 of the row corresponding to x1 = 0.000 in Table 9.8.

Input estimate x1 = 0.010

For the input estimate x1 = 0.010, with correlation coefficient r(x1, x2) = 0, Figure 9.13
shows the PDFs obtained using the GUM uncertainty framework with first-order terms only
and with higher-order terms, and using a Monte Carlo method. The PDF provided by a
Monte Carlo method exhibits a modest left-hand flank, although it is truncated at zero, the
smallest possible numerical value of δY . Further, compared with the results for x1 = 0, it
is closer in form to the Gaussian PDFs provided by the GUM uncertainty framework. These
Gaussian PDFs are in turn reasonably close to each other, δY having expectation 1.0×10−4

and standard deviations 1.0× 10−4 and 1.1× 10−4, respectively.

Figure 9.13 also shows the endpoints of the shortest 95 % coverage intervals obtained by
the three approaches. The continuous vertical lines denote the endpoints of the interval pro-
vided by a Monte Carlo method, the broken vertical lines those resulting from the GUM

4When the Monte Carlo method was repeated several times the results obtained were scattered about 50 ×
10−6. When it was repeated a number of times with a larger numerical value of M the results were again
scattered about 50 × 10−6, but with a reduced dispersion. Such dispersion effects are expected, and were
observed for the other Monte Carlo calculations made. Reporting the results to greater numbers of significant
decimal digits would be necessary to see the actual numerical differences.
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Figure 9.13: As Figure 9.12 except that x1 = 0.010, and the PDFs resulting from the GUM
uncertainty framework with first-order (higher-peaked curve) and with higher-order terms
(lower-peaked curve).

uncertainty framework with first-order terms, and the dotted vertical lines from the GUM
uncertainty framework with higher-order terms. The intervals provided by the GUM uncer-
tainty framework are shifted to the left compared with the shortest 95 % coverage interval
provided by a Monte Carlo method. As a consequence, they again include infeasible val-
ues of δY . The shift is about 70 % of the standard uncertainty. The interval provided by
a Monte Carlo method has its left-hand endpoint at zero, the smallest feasible value. The
corresponding results are given in the penultimate rows of Tables 9.7 and 9.8.

Input estimate x1 = 0.050

Figure 9.14 is similar to Figure 9.13, but for x1 = 0.050. Now, the PDFs provided by
both variants of the GUM uncertainty framework are virtually indistinguishable from each
other. Further, they are now much closer to the approximation to the PDF provided by a
Monte Carlo method. That PDF exhibits a slight skewness, as evidenced in the tail regions.
The coverage intervals provided by the two variants of the GUM uncertainty framework are
visually almost identical, but still shifted from those provided by a Monte Carlo method.
The shift is now about 10 % of the standard uncertainty. The intervals provided by the GUM
uncertainty framework are now feasible. The corresponding results are given in the final
rows of Tables 9.7 and 9.8.
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Figure 9.14: As Figure 9.13 except that x1 = 0.050.

9.11.2 Non-zero covariance

The three approaches used in the cases where the Xi are uncorrelated (Section 9.11.1) are
now applied for the three cases in which they are correlated, with r(x1, x2) = 0.9. However,
the GUM uncertainty framework with first-order terms only is used. Unlike the cases where
the Xi are uncorrelated, the GUM uncertainty framework with higher-order terms is not
applied, no counterpart being provided in the GUM for the formula containing higher-order
terms when the xi have associated non-zero covariances. Other aspects match those in
Section 9.11.1.

For the GUM uncertainty framework with first-order terms, u(δy) is evaluated from [9,
Clause F.3]

u2(δy) = 4x2
1u

2(x1).

Consequently, u(δy) does not depend on r(x1, x2) and the GUM uncertainty framework
with first-order terms gives identical results to those presented in Section 9.11.1. In partic-
ular, for the case x1 = 0, u(δy) is (incorrectly) computed as zero, as in Section 9.11.1.

A Monte Carlo method was implemented by sampling randomly from a quantity with the
given expectation and covariance matrix (Expressions (9.17)) characterized by a bivariate
Gaussian PDF [9, Clause C.5].5

Tables 9.9 and 9.10 contain the results obtained. Those from a Monte Carlo method indicate
that although δy is unaffected by the correlation between the Xi, u(δy) is so influenced,

5Apart from the requirement to draw from a multivariate distribution, the implementation of a Monte Carlo
method for input quantities that are correlated is no more complicated than when the input quantities are uncor-
related.
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more so for small x1. The 95 % coverage intervals are influenced accordingly.

Figures 9.15 and 9.16 show the PDFs provided by the GUM uncertainty framework with
first-order terms (bell-shaped curves) and a Monte Carlo method (scaled frequency distri-
butions) in the cases x1 = 0.010 and x1 = 0.050, respectively. The endpoints of the
shortest 95 % coverage interval provided by the two approaches are also shown, as bro-
ken vertical lines for the GUM uncertainty framework and continuous vertical lines for
a Monte Carlo method. In the case x1 = 0.010 (Figure 9.15), the effect of the correla-
tion has been to change noticeably the results returned by a Monte Carlo method (compare
with Figure 9.13). Not only has the shape of (the approximation to) the PDF changed, but
the corresponding coverage interval no longer has its left-hand endpoint at zero. In the
case x1 = 0.050 (Figure 9.16), the differences between the results for the cases where the
input quantities are uncorrelated and correlated (compare with Figure 9.14) are less obvious.

Estimate Standard uncertainty
x1 δy /10−6 u(δy) /10−6

Analytical GUF MCM Analytical GUF MCM
0.000 50 0 50 67 0 67
0.010 150 100 150 121 100 120
0.050 2 550 2 500 2 550 505 500 505

Table 9.9: Comparison loss results (estimates and associated standard uncertainties), for in-
put estimates with associated non-zero covariance (r(x1, x2) = 0.9), obtained analytically,
and using the GUM uncertainty framework (GUF) and a Monte Carlo method (MCM).

Shortest 95 % coverage interval for
x1 δY /10−6

Analytical GUF MCM
0.000 — [0, 0] [0, 185]
0.010 — [−96, 296] [13, 397]
0.050 — [1 520, 3 480] [1 627, 3 559]

Table 9.10: Comparison loss results (endpoints of the shortest 95 % coverage interval),
for input estimates with associated non-zero covariance (r(x1, x2) = 0.9), obtained an-
alytically, and using the GUM uncertainty framework (GUF) and a Monte Carlo method
(MCM).

9.12 Quantities subject to a normalisation constraint

The composition of natural gas extracted from subterranean reservoirs varies widely. Since
the composition determines the energy content as well as the combustion and condensation
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Figure 9.15: Results for the model of comparison loss in power meter calibration in the
case x1 = 0.010, x2 = 0, with u(x1) = u(x2) = 0.005 and r(x1, x2) = 0.9.

Figure 9.16: As Figure 9.15 except that x1 = 0.050.
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characteristics of the gas, it has a strong influence on its value as a traded commodity. Con-
sequently, there is a requirement for the analysis of the composition of natural gas and strong
economic pressures to reduce the uncertainty associated with the measured composition to
facilitate efficient and safe trading.

The most widely used method for the analysis of the composition of natural gas is gas chro-
matography. The processing of the raw data from gas chromatographic analysis presents
a number of mathematical challenges, particularly when the detailed statistical structure of
the measurement data is taken fully into account. The task is made more complex by the
presence of a normalisation constraint that requires the sum of all component fractions is
unity.

Let xi, i = 1, . . . , N , denote the indicated amount fraction of component i and u(xi, xj)
the covariance associated with indications xi and xj . The problem is to obtain from the xi

estimates yi, with associated uncertainties, of the amount fractions that satisfy the normali-
sation constraint

N∑
i=1

yi = 1. (9.19)

This constraint expresses the fact that the sum of the yi is unity because they are defined
to be fractions of the whole mixture. The physical mechanisms that prevent the indicated
values meeting the normalisation constraint have been discussed elsewhere [13, 84]. A
fuller treatment of the problem, which compares a number of models and applies these
models to real data, is available [64].

The problem addressed is described by the model equations

Y = X subject to 1TY = 1, (9.20)

where X is the vector of input quantities of which the indicated amount fractions x are
estimates with associated uncertainty matrix Vx, Y is the vector of output quantities rep-
resenting the corrected amount fractions constrained to satisfy the normalisation constraint,
and 1 = (1, . . . , 1)T.

The generalised least-squares solution [61] to the model equations (9.20) is the vector z = y
that solves

min
z

(x− z)T Vx
−1 (x− z) subject to 1Tz = 1. (9.21)

Problem (9.21) is a linearly constrained minimization problem, for which (optimality) con-
ditions for a solution take the form [45]

1Ty = 1,

and
−2Vx

−1 (x− y) = 1λ,

in which λ denotes a Lagrange multiplier. From the above optimality conditions is then
obtained the solution

y = x +
Vx1

1TVx1

(
1− 1Tx

)
. (9.22)
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To evaluate the uncertainty matrix Vy associated with the estimate y, write (9.22) in the
form

y =
Vx1

1TVx1
−
(

I − Vx11T

1TVx1

)
x,

where I is the identity matrix. Then, applying the law of propagation of uncertainty for
multivariate, explicit, real models (Section 6.2.2),

Vy =

(
I − Vx11T

1TVx1

)
Vx

(
I − Vx11T

1TVx1

)T

,

from which is obtained

Vy = Vx −
Vx11TVx

1TVx1
. (9.23)

In order to help with the interpretation of this result, write

w = Vx1.

Then, from expression (9.22),

y = x +
w

1Tw

(
1− 1Tx

)
, (9.24)

and, from expression (9.23),

Vy = Vx −
wwT

1Tw
. (9.25)

It follows from expression (9.24) that the correction applied to each indicated amount frac-
tion is a weighted proportion of the amount by which the indicated values fail to satisfy the
normalisation constraint. Furthermore, since the weights sum to unity, the total correction
is the amount by which the indicated values fail to satisfy that constraint. It is interesting
to note that when the indications x satisfy the normalisation constraint (9.19), then expres-
sion (9.24) simplifies to y = x, but expression (9.25) implies Vy 6= Vx. This demonstrates
that the normalisation constraint itself carries information about the amount fractions that
is additional to that provided by the indications. This information serves to ‘update’ the
uncertainties associated with the estimates although, in this special case, it does not update
the estimates themselves.

9.13 Area under a curve

This example is concerned with the problem of evaluating the uncertainty associated with
an estimate of the definite integral

I =
∫ b

a
x(t)dt
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given finite values of a and b with a < b, and inexact data xi regarded as measured values
of the smooth unknown function x = x(t) at exact abscissa values ti, i = 1, . . . , N ,
with a = t1 < t2 < . . . < tN = b. Such integrals arise in several branches of metrology,
and most notably in the field of radiometry as part of the determination of (a) photometric
quantities such as illuminance from spectral irradiance measurements, (b) filtered-detector
response, or (c) colorimetric quantities of a source [44].

For i = 1, . . . , N , let Xi denote the value of x(t) at t = ti. Consider the determination of
an approximation Y to I given by applying a linear quadrature rule of the form

Y =
N∑

i=1

wiXi, (9.26)

where the quadrature rule weights wi depend only on the ti [25]. Regard the given xi as
particular realizations, obtained by measurement, of the quantities Xi. An estimate y of Y
is

y =
N∑

i=1

wixi.

For quadrature rules of the form (9.26) that are linear in the measured quantities Xi, the
law of propagation of uncertainty based on a first-order Taylor series expansion can be
applied, making no further approximation, to evaluate the uncertainty associated with the
measurement result y. Such application gives

u2(y) = wTVxw,

where w = (w1, w2, . . . , wN )T and Vx is the uncertainty matrix associated with the esti-
mates x (Section 6.2.3). In the case of mutually independent Xi, the result reduces to

u2(y) =
N∑

i=1

w2
i u

2(xi). (9.27)

The quadrature rule most commonly used in metrology is the trapezoidal rule. Consider
the xi, i = 1, . . . , N , at a uniform spacing h = (b− a)/(N − 1) in the interval [a, b], i.e.,
at abscissae ti = a + (i− 1)h. The trapezoidal rule is given by the formula

y = h
N−1∑
i=1

xi + xi+1

2
= h

(
1
2
x1 +

N−1∑
i=2

xi +
1
2
xN

)
,

i.e., a rule of the form (9.26) with weights

wi =


h/2, i = 1,
h, i = 2, . . . , N − 1,
h/2, i = N.
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By applying (9.27), we obtain for the trapezoidal rule and mutually independent Xi,

u2(y) = h2

(
1
4
u2(x1) +

N−1∑
i=2

u2(xi) +
1
4
u2(xN )

)
,

which, in the case where the uncertainties u(xi) are identical, becomes

u2(y) = h2(N − 3/2)u2(x1).

Substituting h = (b− a)/(N − 1) gives

u(y) = (b− a)
(N − 3/2)1/2

N − 1
u(x1),

which, for large N , is approximately

u(y) =
b− a√

N
u(x1).

Since the length b − a of the interval of integration is fixed, the uncertainty essentially
decreases with the number N of measurements as 1/

√
N . Such behaviour is similar to that

for the average of a set of N measured values, of uncorrelated quantities, having the same
associated uncertainty.

The trapezoidal rule can be derived by determining the piecewise-linear function joining the
points (t1, x1), . . . , (tN , xN ) and integrating it between a and b. By integrating each piece
of the piecewise-linear function separately, the rule can be expressed as

y =
N−1∑
i=1

yi, yi = h
xi + xi+1

2
,

where yi denotes the area under the linear piece over the sub-interval (ti, ti+1). More so-
phisticated rules are given by approximating the underlying function over each interval by
a polynomial of degree two or higher, rather than a straight line (polynomial of degree one),
where each polynomial piece is obtained by interpolating (a subset of) the data. Once these
polynomial pieces have been formed, their integration over each interval (to give the val-
ues yi, i = 1, . . . , N − 1) and their summation (to give the value y) provides the required
approximation to the definite integral of the function. A treatment of such quadrature rules
is available [25].

Because of the nature of the implementation of these quadrature rules, in terms of calcula-
tions for each consecutive sub-interval (ti, ti+1), the explicit evaluation of the quadrature
rule weights wi in (9.26) is not generally undertaken. However, for the purposes of the eval-
uation of the uncertainty associated with the result, the quadrature rule weights are required.
An approach to determining the weights is presented below that can readily be applied based
on exploiting the linearity of the quadrature rule as a function of the input quantities Xi. It
assumes a numerical procedure implementing the quadrature rule is available.

Page 133 of 167



NPL Report DEM-ES-011 Uncertainty Evaluation

Define, as in expression (9.26),

Y (X1, . . . , XN ) =
N∑

i=1

wiXi,

and, for r = 1, . . . , N ,

Yr(Xr) = Y (x1, . . . , xr−1, Xr, xr+1, . . . , xn) =
∑
i6=r

wixi + wrXr.

Then,

Yr(xr) =
∑
i6=r

wixi + wrxr, Yr(xr + δxr) =
∑
i6=r

wixi + wr(xr + δxr),

and, for δxr 6= 0,

wr =
Yr(xr + δxr)− Yr(xr)

δxr
.

The sensitivity coefficient corresponding to the input quantity Xr is, therefore, calculated
in terms of two applications of the quadrature rule: one for the original measured data and
the other for this data with the measured value for Xr perturbed by δxr 6= 0.

Consider now approximations y(n) and y(n+1) to the value of the integral I obtained by
applying quadrature rules based on interpolating polynomials of, respectively, degrees n
and n + 1. The approximations can be expressed as

y(n) =
N∑

i=1

w
(n)
i xi,

and

y(n+1) =
N∑

i=1

w
(n+1)
i xi,

or, equivalently, as the values of the models

Y (n) =
N∑

i=1

w
(n)
i Xi,

and

Y (n+1) =
N∑

i=1

w
(n+1)
i Xi,

for the estimates xi of the input quantities Xi. The manner in which the quadrature rule
weights w

(n)
i and w

(n+1)
i can be obtained is indicated above. The approximation y(n+1) can

be regarded as statistically no better than y(n) if the magnitude of the numerical difference
between the approximations is no greater than the expanded uncertainty associated with the
difference. The difference is

∆y(n) = y(n+1) − y(n),
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and, applying the law of propagation of uncertainty, the standard uncertainty associated
with the difference is obtained from

u2(∆y(n)) = u2(y(n+1)) + u2(y(n))− 2cov(y(n), y(n+1)).

However, rather than calculating the covariance term in the expression above, it is simpler
to express ∆Y (n) = Y (n+1)− Y (n) (of which ∆y(n) is an estimate) directly in terms of the
quantities Xi:

∆Y (n) =
N∑

i=1

∆w
(n)
i Xi, ∆w

(n)
i = w

(n+1)
i − w

(n)
i .

Then, it follows from the law of propagation of uncertainty, that

u2(∆yn) = (∆w(n))TVx∆w(n),

where ∆w(n) = (∆w
(n)
1 ,∆w

(n)
2 , . . . ,∆w

(n)
N )T. Finally, in the application of the GUM

uncertainty framework, a Gaussian distribution is assigned to ∆Y (n), giving U(∆y(n)) =
2u(∆y(n)) for the expanded uncertainty associated with the estimate ∆y(n) corresponding
to a 95 % coverage probability. If PDFs are assigned to the input quantities, a Monte Carlo
method may be used to validate this choice of distribution.

9.14 SIR efficiency

The SIR (International Reference System for activity measurements of γ-ray emitting ra-
dionuclides) was established in 1976 at the Bureau International des Poids et Mesures
(BIPM) to complement the international comparisons of activity measurements organized
by Section II of the CCRI (Comité Consultatif des Rayonnements Ionizants). Participating
laboratories submit SIR glass ampoules containing their standardized solutions of radionu-
clides to the BIPM, where the current produced by these samples in an ionization chamber
is compared with the current obtained with a 226Ra reference source [71]. The simplicity
and rapidity of the measurement as well as the long-term stability of the ionization chamber
has allowed the comparison over 25 years of hundreds of radioactive solutions for a total of
about 60 radionuclides.

Efficiency curves (detection efficiency versus photon energy and detection efficiency versus
beta energy) are required for the calculation of the response of the ionization chamber for ra-
dionuclides not previously measured in the SIR. They are needed to evaluate the correction
for a photon-emitting impurity present in an ampoule when the efficiency for this impurity
is not known experimentally [62], or to give a point of comparison when a radionuclide
is measured in the SIR for the first time. Each SIR measurement may be considered as a
determination of the efficiency of the ionization chamber for a given radionuclide [67]. In
consequence the whole set of SIR measurement data may be used, in principle, to establish
the required efficiency curves.
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A model-based approach is proposed [63] to obtain estimates of the efficiency curves from
the set of SIR measurements. The approach uses (a) a least-squares formulation that allows
for the presence of radioactive impurities [62] and aims to account for available physical
information and measurement uncertainties, and (b) families of empirical functions, viz.,
polynomials in the logarithm of photon or beta energy, to represent the efficiency curves.

Let D denote the measured quantities, viz., decay-corrected activity, for which d are the
available measured values (estimates) with associated uncertainty matrix V d. Let F =
F (B,N) denote quantities provided by a model for the measured quantities D expressed
in terms of quantities B, representing the adjustable parameters of the efficiency curves,
and N , representing nuclear reference data including photon energies and photon emission
probabilities, and also including decay-corrected impurity activities. Tabulated values n
of N with the associated uncertainty matrix V n are available. Estimates b of B with
the associated uncertainty matrix V b are to be evaluated. In this application, the model
quantities F are complicated (non-linear) functions of the parameters B and reference data
N [63], and are not reproduced here. However, the application provides an instance of a
general problem in which a model is fitted to observed data (using least-squares) and the
model depends on additional (reference) data for which estimates are available, either from
observation or as tabulated values.

A formulation of the generalized least-squares problem to be solved is

min
B,N

sT(B,d,N)V d
−1s(B,d,N) + (n−N)T V n

−1 (n−N) (9.28)

where
s(B,D,N) = D − F (B,N)

are the residual deviations associated with the model. The function to be minimized in ex-
pression (9.28) is purely additive, since the (measured) quantities (D and N , respectively)
represented by the two terms in the sum are regarded as mutually independent.

The approach formulates a priori the problem in a manner that respects the knowledge of
the uncertainties associated with all relevant effects. The result of the computation would be
new (adjusted) estimates n∗, say, of N , which would generally be different from the tabu-
lated estimates n, in addition to the provision of the efficiency curve parameter estimates b.
In the case of consistency between model and data, n∗ ‘should’ arguably be used as ‘re-
placements’ for the tabulated values n. Politically and logistically, however, difficulties
might be encountered. It would be unreasonable to expect, for example, that the tables of
the transition energies and probabilities would be updated on every occasion a (statistically
consistent) model fit was made. The formulation also generates a demanding problem com-
putationally. It constitutes a non-linear least-squares problem with a number of adjustable
parameters equal not just to the dimension of B (which is typically of order 10), but to the
dimension of B and N (of order 1000).

In the case of consistency between model and data, however, the general formulation (9.28)
can be expected to provide estimates b of the efficiency curve parameters that differ only
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slightly from those provided by the (reduced) least-squares problem

min
B

sT(B,d,n)V d
−1s(B,d,n), (9.29)

in which N is regarded as fixed and equal to the estimates n of these quantities. The
formulation (9.29) also constitutes a non-linear least-squares problem, but one that is com-
putationally less demanding than that defined in formulation (9.28).

The uncertainties associated with the estimates b of the model parameters B can be formed
from the information provided by the algorithm used to solve the non-linear least-squares
problem (9.29). This information takes the form of an uncertainty matrix [2]

V b =
(
Js

T(b)V d
−1Js(b)

)−1
,

where Js(B) is the (Jacobian) matrix containing the partial derivatives of first order of the
residual deviations s with respect to the model parameters B, i.e.,

Js(B) =
∂s(B,d,n)

∂B
.

However, there are further sources of uncertainty that are to be taken into account and that
influence the uncertainties associated with the estimates of the model parameters. These
sources relate to the nuclear reference data N . The uncertainties associated with the tab-
ulated estimates n of N can be propagated through the model, to be combined with the
above-mentioned uncertainties. We describe below how these further uncertainties can be
taken into account using a Monte Carlo method and the GUM uncertainty framework.

The solution obtained as described corresponds to the use of the tabular estimates n of N .
These estimates are regarded as the expectation values of distributions for possible values
of N . Such distributions could be assigned, for example, to be Gaussian with expectations
equal to the estimates and standard deviations equal to the standard uncertainties associated
with these estimates. In the application of a Monte Carlo method, other valid realizations
of these quantities would be given by random sampling from these distributions. Solutions
corresponding to such realizations could be constructed in the same way as for the estimates,
i.e., by solving a problem of the form (9.29) in which n is replaced by a realization of N .
A large number of such solutions would provide approximate distributions (including joint
distributions) for the model parameters B, from which the associated uncertainties could be
deduced (Section 7.4). This approach would be computer intensive since each Monte Carlo
trial would require the numerical solution of a non-linear least-squares problem, and a large
number, say 105, trials would be required to a give a reasonable assurance of a valid result.

At a solution to the minimization problem (9.29), the partial derivatives with respect to the
adjustable quantities B are zero. Thus, the solution to formulation (9.29) satisfies

h(B,d,n) ≡
(

∂F (B,d,n)
∂B

)T

V d
−1(d− F (B,n)) = 0. (9.30)
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Consider the counterpart of formulation (9.29) for the quantities D and N rather than the
estimates d and n, i.e,

min
B

sT(B,D,N)V d
−1s(B,D,N).

The expression corresponding to expression (9.30) is then

h(B,D,N) ≡
(

∂F (B,D,N)
∂B

)T

V d
−1(D − F (B,N)) = 0.

This provides a ‘model’ relating ‘input quantities’ D and N to ‘output quantities’ B that
may be used as the basis for applying the GUM uncertainty framework. The model is
categorized as multivariate, implicit, real (Section 6.2.4), and it follows from the law of
propagation of uncertainty applied to such models that V b satisfies the linear vector equa-
tion

Jh(b)V bJh
T(b) = Jh(d)V dJh

T(d) + Jh(n)V nJh
T(n),

in which Jh(d), Jh(n) and Jh(b) are Jacobian matrices given by

Jh(D) =
∂h(B,D,N)

∂D
,

Jh(N) =
∂h(B,D,N)

∂N
,

Jh(B) =
∂h(B,D,N)

∂B
,

evaluated at D = d, N = n and B = b. Finally, a multivariate Gaussian distribution with
expectation b and uncertainty matrix V b can be assigned to B.

9.15 Gauge block calibration

The length of a nominally 50 mm gauge block is determined by comparing it with a known
reference standard of the same nominal length. The direct output of the comparison of the
two gauge blocks is the difference d in their lengths given by

d = `(1 + αθ)− `s(1 + αsθs), (9.31)

where ` is the length at 20 ◦C of the gauge block being calibrated, `s is the length of the ref-
erence standard at 20 ◦C as given in its calibration certificate, α and αs are the coefficients
of thermal expansion, respectively, of the gauge being calibrated and the reference stan-
dard, and θ and θs are the deviations in temperature from the 20 ◦C reference temperature,
respectively, of the gauge block being calibrated and the reference standard.

From expression (9.31), the output quantity ` is given by

` =
`s(1 + αsθs) + d

1 + αθ
, (9.32)
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from which, to an approximation adequate for most practical purposes,

` = `s + d + `s(αsθs − αθ). (9.33)

If the difference in temperature between the gauge block being calibrated and the reference
standard is written as δθ = θ−θs, and the difference in their thermal expansion coefficients
as δα = α− αs, models (9.32) and (9.33) become, respectively,

` =
`s[1 + αs(θ − δθ)] + d

1 + (αs + δα)θ
(9.34)

and
` = `s + d− `s(δαθ + αsδθ). (9.35)

The difference d in the lengths of the gauge block being calibrated and the reference stan-
dard is determined as the average of a series of five indications, obtained independently, of
the difference using a calibrated comparator. d can be expressed as

d = D + d1 + d2, (9.36)

where D is a quantity of which the average of the five indications is a realization, and d1

and d2 are quantities describing, respectively, the random and systematic effects associated
with using the comparator.

The quantity θ, representing deviation of the temperature from 20 ◦C of the gauge block
being calibrated, can be expressed as

θ = θ0 + ∆, (9.37)

where θ0 is a quantity representing the average temperature deviation of the gauge block
from 20 ◦C and ∆ a quantity describing a cyclic variation of the temperature deviation
from θ0.

Substituting Expressions (9.36) and (9.37) into Expressions (9.34) and (9.35), and working
with the quantity δ` representing the deviation of ` from the nominal length

`nom = 50 mm

of the gauge block, gives

δ` =
`s[1 + αs(θ0 + ∆− δθ)] + D + d1 + d2

1 + (αs + δα)(θ0 + ∆)
− `nom (9.38)

and
δ` = `s + D + d1 + d2 − `s[δα(θ0 + ∆) + αsδθ]− `nom (9.39)

as models for the measurement problem.
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The treatment here of the measurement problem is in terms of the models (9.38) and (9.39)
with output quantity δ` and input quantities `s, D, d1, d2, αs, θ0, ∆, δα and δθ. It differs
from that given in GUM example H.1 in that in the GUM the models (9.36) and (9.37)
are treated as sub-models to models (9.34) and (9.35), i.e. the GUM uncertainty framework
is applied to each model (9.36) and (9.37), with the results obtained used to provide in-
formation about the input quantities d and θ in models (9.34) and (9.35). The treatment
here avoids having to use the results obtained from a Monte Carlo method applied to the
sub-models (9.36) and (9.37) to provide information about the distributions for the input
quantities d and θ in Expressions (9.34) and (9.35).

In the following the available information about each input quantity in the models (9.38)
and (9.39) is provided. This information is extracted from the description given in the GUM,
and for each item of information the GUM subclause from which the item is extracted is
identified. Also provided is an interpretation of the information in terms of an assignment
of a distribution to the quantity [9, Clause 6.4].

Length `s of the reference standard The calibration certificate for the reference standard
gives ̂̀s = 50.000 623 mm as its length at 20 ◦C [10, Clause H.1.5]. It gives Up =
0.075 µm as the expanded uncertainty of the reference standard and states that it
was obtained using a coverage factor of kp = 3 [10, Clause H.1.3.1]. The cer-
tificate states that the effective degrees of freedom associated with the combined
standard uncertainty, from which the quoted expanded uncertainty was obtained,
is νeff(u(̂̀s)) = 18 [10, Clause H.1.6].

Assign a scaled and shifted t-distribution tν(µ, σ2) [9, Clause 6.4.9.7] to `s, with

µ = 50 000 623 nm, σ =
Up

kp
=

75
3

nm = 25 nm, ν = 18.

Average length difference D The average D̂ of the five indications of the difference in
lengths between the gauge block being calibrated and the reference standard is 215 nm [10,
Clause H.1.5]. The pooled experimental standard deviation characterizing the com-
parison of ` and `s was determined from 25 indications, obtained independently, of
the difference in lengths of two standard gauge blocks, and equalled 13 nm [10,
Clause H.1.3.2].

Assign a scaled and shifted t-distribution tν(µ, σ2) [9, Clause 6.4.9] to D, with

µ = 215 nm, σ =
13√

5
nm = 6 nm, ν = 24.

Random effect d1 of comparator According to the calibration certificate of the compara-
tor used to compare ` with `s, the associated uncertainty due to random effects
is 0.01 µm for a coverage probability of 95 % and is obtained from six indications,
obtained independently [10, Clause H.1.3.2].
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Assign a scaled and shifted t-distribution tν(µ, σ2) [9, Clause 6.4.9.7] to d1, with

µ = 0 nm, σ =
U0.95

k0.95
=

10
2.57

nm = 4 nm, ν = 5.

Here, k0.95 is obtained from Table G.2 of the GUM with ν = 5 degrees of freedom
and p = 0.95.

Systematic effect d2 of comparator The uncertainty of the comparator due to systematic
effects is given in the certificate as 0.02 µm at the “three sigma level” [10, Clause H.1.3.2].
This uncertainty may be assumed to be reliable to 25 %, and thus the degrees of free-
dom is νeff(u(d̂2)) = 8 [10, Clause H.1.6].

Assign a scaled and shifted t-distribution tν(µ, σ2) [9, Clause 6.4.9] to d2, with

µ = 0 nm, σ =
Up

kp
=

20
3

nm = 7 nm, ν = 8.

Thermal expansion coefficient αs The coefficient of thermal expansion of the reference
standard is given as α̂s = 11.5×10−6 ◦C−1 with possible values of this quantity rep-
resented by a rectangular distribution with limits±2×10−6 ◦C−1 [10, Clause H.1.3.3].

Assign a rectangular distribution R(a, b) [9, Clause6.4.2] to αs, with limits

a = 9.5× 10−6 ◦C−1, b = 13.5× 10−6 ◦C−1.

There is no information about the reliability of the limits and so a rectangular distribu-
tion with exactly known limits is assigned. Such information may have been omitted
from the description in the GUM because the corresponding sensitivity coefficient is
zero, and so the quantity makes no contribution in an application of the GUM uncer-
tainty framework based on first order terms only.

Average temperature deviation θ0 The temperature of the test bed is reported as (19.9±
0.5) ◦C.The average temperature deviation θ̂0 = −0.1 ◦C is reported as having an
associated standard uncertainty due to the uncertainty associated with the average
temperature of the test bed of u(θ̂0) = 0.2 ◦C [10, Clause H.1.3.4].

Assign a Gaussian distribution N(µ, σ2) [9, Clause 6.4.7] to θ0, with

µ = −0.1 ◦C, σ = 0.2 ◦C.

There is no information about the source of the evaluation of the uncertainty and so a
Gaussian distribution is assigned.

Effect ∆ of cyclic temperature variation The temperature of the test bed is reported as (19.9±
0.5) ◦C. The stated maximum offset of 0.5 ◦C for ∆, is said to represent the amplitude
of an approximately cyclical variation of temperature under a thermostatic system.
The cyclic variation of temperature results in a U-shaped (arc sine) distribution [10,
Clause H.1.3.4].
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Assign an arc sine distribution U(a, b) [9, Clause 6.4.6] to ∆, with limits

a = −0.5 ◦C, b = 0.5 ◦C.

There is no information about the reliability of the limits and so a U-shaped distribu-
tion with exactly known limits is assigned.

Difference δα in expansion coefficients The estimated bounds on the variability of δα
are ±1 × 10−6 ◦C−1, with an equal probability of δα having any value within those
bounds [10, Clause H.1.3.5]. These bounds are deemed to be reliable to 10 %, giv-
ing ν(u(δα̂)) = 50 [10, Clause H.1.6].

Assign a rectangular distribution with inexactly prescribed limits [9, Clause 6.4.3]
to δα, with

a = −1.0× 10−6 ◦C−1, b = 1.0× 10−6 ◦C−1, d = 0.1× 10−6 ◦C−1.

The stated reliability of 10 % on the estimated bounds provides the basis for this value
of d [9, Clause 6.4.3].

Difference δθ in temperatures The reference standard and the gauge block being cali-
brated are expected to be at the same temperature, but the temperature difference δθ
could lie with equal probability anywhere in the estimated interval−0.05 ◦C to 0.05 ◦C [10,
Clause H.1.3.6]. This difference is believed to be reliable only to 50 %, giving ν(u(δθ̂)) =
2 [10, Clause H.1.6].

Assign a rectangular distribution with inexactly prescribed limits [9, Clause 6.4.3]
to δθ, with

a = −0.050 ◦C, b = 0.050 ◦C, d = 0.025 ◦C.

The stated reliability of 50 % provides the basis for this value of d [9, Clause 6.4.3].

The application of the GUM uncertainty framework is based on (a) a first-order Taylor se-
ries approximation to the model (9.38) or (9.39), (b) use of the Welch-Satterthwaite formula
to evaluate an effective degrees of freedom (rounded towards zero) associated with the un-
certainty obtained from the law of propagation of uncertainty, and (c) assigning a scaled
and shifted t-distribution with the above degrees of freedom to the output quantity. The ap-
plication of a Monte Carlo method requires (a) sampling from a rectangular distribution [9,
Clause 6.4.2.4], Gaussian distribution [9, Clause 6.4.7.4], t-distribution [9, Clause 6.4.9.5],
U-shaped distribution [9, Clause 6.4.6.4], and rectangular distribution with inexactly pre-
scribed limits [9, Clause 6.4.3.4], and (b) implements an adaptive Monte Carlo procedure
(Section 7.2.5) with a numerical tolerance (δ = 0.005) set to deliver ndig = 2 significant
decimal digits in the standard uncertainty.

Table 9.11 gives the results obtained for the approximate model (9.39) using the informa-
tion above about each input quantity. Figure 9.17 shows the distribution functions and PDFs
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for δ` obtained from the application of the GUM uncertainty framework (solid curve) and
a Monte Carlo method (scaled frequency distribution). The distribution obtained from
the GUM uncertainty framework is a t-distribution with ν = 16 degrees of freedom. The
endpoints of the shortest 99 % coverage intervals for δ` obtained from the PDFs are indi-
cated as (continuous) vertical lines (obtained from the GUM uncertainty framework) and
(broken) vertical lines (obtained from a Monte Carlo method).

1.36× 106 trials were taken by the adaptive Monte Carlo procedure. The calculations were
also carried out for a coverage probability of 95 %, for which 0.52× 106 trials were taken.

Method δ ̂̀ u(δ ̂̀) Shortest 99 % coverage
/nm /nm interval for δ` /nm

GUF 838 32 [746, 930]
MCM 838 36 [745, 931]

Table 9.11: Results obtained for the approximate model (9.39). GUF denotes the GUM
uncertainty framework and MCM a Monte Carlo method.

Results obtained for the non-linear model (9.38) are identical to the results in Table 9.11 to
the number of decimal digits given there.

There are some modest differences in the results obtained. u(δ ̂̀) was 4 nm greater for the
application of a Monte Carlo method than for the GUM uncertainty framework. The length
of the 99 % coverage interval for δ` was 2 nm greater. These results apply equally to the
non-linear and the approximate models. Whether such differences are important has to be
judged in terms of the manner in which the results are to be used.
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Figure 9.17: Distribution functions and (below) PDFs for δ` using the GUM uncertainty
framework and a Monte Carlo method.
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Chapter 10

Recommendations

The ‘Guide to the expression of uncertainty in measurement’ (GUM) [10] provides internationally-
agreed recommendations for the evaluation of uncertainties in metrology. Central to the
GUM is a measurement model with input quantities, characterized by probability distri-
butions, and an output quantity, also characterized by a probability distribution. The use
of the GUM permits the uncertainty associated with an estimate of the output quantity to
be evaluated. In particular, an interval (termed here a coverage interval) that can be ex-
pected to encompass a specified fraction of the distribution of values that could reasonably
be attributed to the output quantity can be obtained.

It will always be necessary to make some assertions about the uncertainties associated with
the estimates of the model input quantities. That is the metrologist’s task. The metrologist
needs to make statements, using expert judgement if necessary, about what he believes, and
those statements provide the basis for the analysis, until better statements become available.
After all, he is best-placed to do this. If everything is recorded, the reported uncertainty can
be defended in that light.

Arguably, the worst-case scenario is when the metrologist genuinely feels he knows nothing
about an input quantity other than lower and upper limits on the deviation of the quantity
from the estimate. (If he cannot even quote that, the uncertainty evaluation cannot be pro-
gressed at all!) In this situation the Principle of Maximum Entropy would imply that a
rectangular PDF should be assigned to the quantity, based on the limits.

In general, it is recommended that all model input quantities are characterized in terms of
probability density functions (PDFs). By doing so the metrologist is able to incorporate
to the maximum his degree of belief in his knowledge of the various input quantities. In
particular, if little or very little information is available, appeal to the Principle of Maximum
Entropy permits a defensible PDF to be provided.

Once the model and the PDFs for the input quantities are in place, it is possible to use
a number of approaches for determining the PDF for the output quantity and thence an
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estimate of that quantity and an associated standard uncertainty, and a coverage interval or
coverage region for the quantity.

The attributes of the various approaches considered, all in a sense covered or implied by the
GUM, are to be taken into account when selecting whether to apply the GUM uncertainty
framework, a Monte Carlo method or other analytical or numerical methods.

Validation of the approach used is important in cases of doubt. The use of the described
Monte Carlo method to validate the results obtained from the GUM uncertainty framework
is urged when it is unclear whether the latter is applicable in a certain situation. The de-
scribed Monte Carlo method can also be seen as a widely applicable tool for uncertainty
evaluation.

[GUM, Clause 0.4] The actual quantity used to express uncertainty should be:

1. Internally consistent: it should be directly derivable from the components
that contribute to it, as well as independent of how these components
are grouped and of the decomposition of the components into subcompo-
nents;

2. Transferable: it should be possible to use directly the uncertainty evalu-
ated for one result as a component in evaluating the uncertainty of another
measurement in which the first result is used.

3. . . . it is often necessary to provide an interval about the measurement re-
sult that may be expected to encompass a large fraction of the distribution
of values that could reasonably be attributed to the quantity subject to
measurement. Thus the ideal method for evaluating and expressing un-
certainty in measurement should be capable of readily providing such an
interval, in particular, one with a coverage probability or level of proba-
bility that corresponds in a realistic way with that required.

These are laudable properties and objectives. It is reasonable to summarize them and to
infer further aims as follows:

1. All information used to evaluate uncertainties is to be recorded.

2. The sources of the information are to be recorded.

3. Any assumptions or assertions made are to be stated.

4. The model and its input quantities are to be provided in a manner that maximizes the
use of this information consistent with the assumptions made.

5. Uncertainties are to be evaluated in a manner that is consistent with quality manage-
ment systems and, in particular, the results of the evaluation are to be fit for purpose.

Page 146 of 167



Uncertainty Evaluation NPL Report DEM-ES-011

6. If the same information is provided to different bodies, the uncertainties these bod-
ies calculate for the required results should agree to within a stipulated numerical
accuracy.

7. Difficulties in handling sparse or scarce information are to be addressed by making
alternative, equally plausible assumptions, and re-evaluating the uncertainties for the
required results to obtain knowledge of the variability due to this source.

The intention of this guide has been to address these aims as far as reasonably possible.
Further, the three-stage approach advocated in Section 3.2 and followed in the rest of this
guide supports the first point from GUM, Clause 0.4. The approach to multi-stage models
recommended here supports the second point. Finally, the mathematical formulation and the
attitude of this guide supports the third point, through the solution approaches of Chapter 5.
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Appendix A

Some statistical concepts

Some statistical concepts used in this guide are reviewed [51]. The concept of a random
variable is especially important. Input and output quantities are regarded as random vari-
ables. Some of the elementary theory of random variables is pertinent to the subsequent
considerations.

A.1 Discrete random variables

A discrete random variable X is a variable that can take only a finite number of possible
values. If X is the number of heads in an experiment consisting of tossing three coins, X
can take (only) the value 0, 1, 2 or 3.

The frequency function pX(ξ) states the probabilities of occurrence of the possible out-
comes:

pX(ξ) = P (X = ξ),

the probability that the outcome is ξ. For the coin tossing experiment,

pX(0) =
1
8
,

pX(1) =
3
8
,

pX(2) =
3
8
,

pX(3) =
1
8
.

The probabilities can be deduced by enumerating all 2×2×2 = 8 possible outcomes arising
from the fact that each coin can only land in one of two equally likely ways, or by using the
binomial distribution [68, p36] that applies to the analysis of such probability problems.
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The distribution function GX(ξ) gives the probability that a random variable takes a value
no greater than a specified value:

GX(ξ) = P (X ≤ ξ), −∞ < ξ < ∞.

For the coin-tossing experiment,

GX(ξ < 0) = 0,

GX(0 ≤ ξ < 1) =
1
8
,

GX(1 ≤ ξ < 2) =
1
2
,

GX(2 ≤ ξ < 3) =
7
8
,

GX(3 ≤ ξ) = 1.

The distribution function varies from zero to one throughout its range, never decreasing.

The probability that X lies in an interval [a, b] is

P (a < X ≤ b) = GX(b)−GX(a).

Two important statistics associated with a discrete random variable are its expectation and
standard deviation.

Let ξ1, ξ2, . . . denote the possible values of X and pX(ξ) the frequency function for X . The
expectation µ of X is

µ =
∑

i

ξipX(ξi).

It is a measure of the location of X .

The standard deviation σ of a discrete random variable X with frequency function pX(ξ)
and expectation µ is the square root of the variance

var(X) = σ2 =
∑

i

(ξi − µ)2pX(ξi).

It is a measure of the spread or dispersion of X .

A.2 Continuous random variables

A continuous random variable X is a variable that can take any value within a certain
interval. For example, for a machine capable of weighing any person up to 150 kg, the
indicated weight can take any value in the interval 0 kg to 150 kg.
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For a continuous random variable X , the counterpart of the frequency function (for a dis-
crete random variable) is the probability density function (PDF) gX(ξ). This function has
the property that the probability that X lies between a and b is

P (a < X < b) =
∫ b

a
gX(ξ)dξ.

Since a random variable X must take some value, gX(ξ) has the property that∫ ∞

−∞
gX(ξ)dξ = 1.

The rectangular PDF is a density function that describes the fact that the value of X is
equally likely to lie anywhere in an interval [a, b]:

gX(ξ) =

{
1

b−a , a ≤ ξ ≤ b,

0, otherwise.

The distribution function GX(ξ) gives the probability that a random variable takes a value
no greater than a specified value, and is defined as for a discrete random variable:

GX(ξ) = P (X ≤ ξ), −∞ < ξ < ∞.

The distribution function can be expressed in terms of the probability density function as

GX(ξ) =
∫ ξ

−∞
gX(v)dv.

The expectation of a continuous random variable X with PDF gX(ξ) is

E(X) =
∫ ∞

−∞
ξgX(ξ)dξ.

It is often denoted by µ.

The variance of a continuous random variable X with PDF gX(ξ) and expectation µ =
E(X) is

V(X) =
∫ ∞

−∞
(ξ − µ)2gX(ξ)dξ.

The variance is often denoted by σ2 and its square root is the standard deviation σ.

A.3 Coverage interval

Given a PDF gX(ξ) and coverage probability p, a coverage interval is an interval such that
the proportion of gX(ξ) between its endpoints is equal to p.
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Given the PDF gX(ξ), with distribution function GX(ξ), for a random variable X , the α–
quantile is the value ξα such that

GX(ξα) =
∫ ξα

−∞
gX(ξ)dξ = α,

i.e., the proportion of gX(ξ) to the left of ξα is equal to α.

A 100p % coverage interval is therefore [ξα, ξα+p] for any value α between zero and 1− p.

The inverse distribution G−1
X (p) permits the value of X corresponding to a specified quantile

to be obtained:
ξα = G−1

X (α).

Example 23 A coverage interval for a random variable characterized by a Gaussian prob-
ability density function

A 95 % coverage interval for a random variable characterizsed by Gaussian PDF with
zero mean and unit standard deviation is [−2.0, 2.0].

Example 24 A coverage interval for a random variable characterized by a rectangular
probability density function

A 95 % coverage interval for a random variable characterized by a rectangular PDF
with zero mean and unit standard deviation is [−1.6, 1.6].
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Appendix B

The use of software for algebraic
differentiation

Sensitivity coefficients can be difficult to determine by hand for models that are compli-
cated. The process by which they are conventionally determined is given in Section 5.6.
The partial derivatives required can in principle be obtained using one of the software sys-
tems available for determining derivatives automatically by applying the rules of algebraic
differentiation [11].

If such a system is used, care needs to be taken that the mathematical expressions generated
are numerically stable with respect to their evaluation at the estimates of the input quantities
[29]. For instance, suppose that (part of) a model is

Y = (X −K)4,

where K is a specified constant. An automatic system might involve expansions such as
Taylor series to generate the partial derivative of Y in the form

∂Y

∂X
= 4X3 − 12X2K + 12XK2 − 4K3, (B.1)

and perhaps not contain a facility to generate directly or simplify this expression to the
mathematically equivalent form

∂Y

∂X
= 4(X −K)3, (B.2)

that would typically be obtained manually.

Suppose the estimate of X is x = 10.1 and K = 9.9. The value c of the resulting sensi-
tivity coefficient is 4(x − K)3 = 0.032, correct to two significant digits. Both Formulae
(B.1) and (B.2) deliver this value to this number of figures. The second, more compact,
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form is, however, much to be preferred. The reason is that Formula (B.2) suffers negligi-
ble loss of numerical precision when it is used to evaluate c, whereas, in contrast, Formula
(B.1) loses figures in forming this value. To see why this the case, consider the contribu-
tions to the expression, evaluated and displayed here to a constant number of decimal digits
(corresponding to seven significant digits in the contribution of greatest magnitude):

4x3 = 4121.204,
−12x2K = −12118.79,

12xK2 = 11878.81,
−4K3 = −3881.196.

The sum of these values constitutes the value of c. To the numerical accuracy held, this
value is 0.028, compared with the correct value of 0.032. The important point is that a value
of order 10−2 has been obtained by the sum of positive and negative values of magnitude
up to order 104. Almost inevitably, a loss of some six digits of numerical precision has
resulted, as a consequence of subtractive cancellation.

For different values of x and K or in other situations the loss of numerical precision could
be greater or less. The concern is that this loss has resulted from such a simple model.
The effects in the case of a sophisticated model or a multi-stage model could well be com-
pounded, with the consequence that there are dangers that the sensitivity coefficients formed
in this way will be insufficiently accurate. Therefore, care must be taken in using sensitivity
coefficients that are evaluated from the expressions provided by some software for algebraic
differentiation. Such a system, if used, should evidently be chosen with care. One criterion
in making a choice is whether the system offers comprehensive facilities for carrying out
algebraic simplification, thus ameliorating the danger of loss of numerical precision. Even
then, some form of validation should be applied to the numerical values so obtained.
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Appendix C

Frequentist and Bayesian approaches

C.1 Discussion on Frequentist and Bayesian approaches

There are strongly-held views concerning whether statistical analysis in general or un-
certainty evaluation in particular should be carried out using Frequentist or Bayesian ap-
proaches.

The Frequentist would assume that the output quantity is an unknown constant and that the
result of measurement is a random variable. The Bayesian would regard the output quantity
as a random variable having a PDF derived from available knowledge and the result of
measurement as a known quantity [54].

These views can result in such divergent opinions that their discussion, although of consid-
erable philosophical interest, must not be allowed to obscure the provision of clear practical
guidance on uncertainty evaluation.

The attitude of this guide is predominantly Bayesian. A Bayesian would use available
knowledge to make judgements, often subjective to some extent, about the PDFs for the
model input quantities. The practitioner, with support from the expert metrologist as nec-
essary, would also wish to employ previous information, e.g., calibration information or
measurements of similar artefacts. Where (some of) the information seems suspect, as a
result of common sense, experience or statistical analysis, further information should be
sought if it is economical to do so.

In several instances the results that would finally be obtained by Frequentists and Bayesians
would be identical or at least similar. Consider the repeated measurement of items manu-
factured under nominally identical conditions. The Frequentist would analyse the sample of
measured values to estimate the ‘population’ mean and standard deviation of the manufac-
tured items, and perhaps other parameters. The Bayesian would devise a prior distribution,
based on his knowledge of the manufacturing process. He would ‘update’ the information
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contained within it in order to provide hopefully more reliable estimates of the parameters.
In a case where there was no usable information available initially, the Bayesian would em-
ploy the so-called ‘non-informative prior’. This prior effectively corresponds to the minimal
knowledge that in the absence of information any measured value is equally possible. The
parameter values so obtained can be identical in this case to those of the Frequentist. Any
additional knowledge would help to give a better prior and hopefully a more valid result in
that it would depend on available application-dependent information.

A valuable comparison of the Frequentist and Bayesian approaches is available [60].

C.2 The Principle of Maximum Entropy

‘. . . the virtue of wise decisions by taking into account all possibilities, i.e., by
not presuming more information than we possess.’ [53]

The Principle of Maximum Entropy (PME) [52] is a concept that can valuably be em-
ployed to enable maximum use to be made of available information, whilst at the same time
avoiding the introduction of unacceptable bias in the result obtained. Two internationally
respected experts in measurement uncertainty [85] state that predictions based on the results
of Bayesian statistics and this principle turned out to be so successful in many fields of sci-
ence [78], particularly in thermodynamics and quantum mechanics, that experience dictates
no reason for not also using the principle in a theory of measurement uncertainty.

Bayesian statistics have been labelled ‘subjective’, but that is the intended nature of the
approach. One builds in knowledge based on experience and other information to obtain an
improved solution. However, if the same knowledge is available to more than one person,
it would be entirely reasonable to ask that they drew the same conclusion. The application
of PME was proposed [86] in the field of uncertainty evaluation in order to achieve this
objective.

To illustrate the principle, consider a problem [86] in which a single unknown systematic
effect X is present in a measurement process. Suppose that all possible values for this effect
lie within an interval [−L, L], after the measured value has been corrected as carefully as
possible for a known constant value. The value supplied for L is a subjective estimate based
on known properties of the measurement process, including the model input quantities.
In principle, the value of L could be improved by aggregating in a suitable manner the
estimates of several experienced people. Let gX(ξ) denote the PDF for X . Although it is
unknown, gX(ξ) will of course satisfy the normalizing condition∫ L

−L
gX(ξ)dξ = 1. (C.1)

Suppose that from the properties of the measurement process it can be asserted that, because
of the above careful correction process, the systematic effect is expected to be zero. A
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second condition on gX(ξ) is therefore∫ L

−L
ξgX(ξ)dξ = 0. (C.2)

Suppose an estimate u of the standard deviation of the possible values for the systematic
effect is available. Then, ∫ L

−L
ξ2gX(ξ)dξ = u2. (C.3)

Of course, u2 ≤ L2. Suppose that no further information is available.

There are of course infinitely many PDFs for which the above three conditions hold. How-
ever, PME can be used to select a PDF from these. The PDF so obtained will have the
property that it will be unbiased in that nothing more is implicitly assumed.

The use [52] of Shannon’s theory of information [75] achieves this goal. Any given PDF
represents some lack of knowledge of the quantity under consideration. This lack of knowl-
edge can be quantified by a number,

S = −
∫

gX(ξ) log gX(ξ)dξ,

called the (information) entropy [75] of that PDF. The least-biased ‘probability assignment’
is that which maximizes S subject to the conditions (C.1)–(C.3). Any other PDF that sat-
isfies these conditions has a smaller value of S, thus introducing a prejudice that might
contradict the missing information.

This formulation can fully be treated mathematically [86] and provides the required PDF.
The ‘shape’ of the PDF depends on the quotient u/L. If u/L is smaller than 1/

√
3, the

PDF is bell-shaped. If u/L is larger than 1/
√

3, the PDF is U-shaped. Between these
possibilities, when u/L = 1/

√
3, the PDF is the rectangular PDF.

It can also be determined that if no information is available about the standard deviation u,
and S is maximized with respect to conditions (C.1) and (C.2) only, the resulting PDF is the
rectangular PDF.

It is evident that as more information is obtained the PDF that characterizes it becomes
narrower, in that its standard deviation becomes smaller. Although obtaining such informa-
tion might be time-consuming and expensive, in a competitive environment, or when it is
required to state the most realistic (and hopefully the smallest) and defensible measurement
uncertainty, such a treatment might be justified.

One approach to a range of such problems might be to categorize the commonest types of
problem, such as those above, viz., when

1. Conditions (C.1) and (C.2) hold,

2. Conditions (C.1)–(C.3) hold.
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There would be other such conditions in other circumstances. ‘Solutions’ to this range of
problems could be determined, almost certainly in the form of algorithms that took as input
the defining parameters (such as L and u above) and returned the corresponding quantified
PDF.

In summary, it is regarded as scientifically flawed to discard credible information, unless it
can be shown that doing so will have no influence on the results required to the accuracy
needed, or the costs of doing so are prohibitive.

In particular, if knowledge of the PDFs for the input quantities is available, perhaps deduced
as above using PME, these PDFs, which can be regarded as providing prior information in
a Bayesian sense, should not simply be replaced by an expectation and standard deviation,
unless doing so can be shown to have the mentioned negligible effect. If other information
is available, such as above, or conditions on the quantities of interest or on nuisance pa-
rameters,1 this information should be incorporated in order to render the solution physically
more meaningful, and the uncertainties more realistic.

There are some further cases that can be dealt with reasonably straightforwardly:

1. Given a series of repeated indications, obtained independently, for which no knowl-
edge is available other than the data itself, it can be inferred from the PME that a
Gaussian PDF should be assigned to the quantity estimated by the measurements
based on the expectation and standard deviation obtained from the data.

2. If the indications are as in 1 above, but are known to be drawn from a Gaussian
distribution, it can be inferred from the PME that a PDF related to the t–distribution
should be assigned.

3. If the situation is as in 2, but that additionally a prior Gaussian PDF is available
from historical information, it can be inferred from the PME that taking both sources
of information into account, an improved Gaussian PDF can be obtained [66]. If
xP is the estimate of the output quantity based on prior information (only) and xM

that on the indications (without including prior information), and uP and uM are the
associated standard deviations, the best estimate [66] of the output quantity using
both sources of information is

x =
(

1
1 + γ2

)
xP +

(
γ2

1 + γ2

)
xM ,

where
γ = uP /uM ,

1Nuisance parameters are additional variables introduced as part of the modelling process to help build a re-
alistic model. They would not by their nature constitute measurement results, but their estimates and associated
uncertainties might be of interest as part of model development or enhancement.
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with associated standard deviation u(x) given by

1
u2(x)

=
1

u2
P

+
1

u2
M

.

Clause 4.3.8 of the GUM provides the PDF when limits plus a single measured value are
available (see Example 26). The treatment of a problem concerned with the limit of detec-
tion by the application of PME is also available [31].

Example 25 The application of the PME to determining the PDF when lower and upper
bounds only are available

Consider that lower and upper bounds a and b for the input quantity X are available. If
no further information is available the PME would yield (a+ b)/2 as the best estimate
of X with associated standard uncertainty {(b − a)/12}1/2. It would also yield the
PDF for X as the rectangular distribution with limits a and b.

Example 26 The application of the PME to determining the PDF when lower and upper
bounds and a single measured value are available

Suppose that as well as limits a and b, an estimate x of X is available. Unless x =
(a + b)/2, i.e., it lies at the centre of the interval (a, b), the PDF for X would not be
rectangular as before. Let λ be the root of the equation

(e−λa − e−λb)C(λ)− λ = 0,

where
C(λ)−1 = (x− a)e−λa + (b− x)e−λb.

The PME yields [GUM Clause 4.3.8] the PDF for X as

C(λ)e−λXi .

All circumstances should be treated on their merits. Consider a large number of indications.
Suppose that the manner in which they are distributed (as seen by a histogram of their
values, e.g.) indicates clearly that their behaviour is non-Gaussian, e.g., a strong asymmetry,
‘long tails’ or bi-modality. Then, the data itself, if judged to be representative, is indicating
that the blind application of the PME is inappropriate in this circumstance. Since, for large
samples, the principle of the bootstrap is appropriate, it can legitimately be applied here.
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Appendix D

Nonlinear sensitivity coefficients

With a Monte Carlo calculation there is no immediate counterpart of a sensitivity coeffi-
cient since such calculation operates in terms of the actual non-linear model rather than
a linearized counterpart. Recall that with a linear model the sensitivity coefficients ‘repro-
duce’ linear effects, and for a non-linear model the sensitivity coefficients provide first-order
information. Therefore, those practitioners accustomed to using the approach based on the
GUM uncertainty framework may find the absence of sensitivity coefficients disconcerting.

It is possible and very straightforward, however, to adapt the Monte Carlo procedure such
that it provides information that in a sense constitutes a non-linear counterpart of a sensi-
tivity coefficient. Consider holding all input quantities but one, say Xk, at their estimates.
In this setting the model effectively becomes one having a single input quantity, viz., Xk.
Make random draws from the PDF for this input quantity and determine an approximation
to the distribution of the output quantity with respect to Xk. The standard deviation ûk(y) of
this distribution is taken as an approximation to the component of the (combined) standard
uncertainty corresponding to Xk.

The use of ‘non-linear’ sensitivity coefficients in place of ‘linear’ sensitivity coefficients
permits individual non-linear effects to be taken into account. A ‘non-linear’ sensitivity
coefficient ĉk is defined by

ĉk =
ûk(y)
u(xk)

.

It will be equal to the magnitude |ck| of the ‘linear’ sensitivity coefficient ck when the
model is linear in Xk, and be close to its value when the non-linearity with respect to Xk is
negligible. When ĉk is appreciably different from ck, the non-linearity effect may noticeably
influence the standard uncertainty u(y). Thus, the deviation of ûk(y) from uk(y) = cku(xk)
can be used as an approximate measure of the influence of model non-linearity with regards
to Xk alone.

The sensitivity coefficients so obtained are not generally to be taken in conjunction with
the standard uncertainties associated with the estimates of the input quantities as the only
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contributions to the standard uncertainty associated with the estimate of the output quantity.
There will be further contributions arising from any interaction (i.e., non-additive) terms in
the model.

In the case of complicated models the above approach is already used by many metrolo-
gists as a practical alternative to the tedious analysis required to provide (linear) sensitivity
coefficients [47].
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