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ABSTRACT

Metrology, the science of measurement, involves the determination from experi-
ment of estimates of the values of physical quantities, along with the associated
uncertainties. In this endeavour, a mathematical model of the measurement
system is required in order to extract information from the experimental data.
Modelling involves model building : developing a mathematical model of the
measurement system in terms of equations involving parameters that describe
all the relevant aspects of the system, and model solving : determining estimates
of the model parameters from the measured data by solving the equations
constructed as part of the model.

This best-practice guide covers all the main stages in experimental data analysis:
construction of candidate models, model parameterisation, uncertainty struc-
ture in the data, uncertainty of measurements, choice of parameter estimation
algorithms and their implementation in software, with the concepts illustrated
by case studies.

The Guide looks at validation techniques for the main components of discrete
modelling: building the functional and statistical model, model solving and
parameter estimation methods, goodness of fit of model solutions and exper-
imental design and measurement strategy. The techniques are illustrated in
detailed case studies.
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Discrete modelling and experimental data analysis

Chapter 1

Introduction

1.1 Mathematical modelling in metrology

Metrology, the science of measurement, involves the determination of quantita-
tive estimates of physical quantities from experiment, along with the associated
uncertainties. This process involves the following components:

Model building. Developing a mathematical model of the experimental system
in terms of mathematical equations involving parameters that describe all the
relevant aspects of the system. The model will need to specify how the system is
expected to respond to input data and the nature of the uncertainties associated
with the data.

Model solving. Determining estimates of the model parameters from the mea-
sured data by solving the mathematical equations constructed as part of the
model. In general, this involves developing an algorithm that will determine
the values for the parameters that best explain the data. These algorithms are
often referred to as estimators.

Software implementation of solution algorithms. Practically all calculations of
fitted parameters are performed by software.

Model validation. Determining whether the results produced are consistent with
the input data, theoretical results, reference data, etc. All stages need to be
examined. Does the model adequately encapsulate what is known about the
system? Does the method of solution produce unbiased estimates of the param-
eters and valid uncertainties? If information about the model is determined by
software, then it is important that the software is valid to ensure that conclusions
are based on reliable calculations.

Generally, these steps are revisited as the model is refined and the experimental
design is evolved, resulting in a better explanation of the observed behaviour
and more dependable uncertainties associated with the quantities of interest.

0This document: http://www.npl.co.uk/ssfm/download/bpg.html#ssfmbpg4
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1.2 Scope and structure of this Guide

It is useful to classify the types of data arising in metrology into two categories:
i) discrete and ii) continuous.

Example: the distribution of heat in a rectangular plate

Modelling discrete data. In a measurement experiment, the temperatures Ti

are measured simultaneously at a fixed number m of locations (xi, yi) on a
rectangular plate in a steady state. The data can be represented in a finite
array whose ith row is (xi, yi, Ti). The temperature t(x, y,a) is modelled as
a function of location and model parameters a. For example, a could be the
coefficients of a bivariate polynomial surface. The data analysis problem is to
find the values of the parameters a so that t(x, y,a) best explains the data. For
instance, a least-squares estimate of a is found by solving

min
a

m∑
i=1

(Ti − t(xi, yi,a))2 .

The measurement strategy is discrete in the sense that only a finite number
of measurements are taken. The data analysis problem is discrete in the sense
that the function to be minimised is a discrete sum based on algebraic equa-
tions. However, the model involves continuous phenomena: the temperature
is modelled as a function t of location, even though the data representing the
temperature are given at a finite number of points.

Modelling continuous data. Two adjacent edges of the plate are held at tempera-
tures g(x) and h(y) where g and h are known functions defined at distances x and
y along the edges. The data analysis problem is to determine the steady-state
temperature t(x, y) at each point on the plate, given the coefficient ν of heat
conduction of the material. The data analysis problem will involve the solution
of the heat equation, a partial differential equation, subject to the boundary
conditions. The data is continuous in the sense that g and h are defined
at each point along the edge, not at a finite number of points. In practice,
these functions will be specified by a finite amount of information, for example,
the coefficients of polynomial representations of the functions. The numerical
solution will also involve a discretisation of the equations to be solved. ]

This Guide is concerned with modelling discrete data and experimental data
analysis. In chapters 2 and 3, we describe the main components of model
building and model solving and are meant to give an overview of discrete
modelling in metrology. Chapter 4 discusses the data analysis methods used
in metrology, while chapter 5 is concerned with important empirical models
used in metrology. These two chapters present tutorial material on estimation
methods and model types.

Chapters 6 to 10 discusses the main aspects of model validation. A number of
case studies are given in section 11 illustrating the use of model types, parameter
estimation and validation methods. The chapters on data analysis methods,
model types and case studies will be further expanded in future revisions of the
Guide.

2



Discrete modelling and experimental data analysis

A summary of the main issues is given in section 12.

Version 1.0 (March 2000)

Version 1.1 revision of this guide (January 2002)

The main changes introduced in version 1.1 were:

• Correction of typographical errors;

• Correction to formulæ concerning Chebyshev polynomials on page 75;

• Minor changes to the text;

• Expanded index section.

Version 2.0 (April 2004)

The main changes introduced in this revision are

• Incorporation (as chapters 6 to 10) of SSf M Best Practice Guide No. 10:
Discrete Model Validation [11];

• Review of statistical concepts;

• More explicit description of statistical models in terms of random
variables;

• Tutorial material on generalised Gauss-Markov regression, asymptotic
least squares, maximum likelihood estimation, Bayesian parameter
estimation;

• Tutorial material on Fourier series, asymptotic polynomials, tensor
product surfaces, wavelets, radial basis functions, neural networks, and
nonuniform rational B-splines;

• Additional case studies.

1.3 Discrete modelling resources

1.3.1 Reference books

Discrete modelling draws on a number of disciplines, including data approx-
imation, optimisation, numerical analysis and numerical linear algebra, and
statistics. Although aspects of discrete modelling are technically difficult, much

3
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of it relies on a few underlying concepts covered in standard text books; see,
for example, [94, 117, 119, 142, 150, 169, 183, 187, 204, 207]. Many text
books and reference books have explicit descriptions of algorithms; see e.g.
[110, 119, 165, 207], and a number of books also supply software on a disk,
including the Numerical Recipes family of books [184] which give reasonably
comprehensive guidance on algorithm design and further reading.

1.3.2 Conference series

While standard textbooks are valuable for understanding the basic concepts, few
are concerned with metrology directly. The main objective of the conference se-
ries Advanced Mathematical and Computational Tools in Metrology is to discuss
how these mathematical, numerical and computational techniques can be used in
metrology. Collected papers associated with the conferences are published; see
[44, 45, 46, 47, 48] and the forthcoming [181]. Many of the papers present survey
or tutorial material directly relevant to discrete modelling; see, for example,
[19, 21, 22, 23, 37, 43, 59, 60, 61, 62, 64, 81, 88, 101, 103, 118, 148, 149, 153, 186].

The conference series Algorithms for Approximation [78, 145, 151, 152] deals
with more general aspects of data approximation, many of which have direct
relevance to metrology.

1.3.3 Software sources

The last four decades have been ones of great success in terms of the development
of reliable algorithms for solving the most common computational problems. In
the fields of numerical linear algebra – linear equations, linear least squares,
eigenvalues, matrix factorisations — and optimisation — nonlinear equations,
nonlinear least squares, minimisation subject to constraints, linear program-
ming, nonlinear programming — there is now a substantial core of software
modules which the metrologist can exploit.

The scientist has a range of sources for software: i) specialist software devel-
opers/collectors such as the NAG library in the UK and IMSL in the US,
ii) National laboratories, for example NPL, Harwell, Argonne, Oakridge, iii)
universities, iv) industrial laboratories, v) software houses and vi) instrument
manufacturers. Library software, used by many scientists and continually main-
tained, provides perhaps the best guarantee of reliability.

Library software. Below is a list of some of the libraries which have routines
relevant to the metrologist.

NAG: A large Fortran Library1 covering most of the computational disciplines
including quadrature, ordinary differential equations, partial differential

1The NAG Library is available in other languages
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equations, integral equations, interpolation, curve and surface fitting, op-
timisation, linear algebra (simultaneous linear equations, matrix factorisa-
tions, eigenvalues), correlation and regression analysis, analysis of variance
and non-parametric statistics. [173]

IMSL: International Mathematical and Statistical Libraries, Inc. Similar to
NAG but based in the US. [203]

LINPACK: A Fortran library for solving systems of linear equations, including
least-squares systems, developed at Argonne National Laboratory (ANL),
USA. See [87], and Netlib (below).

EISPACK: A companion library to LINPACK for solving eigenvalue problems
also developed at ANL. See [193], and Netlib (below).

LAPACK: A replacement for, and further development of, LINPACK and
EISPACK. LAPACK also appears as a sub-chapter of the NAG library.
See [190], and Netlib (below).

Harwell: Optimisation routines including those for large and/or sparse prob-
lems. [128]

DASL: Data Approximation Subroutine Library, developed at NPL, for data
interpolation and approximation with polynomial and spline curves and
surfaces. [8]

MINPACK: Another Fortran Library developed at ANL for function minimi-
sation. MINPACK contains software for solving nonlinear least-squares
problems, for example. See [115], and Netlib (below).

A number of journals also publish the source codes for software. In particular the
ACM Transactions on Mathematical Software has published over 700 algorithms
for various types of computation. Applied Statistics publishes software for
statistical computations.

Most library software has been written in Fortran 77, a language well suited
to numerical computation but in other ways limited in comparison with more
modern languages. The situation has changed radically with the advent of
new versions of the language — Fortran 90/95 [148, 157] — which have all
the features that Fortran 77 was perceived as lacking while maintaining full
backwards compatibility. Using Fortran 90/95 to create dynamically linked
libraries (DLLs), it is relatively straightforward to interface the numerical library
software with spreadsheet packages on a PC, for example, or to software written
in other languages. Many library subroutines now also appear in Fortran 90/95
implementations, e.g. [12, 174]; see also [185].

Scientific software packages. There are a number of scientific software
packages, including Matlab, Mathematica, MathCad and S-Plus that are widely
used by numerical mathematicians, scientists and engineers [154, 155, 156, 166,
208, 209]. The online documentation associated with these packages includes
extensive tutorial material.
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Netlib. A comprehensive range of mathematical software can be obtained
over the Internet through Netlib [86]. For example, the LINPACK, EISPACK,
LAPACK and MINPACK libraries are available through Netlib along with
the later algorithms published in ACM Transactions on Mathematical Software
[188]. The system is very easy to use and there are also browsing, news and
literature search facilities.

Statlib. Statlib is similar to Netlib but covers algorithms and software for
statistical calculations. [197]

Guide to Available Mathematical Software - GAMS. The Guide to
Available Mathematical Software [170] developed and maintained by the Na-
tional Institute of Standards and Technology (NIST), Gaithersburg, MD, pro-
vides a comprehensive listing of mathematical software classified into subject
areas such as linear algebra, optimisation, etc. It includes the software in Netlib
and the NAG and IMSL libraries. Using the search facilities the user can quickly
identify modules in the public domain or in commercial libraries.

e-Handbook of Statistical Methods. NIST/SEMATECH also publishes,
online, a Handbook of Statistical Methods [171].

1.3.4 SSf M and EUROMETROS

The resources we have listed so far relate to science in general rather than
metrology in particular. Certainly, many of the problems in metrology are
generic and it is sensible to apply general solutions where they are appropriate.
The SSf M programme as a whole aims to bridge the gap between the best
computational techniques and the needs of metrology with the main focus of
bringing appropriate technology to the metrologist in a usable form. The SSf M
website [167] continues to provide an access point to a range of resources in the
form of best-practice guides, reports, etc., and has assembled a large number of
documents.

In particular, the SSf M programme provides not only information but also
access to metrology software. While, in principle, many of the computations re-
quired by metrologist can be performed by assembling software from appropriate
library modules found in Netlib or GAMS, the path from a list of library modules
to software that solves the metrologist’s problem in the preferred environment
may be long and complicated, for a number of reasons:

1. The identification of the correct library modules and their integration may
require detailed technical knowledge of the algorithms.

2. The library software may be in an unfamiliar language and/or not easily
interfaced with the metrologist’s application software.

3. The available software is not portable to the metrologist’s computer.
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4. The software documentation is unfriendly, written in generic mathematics
rather than the language of the application domain.

The eurometros2 metrology software repository (formerly MetroS) provides
the metrologist easy access to modules performing the key functions for metrol-
ogy. MetroS was developed as part of the Software re-use project of the
first SSf M programme; in the second SSf M programme, it was renamed as
eurometros to reflect its relationship with the EUROMET organisation [91]
and AMCTM European thematic network [2], and was re-implemented with
new user interfaces [9].

The current content of eurometros is predominantly routines for fitting em-
pirical and geometric models to data, and routines associated with those models
or with the fitting problems. These are mainly implementations developed by
NPL in SSf M and previous programmes. eurometros also describes functions
and algorithms for metrology problems, test data sets for testing solutions to
those problems, and reference material (best/good practice guides, papers, case
study reports, etc.) related to software for metrology.

The implementations of metrological functions in eurometros will be writ-
ten and documented in the language of the metrological domain rather than
that of the underlying numerical technology. Interface modules will allow the
metrologist to use the key functions in the preferred computing environment,
for example, as part of a spreadsheet calculation. eurometros will both make
existing software visible and accessible, and promote the development of new
functions, algorithms and implementations to meet new requirements. As part
of the SSf M programme, NPL have developed procedures for the testing and
validation of algorithms and software contributed to eurometros [10], which
will help ensure the quality of contributions.

1.4 General notation

See table 1.1.

2www.eurometros.org
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] denotes the end of text concerning an example.
m number of measurements.
n number of model parameters a = (a1, . . . , an)T.
a vector of model parameters a = (a1, . . . , an)T.
N(µ, σ2) univariate Gaussian or normal distribution with mean µ and

standard deviation σ.
U(a, b) rectangular (uniform) distribution, constant on [a, b] and

zero outside this interval.
p number of model variables x = (x1, . . . , xp)T.
x vector of model variables x = (x1, . . . , xp)T.
R the set of real numbers.
Rn the set of n-vectors x = (x1, . . . , xn)T of real numbers.
{xi}m

1 set of m elements indexed by i = 1, 2, . . . ,m.
z data set of measurements, often comprising of data points

{(xi, yi)}m
1 each stored as a column vector.

[a, b] set of numbers {x : a ≤ x ≤ b}.
aT, AT transpose of a vector or matrix.
aTb inner product of two vectors aTb = a1b1 + . . .+ anbn.
I identity matrix with 1s on the diagonal and 0s elsewhere.
J Jacobian matrix associated with a set of functions fi(a) of

parameters: Jij = ∂fi

∂aj
.

A(z) parameter estimate determined from data z by estimator A.
D(α) Distribution with parameters from the vector α

(section 2.4.2).
D(u) Generalised distance (section 4.3.2).
E(X) expectation of the vector of random variables X.
V (X) variance or uncertainty matrix of the vector of random

variables X.
u(x) standard uncertainty associated with the estimate, x, of a

random variable.
stdi{xi} standard deviation of the data set {xi}m

i=1.
D, E scaling matrices (section 2.3.1), random variables

(section 2.4.5); and see D(α), D(u), E(X) above.
X, Y , etc., random variables.
∇af vector of partial derivatives ( ∂f

∂a1
, . . . , ∂f

∂an
)T for a function

f(a) with respect to the parameters a = (a1, . . . , an)T.

m∑
i=1

xi sum of elements:
∑m

i=1 xi = x1 + . . .+ xm.

m∏
i=1

xi product of elements:
∏m

i=1 xi = x1 × . . .× xm.

Table 1.1: General notation used in this Guide.
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Chapter 2

Model building

2.1 Model types

Mathematical modelling, in general, involves the assignment of mathematical
terms for all the relevant components of a (measurement) system and the
derivation of equations giving the relationships between these mathematical
entities. In these models, we can distinguish between terms that relate to
quantities that are known or measured and those that are unknown or to be
determined from the measurement data. We will in general call the former terms
model variables and use x = (x1, . . . , xp)T, y, etc., to denote them and call the
latter model parameters and denote them by a = (a1, . . . , an)T, b, etc.

A physical model is one in which there is a theory that defines how the variables
depend on each other.

An empirical model is one in which a relationship between the variables is
expected or observed but with no supporting theory. Many models have both
empirical and physical components.

An explicit model is one in which one or more of the variables is given as a
directly computable function of the remaining variables. We write y = φ(x,a)
to show that y is a function of the model variables x and parameters a. If x
and a are known, then the corresponding value for y can be calculated. The
variable y is known as the response or dependent variable and the variables x
are known as the covariates, stimulus or explanatory variables.1

An implicit model is one in which the variables are linked through a set of
equations. We write, for example, f(x,a) = 0 to show that the components of
x are related implicitly. It is often possible to write one variable as a function
of the others, e.g.,

x1 = φ1(x2, . . . , xp,a).

1The term independent variable is sometimes used but the use of the word ‘independent’
can be confused with the notion of statistical independence.
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Example: implicitly and explicitly defined circle

The equation for a circle centred at (a1, a2) with radius a3 can be written
implicitly as

f(x,a) = (x1 − a1)2 + (x2 − a2)2 − a2
3 = 0.

We can solve for x1 explicitly in terms of x2,

x1 = a1 ±
√

[a2
3 − (x2 − a2)2],

or for x2 in terms of x1,

x2 = a2 ±
√

[a2
3 − (x1 − a1)2].

We can rewrite these two equations in parametric form x = φ(u,a) as

(x1, x2) = (a1 ±
√

[a2
3 − (u− a2)2], u), or

(x1, x2) = (u, a2 ±
√

[a2
3 − (u− a1)2]).

The first equation becomes problematical when |x2 − a2| ≈ a3 while the second
when |x1 − a1| ≈ a3. It is often the case that when going from an implicit
expression to an explicit expression there is a preferred choice (depending on
the particular circumstances) and that some choices are excluded because the
equations become singular in some way. Sometimes an implicit form is preferable
even when an explicit form can be deduced from it because the former has better
numerical stability.

Alternatively, we can express the circle parametrically x = φ(u,a) as

x1 = a1 + a3 cosu, x2 = a2 + a3 sinu.

This form is valid for all values of u. ]

A linear model is one in which the parameters a appear linearly. For explicit
models, it takes the form

y = φ(x,a) = a1φ1(x) + . . .+ anφn(x),

where the functions φj(x) are basis functions depending on the variables x.

A nonlinear model is one in which one or more of the parameters a appear
nonlinearly.

Example: exponential decay

The function
y = a1e

−a2x

is an example of a nonlinear (explicit) model since the parameter a2 appears
nonlinearly. ]

Many (but by no means all) of the models that occur in practice such as
polynomials (section 5.1) and splines (section 5.2) are linear. They have the
advantage that when it comes to determining best estimates of the model
parameters from data (chapter 3) the equations that arise are easier to solve.
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2.2 Space of models

Consider an experimental set up in which a response variable y depends on
a number of covariates x = (x1, . . . , xp)T. We make the assumption that the
system is deterministic in that the same values of the variables gives rise to
the same response, i.e., if x1 = x2 then correspondingly y1 = y2. With this
assumption, we can say that the response y is a function of the variables x and
write

y = φ(x),

to denote this relationship. If we assume that the response y depends continu-
ously on each of the variables xk, then we can restrict the choices for φ to be
continuous functions. Further assumptions will in turn limit the possible choices
for φ.

The goal of the modelling process is to include enough information about the
system so that the range of choices for the function φ is determined by specifying
a finite number of additional parameters a = (a1, . . . , an)T. Each set of values
of these parameters determines uniquely a response function y = φ(x,a). We
call the collection of all such functions φ(x,a) the space of models. Ideally, the
actual response function φ is specified by one such function φ(a,x), i.e., the
space of models is large enough to model the actual behaviour. On the other
hand we do not want the space of models to include functions that represent
system behaviour that is physically impossible, i.e., the space of models should
not be too large.

Example: linear response

One of the most common types of model is one in which the response variable
depends linearly on a single variable x:

y = φ(x, a1, a2) = a1 + a2x,

specified by intercept a1 and slope a2. Here the space of models is the collection
of linear functions {y = a1 + a2x}. ]

The term linear response model should not be confused with a linear model
(defined in section 2.1), although linear response models are linear because
a1 + a2x is linear in (a1, a2).

Example: exponential decay

Suppose the response y is an exponential decay depending on the single variable
x (time, say). Then y can be modelled as

y = φ(x, a1, a2) = a1e
−a2x

depending on two parameters a1 and a2. Here, the space of models is the
collection of functions {y = a1e

−a2x}. ]

Example: circles

In dimensional metrology, the nominal shape of the cross section of a shaft is
modelled as a circle. A circle (in a given Cartesian co-ordinate system) can be
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specified by three parameters, its centre coordinates (a1, a2) and radius a3. To
each set of parameters (a1, a2, a3), we associate the circle

{(x, y) : (x− a1)2 + (y − a2)2 = a2
3}.

]

Example: water density

A number of models for the density of water y as a function of temperature x
have been proposed, e.g.

y

y0
= φ1(x, a1, . . . , a4) = 1− a2(x− a1)2(x+ a3)

x+ a4
,

y

y0
= φ2(x, a1, . . . , a6) = 1− a2(x− a1)2(x+ a3)(x+ a5)

(x+ a4)(x+ a6)
,

y

y0
= φ3(x, a1, . . . , a6) = 1−

5∑
j=1

aj+1(x− a1)j ,

y

y0
= φ4(x, a1, . . . , a9) = 1−

9∑
j=1

ajx
j−1,

where y0 represents the maximum density. These models are empirical in that
there is no theory to define exactly the space of models. Note that the number
of parameters (4, 6, 6 and 9) used to specify the functions differs from model to
model. This is often the case with empirical models. ]

In some sense, the essence of model building is being able to define the right
number and type of parameters that are required to characterise the behaviour
of the system adequately.

2.3 Model parameterisation

Model parameterisation is concerned with how we specify members of the space
of models. Given a space of models, a parameterisation assigns to a set of values
of the parameters a a unique member of the space of models, e.g., a particular
curve from a family of curves.

Example: straight lines

The equation
L1 : (a1, a2) 7→ {y = a1 + a2x}

associates to the pair of parameters (a1, a2) the linear function y = a1 + a2x.
Consider, also,

L2 : (a1, a2) 7→ {y = a1 + a2(x− 100)}.

These two methods are mathematically equivalent in the sense that given any
pair (a1, a2) it is possible to find a unique pair (a′1, a

′
2) such that L2 assigns the
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same line to (a′1, a
′
2) as L1 assigns to (a1, a2), and vice versa. From a numerical

point of view, the parameterisation L2 may be preferable if the variable x is
likely to have values around 100. However, the parameterisation

L3 : (a1, a2) 7→ {x = a1 + a2y}

is not equivalent to L1 since there is no pair (a1, a2) that L3 can assign to the
line y = 0. Similarly, L1 cannot represent the line x = 0.

Note that the parameterisation

L4 : (a1, a2) 7→ {−x sin a1 + y cos a1 = a2}

can be used to represent all lines. ]

Example: circles

The assignment

C1 : (a1, a2, a3) 7→ {(x, y) : (x− a1)2 + (y − a2)2 = a2
3},

parameterises circles in terms of their centre coordinates and radius. Consider
also

C2 : (a1, a2, a3) 7→ {(x, y) : x2 + y2 + a1x+ a2y + a3 = 0},
C3 : (a1, a2, a3) 7→ {(x, y) : a1(x2 + y2) + a2x+ y = a3}.

The parameterisations C1 and C2 are equivalent to each other in that they can
represent exactly the same set of circles but not to C3. The parameterisation
C3 can be used to model arcs of circle approximately parallel to the x−axis in a
stable way. Indeed, lines (in this context, circles with infinite radius) correspond
to circles with a1 = 0 in this parameterisation. ]

2.3.1 Centring and scaling

Model parameterisations that are equivalent from a mathematical point of view
may have different characteristics numerically. For example, we can scale or
translate the variables and parameters and still define the same model space.

Example: variable transformation for a quadratic curve

Suppose in an experiment, the response y is modelled as a quadratic function
of the variable x,

y = a1 + a2x+ a3x
2,

and x is expected to lie in the range [95, 105]. Using this equation, the
quadratic curves are specified by the coefficients a1, a2 and a3. We can instead
parameterise these curves in terms of the transformed variable z

y = b1 + b2z + b3z
2,

where z = (x− 100)/5 is expected to lie in the range [−1, 1]. ]
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More generally, given a model of the form y = φ(x,a), we can reparameterise it
as y = φ(z,b) where

z = D(x− x0), b = E(a− a0),

and D and E are p × p and n × n nonsingular scaling matrices and x0 and a0

fixed p- and n-vectors. Typically, we set x0 to be the centroid of the data:

x0 =
1
m

m∑
i=1

xi,

a0 to be middle of the expected range for the parameters a and set the scaling
matrices such that

∂φ

∂zk
,
∂φ

∂bj
≈ ±1 near z = 0, b = 0.

These transformations will generally improve the numerical performance of algo-
rithms operating with the model. Often, the improvements are very significant.

2.3.2 Choice of basis functions

Suppose we have a linear model defined in terms of the basis functions φj as

y = φ(x,a) = a1φ1(x) + . . .+ anφn(x).

Given a nonsingular n×n matrix D whose jth column is dj , we can define new
basis functions ψj according to

ψj(x) = d1jφ1(x) + . . .+ dnjφn(x),

and reparameterise the model as

y = ψ(x,b) = b1ψ1(x) + . . .+ bnψn(x),

in order to improve the stability of the model. Such considerations are particu-
larly important for polynomial or spline models (sections 5.1, 5.2).

2.3.3 Resolving constraints

Often the natural ‘parameters’ used to describe a model give rise to degrees of
freedom that need to be resolved.

Example: parameters describing the geometry of targets on a planar artefact

In dimensional metrology, artefacts such as a hole plate can be modelled as a
set of targets lying in a plane. The location of these targets can be described
by their coordinates a = (a1, b1, a2, b2, . . . , an, bn)T where aj = (aj , bj)T is the
location of the jth target. However, the parameters a do not specify the frame
of reference for the targets and three constraints have to be introduced to fix
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the three degrees of freedom (two translational and one rotational) associated
with the system.

For example, suppose there are four points nominally at the corners of a square.
We can eliminate the translational degrees of freedom by constraining the cen-
troid (ā, b̄)T to be at (0, 0)T:

ā =
1
n

n∑
j=1

aj = 0, b̄ =
1
n

n∑
j=1

bj = 0, where n = 4 for a square

Similarly, we can fix the orientation of the targets by constraining one of the
targets to lie on the line y = x: a1 = b1, say. These three constraints can be
written in the form

Da = 0,

where D is the 3× 8 matrix

D =
1
4

 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
4 −4 0 0 0 0 0 0

 .
]

2.4 Uncertainty structure in measurement data

In this section, we review briefly some of the statistical concepts used to repre-
sent our uncertainty or degree of belief in measurement data. See, for example,
[71, 72, 139].

2.4.1 Probability

The probability P (A) of a statement (proposition, event) A is a real number
between 0 and 1, with 0 meaning the statement must be false and 1 that it must
be true. The larger the probability, the more likely the statement is to be true.
The probability of A and B being true is denoted by P (A,B). The notation
P (A|B) means the probability of A given that statement B is true. There are
two basic rules that define how probabilities are combined.2 If Ā represents the
statement ‘A is false’ then

P (A) + P (Ā) = 1.

This is called the sum rule. The product rule states that

P (A,B) = P (A|B)× P (B) = P (B|A)× P (A),

in words, the probability that both A and B are true is equal to the probability
that A is true given that B is true times the probability that B is true. Two

2The work of R. T. Cox [80] showed that these rules are essentially unique and that any
useful theory of probability would have to obey them.
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statements A and B are independent if P (A|B) = P (A) and P (B|A) = P (B),
i.e., the probability of one being true does not depend on our knowledge of the
other. For independent A and B, the product rule is P (A,B) = P (A)P (B).

Bayes’ Theorem arises from a rearrangement of the product rule:

P (A|B) =
P (B|A)× P (A)

P (B)
. (2.1)

If we regard A as a statement about parameters and B as a statement about
measurement data, Bayes’ Theorem allows us to update our original information
P (A) about A in the light of the measurements B; see section 4.11.

2.4.2 Random variables and distributions

We use a random variable X to represent a quantity about which we have
uncertain knowledge. The quantity may be discrete, for example, the number
of pills in a bottle taken from a production line in a pharmaceutical plant, or
continuous, for example, the volume of liquid in a medicine bottle from another
production line. We associate to a random variable X a probability distribution
which allows us to assign probabilities to statements about X.

Discrete random variables

A discrete random variable X is a variable that can take only a finite num-
ber of possible values. The frequency function p(x) states the probabilities of
occurrence of the possible outcomes:

p(x) = P (X = x),

the probability that the outcome is x. The distribution function G(x) gives the
probability that a random variable takes a value no greater than a specified
value:

G(x) = P (X ≤ x), −∞ < x <∞.

The distribution function varies from zero to one throughout its range, never
decreasing.

Continuous random variables

A continuous random variableX is a variable that can take any value in its range
(which may be infinite). For a continuous random variable X, the counterpart of
the frequency function (for a discrete random variable) is the probability density
function (PDF) g(x). This function has the property that the probability that
the value of X lies between a and b is

P (a < X < b) =
∫ b

a

g(x) dx.
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In order that the sum rule is obeyed, PDFs must have unit area, i.e.,

P (−∞ < X <∞) =
∫ ∞

−∞
g(x) dx = 1.

For example, the rectangular PDF is a density function that describes the fact
that the value of X is equally likely to lie anywhere in an interval [a, b]:

g(x) =
{

1
b−a , a ≤ x ≤ b,

0, otherwise.

We use the notation X ∼ U(a, b) to indicate that X has a rectangular distribu-
tion defined on the interval [a, b].

The distribution function G(x) gives the probability that a random variable
takes a value no greater than a specified value, and is defined as for a discrete
random variable:

G(x) = P (X ≤ x), −∞ < x <∞.

The distribution function can be expressed in terms of the probability density
function as

G(x) =
∫ x

−∞
g(t) dt.

Conversely, g(x) = G′(x), the derivative of G. A continuous probability distri-
bution can therefore be defined in terms of either the distribution function G
or the probability density function g.

A function Y = h(X) of a random variable X is also random variable and its
distribution is determined by h and the PDF of X.

Probability density functions used in practice are usually determined by a small
number of parameters. One of the most important distributions is the normal
or Gaussian distribution whose PDF is

g(x) = g(x|µ, σ) =
1

(2πσ2)1/2
exp

{
−1

2

(
x− µ

σ

)2
}
.

We use the notation X ∼ N(µ, σ2) to indicate X is a random variable associated
with a normal distribution defined by parameters µ and σ. More generally,
X ∼ D(α) means that X is associated with a probability distribution D whose
PDF is defined in terms of parameters α.

A vectorX = (X1, . . . , Xn)T of random variables has a multivariate distribution
defined in terms of a nonnegative multivariate function g(x). Two random
variables (X,Y )T are independently distributed if the associated PDF g(x, y)
can be factored as g(x, y) = gx(x)gy(y).
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2.4.3 Operations on distributions

Measures of location and dispersion

For a given distribution, it is usual to calculate, if possible, quantities that
provide a useful summary of its properties. A measure of location L(X) is such
that L(X + c) = L(X) + c and is used to determine a representative value for
X. A measure of dispersion (spread) S(X) is such that S(cX) = cS(X) and
gives an estimate of the size of the likely range of values of X.

Expectations

Summarising quantities are often derived in terms of expectations.
If X ∼ D has associated PDF g(x) and h(X) is a function of X, then the
expectation E(h(X)) of h(X) is

E(h(X)) =
∫ ∞

−∞
h(x)g(x) dx.

(If may be that this integral is not finite in which case E(h(X)) is said not to
exist.)

Mean, variance and standard deviation

Of particular importance are the mean µ = E(X),

µ =
∫ ∞

−∞
xg(x) dx,

and the variance V (X) = E((X − E(X))2):

V (X) =
∫ ∞

−∞
(x− µ)2g(x) dx, µ = E(X).

The positive square root of the variance is known as the standard deviation
and is usually denoted by σ so that σ2 = V (X). The mean is a measure of
location of X and the standard deviation is a measure of dispersion. We note
that if X ∼ N(µ, σ2) then E(X) = µ and V (X) = σ2. If X has a rectangular
distribution, X ∼ U(a, b), then E(X) = (a+ b)/2 and V (X) = (b− a)2/3.

Expectations can also be applied to multivariate distributions. For example,
the covariance C(X,Y ) of a pair (X,Y ) of random variables with joint PDF
g(x, y) is defined to be

C(X,Y ) = E((X − E(X))(Y − E(Y ))),

=
∫

(x− µX)(y − µY )g(x, y) dx dy,

µX = E(X) =
∫
xg(x, y) dx dy, µY = E(Y ) =

∫
yg(x, y) dx dy,
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and V (X) = C(X,X). If X = (X1, . . . , Xn)T is a vector of random variables
then the variance matrix V (X), also known as the uncertainty matrix , covari-
ance or variance-covariance matrix, is the n× n matrix with Vij = C(Xi, Xj).

Example: multivariate normal (Gaussian) distribution

The multivariate normal (Gaussian) distribution for n variables N(µ, V ) is
defined by its mean µ = (µ1, . . . , µn)T and n × n variance matrix V and has
PDF

p(x|µ, V ) =
1

|2πV |1/2
exp

{
−1

2
(x− µ)TV −1(x− µ)

}
, (2.2)

where |V | denotes the determinant of V . ]

The importance of the mean and variance are that there are simple rules for
calculating them for linear combinations of random variables. If X and Y are
random variables and c and d are two constants, then

E(cX + dY ) = cE(X) + dE(Y ),
V (cX + dY ) = c2V (X) + d2V (Y ) + 2cdC(X,Y )

}
. (2.3)

2.4.4 Propagation of uncertainties

The law of the propagation of uncertainties (LPU), see [24] and [71, chapter 6]
is rooted in the rules for the means and variances expressed in (2.3). Suppose
first that Y is a linear combination of n random variables X = (X1, . . . , Xn)T,

Y = c1X1 + . . .+ cnXn = cTX, (2.4)

where c = (c1, . . . , cn)T are known constants. Suppose that Xj are associated
with distributions with means xj and standard deviations uj = u(xj) and that
the Xj are independently distributed. A simple extension of (2.3) shows that
Y is associated with a distribution with mean

y = E(Y ) = c1E(X1) + . . .+ cnE(Xn) = c1x1 + . . .+ cnxn,

and variance

u2(y) = V (Y ) = c21V (X1) + . . .+ c2nV (Xn) = c21u
2
1 + . . .+ c2nu

2
n.

This is true no matter the distributions for Xj (so long as their means and
standard deviations are defined).

Now suppose Y is defined as a function Y = f(X1, . . . , Xn) with the Xj dis-
tributed as before. The random variable Y is associated with a distribution and
we wish to know its mean and standard deviation. We can find an approximate
answer by linearising the function Y about y = f(x). In (2.4) the constant cj
represents the sensitivity of Y with respect to changes in Xj : if Xj changes by
∆j then Y changes by cj∆j . For a nonlinear function f , the sensitivity of Y
with respect to a change in Xj is given by the partial derivative cj = ∂f/∂Xj

evaluated at xj . (This partial derivative is simply the slope at Xj = xj of the
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function f regarded as a function of Xj alone with all other variables held fixed.)
The linear approximation can then be written as

Y − y ≈ c1(X1 − x1) + . . .+ cn(Xn − xn),

or
Ỹ ≈ c1X̃1 + . . .+ cnX̃n, (2.5)

with new random variables Ỹ = Y − y and X̃j = Xj − xj , j = 1, . . . , n.

Equation (2.5) is of the same form as (2.4) and so

E(Y − y) = E(Y )− y ≈ c1(E(X1)− x1) + . . .+ cn(E(Xn)− xn) = 0,

i.e., E(Y ) ≈ y, and

u2
y = V (Y − y) = V (Y )

≈ c21V (X − x1) + . . .+ c2nV (Xn − xn)
= c21u

2
1 + . . . c2nu

2
n.

Here, we have used the rule V (X − x) = V (X). In summary, for nonlinear
functions Y = f(X) we use the same rule as for linear functions but with the
sensitivities cj calculated as partial derivatives. We must be aware, however,
that the resulting estimate of the standard deviation is derived from a lineari-
sation and may be different from the actual value (section 7.2).

2.4.5 Measurement model

The space of models represents the mathematical relationship between the
various variables and parameters. In practice, the values of the variables are
inferred from measurements subject to random effects, that are difficult to
characterise. These effects are modelled as random variables, generally with
expectation zero. The actual measured values are regarded as observations
of the associated random variable drawn from the corresponding statistical
distribution.

Suppose that the response y is modelled as a function y = φ(x,a) depending on
variables x and model parameters a and that measurements of y are subject to
random effects. The measurement model is of the form

Y = φ(x,a) + E, E(E) = 0.

We note that since E(E) = 0, E(Y ) = φ(x,a), i.e., the value of φ(x,a) predicted
by the model φ(x,a) is equated with the expected value of the random variable
Y . Suppose measurements yi are gathered with yi ∈ Y , i.e., yi is an observation
of the random variable Yi where

Yi = φ(xi,a) + Ei, E(Ei) = 0.

We can then write
yi = φ(xi,a) + εi, εi ∈ Ei,
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where εi = yi − φ(xi,a) represents the observed value of the random variable
Ei and can be thought of the deviation between the measurement value and
the model prediction. (In data approximation, we sometimes refer to εi as the
approximation or residual error.)

In many situations the measurements of two or more variables are subject to
significant random effects. In this case the measurement model has a more
general form such as

X = x∗ +D, E(D) = 0, E(X) = x∗;
Y = φ(x∗,a) + E, E(E) = 0.

Measurements (xi, yi) are regarded as observations of the random variables
(X, Y ), i = 1, . . . ,m, and we write

yi = φ(x∗ + δi,a) + εi, i = 1, . . . ,m,

with δ ∈D and εi ∈ E.

For implicit models f(x,a) = 0, the corresponding model equations are written
as

X = x∗ +E, E(E) = 0, E(X) = x∗;
f(x∗ + εi,a) = 0, εi ∈ E i = 1, . . . ,m.

Example: refractive index of air

The refractive index of air is modelled as a function of air temperature, pressure
and humidity (and other variables such as carbon dioxide content) with all three
subject to significant random effects. ]

2.4.6 Statistical models for random effects

The uncertainty structure has to describe not only which measurements are sub-
ject to random effects but also the statistical nature of these effects. Measure-
ments z = (z1, . . . , zm)T are regarded as observations associated with random
variables Z = (Z1, . . . , Zm)T and the statistical model is described by informa-
tion about the multivariate statistical distribution for Z. Often the information
about the multivariate PDF is summarised in terms of the mean E(Z) and
variance (uncertainty) matrix V (Z) rather than specifying the complete PDF.

If measurement zi is associated with random variable Zi, then the standard
uncertainty u(zi) associated with zi is the standard deviation of Zi, i.e.,

u2(zi) = V (Zi) = (V (Z))ii,

the ith diagonal element of uncertainty matrix V (Z).

Example: standard experiment model

We will refer to the following model as the standard experiment model. A
response variable y is modelled as a function y = φ(x,a) of variables x and
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parameters a and a set {(xi, yi)}m
1 of measurements gathered with each yi

subject to independent random effects described by a normal distribution with
zero mean and standard deviation σ. The model equations are

yi = φ(xi,a) + εi, i = 1, . . . ,m,

with ε ∈ N(0, σ2I). These equations represent a complete statement of the
model of the experiment.

The standard uncertainty u(yi) associated with yi is σ. ]

There are common variations in this standard model. For example, the standard
uncertainties may vary with the measurements, in which case εi ∈ N(0, σ2

i ). If
the random variables Ei are correlated, with uncertainty matrix V , the vector
ε is modelled as belonging to a multinormal distribution: ε ∈ N(0, V ).

There is further guidance on statistical modelling for experimental error models
in [72].
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Chapter 3

Model solving and
estimators

3.1 Approximation from a space of models

The space of models attempts to characterise all possible (or probable) be-
haviour of a particular type of system, e.g., the ways in which a response variable
could vary with its covariates. Model solving is the process of determining from
data gathered from a measurement system, a particular model that adequately
represents the system behaviour. Constructing the model space is concerned
with defining where we should look to explain the behaviour; model solving is
concerned with selecting the best candidate from the options defined by the
model space.

If the members of the model space are described by parameters a and the
measurement data z is regarded as being generated by a system specified by
parameters a∗, then model solving amounts to providing an estimate of a∗ from
z. A scheme for determining such an estimate from data we term an estimator.
We use the symbols A, B, etc., to denote estimators; a = A(z) means the
estimate of the model parameters provided by estimator A from data z.

3.2 Error functions and approximation norms

In general, estimators are defined using an error function F (a|z) that provides
some measure of how well the data z matches the model behaviour specified
by a. The estimate of a∗ is provided by (the estimate of) the minimiser of
F (a|z), i.e., a point at which F takes a minimum value. Different estimators
are associated with different error functions.

Error functions are usually constructed to provide an aggregate measure of good-
ness of fit taking into account all the measurement data. These error functions
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are often related to approximation norms and the least-squares estimator is one
of a family of estimators derived from such norms.

Example: approximation norms

In a standard experiment with model y = φ(x,a) and data z = {(xi, yi)}m
1 , the

quantity
fi = fi(xi,a) = yi − φ(xi,a)

is a measure of the deviation of the model specified by a from the data point
(xi, yi). An aggregate measure of the fit is given by a norm of the vector
f = (f1, . . . , fm)T such as the p-norm

Fp(a|z) = ‖f‖p =

{
m∑

i=1

|fi|p
}1/p

,

for any prescribed value of p satisfying 1 ≤ p ≤ ∞. In this guide, the p-norm is
denoted by Lp; elsewhere `p is also used for the discrete case.

Of particular importance are the L1-norm

F1(a|z) =
m∑

i=1

|fi|,

the L2-norm (least squares)

F2(a|z) =

{
m∑

i=1

f2
i

}1/2

,

and the L∞ or Chebyshev norm

F∞(a|z) = max
1≤i≤m

|fi|.

]

3.3 Estimator properties

Suppose that an experimental system is specified by parameters a∗, measure-
ments z have been gathered, resulting in parameter estimates a = A(z). Regard-
ing z as a set of observations of a vector of random variables Z with multivariate
PDF p(x), then a is an observation of the vector of random variablesA = A(Z).
In principle, the PDF gA associated with A is determined by that for Z, and
has a mean E(A) and variance V (A). We would like gA to be concentrated in
a region close to a∗ so that the probability of observing an estimate A(z) that
is is close to a∗ is high. One measure of how good an estimator is given by the
mean squared error (MSE) defined by

MSE(A) = E((A− a∗)2) =
∫

(x− a∗)2gA(x) dx =
∫

(A(x)− a∗)2p(x) dx,
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and the root mean squared error, RMSE(A) = (MSE)1/2. The RMSE is a
measure of the likely distance of the estimate from a∗. An estimate A is unbiased
if E(A) = a∗, in which case MSE(A) = V (A). An unbiased estimator with a
small variance is statistically efficient. Efficiency is used in a relative sense to
compare estimators with each other (or with certain theoretical bounds; see
e.g., [150, chapter 4]). The MSE depends on both the bias E(A)− a∗ and the
variance V (A). An estimator A is consistent if the more data points we take in
each data set z, the closer a = A(z) gets to a∗ (in a stochastic sense).

3.4 Maximising the likelihood

Maximum likelihood estimation uses the fact that in a complete statement of
a model, the deviations εi are modelled as belonging to statistical distributions
defined in terms of probability density functions (section 2.4.6). These distri-
butions can be used to define a likelihood function. Suppose the measurement
model is of the form

Yi = φ(xi,a) + Ei,

where E = (E1, . . . , Em)T has multivariate PDF g(x). Let

φ(a) = (φ(x1,a), . . . , φ(xm,a))T,

a vector function of a. The probability p(y|a) of observing the data y given
that the model specified by parameters a is represented by g(a) = g(y−φ(a)),
which we can regard as function of a. In general, if z are observations of random
variables Z, the likelihood l(a|z) of a giving rise to data z is the same as the
probability p(z|a), i.e., l(a|z) = p(z|a). The notation is used to indicate that we
regard the likelihood as a function of the parameters a with the observed data
z fixed, while p(z|a) is a function of z with a regarded as fixed.1 The maximum
likelihood estimate of a is that which maximises l(a|z), i.e., that which provides
the most probable explanation of the data z. Maximum likelihood estimates
enjoy favourable properties with respect to bias and statistical efficiency and
usually represent an appropriate method for determining parameter estimates.
Many standard parameter estimation methods can be formulated as maximum
likelihood estimation for particular statistical models for the random effects.

Example: standard experiment and least squares

In the standard experiment, the model equations are of the form

yi = φ(xi,a) + εi, i = 1, . . . ,m, ε ∈ N(0, σ2I).

Regarding fi = yi−φ(xi,a) as having the probability density function specified
for εi, the associated likelihood function is (proportional to)

m∏
i=1

exp
{
−1

2
f2

i

σ2

}
= exp

{
− 1

2σ2

m∑
i=1

f2
i

}
,

1More correctly, the data z are observations of random variables Z whose PDF is the
function x 7→ p(x|a).
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so that the likelihood is maximised when
m∑

i=1

f2
i =

m∑
i=1

(yi − φ(xi,a))2

is minimised with respect to a. ]

The importance of least-squares estimation derives from the fact that it rep-
resents a maximum likelihood estimation for models subject to normally dis-
tributed random effects in the response variable. For linear models, it can be
shown that it is unbiased and optimally efficient; see section 4.10.

Example: uniform distributions and Chebyshev approximation

Suppose, in an experiment, the model equations are of the form

yi = φ(xi,a) + εi,

where εi ∈ U(−S, S) are modelled as belonging to uniform (rectangular) dis-
tribution on the interval [−S, S]. This situation can arise, for example, if the
measurements yi are read from a digital indicating device, in which case S
is half the last displayed unit. If all other random effects are negligible, a
uniform distribution is appropriate. Regarding fi = yi − φ(xi,a) as having the
probability density function specified for εi, the associated likelihood function
is (proportional to) 1 if |fi| ≤ S, i = 1, . . . ,m, and 0 otherwise. The likelihood
is maximised by any a such that

max
i
|fi| = max

i
|yi − φ(xi,a))| ≤ S.

Such an a, if it exists, can be found by solving the L∞ (i.e., Chebyshev or
minimax) optimisation problem

min
a

max
i
|yi − φ(xi,a))|.

In this way we can think of Chebyshev approximation as a maximum likelihood
estimator for uniformly distributed random effects. ]

Example: exponential power distributions and p-norms

Just as least squares and Chebyshev correspond to maximum likelihood estima-
tion associated with Gaussian and rectangular sampling distributions, respec-
tively, approximation in a p-norm (section 3.2) corresponds to an exponential
power distribution (see e.g., [33, section 3.2.1]) with PDF

g(x) =
k

α3
exp

{
−1

2

∣∣∣∣x− α1

α3

∣∣∣∣2/(1+α2)
}
,

where −∞ < α1 < ∞, −1 < α2 ≤ 1, is such that p = 2/(1 + α2), α3 > 0, and
the normalising constant is given by

k−1 = Γ
(

1 +
1 + α2

2

)
21+(1+α2)/2.

The parameter α2 controls the kurtosis or ‘peakedness’ of the distribution. The
value of α2 = 0 gives the normal distribution, as α2 approaches −1 the distri-
bution becomes more rectangular, and towards +1 the peak becomes narrower.
]
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3.5 Parameter estimation as optimisation
problems

Estimators are usually defined in terms of minimising an error function F (a|z)
defined in terms of the data z and the parameters a. These optimisation
problems are generally solved by determining a set of optimality conditions for
the parameters a that must necessarily hold at the solution and then employing
an algorithm designed to produce a solution satisfying these conditions. The
following are some of the optimisation problems that are relevant to discrete
modelling (in roughly decreasing order of importance in metrology) and for
which mature and reliable algorithms and software implementations are avail-
able. Throughout, C is anm×nmatrix, m ≥ n, with rows cT

i , y = (y1, . . . , ym)T

an m-vector of observations, and a = (a1, . . . , an)T a vector of optimisation
parameters.

3.5.1 Linear least squares

Solve

min
a

m∑
i=1

(yi − cT
i a)2 =

m∑
i=1

(yi − (ci1a1 + . . .+ cinan))2.

In matrix form, this problem is written as

min
a
‖y − Ca‖22.

The matrix C is often referred to as the observation matrix or design matrix.

3.5.2 Nonlinear least squares

Given m functions fi(a) of parameters a, solve

min
a

m∑
i=1

f2
i (a),

where the functions fi usually depend on y.

3.5.3 Linear least squares subject to linear equality con-
straints

Given C, y, an n× p matrix D, p < n, and a p-vector z, solve

min
a
‖y − Ca‖22

subject to the constraints
Da = z.
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3.5.4 Nonlinear least squares subject to linear equality
constraints

Given m functions fi(a) of parameters a, an n × p matrix D, p < n and a
p-vector z, solve

min
a

m∑
i=1

f2
i (a)

(where the functions fi usually depend on y), subject to the constraints

Da = z.

3.5.5 Linear L1

Given C and y, solve

min
a
‖y − Ca‖1 ≡ min

a

m∑
i=1

|yi − cT
i a|.

3.5.6 Linear Chebyshev (L∞)

Given C and y, solve

min
a
‖y − Ca‖∞ ≡ min

a
max

i
|yi − cT

i a|.

3.5.7 Linear programming

Given n-vectors c and di, i = 1, . . . ,m, and y, solve

min
a

cTa

subject to the linear inequality constraints

dT
i a ≥ yi, i = 1, . . . ,m.

3.5.8 Unconstrained minimisation

Given a function F (a) of parameters a, solve

min
a

F (a).
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3.5.9 Nonlinear Chebyshev (L∞)

Given m functions fi(a) of parameters a, solve

min
a

max
i
|fi(a)|,

where the functions fi usually depend on y.

This formulation can be reposed as

min
a,s

s

subject to the constraints

−s ≤ fi(a) ≤ s, i = 1, . . . ,m.

This is a special case of the following.

3.5.10 Mathematical programming

Given functions F (a) and gk(a), k = 1, . . . ,K, of parameters a, n-vectors di,
i = 1, . . . ,m, and y, solve

min
a

F (a)

subject to the linear constraints

dT
i a ≥ yi, i = 1, . . . ,m

and nonlinear constraints

gk(a) ≥ 0, k = 1, . . . ,K.

3.6 Minimisation of a function of several
variables

Let F (a) be a general (smooth) function of n variables a = (a1, . . . , an)T: F is
the objective function of the minimisation problem.

Let g(a) be the gradient of F , with components gj = ∂F/∂aj , and H the
Hessian matrix of second partial derivatives,

Hjk = ∂2F/∂aj∂ak.

At a minimum a∗ of F , g(a∗) = 0. If a is an approximate solution we wish to
find a step p such that g(a + p) = 0. To first order,

g(a + p) = g +Hp,
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suggesting that p should be chosen so that

Hp = −g. (3.1)

In the Newton algorithm, an estimate of the solution a is updated according
to a := a + tp, where p solves (3.1) and t is a step length chosen to ensure
a sufficient decrease in F . Near the solution, the Newton algorithm converges
quadratically, i.e., if at the kth iteration the distance of the current estimate ak

from the solution a∗ is ‖ak − a∗‖, then the distance of the subsequent estimate
ak+1 from the solution is ‖ak+1 − a∗‖ = O(‖ak − a‖2), so that the distance to
the solution is squared approximately at each iteration.

3.6.1 Nonlinear least squares

For nonlinear least-squares problems, the objective function is of the form2

F (a) =
1
2

m∑
i=1

f2
i (a)

and has gradient
g = JTf ,

where J is the Jacobian matrix

Jij =
∂fi

∂aj
, (3.2)

and Hessian matrix

H = JTJ +G, Gjk =
m∑

i=1

fi
∂2fi

∂aj∂ak
.

3.6.2 Large scale optimisation

The main computational step in the Newton algorithm is the formulation and
solution of the equations (3.1) for the search direction p which generally takes
O(n3) operations where n is the number of parameters. For very large problems,
this may not be feasible (usually because too much time is required).

The conjugate gradient approach [117] is one of the main tools in general purpose
large scale optimisation, particularly because it requires only a few vectors to be
stored. Suppose we wish to find the minimum of F (a), given an initial estimate
a0. For nonlinear problems, the algorithm takes the form

I Set k = 0, g0 = ∇aF (a0).

II While ‖gk‖ > τ (where τ > 0 is a small constant),

2The fraction 1
2

is sometimes included to simplify related expressions.
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i Set k = k + 1.

ii Determine a search direction. If k = 1 set p1 = −g0. If k is a
multiple of n, set pk = −gk−1. Otherwise, set

βk = ‖gk−1‖2/‖gk−2‖2, pk = −gk−1 + βkpk−1.

iii Determine the step length. Find αk to minimise F (ak−1 + αkpk).

iv Update
ak = ak−1 + αkpk, gk = ∇aF (ak).

III Set a = ak and finish.

There has been much research in developing efficient, large-scale optimisation
algorithms; see e.g., [51, 161, 210]. One of the main approaches is to use a
limited memory quasi-Newton algorithm [117, section 4.8]. In a quasi-Newton
algorithm, the update step (3.1) is determined from an approximation to the
Hessian matrix H of second partial derivatives of the objective function F (a)
or its inverse. Starting from the identity matrix, this approximation is built
up from successive estimates gk of the function gradients. If F is a quadratic
function of n parameters, then after n steps the approximation to the Hessian is
exact (in exact arithmetic). For large n, memory and computation constraints
may prohibit any attempt to approximate H. Instead, the Hessian matrix is
approximated by limited number of quasi-Newton updates and can be stored
by a correspondingly limited number of n-vectors.

3.7 Problem conditioning

The numerical accuracy of the solution parameters a will depend on the condi-
tioning of the problem. A problem is well-conditioned if a small change in the
data corresponds to a small change in the solution parameters, and conversely.

3.7.1 Condition of a matrix, orthogonal factorisation and
the SVD

The condition of a discrete modelling problem can usually be analysed in terms
of the condition of a matrix associated with the problem, for example, the
observation matrix for linear least-squares problems or the Jacobian matrix for
nonlinear problems.

An m × n matrix Q is orthogonal if QTQ = I, the n × n identity matrix. If
m = n then we have in addition QQT = I. Any two columns qj , qk, j 6= k, of an
orthogonal matrix are at right angles to each other in the sense that qT

j qk = 0.
Orthogonal matrices have the property of preserving the Euclidean (2-norm)
length of a vector: ‖Qx‖ = ‖x‖.

Given two vectors x = (x1, x2, x3)T and y = (y1, y2, y3)T in R3, they can be
rotated by a rotation matrix Q so that one lies along the x-axis and one lies in
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the xy-plane:

QT

 x1 y1
x2 y2
x3 y3

 =

 r11 r12
0 r22
0 0

 or

 x1 y1
x2 y2
x3 y3

 = Q

 r11 r12
0 r22
0 0

 ,
expressing the matrix with columns x and y as a product of an orthogonal
matrix and an upper-triangular matrix. More generally, any m × n matrix C
can be factored as

C = QR = [Q1 Q2]
[
R1

0

]
= Q1R1, (3.3)

where Q is m × m orthogonal, Q1 (Q2) is the submatrix comprising the first
n (last m − n) columns of Q, and R1 is n × n upper triangular. Any m × n
matrix C can also be factored as the product

C = USV T = [U1 U2]
[
S1

0

]
V T = U1S1V

T, (3.4)

where U is an m ×m orthogonal matrix, U1 (U2) is the submatrix comprising
the first n (last m−n) columns of U , S1 an n×n diagonal matrix with diagonal
entries s1 ≥ s2 ≥ . . . ≥ sn, and V an n×n orthogonal matrix. This factorisation
is known as the singular value decomposition (SVD). The columns of U (V ) are
the left (right) singular vectors and the sj are known as the singular values.

The SVD shows that C maps the orthonormal vectors vj onto the vectors sjuj .
If C has singular values all equal to one then it is an orthogonal matrix and,
conversely; C is full rank if and only if sn > 0.

The ratio κ = s1/sn of the largest singular value of a matrix to the smallest
is known as the condition number of the matrix. There are high quality public
domain software implementations of reliable algorithms to determine the SVD
[87, 190].

If C = USV T then the eigenvalue decomposition of CTC is given by

CTC = V S2V T,

showing that the eigenvalues λj of CTC are the squares of the singular values of
C: λj = s2j and the eigenvectors of CTC are precisely the right singular vectors
of C.

The singular values have a geometrical interpretation. The matrix C maps the
unit sphere {x : ‖x‖ = 1} in Rn into a hyper-ellipsoid in Rm. The singular
values are the lengths of the semi-axes of the ellipsoid. In particular, the largest
singular value s1 is such that

s1 = ‖Cv1‖ = max
|v|=1

‖Cv‖,

and the smallest sn such that

sn = ‖Cvn‖ = min
|v|=1

‖Cv‖. (3.5)
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The condition number is the ratio of the length of the largest semi-axis to that
the smallest. An ill-conditioned matrix is one which maps the sphere into a long
thin ellipsoid. Orthogonal matrices map the unit sphere to a unit sphere.

The unwelcome numerical consequences of working with ill-conditioned matrices
are due to the fact that computation will involve relatively large numbers leading
to cancellation errors. The value of orthogonal matrices is that no large numbers
are introduced unnecessarily into the computations.

The conditioning of a problem depends on the parameterisation of the model.
Often, the key to being able to determine accurate solution parameters is in
finding an appropriate parameterisation.

Example: basis vectors for R3

Suppose we take as basis vectors for three dimensional space R3 the vectors
e1 = (1, 0, 0)T, e2 = (1, 0.001, 0)T and e3 = (1, 0, 0.001)T. Any point in y in R3

can be written as a linear combination

y = a1e1 + a2e2 + a3e3.

For example,

(0.0, 1.0, 1.0)T = −2000e1 + 1000e2 + 1000e3,

(0.0, 1.1, 1.1)T = −2200e1 + 1100e2 + 1100e3,

showing that a change of the order of 0.1 in the point y requires a change of
order 100 in the parameter values a. This type of ill-conditioning means that up
to three significant figures of accuracy could be lost using these basis vectors.

If E = [ e1 e2 e3 ], the orthogonal factorisation of E = QR produces the
standard basis vectors q1 = (1, 0, 0)T, q2 = (0, 1, 0) and q3 = (0, 0, 1)T from
the columns of Q. In many situations, an analysis using QR factorisations can
lead a better choice of basis vectors (or functions). ]

3.8 Numerical stability of algorithms

One factor affecting the numerical accuracy of the parameter estimates is the
conditioning of the problem. A second is the numerical stability of the algorithm
used to solve the computational problem associated with finding the parameter
estimates. A numerically stable algorithm is one that introduces no unnecessary
additional ill-conditioning into a problem. Many of the numerical difficulties in
solving computational problems arise because the calculations introduce large
numbers leading to large cancellation errors. A very simple example is the
calculation of the difference of two squares c = a2 − b2. If a = 101 and b = 100,
then c = 201; all three numbers are of the order of 100. If we calculate a2 and
b2, we introduce numbers of the order of 104. If instead we calculate a− b and
a+ b and set

c = (a− b)(a+ b),
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all the intermediate quantities remain of the order of 100 or smaller. A floating-
point error analysis shows that the latter method is numerically superior. The
calculation of a2 and b2 can also lead to overflow problems.

Analysing the stability of an algorithm generally requires a specialist in numer-
ical analysis. Many of the algorithms implemented in high quality library nu-
merical software have a supporting error analysis demonstrating their favourable
behaviour (which is why the algorithms appear in the library in the first place).

Issues concerning the numerical stability of algorithms are covered in the com-
panion best-practice guide on Numerical analysis for algorithm design in metrol-
ogy [68].

3.9 Uncertainty associated with parameter
estimates

A key aspect of metrological data analysis is the requirement to produce es-
timates of the uncertainties associated with the fitted parameters a = A(z)
derived from data z. These estimates can be in the form of standard uncertain-
ties

uj = u(aj), j = 1, . . . , n,

associated with the parameter estimates or the n × n uncertainty (covariance)
matrix Va associated with a. (The standard uncertainties are given by uj =
(Va(j, j))1/2). Often we are interested in the standard uncertainty associated
with a function h(a) of the parameters. From the law for the propagation of
uncertainty (section 2.4.4), if g = ( ∂h

∂a1
, . . . , ∂h

∂an
)T are the partial derivatives of

h (sensitivity coefficients), then the variance Vh and standard uncertainty u(h)
associated with h are obtained by

Vh = gTVag, u(h) = V
1/2
h .

Note that for these calculations, the complete uncertainty matrix Va is required,
not just the standard uncertainties associated with a. For this reason, it is
recommended that in designing estimator algorithms, the calculation of the
uncertainty matrix associated with the parameters estimates is included (at
least as an option).

There are three basic approaches to estimating these statistics. For some
estimators, including least squares, the uncertainty matrix can be calculated
from the data and the solution estimate (see sections 4.1 and 4.2). A second
approach is to apply a number of random perturbations ∆q, determined in
accordance with the statistical model for the random effects, to the data X
producing data sets Xq = X + ∆q and corresponding solution estimates aq =
A(Xq), q = 1, . . . , N . The covariance of the sample of estimates {aq} is an
estimate of Va. This is the Monte Carlo approach (see, for example, [64,
71, 191]. Importantly, Monte Carlo simulations can be used to validate the
uncertainties calculated by analytical methods. Both the analytical and Monte
Carlo approaches depend explicitly or implicitly on a statistical model for the
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random effects. The third approach, based on resampling methodologies, is
similar to Monte Carlo simulations except that the perturbations ∆q of the
data are determined from the distribution of the residuals associated with the
original fit rather than from a statistical model. See, for example, [43, 75, 90].

3.10 Numerical simulation and
experimental design

The calculation of the uncertainty matrix, etc., is obviously important in un-
certainty estimation. These calculations can also be used in numerical simu-
lations to determine the effectiveness of different measurement strategies and
experiment configurations. In this situation, exact measurement data x∗i are
generated according to a specified measurement strategy and the data then
perturbed according to the statistical model for the random effects. By changing
the measurement strategy and monitoring the effect on the variances of the
parameters of interest, it is often possible to improve the experimental efficiency.
Importantly, this can be achieved by using the same data analysis modules which
are required to determine estimates of the parameters and their uncertainties to
actual data. In other words, with very little additional effort the model solving
tools can be used to improve experimental strategy.
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Chapter 4

Estimators

In this chapter, we describe in more detail some of the common estimators and
associated algorithms.

4.1 Linear least squares (LLS)

4.1.1 Description

Given data {(xi, yi)}m
1 and the linear model

y = φ(x,a) = a1φ1(x) + . . .+ anφn(x), n ≤ m,

the linear least-squares estimate of the parameters a is the one which solves

min
a

m∑
i=1

(yi − cT
i a)2,

where ci = (φ1(xi), . . . , φn(xi))T.

Let C be the matrix whose ith row is cT
i , y the vector whose ith element is yi

and f(a) = y − Ca. The problem can be reposed as

min
a
F (a) = fTf = ‖y − Ca‖22.

At the solution, it is known that the partial derivatives of F with respect to the
parameters are zero, i.e.,

∂F

∂aj
= 0, j = 1, . . . , n,

and this leads to the system of linear equations of order n,

CTCa = CTy, (4.1)
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known as the normal equations. If C is full rank, so that CTC is invertible, the
solution parameters are given (mathematically) by

a = (CTC)−1CT y. (4.2)

Linear least-squares estimators are the most common of the estimators used
in metrology. They are optimal for linear models in which the measurements
of a single response variable are subject to uncorrelated normally distributed
random effects:

yi = a1φ1(xi) + . . .+ anφn(xi) + εi, εi ∼ N(0, σ2), i = 1, . . . ,m ≥ n.

They are suitable for any system for which the main random effects are associ-
ated with the response variables and these effects are symmetrically distributed
about a zero mean; see section 4.1.9.

Linear least squares are less suitable for data in which more than one variable
is subject to significant random effects or for data which contains outliers or
rogue points or where the random effects are modelled as being governed by
long tailed distributions (section 4.7).

4.1.2 Algorithms to find the linear least-squares estimate

There are two basic approaches to determining a least-squares solution to a set
of over-determined equations.

Solving the normal equations. Although equation (4.2) suggests that the
linear least-squares estimate is found by inverting the n× n matrix H = CTC,
as in the case of practically all matrix equation problems, matrix inversion is
far from the best option. If the normal equations are to be solved, the preferred
approach exploits the fact that H is symmetric and, assuming it is full rank,
has a Cholesky decomposition

H = LLT,

where L is an n× n lower triangular matrix (so that L(i, j) = 0 if i > j). With
this factorisation, the parameters a are determined by solving, in sequence, two
triangular systems

Lb = CTy, LTa = b.

The Cholesky factorisation and the solution of the triangular systems are easily
implemented in software, requiring only a few lines of code [119].

Orthogonal factorisation methods. If C has orthogonal factorisation (sec-
tion 3.7.1)

C = QR = [Q1 Q2]
[
R1

0

]
, (4.3)
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then, using the fact that ‖Qx‖ = ‖x‖, we have

‖y − Ca‖ = ‖QTy −QTCa‖ =
∥∥∥∥[ q1

q2

]
−
[
R1

0

]
a
∥∥∥∥ ,

where q1 is the first n and q2 the last m− n elements of QTy, i.e., q1 = QT
1 y,

etc. From this it is seen that ‖y − Ca‖ is minimised if a solves the upper
triangular system

R1a = q1.

In practice, the orthogonalisation is applied to the augmented matrix

QT
[
C y

]
=

 R1 q1

0 ‖f‖
0 0

 ,
to produce simultaneously the upper triangular factor R1, the right-hand side
vector q1 and the norm ‖f‖ of the residuals f = y − Ca.

As with the Cholesky factorisation, orthogonal factorisations are easy to con-
struct [119].

The main advantage of the orthogonal factorisation method over the normal
equations method is one of numerical accuracy. If due to ill-conditioning in the
matrix C the orthogonal factorisation method potentially loses p decimal digits
of accuracy, then the normal equations method potentially loses 2p decimal
digits.

Taking into account sparsity structure in the observation matrix.
There are a number of applications in which the observation matrix has a large
number of zero entries. This sparsity structure can be exploited to increase
the efficiency of the solution process; some of these techniques are described in
[56, 58, 67, 180].

4.1.3 Uncertainty associated with the fitted parameters

The uncertainty matrix Va associated with the fitted parameters is obtained
using the fact that the linear least-squares solution a is a linear combination
of the data values y. If y = (y1, . . . , ym)T has associated uncertainty matrix1

matrix Vy and a(y) = Gy are n linear functions of y, then the uncertainty
matrix associated with a is given by2

Va = GVyG
T.

The normal equations (4.1) define the linear least-squares solution (from equa-
tion (4.2)), as

a = C†y,
1That is, y is an observation of a vector of random variables Y whose multivariate

distribution has variance matrix Vy.
2That is, a is an observation of a vector of random variables A whose multivariate

distribution has variance matrix Va.
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where
C† = (CTC)−1CT (4.4)

is the pseudo-inverse of C [119, section 5.5.4] and is such that CC†C = C,
C†CC† = C† and C†

(
C†
)T = (CTC)−1. Therefore,

Va = C†Vy

(
C†
)T
.

If Vy = σ2I (as in the case for the standard experiment), this expression
simplifies to

Va = C†σ2I
(
C†
)T

= σ2(CTC)−1.

If C has orthogonal factorisation given in (4.3) then, using the fact thatQTQ = I
for an orthogonal matrix, Va can be calculated from the triangular factor R1

and σ:
Va = σ2

(
RT

1 R1

)−1
= σ2R−1

1 R−T
1 .

If h = hTa, a linear combination of the parameters, then

u(h) = σ‖h̃‖,

where h̃ solves
RT

1 h̃ = h.

This means that the standard uncertainties associated with the fitted parame-
ters, or linear combinations of those parameters, can be determined efficiently
by solving such triangular systems.

These calculations assume that the standard deviation σ associated with the
random effects3 in the data is already known. If this is not the case, then for
overdetermined systems a posterior estimate σ̂ of σ can be determined from the
vector r = y − Ca of residuals:

σ̂ = ‖r‖/(m− n)1/2. (4.5)

Details. This estimate is justified as follows.

If Xi ∼ N(0, 1), i = 1, . . . , m, are independent normal variates then
Pm

i=1 X2
i has a χ2

m

distribution with mean m and variance 2m. Let R be the random vector of residuals
so that

R = Y − CA = Y − CC†Y = (I − CC†)Y .

If C = Q1R1 as in (4.3), then CC† = Q1Q
T
1 and I −Q1Q

T
1 = Q2Q

T
2 , so that

S2 = RTR =
“
QT

2 Y
”T

QT
2 Y .

Now Q is orthogonal so setting Ỹ = QY we have Var(Ỹ ) = I also. Therefore,
S2 =

Pm
i=n+1 Ỹ 2

i is a sum of squares of m − n independent, normal variates and has

a χ2
ν distribution with ν = m− n degrees of freedom, with E(S2) = ν, Var(S2) = 2ν.

From this analysis, we see that given a least-squares solution a, a posterior estimate
of σ is σ̂ in (4.5).

While this estimate is derived under the assumption that the random effects are

governed by a Gaussian distribution, it is likely to be a good approximation for

distributions with similar features, e.g., unimodal (that is, having one peak).

3That is, ε ∈ E with V (E) = σ2I.
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4.1.4 Calculation of other quantities associated with the
model fit

We summarise here the quantities associated with a linear least-squares fit that
are often useful to calculate.

• Estimates of the solution parameters a = (CTC)−1CTy = C†y.

• The model predictions ŷ = Ca = C(CTC)−1CTy = CC†y, i.e., the
predicted responses ŷi at values xi of the covariates.

• The residual vector

r = y − ŷ = y − Ca = (I − C(CTC)−1CT)y = (I − CC†)y,

where I is the m×m identity matrix.

• The posterior estimate of the standard deviation of the random effects

σ̂ = ‖r‖/(m− n)1/2.

• The uncertainty (covariance) matrix associated with the fitted parameters.
If an estimate of σ is available

Va = σ2(CTC)−1,

otherwise, Va can be obtained from

Va = σ̂2(CTC)−1,

where σ̂ is given by (4.5).

• The standard uncertainties associated with the fitted parameters u(aj) =
(Va(j, j))1/2, i.e., the square roots of the diagonal elements of the uncer-
tainty matrix Va.

• The correlation matrix associated with the fitted parameters defined by

CR(i, j) =
Va(i, j)

(Va(i, i)Va(j, j))1/2
.

Note that CR is independent of the value of σ used to define the uncer-
tainty matrix.

• The uncertainty (covariance) matrix Vŷ associated with the model predic-
tions ŷ

Vŷ = CVaC
T = σ2C(CTC)−1CT.

• The standard uncertainties associated with the model predictions u(ŷi) =
(Vŷ(i, i))1/2.

• The uncertainty matrix Vr associated with the residuals

Vr = σ2(I − C(CTC)−1CT).
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• The standard uncertainties associated with the residual errors u(ri) =
(Vr(i, i))1/2.

• If (z, w) represents a new data point (generated from the same model but
not used in defining the model fit) then the predicted model value at z is

ŵ = φ(z,a) = dTa,

where d = (d1, . . . , dn)T = (φ1(z,a), . . . , φn(z,a))T, the standard uncer-
tainty associated with ŵ is

u(ŵ) = (dTVad)1/2,

the predicted residual error is t = w − ŵ = w − dTa and its variance is

Vt = σ2 + dTVad.

More generally, if Z = {zq}mZ
q=1 is a range of values for the covariates and

D is the corresponding matrix of basis functions evaluated at zq, i.e.,

Dq,j = φj(zq),

then the uncertainty matrix Vw associated with the model values w =
(w1, . . . , wmZ

)T, wq = φ(zq,a), is

Vw = DVaD
T,

and the standard uncertainty u(wq) is

u(wq) = (Vw(q, q))1/2
.

We note that if the observation matrix has QR factorisation C = Q1R1 where
Q1 is an m× n orthogonal matrix and R1 is an n× n upper triangular matrix
and singular value decomposition (SVD) C = U1S1V

T where U1 is an m × n
orthogonal matrix, S1 is n×n diagonal matrix and V is n×n orthogonal matrix,
then

CTC = RT
1 R1 = V S2

1V
T,

(CTC)−1 = R−1
1 R−T

1 = V S−2
1 V T,

(CTC)−1CT = C† = R−1
1 QT

1 = V S−1
1 UT

1 , and
C(CTC)−1CT = CC† = Q1Q

T
1 = U1U

T
1 .

These relations show that all the model outputs listed above can be calculated
from QR factorisation or SVD of C. All the statistical information can be
derived from Va.

4.1.5 Weighted linear least-squares estimator

If the random effects εi are uncorrelated but drawn from distributions with
different standard deviations, e.g., εi ∈ N(0, σ2

i ) then the appropriate estimator
is a weighted linear least-squares estimator which estimates a by solving

min
a

m∑
i=1

w2
i (yi − cT

i a)2,
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with wi = 1/σi. Algorithms for the unweighted linear least squares problem can
be easily adapted to deal with the weighted case by applying them to

ỹi = wiyi, C̃(i, j) = wiC(i, j).

4.1.6 Gauss-Markov estimator

More generally, if the vector of random effects are modelled as belonging to a
multivariate distribution with uncertainty (covariance) matrix Vy, assumed to
be full rank, the Gauss-Markov estimator which solves

min
a

(y − Ca)TV −1(y − Ca), (4.6)

is appropriate. If V has a Cholesky decomposition V = LLT, then the Gauss-
Markov estimate can be determined by applying the linear least-squares esti-
mator to

ỹ = L−1y, C̃ = L−1C.

The generalised QR decomposition can be employed to solve this problem in a
numerically stable way [27, 70, 122, 190].

Details. For a general (full rank) uncertainty matrix V with a factorisation V = LLT,
where L is an m ×m matrix, also necessarily full rank, the least-squares estimate is
given by

a = C̃†ỹ, C̃ = L−1C, ỹ = L−1y,

where C̃† is the pseudo-inverse of C̃. For well conditioned V and L, this approach
is satisfactory. However, if L is poorly conditioned the formation and use of C̃, etc.,
can be expected to introduce numerical errors. The generalised QR factorisation [70,
122, 179, 190] approach avoids this potential numerical instability. Suppose V = LLT,
where L is m× p. (Often p = m but the approach applies in the more general case.)
The estimate a can be found by solving

min
a,e

eTe subject to constraintsy = Ca + Le. (4.7)

Note that if L is invertible,

e = L−1(y − Ca), eTe = (y − Ca)TV −1(y − Ca).

We factorise C = QR and QT L = TU where R and T are upper-triangular and Q and
U are orthogonal. Multiplying the constraints by QT, we have»

ỹ1

ỹ2

–
=

»
R1

0

–
a +

»
T11 T12

T22

– »
ẽ1

ẽ2

–
, (4.8)

where ỹ = QTy, and ẽ = Ue.

From the second set of equations, ẽ2 must satisfy ỹ2 = T22ẽ2.

Given any ẽ1, the first set of equations is satisfied if R1a = ỹ1 − T11ẽ1 − T12ẽ2.

We choose ẽ1 = 0 in order to minimise

eTe = ẽTẽ = ẽT
1 ẽ1 + ẽT

2 ẽ2,

so that a solves R1a = ỹ1 − T12ẽ2.

Public-domain library software for solving (4.7) and, more generally, computing gen-

eralised QR factorisations is available [190].
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Uncertainty matrix associated with the Gauss-Markov estimate. If
a is the Gauss-Markov estimate, the associated uncertainty matrix Va is given
by

Va = (CTV −1C)−1.

Details. In terms of the generalised QR factorisation [70],

Va = KKT where K solves R1K = T11.

4.1.7 Linear least squares subject to linear equality
constraints

Linear equality constraints of the form Da = z where D is a p×n matrix, p < n,
can be reduced using an orthogonal factorisation approach. Such constraints
arise in the application of resolving constraints to remove degrees of freedom
from the model (section 2.3.3).

Suppose DT is of full column rank and has the QR factorisation

DT = U

[
S1

0

]
, (4.9)

and form U1 from the first n and U2 from the last n−p columns of the orthogonal
factor U . If a0 is any solution of Da = z, then for any (n − p)-vector ã,
a = a0 + U2ã automatically satisfies the constraints:

Da = Da0 +DU2ã = z + ST
1 U

T
1 U2ã = z,

since UT
1 U2 = 0. The optimisation problem

min
a
‖y − Ca‖ subject toDa = z,

can be reformulated as the unconstrained linear least-squares problem

min
ã

‖y − C(a0 + U2ã)‖ = min
ã

‖ỹ − C̃ã‖,

where
ỹ = y − Ca0, C̃ = CU2.

This approach to linear equality constraints is quite general and can be applied
to different types of optimisation problems.

Uncertainty matrix associated with the linearly constrained LLS
estimate. The constrained solution parameters are given by ã = C̃†ỹ where
C̃† = (C̃TC̃)−1C̃T is the pseudo-inverse of C̃ (section 4.1.3). If y is associated
with uncertainty matrix Vy, then the uncertainty matrix Vã associated with ã
is given by

Vã = C̃†Vy(C̃†)T.
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This also requires that Vỹ = Vy, which follows from ỹ = y − Ca0.

In particular if Vy = σ2I, then

Vã = σ2(C̃T C̃)−1.

Since the unconstrained parameters a = a0 + U2ã, the uncertainty matrix Va

associated with a is
Va = U2VãU

T
2 .

4.1.8 Using linear least-squares solvers

Software for solving linear least-squares systems is generally straightforward
to use. The user has to supply the observation matrix C and the right hand
side vector y as inputs. The software will calculate the solution parameters
a and the residual vector r = y − Ca. If the software uses an orthogonal
factorisation approach (as can be recommended) then the triangular factor R1

of the observation matrix is useful output as all necessary statistics can be
determined efficiently using R1 and r.

4.1.9 The Gauss-Markov theorem

Least-squares methods are the most common estimators implemented and are
appropriate for many practical model fitting problems. For linear models the
following Gauss-Markov Theorem [150, chapter 6] can be used to justify their
use:

Gauss-Markov Theorem For models of the form

y = Ca + ε,

where C is an m × n full rank matrix, m ≥ n, and for which the
random effects modelled by ε = (ε1, . . . , εm)T are observations of a
vector of random variables E with variance V (E) = σ2I, the linear
least-squares estimator

A(y) = (CTC)−1CTy

is unbiased, i.e., A(y) is an observation of a vector of random
variables A with expectation E(A) = a, and has a smaller variance
matrix V (A) than that for any other linear estimator.

From this point of view, least-squares estimation is optimal for these models.

Note that there is no assumption that the random effects are normally or
even symmetrically distributed, only that they are uncorrelated and have equal
variance. This generality supports the use of least-squares methods.
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Assumptions about normality are usually only invoked when it is required to
provide coverage interval associated with the fitted parameters. A consequence
of the Gauss-Markov theorem is that if the uncertainty matrix associated with
the data is Vy then the corresponding Gauss-Markov estimator (4.6) is optimal.

4.1.10 Bibliography and software sources

Algorithms for solving linear least-squares systems are described in detail in
[27, 119, 142, 207]. There are linear least-squares solvers in the NAG and IMSL
libraries, LINPACK, MINPACK, LAPACK, DASL and Matlab, for example
[8, 87, 115, 156, 173, 190, 203]. See also [126, 180].

4.2 Nonlinear least squares

4.2.1 Description

The nonlinear least-squares problem is: given m functions fi(a) of parameters
a = (a1, . . . , an), m ≥ n, solve

min
a

F (a) =
1
2

m∑
i=1

f2
i (a). (4.10)

(The fraction 1
2 is used so that related expressions are simpler.) Necessary

conditions for a to be a solution are that

∂F

∂aj
=

m∑
i=1

fi
∂fi

∂aj
= 0, j = 1, . . . , n.

Defining the Jacobian matrix J = J(a) by

Jij =
∂fi

∂aj
(a), (4.11)

this condition can be written as JT(a)f(a) = 0.

Nonlinear least-squares estimators are used widely in metrology in situations
where the response variable is modelled as a nonlinear function y = φ(x,a) of
the model parameters a and covariates x. They have good bias and efficiency
properties for models in which the measurements of the response variable are
subject to uncorrelated random effects:

yi = φ(xi,a) + εi, i = 1, . . . ,m ≥ n,

ε ∈ E, E(E) = 0, V (E) = σ2I.

If E ∈ N(0, σ2I), then the nonlinear least-squares estimate is the maximum
likelihood estimate of a. Nonlinear least-squares estimators are suitable for any
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system for which the random effects are associated with the measurements of
the response variable and these random effects are independently distributed
with zero mean and approximately equal standard deviations.

Nonlinear least squares are less suitable (without modification) for data in which
more than one variable is subject to significant random effects (section 4.3), data
which contains outliers (section 4.7) or where there is significant correlation
associated with the random effects (section 4.2.5).

4.2.2 Algorithms for nonlinear least squares

Gauss-Newton algorithm for minimising a sum of squares. The Gauss-
Newton algorithm is a modification of Newton’s algorithm for minimising a
function. Let

F (a) =
1
2

m∑
i=1

f2
i (a)

and let J(a) be the Jacobian matrix J = ∂fi/∂aj .

Then (in the notation of section 3.6) g = JTf and H = JTJ +G, where

Gjk =
m∑

i=1

fi
∂2fi

∂aj∂ak
.

The Gauss-Newton (GN) algorithm follows the same approach as the New-
ton algorithm (section 3.6), only that in determining the update step, H is
approximated by JTJ , i.e., the term G is ignored and p is found by solving
JTJp = −JTf . This is corresponds to the linear least-squares problem Jp = −f
and can be solved using an orthogonal factorisation approach, for example;
see section 4.1. The Gauss-Newton algorithm in general converges linearly
at a rate that depends on the condition of the approximation problem, the
size of the residuals f near the solution and the curvature. If the problem
is well-conditioned, the residuals are small and the summand functions fi are
nearly linear, then JTJ is a good approximation to the Hessian matrix H and
convergence is fast.

Gauss-Newton with line search. In practice, the update step is often of
the form a = a + tp where the step length parameter t is chosen to ensure
there is a sufficient decrease in the value of the objective function F (a) at each
iteration. If ξ(t) = F (a + tp), then ξ′(0) = gTp and

ρ(t) =
ξ(t)− ξ(0)
tξ′(0)

(4.12)

is the ratio of the actual decrease to the predicted decrease. If ξ is quadratic
and t∗ minimises F along a + tp, then ρ(t∗) = 1/2. A line search strategy is
designed to find a value t∗ such that

1− η > ρ(t∗) > η (4.13)

46



Discrete modelling and experimental data analysis

for some pre-assigned 0 < η < 1/2. A simple one-step strategy is to evaluate
ρ(1) and if it does not satisfy (4.13), set

t =
1

2(1− ρ(1))
,

the minimum of the parabola defined from ξ(0), ξ(1) and ξ′(0).

Gauss-Newton with trust regions. The introduction of a line search is
designed to improve the convergence characteristics of the Gauss-Newton algo-
rithm. Another approach to help make the algorithm more robust is based on
the concept of a trust region. In this approach, the step taken at each stage is
restricted to a region in which a quadratic approximation centred at the current
solution estimate to the function being minimised is judged to be valid. The
size of the trust region is adjusted depending on the progress of the algorithm.
See, for example, [94, 160]. A Levenberg-Marquardt trust region algorithm for
nonlinear least squares is implemented in MINPACK [115].

Termination criteria. A second practical issue is concerned with conver-
gence criteria usually involving i) the change in the objective function ∆F =
F (a) − F (a + p), ii) the norm ‖p‖ of the step, and iii) the norm ‖g‖ of the
gradient. Ideally, the criteria should be invariant with respect to changes of
scale in the objective function and parameters.

A Gauss-Newton algorithm works well for problems where i) a good initial guess
of the solution parameters is available, ii) the Jacobian matrix at the solution is
reasonably well-conditioned, and iii) the functions fi are not highly nonlinear.
Well-designed least-squares optimisation algorithms will still work satisfactorily
even if not all of these conditions apply.

Taking into account sparsity structure in the Jacobian matrix. Since
the main step in the Gauss-Newton algorithm is the solution of a linear least-
squares system, structured or sparse matrix techniques can be used in nonlinear
least-squares problems [67].

4.2.3 Uncertainty associated with the fitted parameters

In the context of model fitting, suppose fi = yi − φ(xi,a) and that the uncer-
tainty matrix associated with y is Vy. Then the uncertainty matrix associated
with the fitted parameters is approximated by

Va = H−1JTVyJH
−1 (4.14)

where H is the Hessian matrix evaluated at the solution.

Details. Since fi = yi − φ(xi,a), we can regard f = f(a,y) as a function of both y
and a. The n equations g(a,y) = JT(a)f(a,y) = 0 which must hold at a minimum
implicitly define a = a(y) as a function of y. In order to calculate the uncertainty
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matrix Va we need to calculate the sensitivity matrix K with Kji = ∂aj/∂yi. Taking
derivatives of the equation g(a(y),y) = 0 with respect to y yields

HK + JT = 0

so that K = −H−1JT as appears in (4.14).

If Vy = σ2I and using the approximation H ≈ JTJ , we have

Va ≈ (JTJ)−1JTσ2IJ(JTJ)−1 = σ2(JTJ)−1. (4.15)

If J has QR factorisation J = Q1R1 at the solution where R1 is an n × n
upper-triangular matrix then Vy ≈ σ2(RT

1 R1)−1. A posterior estimate σ̂ of σ
can be determined from the vector f of residuals at the solution according to

σ̂ =
‖f‖

(m− n)1/2
.

Both (4.14) and (4.15) are based on linearisations and therefore can only provide
an estimate of the variance associated with the fitted parameters. For highly
nonlinear models (with relatively large curvature) these estimates may be signif-
icantly different from the true variances. Monte Carlo simulation techniques, for
example, can be used either to validate these estimates (section 8.2) or provide
alternative estimates that do not involve any linearising approximations.

4.2.4 Weighted nonlinear least-squares estimator

If the functions fi relate to random effects εi with differing variances σ2
i , then

the appropriate estimator is a weighted nonlinear least-squares estimator which
estimates a by solving

min
a

m∑
i=1

w2
i f

2
i (a),

with wi = 1/σi. Algorithms for the unweighted nonlinear least squares can be
easily adapted to deal with the weighted case by applying them to f̃i = wifi.

4.2.5 Nonlinear Gauss-Markov estimator

If the covariance matrix associated with ε is V , assumed to be full rank, the
appropriate estimate of the model parameters is the one that solves

min
a

fT(a)V −1f(a).

As in the linear case, we can use the Cholesky decomposition of V = LLT to
convert this problem to a standard nonlinear least-squares problem applied to

f̃ = L−1f .

As for the case of linear least squares, if V and hence L is poorly conditioned the
formation and use of L−1 could lead to numerical instability. The Gauss-Newton
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algorithm can be adapted so that at each iteration the Gauss-Newton step is
found by solving

min
a,e

eTe subject to constraintsy = −Jp + Le,

using, for example, the generalised QR decomposition (section 4.1.6).

4.2.6 Nonlinear least squares subject to linear constraints

Algorithms for nonlinear least squares can also be adapted to problems with
p linear constraints Da = z on the parameters, p < n. As described in
section 4.1.7, the optimisation problem can be reposed as an unconstrained
problem of the form

min
ã

m∑
i=1

f̃2
i (ã) (4.16)

where f̃i(ã) = fi(a0 + U2ã). Here a0 is any set of parameters satisfying the
constraints, i.e., Da0 = z, ã represents the reduced set of (n − p) parameters
and U2 is an n× (n− p) orthogonal matrix (derived from the QR factorisation
of DT) such that DU2 = 0. Note that if J is the Jacobian matrix of partial
derivatives Jij = ∂fi

∂aj
, then the Jacobian matrix associated with (4.16) is given

by J̃ = JU2.

4.2.7 Using nonlinear least-squares solvers

Software for solving nonlinear least-squares systems is in principle straightfor-
ward to use. The user has to supply a software module to calculate the vector
of function values f and the Jacobian matrix J of partial derivatives for a given
value of the optimisation parameters a. For complicated models, the correct
calculation of these derivatives can involve a lot of effort both in deriving the
correct formulæ and in their subsequent implementation in software. For this
reason, many optimisation packages offer versions of the algorithms for which
only function values are required and use finite difference approximations of the
form

∂f

∂aj
(a) ≈ f(a1, . . . , aj + ∆j , aj+1, . . . , an)− f(a1, . . . , an)

∆j

to estimate the derivatives. This is done at the cost of accuracy of the solution
and usually efficiency of the underlying algorithm. There is much current
research on finding better ways of estimating derivatives. Automatic differenti-
ation techniques, including forward and reverse accumulation, and the complex
step method and their use in metrology are described in [30]. The complex
step method is particularly easy to implement in languages such as Matlab or
Fortran 90/95 that support complex arithmetic.

The user has also to supply an initial estimate of the optimisation parameters.
For most metrology applications, this is not a usually a problem but there are
situations where this is a major difficulty.
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The optimisation software will calculate the solution parameters a and the
vector of function values f at the solution. If the software uses an orthogonal
factorisation approach in the iterative step then the triangular factor R1 of the
Jacobian matrix at the solution is useful output as all necessary statistics can
be determined efficiently using R1 and f .

4.2.8 Bibliography and software sources

There are a number of nonlinear least-squares solvers in MINPACK and the
NAG and IMSL libraries [115, 173, 203]. Nonlinear least-squares algorithms
are described in [94, 117], for example. See also [161]. For more on automatic
differentiation, see for example, [20, 30, 121, 196].

4.3 Generalised distance regression (GDR)

4.3.1 Description

Linear and nonlinear least-squares estimators are appropriate if only one mea-
sured variable is subject to significant random effects. However, in many metro-
logical situations, there is significant uncertainty associated with more than
one of the measured variables and it is important to take this into account in
determining parameter estimates that are free from significant bias.

In a generalised distance regression (GDR) formulation, it is assumed that each
set of measurements xi is subject to random effects so that xi = x∗i + εi,
where x∗i satisfies the model constraints f(x∗i ,a) = 0 for some unknown a. The
set of measurements x subsumes both the stimulus variables and the response
variable (y). In this formulation, y is treated on the same footing as the other
components of x.

It is assumed that the effects modelled by εi associated with the components
of xi can be correlated with each other, but that the ith and jth sets are
uncorrelated, i 6= j. (More general uncertainty structures are considered in
[100], for example.) If Vi is the uncertainty (covariance) matrix associated with
εi

4 (assumed to be full rank), then maximum likelihood estimates of the model
parameters a can be found by solving

min
a,{x∗i }

m∑
i=1

(xi − x∗i )
TV −1

i (xi − x∗i ) (4.17)

subject to the model constraints f(x∗i ,a) = 0. This is an implicit formulation
of the problem. If the surface f(x,a) = 0 can be represented explicitly (i.e.,
parametrically) as x = φ(u,a), then (4.17) can be reformulated as

min
a,{u∗i }

m∑
i=1

(xi − φ(u∗i ,a))TV −1
i (xi − φ(u∗i ,a)), (4.18)

4That is, εi ∈ Ei and V (Ei) = Vi.
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an unconstrained optimisation problem. If each Vi = I, the identity matrix,
the GDR problem is known as orthogonal regression. Orthogonal regression for
linear models is sometimes termed total least squares.

Generalised distance regression methods have not been used extensively until
recent years. A typical situation for which they are appropriate is where the
response y = φ(x,a) is modelled as a function of the variable x and parameters
a, and both y and x are measured subject to random effects, giving rise to
observation equations of the form

xi = u∗i + δi, yi = φ(x∗i ) + εi, δi ∈ N(0, σ2
x), εi ∈ N(0, σ2

y).

The maximum likelihood estimate of the parameters is found by solving

min
a,{u∗i }

m∑
i=1

{(
xi − u∗i
σx

)2

+
(
yi − φ(u∗i ,a)

σy

)2
}
.

Orthogonal regression is used extensively in co-ordinate metrology.

4.3.2 Algorithms for generalised distance regression

Separation of variables approaches. At first sight, both generalised re-
gression formulations (4.17) and (4.18) represent significantly more challenging
optimisation problems than standard nonlinear least-squares problems as they
have to take into account the additional parameters, etc. However, using a
separation-of-variables approach, it is possible to convert them to standard
nonlinear least-squares problems in the parameters a. We consider the explicit
case (4.18) first.

We assume that V is a symmetric, strictly positive definite matrix with inverse
M = V −1. Denote by u∗i = u∗i (a) the solution of the footpoint problem (FPP)

min
u
D(u) = (xi − φ(u,a))TM(xi − φ(u,a)), (4.19)

and define 〈 , 〉M and ‖ ‖M by

〈x,y〉M = xTMy, ‖x‖M = 〈x,x〉1/2
M .

If ni is the Euclidean unit normal to the surface at x∗i = φ(u∗i ,a), then it is
straightforward to show that if we define the generalised distance di = di(a) by

di = 〈xi − x∗i ,ni〉/‖ni‖M , (4.20)

then
d2

i = ‖xi − x∗i ‖2M = D(u∗i ),

and
∂di

∂aj
= −〈 ∂f

∂aj
,ni〉/‖ni‖M . (4.21)

In this way, the explicit generalised distance regression problem can be posed as
a standard nonlinear least-squares problem mina d

2
i (a) where each function and

51



Software Support for Metrology Best Practice Guide No. 4

its gradient is calculated as in (4.20) and (4.21) with all quantities evaluated at
the solution u∗i of the appropriate footpoint problem.

Example: simple GDR for parametric curves

The simple GDR problem for parametric curves can be stated as: given data
points {(xi, yi)}m

1 and strictly positive weights {(αi, βi)}m
1 , minimise

m∑
i=1

{
α2

i (xi − φ(ui,a))2 + β2
i (yi − ψ(ui,a))2

}
with respect to a and {ui}m

1 where (φ, ψ) = (φ(u,a), ψ(u,a)) is a parametric
curve in R2. The theory above shows that this can be reformulated as:

min
a

m∑
i=1

d2
i (a)

with

di =
1
si

(
−(xi − φ∗i )ψ̇i + (yi − ψ∗i )φ̇i

)
,

∂di

∂aj
=

1
si

(
∂φi

∂aj
ψ̇i −

∂ψi

∂aj
φ̇i

)
,

where

φ̇i =
∂φi

∂u
, etc.,

si =

(
ψ̇2

i

α2
i

+
φ̇2

i

β2
i

)1/2

,

with all expressions evaluated at the solution u∗i of the corresponding footpoint
problem:

min
u

{
α2

i (xi − φ(u,a))2 + β2
i (yi − ψ(u,a))2

}
.

]

For the implicit case (4.17), denote by x∗i = x∗i (a) the solution of the implicit
footpoint problem

min
x

D(x) = (xi − x)TM(xi − x)subject to f(x,a) = 0. (4.22)

Then the generalised distance di(a) is given by

di = 〈xi − x∗i ,∇xf〉/‖∇xf‖M ,with
∂di

∂aj
=

∂f

∂aj
/‖∇xf‖M , (4.23)

evaluated at x = x∗i . Thus, the implicit generalised distance regression problem
can also be posed as a standard nonlinear least-squares problem where each
function evaluation involves the calculation of the optimal footpoints.
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Example: simple GDR for implicit curves

The simple GDR problem for implicit curves can be stated as: given data points
{(xi, yi)}m

1 and strictly positive weights {(αi, βi)}n
1 , minimise

m∑
i=1

α2
i (xi − x∗i )

2 + β2
i (yi − y∗i )2

with respect to a and {(x∗i , y∗i )}m
1 subject to the constraints f(x∗i , y

∗
i ,a) = 0,

i = 1, . . . ,m. The theory above shows that this can be reformulated as:

min
a

m∑
i=1

d2
i (a)

with

di =
1
si

((xi − x∗i )fx + (yi − y∗i )fy) ,

∂di

∂aj
=

1
si

∂f

∂aj
,

where

fx =
∂f

∂x
, etc.,

si =

(
f2

x

α2
i

+
f2

y

β2
i

)1/2

,

with all expressions evaluated at the solution (x∗i , y
∗
i ) of the corresponding

footpoint problem. ]

Structured least-squares approaches for explicit models. The GDR
problem for explicit models (4.18) can be solved directly if inefficiently using
standard nonlinear least-squares algorithms. However, the fact that p − 1
parameters u∗i only appear in n equations means that the associated Jacobian
matrix of partial derivatives has a block-angular structure with the diagonal
blocks corresponding to the footpoint parameters u∗i :

J =


K1 J1

K2 J2

. . .
...

Km Jm

 , (4.24)

where Ki is the matrix of derivatives of the ith set of observation equations with
respect to the transformation parameters u∗i , and the border blocks Ji store their
derivatives with respect to a. The form of J is illustrated in figure 4.1.

The upper-triangular factor R of the Jacobian matrix also has a block-angular
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Figure 4.1: A block-angular Jacobian matrix J .

structure:

R =


R1 B1

R2 B2

. . .
...

Rm Bm

R0

 , (4.25)

where Ri
m
1 , are (p − 1) × (p − 1) upper-triangular, {Bi}m

1 are (p − 1) × n
border blocks and R0 is the n × n upper-triangular factor corresponding to
the parameters a.

The use of structure exploiting algorithms for model fitting in metrology is
discussed in [58, 67, 98, 104].

4.3.3 Approximate estimators for implicit models

We can find an approximate estimate of the solution parameters for the implicit
GDR problem (4.17) by solving the least-squares problem

min
a

m∑
i=1

w2
i f(xi,a)2,

where wi are suitably chosen weights. Depending on the nature of the model
and the uncertainty structure, this estimate may be fit for purpose or be used
as an initial estimate in determining a refined estimate.
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4.3.4 Orthogonal distance regression with linear surfaces

A linear surface in Rn (e.g., line in two dimensions, plane in three dimensions)
is defined implicitly by an equation of the form

(x− x0)Tn = 0,

where the n-vector x0 is a point lying in the surface and the n-vector n is a vector
normal (orthogonal) to the surface. (Note that linear surfaces are not generally
parameterised by this specification since the relationship is not one-to-one; for
example any point x0 lying in the surface could be chosen.) The ODR problem
for linear surfaces is: given data points {xi}m

1 determine the linear surface which
minimises

∑
i d

2
i where di = (xi − x0)Tn is the distance from xi to the surface.

It is straightforward to show that the best-fit surface passes through the centroid
x̄

x̄ =
1
m

m∑
i=1

xi

of the data so its equation is of the form (x− x̄)Tn = 0. The normal vector n
can be determined by solving

min
n,‖n‖=1

m∑
i=1

((xi − x̄)Tn)2.

If X̄ is the centred data matrix with ith row equal to (xi − x̄)T, this problem
can be posed as

min
n,‖n‖=1

‖X̄n‖.

In other words, the solution n is the unit vector for which the norm of X̄n takes
its minimum value. From the definition of the singular value decomposition of
a matrix (section 3.7.1), we see that the solution n is the right singular vector
of X̄ corresponding to the smallest singular value (equation (3.5)). Thus, if
X̄ = USV T is the singular value decomposition of X̄ then n = vn specifies the
normal vector to the ODR best-fit linear surface to the data points.

4.3.5 Bibliography and software sources

The case of orthogonal distance regression is considered in [3, 28, 39, 119,
130, 131, 133, 200, 201, 205], for example. The software package ODRPACK
[29] provides a fairly comprehensive facility. Generalised distance regression
is considered in [1, 19, 67, 70, 96, 98, 100, 104, 107, 108, 132]. The compo-
nent XGENLINE for polynomial generalised distance regression is available for
downloading from eurometros [9, 92].
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4.4 Generalised Gauss-Markov regression
for curves

4.4.1 Description

Generalised Gauss-Markov regression combines generalised distance regression
with nondiagonal uncertainty matrices. In this section, we describe it for models
where the response y is a function of a single variable. The case for a response
depending on more than one covariate is very similar. Suppose the model
is y = φ(x,a) defined by parameters a and that we have data {(xi, yi)}m

i=1

nominally lying on such a curve but subject to random effects with general
uncertainty matrix V . We assume that V is full rank. Let x = (x1, . . . , xm)T,
y = (y1, . . . , ym)T. The generalised Gauss-Markov regression problem [70] is

min
a,x∗,y∗

y∗i = φ(x∗i ,a)

[
x− x∗

y − y∗

]T
V −1

[
x− x∗

y − y∗

]
. (4.26)

4.4.2 Algorithms for generalised Gauss-Markov regression

The generalised Gauss-Markov problem is a type of nonlinear Gauss-Markov
problem

min
a,x∗

fTV −1f

where

f = f(x∗,a) =
[

x− x∗

y − y∗

]
, y∗i = φ(x∗i ,a),

and can be solved using nonlinear least-squares algorithms (section 4.2.5). The
Jacobian matrix associated with f is the 2m× (m+ n) matrix J with

J = −
[
I 0
Jx J∗a

]
, (4.27)

where J∗a is the m × n matrix with J∗a(i, j) = ∂φ(x∗i ,a)/∂aj and Jx is the
diagonal matrix with Jx(i, i) = ∂φ(x∗i ,a)/∂x.

4.5 Linear Chebyshev (L∞) estimator

4.5.1 Description

Given data {(xi, yi)}m
1 and the linear model

y = a1φ1(x) + . . .+ anφn(x),

n ≤ m, the Chebyshev estimate of the parameters a is the one which solves

min
a

F (a) = max
i
|yi − cT

i a|,
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where ci = (φ1(xi), . . . , φn(xi))T. If s is the minimum value of F (a), at least
n+ 1 of the terms |yi − cT

i a| will be equal to s [183, 204]. Chebyshev estimates
minimise the maximum approximation error rather than an error aggregated
over all the data (as in least squares).

Chebyshev estimation is used widely in approximation where it is required to
fit a curve or data set uniformly well across the range. In particular Cheby-
shev estimation can be regarded as a maximum likelihood estimator for linear
models in which the measurements of a single response variable is subject to
uncorrelated uniformly distributed random effects:

yi = a1φ1(xi) + . . .+ anφn(xi) + εi, εi ∈ U(−S, S), i = 1, . . . ,m ≥ n.

Chebyshev approximation (usually nonlinear) is used in dimensional metrology
to estimate the maximum departure of an artefact/manufactured part from its
nominal shape.

Linear Chebyshev estimators are less suitable for data in which more than one
variable is subject to significant random effects and should not be used for data
which contains outliers or rogue points.

Example: averaging

In the simple case of fitting a constant to a set of values, the Chebyshev solution
is the midrange, i.e., the average of the maximum and minimum values. ]

4.5.2 Algorithms for linear Chebyshev approximation

The Chebyshev approximation problem can be reformulated as

min
a,s

s

subject to the linear inequality constraints

−s ≤ yi − cT
i a ≤ s, i = 1, . . . ,m.

This is a linear programming problem and can be solved by the simplex algo-
rithm of Dantzig [83] (not to be confused with the simplex method of Nelder
and Mead [168] for unconstrained minimisation). At the solution, at least n+1
of the inequalities hold as equalities so the solution can be found by determining
the correct subset of n+1 constraints. From an initial choice of n+1 constraints,
the simplex algorithm systematically updates this selection until the solution is
found.

4.5.3 Bibliography and software sources

Linear Chebshev approximation is considered in [18, 183, 204], linear program-
ming in [94, 117], for example. The algorithm of Barrodale and Philips [13]
is widely used. There is a linear Chebyshev solver in the Matlab optimisation
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Toolbox and the NAG library [156, 173] and linear programming software in
the IMSL and NAG libraries [203, 173]; see also [161]. The use of Chebyshev
approximation in coordinate metrology is discussed in [5, 6, 41, 42, 99, 133].

4.6 Linear L1 estimation

4.6.1 Description

Given data {(xi, yi)}m
1 and the linear model

y = a1φ1(x) + . . .+ anφn(x),

n ≤ m, the L1 estimate of the parameters a is the one which solves

min
a

F (a) =
m∑

i=1

|yi − cT
i a|,

where ci = (φ1(xi), . . . , φn(xi))T. At the solution, at least n of the terms
|yi − cT

i a| will be zero and the L1 estimate approximately balances the number
and distribution of the vectors ci associated with a positive residual with those
associated with a negative [204]. Importantly, the magnitudes of the residuals
are not important. For this reason, L1 estimates are not particularly influenced
by outliers or rogue points in the data.

Linear L1 approximation methods are not commonly used in metrology. How-
ever, their ability to produce a good fit to the majority of the data in the presence
of outliers can be very useful for systems that have normally distributed random
effects in general but in which large, sporadic errors can occur, for example in
measuring a surface in which there are a small number of cracks. For normally
distributed random effects, the L1 estimate can be expected to be reasonably
close to a least-squares estimate.

Example: averaging

In the simple case of fitting a constant to a set of values, the L1 solution is the
median. ]

Example: Comparing least-squares and L1 line fits.

Figure 4.2 shows the least-squares and L1 line fits to 12 data points with two
‘outliers’. The L1 fit (dotted line) completely ignores the large errors associated
with points 3 and 11, well approximating the body of the data. In contrast, the
least-squares fit is skewed towards the outliers. ]

4.6.2 Algorithms for linear L1 approximation

The L1 approximation problem can be reformulated as

min
a,{si}

m∑
i=1

si
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Figure 4.2: Least-squares and L1 line fits to data with two outliers.

subject to the linear inequality constraints

−si ≤ yi − cT
i a ≤ si, i = 1, . . . ,m.

At the solution si = |yi − cT
i a|.

This is a linear programming problem and, as in the case of linear Chebyshev
approximation (section 4.5), can be solved by the simplex algorithm [83]. The
introduction of the potentially large number of parameters si means that a
straightforward application of this algorithm would be inefficient. However,
with modification the L1 approximation problem can be solved effectively using
a simplex-type method.

4.6.3 Bibliography and software sources

Linear L1 approximation is considered in [14, 17, 143, 144, 183, 204], for exam-
ple. The algorithms of Barrodale and Philips [15] and Bartels and Conn [16]
are widely used.
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Figure 4.3: Graph of τ defined in (4.29) for different values of c.

4.7 Asymptotic least squares (ALS)

4.7.1 Description

Asymptotic least squares (ALS) is a form of nonlinear least-squares approxima-
tion in which a nonlinear transformation is applied in order to reduce the effect
of large approximation errors associated with outliers or rogue data points. An
asymptotic least-squares estimate minimises an objective function of the form

F̃ (a) =
1
2

m∑
i=1

f̃i(a)2, f̃i = τ(fi), (4.28)

where τ(x) a transformation function having the following properties: i) τ has
continuous second derivatives so that minimising F̃ is a smooth optimisation
problem, ii) τ(0) = 0, τ ′(0) = 1 and τ ′′(0) = 0 so that for small fi, F̃
has similar behaviour to a standard least-squares objective function, and iii)
lim|x|→∞ τ ′(x) = 0 so that increasing an already large approximation error will
have a marginal effect on F̃ . A simple function satisfying these criteria is

τ(x) = x/(1 + c2x2)1/2; (4.29)

see figure 4.3. We note that limx→±∞ τ(x) = ±1/c and has the correct asymp-
totic behaviour

Asymptotic least squares is appropriate for models of the form

yi = φ(xi,a) + εi + ωi, ε ∈ E, E(E) = 0, V (E) = σ2I,
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and ωi = 0 for most of the measurements but there is a possibility that for some
of the data points ωi could be large relative to σ. For this model, an appropriate
form of τ is

τ(x) = (x/σ)/(1 + c2(x/σ)2)1/2. (4.30)

The parameter c in (4.29) controls the level of ε at which the transform takes
effect (figure 4.3). If E ∼ N(0, σ2I), we would expect approximately 95% of the
deviations yi − φ(xi,a) to lie in the interval[−2σ, 2σ]. In this region, we want τ
to make a small change, suggesting a value of c in the region of c = 1/4.

4.7.2 Algorithms for asymptotic least squares

Even if fi is linear in the parameters a the introduction of the nonlinear τ
function makes the minimisation of F̃ a nonlinear least-squares problem.

To employ a Newton-type algorithm to minimise F̃ (a), we need to calculate

g = J̃Tf̃ , J̃ij = τ̇i
∂fi

∂aj
, τ̇i =

dτ

dx
(fi),

and

H̃ = J̃TJ̃ + G̃, G̃jk =
∑

i

f̃i
∂2f̃i

∂aj∂ak
.

We note that

∂2f̃i

∂aj∂ak
= τ̈i

∂fi

∂aj

∂fi

∂ak
+ τ̇i

∂2fi

∂aj∂ak
, τ̈i =

d2τ

d2x
(fi).

The first term on the right is the contribution due to the curvature in τ , the
second, due to that in F . Even if the second term is small, the first term is
likely to be significant. This means that in practice the Gauss-Newton algorithm
implemented for ALS will have significantly slower convergence than a Newton
algorithm. However, if f is linear with f = y−Ca, the second term is zero and
a Newton algorithm can be implemented easily with J̃ and G̃ calculated using
the following identities:

J̃ij = −cij τ̇i, G̃jk =
∑

i

τiτ̈icijcik.

4.7.3 Uncertainty associated with the fitted parameters

Since the ALS method is a form of nonlinear least squares the approach given in
section 4.2.3 is applicable. Since the τ function is likely to introduce significant
curvature, Va evaluated using the Hessian matrix (4.14), rather than its approx-
imation (4.15), is recommended. As with all nonlinear estimation problems, the
resulting Va is based on a linearisation and could be significantly different from
the true value. Monte Carlo techniques can be used to validate these estimates
(section 8.2).
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Example: assessment of aspheric surfaces

In determining the shape of high quality optical surfaces using measurements
gathered by a coordinate measuring machine, care must be taken to ensure
that the optical surface is not damaged by the contacting probe. However,
using a low-force probing scheme, the presence of particles of dust on the
artefact’s surface introduces sporadic, large non-random effects into the mea-
surement data. Figure 4.4 shows the residuals associated with an ALS fit of
a hyperboloid surface to measurements of an aspheric mirror, a component in
an earth observation camera. The spikes are due to particles of dust on the
mirror or on the spherical probe. It is judged that 9 of the 401 measurements
(i.e., approximately 2%) have been contaminated. Because the dust particles
must necessarily have a positive diameter an asymmetric transform function τ
was used in which only large, positive approximation errors are transformed.
The standard noise associated with the measurements is of the order of 0.000 2
mm while the diameter of the dust particles is of the order of 0.002 mm. The
difference between the ALS fitted surface and that generated using a standard
(nonlinear) approach was of the order of 0.000 4 mm, and is seen to be significant
relative to the standard noise. ]

4.7.4 Bibliography and software sources

The ALS approach is described more fully in [140]. Nonlinear least-squares
software can be used directly to provide ALS estimates (section 4.2.8).

4.8 Robust estimators

Because of there ability to cope with outliers, the L1 and ALS estimators are
termed robust estimators. There are other estimation algorithms designed to
cope with outliers, including the Huber M-estimator [136, 137], which behaves
like a least-squares estimator for small residuals and like L1 for outliers. Aspects
of robust estimation are considered in [63, 79, 189, 202, 205]. See also [161].

4.9 Nonlinear Chebyshev and L1 approximation

The nonlinear Chebyshev optimisation problem is: given m functions fi(a),
a = (a1, . . . , an)T, n ≤ m, solve

min
a

F (a) = max
i
|fi(a)|. (4.31)

The Chebyshev optimisation problem arises in data approximation with nonlin-
ear models. Given data {(xi, yi)}m

1 and the nonlinear model

y = φ(x,a),
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Figure 4.4: Residuals associated with an ALS fit of a hyperboloid surface to
measurements of an aspheric mirror. The spikes are due to particles of dust on
the mirror or on the spherical probe. The units for each axis are millimetres.
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the nonlinear Chebyshev estimate of the parameters a is the one that solves the
optimisation problem (4.31) with fi(a) = yi − φ(xi,a). Chebyshev approxima-
tion problems occur frequently in dimensional metrology in which a geometric
element is fitted to co-ordinate data according to the Chebyshev or related
criteria.

The problem can be reformulated as

min
a,s

s

subject to the nonlinear constraints

−s ≤ fi(a) ≤ s, i = 1, . . . ,m.

General purpose optimisation software can be used to solve this problem effec-
tively.

The nonlinear L1 optimisation problem is: given m functions fi(a)i, n ≤ m,
solve

min
a

F (a) =
m∑

i=1

|fi(a)|. (4.32)

The L1 optimisation problem arises in data approximation involving nonlinear
models with fi(a) = yi − φ(xi,a).

The problem (4.32) can be formulated as

min
a,{si}

m∑
i=1

si

subject to the constraints

−si ≤ fi(a) ≤ si, i = 1, . . . ,m,

and solved using general purpose optimisation software. However, unlike the
nonlinear Chebyshev problem, this is not a very efficient approach due to the
introduction of the extra parameters si. An approach designed to overcome this
disadvantage is described in [164].

A simpler approach to these nonlinear approximation problems is to use a
Gauss-Newton strategy (section 4.2) in which at each major iteration a linear
Chebyshev or L1 problem is solved [177, 178, 204]. These algorithms can work
work well on some problems, but can exhibit slow convergence on others.

4.9.1 Bibliography and software sources

Nonlinear Chebyshev and L1 approximation are considered in [163, 164, 177,
178, 204]. There are Chebyshev (minimax) optimisation modules in the Matlab
optimisation Toolbox and the NAG library [173]. There are general purpose
optimisation modules that can be applied to these problems in the NAG and
IMSL libraries [173, 203]. Chebyshev approximation with geometric elements is
considered in [5, 6, 41, 99].
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4.10 Maximum likelihood estimation (MLE)

4.10.1 Description

Suppose Zi ∼ Di(a), i = 1, . . . ,m, are m independently distributed random
variables associated with distributions Di(a) with PDFs pi(x|a) depending on
n parameters a = (a1, . . . , an), and that z is a set of observations of Z (denoted
z ∈ (Z). Let l(a|z) be the likelihood function defined by

l(a|z) = p(z|a) =
m∏

i=1

pi(zi|a).

The maximum likelihood estimate â of a maximises the likelihood function
l(z|a).

MLE is a very general parameter estimation tool used widely across science.
It requires that the PDFs pi(x|a) are fully specified. For normally distributed
random variables, the MLE is the same as the least-squares estimate.

4.10.2 Algorithms for maximum likelihood estimation

Most maximum likelihood estimation algorithms determine an estimate by min-
imising the negative log likelihood function

F (a|z) = − log l(a|z) = −
m∑

i=1

log pi(zi|a),

using a version of Newton’s algorithm for function minimisation (section 3.6).

4.10.3 Uncertainty associated with the fitted parameters

Let z be an observation of random variables Z with associated multivariate
PDF p(x|a). Let z 7→ M(z) be the maximum likelihood estimate associated
with data z. We regard the ML estimate â = M(z) as an observation of a
vector of random variables Â = M(Z) and the uncertainty matrix associated
with â is the variance matrix associated with Â.

Asymptotic results (i.e., variants of the Central Limit Theorem [187]) can be
used to show that if various regularity assumptions hold (to permit the inter-
change of integration and differentiation, for example, and ensure that various
integrals are finite), then as the number of data points increases the distribution
of Â approaches N(a, I−1(a)) where I(a), the Fisher information matrix, is the
expectation of the Hessian matrix of second partial derivatives of F (a|x) =
− log l(a|x) = − log p(x|a):

I(a) =
∫

∂2F

∂aj∂ak
(a|x)p(x|a) dx.
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This matrix can be approximated by the observed Fisher information matrix

Î = H =
∂2F

∂aj∂ak
(â|z).

We therefore take as an estimate of the uncertainty matrix Va associated with
the estimates â

Va = Î−1 = H−1. (4.33)

The asymptotic results show that as the number of measurements (information)
increases the estimates â approach a, so that MLE is asymptotically unbiased.
The inverse of the Fisher information matrix I−1(a) represents a lower bound
on the variance of any unbiased estimator and the ML estimates attains this
lower bound asymptotically. This means that as the number of measurements
increases, the variance matrix associated with a maximum likelihood estimate
will become at least as small as that for any other unbiased estimator.

The estimate in (4.33) is based on the asymptotic behaviour of the ML estimator
as the number of measurements increases. We can instead use linearisation to
provide an estimate of the uncertainty matrix associated with the ML estimates.
At the minimum of F (a|z), the gradient g(a|z) = ∇aF = 0 and these n
equations define a = a(z) as functions of z. If K is the sensitivity matrix

Kji =
∂aj

∂zi

and Vz is the uncertainty matrix associated with z, i.e., the variance matrix
associated with Z, then

Va ≈ KVzK
T.

Taking differentials of the equation g(a(z), z) = 0, we have

HK +Hz = 0, Hz(j, i) =
∂2F

∂aj∂zi
,

so that
K = −H−1Hz,

and
Va ≈ H−1

a HzVzH
T
z H

−1.

Example: MLE for the standard experimental model

Suppose the model equations are

yi = φ(xi,a) + εi, ε ∈ N(0, σ2I).

The likelihood p(yi|a, σ) of observing yi given parameters a and σ is

p(yi|a, σ) =
1

(2πσ2)1/2
exp

{
− 1

2σ2
(yi − φ(xi,a))2

}
,
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and the likelihood of observing y is

l(a, σ|y) = p(y|a, σ) =
m∏

i=1

p(yi|a, σ)

=
1

(2πσ2)m/2
exp

{
− 1

2σ2

m∑
i=1

(yi − φ(xi,a))2
}
. (4.34)

The log likelihood function L(a|y) is given by

− L(a, σ|y) = m log σ +
m

2
log(2π) +

1
2σ2

m∑
i=1

(yi − φ(xi,a))2. (4.35)

The likelihood is maximised by â and σ̂ if â minimises

m∑
i=1

(yi − φ(xi,a))2,

and σ̂ is such that

σ̂2 =

√
rTr
m

, (4.36)

where ri = yi − φ(xi, â) are the residuals at the solution. We note that the
ML estimate of a for normally distributed random effects is the same as the
least-squares estimate while (4.36) differs (slightly) from that derived from the
expectation of the χ2 distribution in (4.5). In fact the expected value of σ̂2 is

E(σ̂2) = σ2m− n

m
= σ2

(
1− n

m

)
6= σ2.

However, as m −→ ∞, E(σ̂2) −→ σ2, showing that the ML estimate is asymp-
totically unbiased.

Figures 4.5 and 4.6 graph the negative likelihood surfaces associated with de-
termining a constant α and standard deviation σ from 20 and 100 data points
sampled from a normal distribution. The surface for 20 points is flatter than
that for 100, so that the minimum is less well defined for 20 points. ]
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Figure 4.5: Log likelihood surface −L(α, σ|y) associated with the estimation of
α and σ for data yi ∈ N(0, 1) with 20 data points, plotted as a function of α
and log σ2.

Figure 4.6: As figure 4.5 but with 100 data points.
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4.11 Bayesian parameter estimation

4.11.1 Description

Both least-squares and maximum-likelihood methods, for example, are based
on a so-called classical approach to statistical inference. In this paradigm,
the parameters a we are trying to determine are fixed but unknown. The
measurements z are assumed to have been generated according to a statistical
model whose behaviour depends on a. On the basis of the measurements
z estimates â are found for a. These estimates are regarded as a sample
from a vector of random variables A and the uncertainty associated with â
is determined from the distribution associated with this random vector.

In a Bayesian formulation [33, 158, 192], knowledge about a is encoded in
a probability distribution p(a|I) derived from the information I we have to
hand. As more information is gathered through measurement experiments, for
example, these distributions are updated.

In the context of data analysis, we assume a prior distribution p(a) and that
data z has been gathered according to a sampling distribution depending on a
from which we can calculate the probability p(z|a) of observing z. This proba-
bility is the same as the likelihood function l(a|z) used in maximum likelihood
estimation. Bayes’ Theorem (2.1) states that the posterior distribution p(a|z)
for a after observing z is related to the likelihood and the prior distribution by

p(a|z) = kp(z|a)p(a) = kl(a|z)p(a), (4.37)

where the constant k is chosen to ensure that the posterior distribution inte-
grates to 1, i.e., ∫

p(a|z) da = 1.

In this form, Bayes’ theorem says that the posterior distribution is the likelihood
weighted by the prior distribution.

4.11.2 Parameter estimates and their associated
uncertainties

The posterior distribution represents all the information about a taking into ac-
count the measurement data z and the prior information. In practice, summary
information about this distribution is required and in metrology it is usual to
provide parameter estimates along with associated uncertainties. Ideally, this
would be in the form of the mean and variance of the posterior distribution.
However, both these quantities require integration of multivariate functions and
for problems involving even a modest number of parameters, 10 say, this integra-
tion is computationally expensive. For large problems it becomes impractical.

An alternative to providing estimates that require global knowledge of the
distribution is to provide an approximation to the distribution on the basis of
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local knowledge. This is the approach taken in generalised maximum likelihood
estimation (GMLE), also known as maximising the posterior (MAP) [158]. The
main idea is to determine a quadratic approximation to the negative logarithm
− log p(a|z) of the posterior distribution about its mode â:

− log p(a|z) ≈ − log p(â|z) +
1
2
(a− â)TH(a− â), (4.38)

where

Hjk = −∂
2 log p(â|z)
∂αj∂αk

is the Hessian matrix of second partial derivatives of − log p(z|a) evaluated
at the minimum â. (The linear term in this approximation is absent since
∂ log p(a|z)/∂αj = 0 at a = â.) Taking exponentials of (4.38), we approximate
the posterior distribution by

p(a|z) ≈ k exp
{
−1

2
(a− â)TH(a− â)

}
,

where k is a normalising constant. Recognising this as a multivariate normal
distribution, setting V = H−1, we have

p(a|z) ≈ 1
|2πV |1/2

exp
{
−1

2
(a− â)TV −1(a− â)

}
,

i.e., a ∼ N(â, V ). (The notation |V | denotes the determinant of V .) This
approach provides parameter estimates â and associated uncertainty matrix
V using standard nonlinear optimisation techniques. We note that we can
determine these terms without knowing the constant of proportionality in (4.37).

As with most approximating methods, this approach has to be used with some
care. The multivariate normal distribution is unimodal and symmetric. If the
true posterior distribution is multimodal or skewed, then the approximation
could well provide poor information. (There may also be numerical difficulties
in implementing the approach in these circumstances.)

4.11.3 Algorithms for GMLE

As for maximum likelihood estimation, GMLE algorithms can be implemented
using standard unconstrained optimisation algorithms (section 3.6).

Example: GMLE for the standard experimental model

Suppose the model equations are

yi = φ(xi,a) + εi, ε ∈ N(0, σ2I).

The log likelihood function is given by (4.35). The prior p(a, σ) should reflect
what is known before the experiment takes place. If nothing is known, then
a non-informative prior should be assigned which is essentially constant so
that the posterior distribution is proportional to the likelihood. In metrological
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examples it is likely that some prior information is available, based on nominal
values or previous experience using the measuring instrument, for example. In
these circumstances, we may propose a prior distribution for a of the form
p(a) = N(0, τ2I) and one for σ of the form

log σ2 ∼ N(log σ2
0 , (log ρ)2), ρ ≥ 1,

where a0, τ , σ0 and ρ are specified. Roughly, the prior for σ2 encodes the
belief that we are 95% certain that σ2

0/ρ
2 ≤ σ2 ≤ σ2

0ρ
2. Assuming a and σ are

independently distributed, the logarithm of the prior distribution is given by

− log p(a, σ) =
1
2

log
(
2πτ2

)
+

1
2τ2

n∑
j=1

(aj − a0,j)2 +

1
2

log
(
2π(log ρ)2

)
+

1
2(log ρ)2

(log σ2 − log σ2
0)2.

The generalised ML estimate is found by minimising

F (a, σ|y) =
m

2
log σ2 +

1
2σ2

m∑
i=1

(yi − φ(xi,a))2 +

1
2τ2

n∑
j=1

(aj − a0,j)2 +
1

2(log ρ)2
(log σ2 − log σ2

0)2,

with respect to a and σ.

The quantities τ and ρ control the weight given to the prior information rel-
ative to the information represented in the data. As τ and ρ become larger
(corresponding to weaker prior information) the posterior distribution becomes
dominated by the likelihood function and the GML estimates approach the ML
estimates. ]
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Chapter 5

Discrete models in
metrology

In this chapter we describe some common models used in metrology.

5.1 Polynomial curves

5.1.1 Description

Polynomials provide a class of linear models that are used extensively as em-
pirical models for experimental data. A polynomial of degree n can be written
as

fn(x) = a0 + a1x+ a2x
2 + . . .+ anx

n =
n∑

j=0

ajx
j =

n∑
j=0

ajφj(x),

where φj(x) = xj are the monomial basis functions. (The indexing starts at zero
so that the index matches the exponent.) A polynomial of degree 1 is a straight
line, degree 2 a quadratic curve, etc. The immediate appeal of polynomials is
that computation with polynomials requires only addition and multiplication.

5.1.2 Advantages and disadvantages

Polynomials are good for:

• Representing a smooth curve y = φ(x) or data generated from a smooth
curve over a fixed interval [xmin, xmax]. They are extremely flexible and
from the mathematical point of view can be used to approximate any
smooth curve to a given accuracy by choosing a high enough degree. They
are used, for example, to represent calibration curves of sensors.
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Figure 5.1: Graphs of x2j , j = 1, 2, 3, 4, on the interval [−1, 1].

Polynomials are not good for:

• Representing curves or data with sharp discontinuities in value or slope.

• Describing asymptotic behaviour where the curve approaches a straight
line as the variable x gets larger in magnitude (section 4.7).

5.1.3 Working with polynomials

While the description of polynomials in terms of the monomial basis functions
makes clear the nature of polynomial functions, the use of the monomial basis
in numerical computation leads to severe numerical difficulties. A first difficulty
is that for values of the variable x significantly greater than one in absolute
value, the terms xj become very large as j increases. This problem is solved by
working with a normalised variable z. If x varies within the range [xmin, xmax] =
{x : xmin ≤ x ≤ xmax}, then

z =
(x− xmin)− (xmax − x)

xmax − xmin
=
x− (xmax + xmin)/2

(xmax − xmin)/2
, (5.1)

and all its powers lie in the range [−1, 1]. (The first expression for evaluating z
above has better numerical properties [68].) For small degree polynomials (n ≤
4, say), this normalisation is sufficient to remove most numerical difficulties.

The second difficulty arises from the fact that, especially for large j, the basis
function φj looks very similar to φj+2 in the range [−1, 1]. Figure 5.1 presents
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n [−1, 1] [0, 2] [4, 6] [19, 21]
5 2 4 9 15
10 4 9 16 24
20 10 18 * *

Table 5.1: Estimates of the number of decimal digits lost using the monomial
basis functions for different degrees and intervals. An entry ∗ indicates the
system was too ill-conditioned for the calculation to be made.

the graphs of φ2j = x2j j = 1, 2, 3, 4. We can regard polynomial functions
defined on [−1, 1] as members of a vector space of functions. In this vector
space, the angle between two polynomials p(x) and q(x) can be determined in
terms of integrals involving their product, e.g.,∫ 1

−1

p(x)q(x)w(x)dx,

where w(x) is a weighting function. With this definition of angle, it is straight-
forward to show that the monomial basis functions φj and φj+2 point in the
roughly the same direction (in the sense that the angle between them is small),
leading to ill-conditioning. This ill-conditioning worsens rapidly as the degree
increases and the variable values move further from zero. Table 5.1 gives an
estimate of the number of decimal digits lost using the monomial basis functions
generated by 31 values {xi}311 randomly distributed in the interval [−1, 1] and
subsequently translated to the intervals [0, 2], [4, 6], [19, 21]. From the table,
it is easy to see why polynomials are sometimes thought to be of very limited
use because of numerical stability problems. In fact, it is their representation
(i.e., parameterisation) in terms of the monomial basis functions which leads to
instability, not polynomials per se.

Alternative representations can be derived by finding basis functions with better
properties.

The Chebyshev polynomials Tj(x) are one such set of basis functions and have
the property that they are orthogonal to each other on the interval [−1, 1] with
respect to the weighting function w(x) = 1/(1 + x2)1/2. They are defined by

T0(x) = 1, T1(x) = x, Tj(x) = 2xTj−1(x)− Tj−2(x), j ≥ 2.

Chebyshev polynomials can also be defined using the trigonometrical relation-
ship

Tj(cos θ) = cos jθ, cos θ = x.

Figure 5.2 presents the graphs of T2 to T5. Conventionally, T0 is replaced by
T0/2 in the basis, so that

fn(x) =
1
2
a0T0(x) + a1T1(x) + . . .+ anTn(x) =

n∑
j=1

′ajTj(x);

the notation
∑′ indicates that the first term is halved.
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Figure 5.2: Chebyshev polynomials Ti, i = 2, . . . , 5.

Using orthogonal polynomials in conjunction with the variable transformation
formula (5.1) it is possible to use high degree polynomial models over any
interval in a numerically stable way [109, 198]. Algorithms based on Chebyshev
polynomials have been implemented in NPL’s Data Approximation Subrou-
tine Library — DASL [8] — (and other libraries) and used successfully for
many years. It is disappointing that there are still many polynomial regression
packages available for PCs that implement algorithms based on the standard
monomial representation and are therefore prone to produce unreliable results.
It should be emphasised that operations with a Chebyshev representation are,
in essence, no more complicated than those using a monomial basis.

Example: evaluating a polynomial from a Chebyshev representation

A Chebyshev representation of a polynomial p = p(x,a) of degree n (n > 0) is
given in terms of the Chebyshev parameters (coefficients) a = (a0, . . . , an)T and
constants xmin and xmax giving the range. The following scheme can be used
to evaluate p at x.

I Calculate the normalised variable

z =
(x− xmin)− (xmax − x)

xmax − xmin
.

II Set p = a0/2 + a1z, t0 = 1, t1 = z.

III for j = 2 : n

tj = 2ztj−1 − tj−2,
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p = p+ ajtj .

DASL uses Clenshaw’s recurrence to evaluate a polynomial from its Cheby-
shev representation: it requires fewer multiplications and has slightly superior
floating-point error properties. [49, 54, 76, 116] ]

Example: least-squares regression with polynomials using a Chebyshev represen-
tation

The following steps determine the least-squares best-fit polynomial of degree n
(n > 0) to data {(xi, yi)}m

i=1 using a Chebyshev representation. It follows the
same approach as the general method described in section 4.1 for fitting a linear
model to data, forming the observation matrix C whose jth column is the jth
basis function evaluated at xi, i.e., in this case, C(i, j) = Tj+1(xi).

I Calculate xmin = mini xi and xmax = maxi xi.

II Calculate the normalised variables

zi =
(xi − xmin)− (xmax − xi)

xmax − xmin
, i = 1, . . . ,m.

III Calculate the m× (n+ 1) observation matrix C, column by column using
the recurrence relationship. For each i:

III.1 C(i, 1) = 1, C(i, 2) = zi,

III.2 for j = 3 : n+ 1, C(i, j) = 2ziC(i, j − 1)− C(i, j − 2).

III.3 Adjust the first column: C(i, 1) = C(i, 1)/2.

IV Solve in the least-squares sense

Ca = y.

If the linear least-squares problem is solved using a QR factorisation of the
augmented matrix [C y] as described in section 4.1.2, it is possible to determine
from the same orthogonal factorisation the least-squares polynomials of all
degrees up to n (and the norms of the corresponding residual error vectors).
This makes it very efficient to determine a range of polynomial fits to the data
from which to select a best fit and is extremely useful in model validation; see,
for example, [60, 61]. ]

Other operations such as calculating the derivative of a polynomial are straight-
forward using a Chebyshev representation.

Example: derivative of a polynomial using a Chebyshev representation

If p is an n-degree polynomial with Chebyshev coefficients a = (a0, . . . , an)T

defined on the range [xmin, xmax] then its derivative p′ = ∂p/∂x is a degree
n− 1 polynomial on the same range and can therefore be represented in terms
of Chebyshev coefficients b = (b0, . . . , bn−1)T. The coefficients b are calculated
directly from a and xmin and xmin:
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Figure 5.3: Least-squares polynomials of degrees 4 and 10 to 2000 data points.

I Set bn+1 = bn = 0.

II for j = n, n− 1, . . . , 2, 1,

bj−1 = bj+1 +
4jaj

xmax − xmin
.

]

Example: polynomial fits to data

As an example of polynomial fits, figure 5.3 shows the least-squares polynomials
of degrees 4 and 10 to 2000 data points, while figure 5.4 shows the least-squares
polynomial of degree 18. ]

There are other numerical approaches to polynomial regression. Given data
{(xi, yi)}m

1 and weights {wi}m
1 the Forsythe method implicitly determines a

set of basis functions φj that are orthogonal with respect to the inner product
defined by

m∑
i=1

wif(xi)g(xi).

The method of solution exploits this orthogonality, using the fact that the
observation matrix C that is generated is orthogonal, so that CTC is a diagonal
matrix and the normal equations can thus be solved very simply. The use of the
normal equations is numerically safe since C is perfectly well conditioned. The
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Figure 5.4: Least-squares polynomial of degree 18 to data.

set of orthogonal polynomial are generated specifically for the data {xi} and
{wi}. By contrast, the Chebyshev polynomials are much more versatile since
they are defined in the same way for all data sets.

5.1.4 Bibliography and software sources

Approximation with polynomials is one of the main topics in data and function
approximation. See, for example, [50, 109, 111, 123, 183, 198, 204]. Software for
polynomial approximation appears in the NAG and IMSL libraries [173, 203]
and there are a large number of software routines associated with polynomials
available through Netlib [86]. NPL’s Data Approximation Subroutine Library
(DASL) and NPLFit package have extensive facilities for polynomial approxi-
mation [8, 172]. NPLFit, in particular, is aimed at metrological applications
and has easy-to-use facilities for determining polynomial fits and associated un-
certainties. NPLFit available as a package for downloading from eurometros
[9, 92].
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5.2 Polynomial spline curves

5.2.1 Description

Like polynomials, polynomial spline curves — splines for short — are a class of
linear models widely used for modelling discrete data. A spline s(x) of order n
defined over an interval [xmin, xmax] is composed of sections of polynomial curves
pk(x) of degree n− 1 joined together at fixed points {λk}N

1 in the interval.

Consider the case where there is one knot, at λ:

xmin < λ < xmax,

and suppose we wish to build a continuous curve using two cubic polynomial
curves

s(x) = p1(x,a) = a+ a1x+ a2x
2 + a3x

3, x ∈ [xmin, λ],
= p2(x,b) = b+ b1x+ b2x

2 + b3x
3, x ∈ [λ, xmax].

We impose smoothness constraints by insisting that the function values for both
curves are equal at λ and so are the first and second derivatives. (If, in addition,
we were to insist that the third derivatives are equal we would force a = b.) We
can show that if s satisfies these three continuity constraints, it can be written
in the form

s(x,a, c) = p1(x,a) + c(x− λ)3+,

where (x− λ)+ = x− λ if x > λ and 0 otherwise.

In general, if s is a spline of order n with continuity up to the (n−2)nd derivative
on a set of N knots {λk}N

1 with

xmin < λ1 < λ2 < . . . < λN < xmax

then s can be written uniquely as

s(x,a, c) = p(x,a) +
N∑

k=1

ck(x− λk)n−1
+ , (5.2)

where p(x,a) is a polynomial of degree n − 1. The number of parameters
required to define s is n + N (order + number of interior knots) and s is a
linear combination of the polynomial basis functions and the truncated power
functions

φk(x) = (x− λk)n−1
+ .

B-spline basis functions. The representation (5.2) can be used to define
an explicit method of constructing a polynomial spline. In practice, using
this representation can give rise to severe numerical problems (because of ill-
conditioning) and, in addition, has major efficiency drawbacks. Practically all
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Figure 5.5: B-spline basis function N4,4(x,λ) defined on the interval [0, 10] with
knot set λ = (2, 4, 6, 8)T.

calculations using spline functions are performed using a B-spline representation
of the form

s(x,a) =
n+N∑
j=1

ajNn,j(x,λ), (5.3)

where λ = (λ1, . . . , λN )T is the interior knot set satisfying

xmin = λ0 < λ1 ≤ λ2 ≤ . . . ≤ λN < λN+1 = xmax, (5.4)

and Nn,j(x,λ) are the B-spline basis functions of order n (i.e., degree n − 1).
The basis functions Nn,j(x,λ) are specified by the interior knot set λ = {λk}N

1 ,
range limits

xmin = λ0, and xmax = λN+1,

and the additional exterior knots, λj , j = 1−n, . . . ,−1 and j = N+2, . . . , N+n.
These exterior knots are usually assigned to be

λj =
{
xmin, j < 0,
xmax, j > N + 1.

With this choice, the basis functions are defined by the interior knots λ and the
range constants xmin and xmax. The use of coincident knots with λj = . . . =
λj+k allows us a greater degree of discontinuity at λj . We use q = n + N to
denote the number of basis functions.

A common choice of order is n = 4, splines constructed from cubic polynomials
— cubic splines — because they give sufficient smoothness for most metrology
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Figure 5.6: B-spline basis functions N4,j(x,λ) defined on the interval [0, 10]
with knot set λ = (2, 4, 6, 8)T.

applications. Figure 5.5 graphs a B-spline basis function for a cubic spline
defined on the interval [0, 10] with knot set λ = (2, 4, 6, 8)T. Figure 5.6 graphs
all eight (= n+N) basis functions for this knot set.

The B-spline basis functions have a number of valuable properties including:

Nn,j(x) ≥ 0,
Nn,j(x) = 0, x 6∈ [λj−n, λj ] (compact support), (5.5)∑

j

Nn,j(x) ≡ 1, x ∈ [xmin, xmax].

Using a B-spline basis, calculations with splines can be performed in a numeri-
cally stable way.

5.2.2 Typical uses

Splines are used in much the same way as polynomials, but have additional
capabilities. Splines are good for:

• Representing a smooth curve y = φ(x) or data generated from a smooth
curve over a fixed interval x ∈ [xmin, xmax]. They are extremely flexible
and from the mathematical point of view can be used to approximate any
smooth curve to a given accuracy by choosing sufficient number of knots
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or a high enough order (degree). They are used, for example, to represent
calibration curves of sensors.

• Because spline approximation can be made computationally very efficient,
splines are used to represent very large sets of data.

• Splines can be use to represent curves with varying characteristics and
sharp changes in shape or discontinuities, provided a suitable set of knots
is used.

Splines are less good for:

• Describing asymptotic behaviour where the curve approaches a straight
line as the variable x gets larger in magnitude.

Because of their flexibility, splines are used in many applications areas of math-
ematical modelling.

5.2.3 Working with splines

As with polynomials, it is essential to use an appropriate set of basis functions.
The representation using B-splines (equation (5.3), above) is strongly recom-
mended. Since, for a specified set of knots, splines form a linear model, calcula-
tions involving splines centre around evaluating the basis functions Nn,j(x,λ).
Like Chebyshev polynomials, the basis function Nn,j can be evaluated using a
three-term recurrence relationship. The first order B-spline basis functions N1,j

j = 1, . . . , N + 1 are defined by

N1,j(x) =
{

1, x ∈ [λj−1, λj),
0, otherwise,

}
j = 1, . . . , N,

N1,N+1(x) =
{

1, x ∈ [λN , λN+1],
0, otherwise,

and, for n > 1,

Nn,j(x) =



λj−x
λj−λj−n+1

Nn−1,j(x), j = 1,

x−λj−n

λj−1−λj−n
Nn−1,j−1(x) + λj−x

λj−λj−n+1
Nn−1,j(x), 1 < j < N + n,

x−λj−n

λj−1−λj−n
Nn−1,j−1(x), j = N + n.

The first order B-spline basis functions equal one on a knot interval [λj−1, λj)
and zero elsewhere. An order n B-spline basis function is the weighted convex
combination of two “adjacent” order n− 1 B-spline basis functions.

Once the basis functions have been defined, spline evaluation and data fitting
with splines can be performed following the general scheme for linear models.
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Example: evaluating a spline in terms of its B-spline basis

A spline s = s(x,a) of order n can be defined in terms of the B-spline coefficients
(parameters) a = (a1, . . . , aq), the interior knot set λ = (λ1, . . . , λN )T and
constants xmin and xmax giving the range. The following scheme can be used
to evaluate s at x.

I Evaluate the B-spline basis functions Nn,j(x), j = 1, . . . , q = n+N , using
the recurrence relations.

II Set

s(x) =
q∑

j=1

ajNn,j(x). (5.6)

s is usually evaluated by a recurrence involving the aj , see [55]. ]

Example: least-squares regression with splines using a B-spline representation

The following steps determine the least-squares best-fit spline of order n with
a given knot set λ and range [xmin, xmax] to data {(xi, yi)}m

i=1 using a B-spline
representation. It is assumed that the knots satisfy

xmin < λ1 ≤ λ2 ≤ . . . ≤ λN < xmax,

and that xmin ≤ xi ≤ xmax, i = 1, . . . ,m.

I Evaluate the B-spline basis functions Nn,j(xi), j = 1, . . . , q = n + N ,
i = 1, . . . ,m, using the recurrence relations.

II Evaluate the m× q observation matrix C defined by C(i, j) = Nn,j(xi).

III Solve in the least-squares sense

Ca = y.

]

Other operations such as calculating the derivative of a spline are equally
straightforward using a B-spline representation.

Example: derivative of a spline using a B-spline representation

Let s = s(x,a) be a spline of order n defined in terms of the B-spline co-
efficients (parameters) a = (a1, . . . , aq)T, q = n + N , the interior knot set
λ = (λ1, . . . , λN )T and range [xmin, xmax]. Its derivative s′ = ∂s/∂x is an
(n− 1)th order spline defined by coefficients b = (b1, . . . , bq−1)T, with

bj =


(n− 1) aj+1−aj

λj−λj−n+1
, λj > λj−n+1,

aj+1 − aj , λj = λj−n+1,

j = 1, . . . , q − 1.

]
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Two features arise in working with splines that do not appear in approximation
with general linear models. The first is the banded structure in the observation
matrix and the second is the choice of knot set.

Banded structure in the observation matrix. The compact support prop-
erty (equation (5.5)) of the B-spline basis functions means that for any x ∈
[xmin, xmax] at most n of the basis functions Nn,j(x) will be nonzero at x.
More specifically, if x ∈ [λj−1, λj), then only Nn,j , Nn,j+1, . . . , Nn,j+n−1 can
be nonzero. Thus, to evaluate an order n spline at any given point, only n basis
functions need to be evaluated (and the inner product step (5.6) involves at
most n nonzero contributions.) More importantly, any row of the observation
matrix C has at most n nonzero elements appearing contiguously, i.e., adjacent
to each other along the row, giving the observation matrix a banded structure.
Figure 5.7 shows schematically (a) the structure of the observation matrix C
for fitting a cubic spline (i.e., n = 4) with four (i.e., N = 4) interior knots to 11
ordered data points (xi, yi)111 , xi ≤ xi+1 and (b) the structure of the triangular
factor R determined from a QR factorisation of C (section 4.1).

The banded structure can be exploited effectively in solving the linear least
squares system that arises using an orthogonal factorisation approach. The
main consequence of this is that the fitting procedure can be accomplished
in O(mn2) steps (i.e., in a number of steps proportional to mn2) rather than
O(m(N + n)2) if a general, full matrix approach is used. In other words, for
a fixed order of spline (n = 4 a common choice), the computation time using
a structure-exploiting approach is essentially proportional to the number m of
data points and independent of the number of knots N . Using a full-matrix
approach, the computation time is approximately proportional to mN2 for a
large number of knots. This efficiency saving is significant, particularly for
large knot sets and is one of the reasons why splines are so popular and effective
in modelling data.

Choice of knot set. In approximation using polynomials, the main choice
that a user has is fixing the degree of the polynomial. In spline approximation,
the user has to fix the order (usually set at a small number with four the most
common choice) and also has the much greater flexibility in fixing the number
and location of the interior knots λ (subject to the constraints on ordering
(5.4)). The knot placement can have a considerable effect on the quality of
the fit, but there is no usable set of criteria that can be used to determine
an optimal placement strategy (although there is much research in addressing
aspects of this problem). However, there are a number of guidelines that help
the user to arrive at a good set of knots. We assume that we wish to fit an nth
order spline to m data points {(xi, yi)}m

1 .

• The number of knots N must be less than or equal to m − n (i.e. q =
n+N ≤ m) in order to be able to determine all the coefficients (otherwise
the observation matrix C would be rank deficient). Generally, we are
looking for the smallest number of knots that provides a good fit.
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Figure 5.7: Schematic representation of (a) the structure of the observation
matrix C for fitting a cube spline (n = 4) with four (N = 4) interior knots to 11
ordered data points (xi, yi)111 , xi ≤ xi+1 and (b) the structure of the triangular
factor R determined from a QR factorisation of C.
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Figure 5.8: Least-squares cubic splines (n = 4) with one and seven interior
knots to 2000 data points.
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Figure 5.9: Least-squares cubic spline (n = 4) with 15 interior knots to data.

• The knots λj should be interspersed with the abscissae {xi}. One set
of conditions (Schoenberg-Whitney) state that there should be a subset
{t1, . . . , tq} ⊂ {x1, . . . , xm} such that

tj < λj < tj+n, j = 1, . . . , N.

• More knots are needed in regions where the curve underlying the data is
rapidly changing, fewer knots where the curve is relatively smooth.

The goodness of fit is, naturally, a qualitative attribute often assessed from a
visual examination of the fit to the data. If the fit does not follow the data
adequately in a region, more knots should be added, perhaps adjusting nearby
knots. If the fit seems to be following the noise in the data in some regions, then
knots should be removed from those regions and the remaining knots possibly
adjusted. After say three or four passes, a satisfactory fit can often be attained.

Example: spline fit to data

As an example of spline fits, figure 5.8 shows the least-squares cubic splines
(n = 4) with one and seven interior knots to 2000 data points, while figure 5.9
shows the cubic spline least-squares fit with 15 interior knots. In figure 5.10, we
can compare this latter fit with a polynomial fit of degree 18 to the same data.
Note that both the polynomial and spline are defined by 19 basis functions. The
spline is seen to be more flexible and able to follow the shape of the data more
closely. ]
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Figure 5.10: Least-squares cubic spline (n = 4) with 15 interior knots and the
degree 18 least-squares polynomial to data.

5.2.4 Bibliography and software sources

Algorithms for working with splines in terms of their B-spline representation are
given in [53, 55, 56, 57, 85]. Software for spline interpolation and approximation
appear in the NAG and IMSL libraries [173, 203], the Matlab spline toolbox
[156], and various spline packages available through Netlib [86]. Algorithms for
knot placement are described in [73, 74, 147].

Because of the computational efficiency gains to be made using structured
solvers, it is recommended that special purpose spline approximation packages
are used rather that standard optimisation software. DASL and the NPLFit
package have extensive facilities for spline approximation [8, 172]. NPLFit, in
particular is aimed at metrological applications and has easy-to-use facilities
for calculating spline fits, knot choice, and associated uncertainties. NPLFit is
available as a package for downloading from eurometros [9, 92].
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5.3 Fourier series

5.3.1 Description

A Fourier series of degree n is generally written as

φ(x,a) = a0 +
n∑

j=1

aj cos jx+
n∑

j=1

bj sin jx,

where a = (a0, a1, . . . , an, b1, . . . , bn)T. We note that φ(x+ 2π,a) = φ(x,a). To
model functions with period 2L, we modify the above to

φ(x,a|L) = a0 +
n∑

j=1

aj cos jπx/L+
n∑

j=1

bj sin jπx/L.

Since ∫ π

−π

cos jx cos kx dx =
∫ π

−π

sin jx sin kx dx = 0, j 6= k,

and ∫ π

−π

cos jx sin kx dx =
∫ π

−π

cos jx dx =
∫ π

−π

sin jx dx = 0,

the basis functions 1, cos jx and sin jx are orthogonal with respect to the unit
weighting function over any interval of length 2π.

If f(x) is a periodic function with f(x + 2π) = f(x) then its representation as
a Fourier series is given by

f(x) = a0 +
∞∑

j=1

(aj cos jx+ bj sin jx),

where
a0 =

1
2π

∫ π

−π

f(x) dx,

and

aj =
1
π

∫ π

−π

f(x) cos jx dx, bj =
1
π

∫ π

−π

f(x) sin jx dx, j = 1, 2, . . .

Fourier series are used to model periodic functions and to analyse the frequency
component or spectral characteristics of data. The Fourier transform and its
inverse are important in signal processing and filtering. Fourier series are less
successful in analysing data arising from responses y(x) where the frequency
component of y changes with location x (see section 5.6).

5.3.2 Working with Fourier series

For fixed period L, φ(x,a) is a linear model and fitting a Fourier series to data
follows the same general scheme for fitting linear models to data {(xi, yi)}m

i=1:
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I Fix period L and degree n with 2n+ 1 ≤ m.

II Form m×(2n+1) observation matrix C. For i = 1, . . . ,m, set C(i, 1) = 1,
and for j = 1, . . . , n, C(i, 2j) = cos(2πj/L) and C(i, 2j+1) = sin(2πj/L).

III Solve the linear least-squares system

min
a
‖y − Ca‖2,

for parameters a.

Uncertainties associated with the fitted parameters can be estimated using the
general approach described in section 4.1.

It has been assumed that the period L is known. If this is not the case then we
can regard L as an unknown, in which case the observation matrix C = C(L)
is now a nonlinear function of L1 and the fitting problem becomes

min
a,L

‖y − C(L)a‖2,

a nonlinear least-squares problem (section 4.2). This problem can be solved
using the Gauss-Newton algorithm for example. Alternatively, let a(L) solve
the linear least-squares problem

min
a
‖y − C(L)a‖2,

and set r(L) = y−C(L)a(L) and F (L) = ‖r(L)‖, the norm of the residuals for
period L. A univariate minimisation algorithm can be applied to F (L) to find
an optimal or at least better estimate of the period.

5.3.3 Fast Fourier Transform (FFT)

For data (xj , yj)m
j=1 where the abscissae {xj} are uniformly spaced in an interval

of length one period, e.g.,
xj = j2L/m,

the coefficients a = (a0, a1, . . . , an, b1, . . . , bn)T for the best-fit Fourier series can
be calculated using the discrete Fourier transform (DFT). For any integer m > 0
the explicit discrete Fourier transform matrix F is the complex valued matrix
defined by

Fjk = exp{−2πi(j − 1)(k − 1)/m},
where i =

√
−1. Its inverse is given by

F−1
jk =

1
m

exp{2πi(j − 1)(k − 1)/m}.

The DFT of an m-vector y is simply w = Fy. Since F is complex valued, w is
also. The coefficients a0, a and b of the degree n Fourier series approximation
to y is found from w as follows

a0 = w1/m, aj = 2<(wj)/m, bj = 2=(wj)/m, j = 1, . . . , n,
1Or we could work with K=1/L instead.
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Figure 5.11: Data generated according to the model (5.7).

where <(wj) and =(wj) are the real and imaginary parts of the jth element of
w, respectively. The fitted values ŷ can be determined using the inverse DFT:

ŷ = <

F−1

 w(1 : n+ 1)
0

w(m− n+ 1 : m)

 .

Instead of working with the explicit transform matrices, the fast Fourier trans-
form uses matrix factorisation techniques to recursively divide the calculations
into smaller subproblems and attains a computational efficiency of O(m logm)
rather than O(m2).

Example: fitting data generated from three Fourier components

Figure 5.11 plots data generated according to the model

yj = 3 cos 5x− 2 sin 7x+ 0.5 cos 9x+ εj , ε ∈ N(0, 0.25I). (5.7)

For this data L = π = 3.1416. Figure 5.12 graphs best-fit Fourier series of degree
n = 10 with the estimate L̂ = 3.1569 of L found by a univariate minimisation
algorithm. ]

5.3.4 Bibliography and software sources

Fourier series and transforms are discussed in [34, 35, 84, 141, 162], for example.
The fast Fourier transform was developed by Cooley and Tukey [52]. Further
developments include [112], for example.
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Figure 5.12: Fitted Fourier series of degree n = 10 to data in figure 5.11.

5.4 Asymptotic polynomials

Asymptotic behaviour associated with physical systems is quite common. For
example, a response may decay to a constant as time passes. However empirical
models such as polynomials, splines and Fourier series do not lend themselves
to modelling asymptotic behaviour. In this section we describe a simple class
of modified polynomial basis functions that can be used to model a range of
asymptotic behaviour.

5.4.1 Description

Let {φj(x)}n
j=0 be a set of polynomial basis functions defined on [−1, 1], such

as Chebyshev polynomials (section 5.1). Define

w(x) = w(x|x0, c, k) =
1

(1 + c2(x− x0)2)k/2
, c > 0.

w(x) is smooth and, for c large, w(x) behaves like |x|−k as |x| → ∞.
Defining

φ̃j = w(x)φj(x),

then

φ̃(x,a) =
n∑

j=0

aj φ̃j(x)

behaves like xn−k as |x| → ∞ and c gets large. In particular, if k = n, then
φ can model asymptotic behaviour of approaching a constant. The constant c
controls the degree to which asymptotic behaviour is imposed on the model.
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Figure 5.13: Asymptotic and standard polynomial fits of degree 9
to measurements of material properties (for aluminium).

The weighting function w can be modified to provide different asymptotic be-
haviour as x approaches ∞ and −∞:

w(x) = w(x|x0, c, k, l) =
1

(1 + c2(x− x0)2)k/2
, x ≥ x0,

=
1

(1 + c2(x− x0)2)l/2
, x < x0.

5.4.2 Working with asymptotic polynomials

With x0 and c fixed, the function φ̃ is a linear combination of basis functions
and so the general approach to model fitting can be adopted:

I Fix x0, c, k and degree n.

II Form m× (n+1) observation matrix C for {φj}: for i = 1, . . . ,m and j =
1, . . . , n, C(i, j) = φj(xi) and weight vector wi = w(xi|x0, c, k). Normalise
weight vector wi := wi/M where M = maxi |wi|.

III Form modified observation matrix C̃ij = wiCij .

IV Solve the linear least-squares system

min
a
‖y − C̃a‖2

for parameters a.

Uncertainties associated with the fitted parameters can be estimated using the
general approach described in section 4.1. Using the Forsythe method [109], the
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Figure 5.14: Asymptotic and standard polynomial fits of degree 9
to measurements of thermo-physical properties.

modified basis functions φ̃j can be determined so that the observation matrix
C̃ is orthogonal, leading to better numerical properties.

It has been assumed above that constants x0 and c are fixed. However, we can
regard one or both as additional parameters to be determined in which case the
observation matrix C̃ = C̃(x0, c) is now a nonlinear function of x0 and c and
the fitting problem becomes

min
a,x0,c

‖y − C̃(x0, c)a‖2,

a nonlinear least-squares problem (section 4.2). This problem can be solved
using the Gauss-Newton algorithm for example. Note that at each iteration
only C̃ has to be formed from C; there is no need to recalculate C.

Alternatively, let a(x0, c) solve the linear least-squares problem

min
a
‖y − C̃(x0, c)a‖2,

and set r(x0, c) = y − C̃(x0, c)a(x0, c) and F (x0, c) = ‖r(x0, c)‖, the norm of
the residuals. A multivariate minimisation algorithm can be applied to F (x0, c)
to find an optimal or at least better estimate of these parameters.

Example: asymptotic polynomial and (standard) polynomial fits compared

In figures 5.13–5.16, asymptotic polynomial and standard polynomial fits of the
same degree have been fitted to data portraying asymptotic behaviour. In each
case, the asymptotic polynomial fit gives a better representation of the data.
In figures 5.14 and 5.16 the asymptotic polynomial fit is barely distinguishable
from the data. ]

93



Software Support for Metrology Best Practice Guide No. 4

Figure 5.15: Asymptotic and standard polynomial fits of degree 9
to oscilloscope response measurements.

Figure 5.16: Asymptotic and standard polynomial fits of degree 5
to photodiode response measurements.
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5.5 Tensor product surfaces

5.5.1 Description

The simplest way to generate linear empirical models for surfaces is to construct
them from linear empirical models for curves. Suppose

φ(x,a) = a1φ1(x) + . . .+ anx
φnx

(x) and
ψ(y,b) = b1ψ1(y) + . . .+ bny

ψny
(y)

are two linear models for curves. Then the functions γk`(x, y) = φk(x)ψ`(y),
k = 1, . . . , nx, ` = 1, . . . , ny, form the tensor product set of basis functions for
defining linear models for representing surfaces of the form

z = γ(x, y,a) =
nx∑

k=1

ny∑
`=1

ajkγk`(x, y). (5.8)

In particular, tensor products of Chebyshev polynomials and B-spline basis
functions are used extensively: see below.

Tensor products are particularly useful representations for data (xi, yi, zi) in
which the behaviour of the surface is similar across the domain. They are
less efficient in representing generally bland surfaces with local areas of large
variations. A second (and related) disadvantage is that the number of basis
functions is nx×ny, so that to capture variation in both x and y a large number
of basis functions can be required. On the positive side, if the data points
(xi, yi) lie on or near a rectangular grid, the computations can be performed
very efficiently [4]: see below.

Tensor product surfaces have been proposed [69] for modelling the kinematic
behaviour of coordinate measuring machines (CMMs). An empirical model is
used to describe the motion of the probe stylus assembly of the CMM (its
location and orientation) in terms of three functions specifying a positional
correction and three a rotational correction. Each correction is a function of
three independent variables, the scale readings returned by the CMM, and is
represented by a tensor product of polynomial spline curves.

Tensor product spline surfaces have also been used in the modelling of a pho-
todiode response [127], in which the independent variables are time and active
layer thickness. A spline surface approximation is used to smooth measurements
of the response, represent concisely the very large quantities of measurements
that are made, and permit effective manipulation of the underlying function
including obtaining derivatives and evaluating convolutions.
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5.5.2 Working with tensor products

Orthogonality of tensor products

If {φk} and {ψl} are orthonormal2 with respect to inner products

〈p, q〉u =
∫ b

a

p(x)q(x)u(x) dx, 〈p, q〉v =
∫ d

c

p(x)q(x)v(x) dx,

respectively, then {γkl(x, y) = φk(x)ψl(y)} are orthonormal with respect to the
inner product

〈p, q〉w =
∫ b

a

∫ d

c

p(x, y)q(x, y)w(x, y) dy dx,

where w(x, y) = u(x)v(y).

Data approximation using tensor product surfaces

Given data points (xi, yi, zi), i = 1, . . . ,m, the least-squares best-fit tensor
product surface is found by solving

min
a

m∑
i=1

(zi − γ(xi, yi,a))2,

with γ(x, y,a) defined by (5.8). In matrix terms, we solve

min
a
‖z− Γa‖2,

where z = (z1, . . . , zm)T, Γ is an m × nxny matrix of elements γk`(xi, yi), and
a is an nxny × 1 vector of elements ak`. In this formulation, the order of the
elements ak` in a (and the order of the corresponding columns of Γ) comes from
a choice of ordering of the nxny basis functions γk`(x, y).

In the case that the data points relate to measurements on a grid in the
xy-domain, an alternative linear algebraic formulation is possible that exploits
separability of the tensor product basis functions and leads to a problem that
can be solved significantly faster. Let the data points be (xi, yj , zij), i =
1, . . . ,mx, j = 1, . . . ,my, and let matrices Φ, Ψ, A and Z be defined by

(Φ)ik = φk(xi), i = 1, . . . ,mx, k = 1, . . . , nx,

(Ψ)j` = ψ`(yj), j = 1, . . . ,my, ` = 1, . . . , ny,

and

(Z)ij = zij , i = 1, . . . ,mx, j = 1, . . . ,my,

(A)k` = ak`, k = 1, . . . , nx, ` = 1, . . . , ny.

2That is, for the appropriate inner product, 〈pk, pl〉 = 1 if k = l, 0 otherwise.
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Then, the surface approximation problem is to solve

min
A
‖Z − ΦAΨT‖2, (5.9)

the solution to which is given (formally) by(
ΦTΦ

)
A
(
ΨTΨ

)
= ΦTZΨ. (5.10)

The solution to (5.10) may obtained in two stages: by solving(
ΦTΦ

)
Ã = ΦTZ

for Ã, followed by solving
A
(
ΨTΨ

)
= ÃΨ

for A. These relate, respectively, to least-squares solutions of

min
Ã
‖Z − ΦÃ‖2, (5.11)

and
min

A
‖Ã−AΨT‖2. (5.12)

Consequently, the surface approximation problem (5.9) is solved by considering
curve approximation problems (5.11) and (5.12) as follows. First, for each j =
1, . . . ,my, find the least-squares best-fit curve

fj(x) =
nx∑

k=1

ãkjφk(x)

to the data (xi, zij), i = 1, . . . ,mx. Second, for each i = 1, . . . , nx, find the
least-squares best-fit curve

fi(y) =
ny∑
`=1

ai`ψ`(y)

to the data (yj , ãij), j = 1, . . . ,my.

The least-squares best-fit surface is therefore obtained in O(mxmyn
2
x+mynxn

2
y)

operations compared with O(mxmyn
2
xn

2
y) that would apply if separability of the

basis functions is ignored. For instance, if mx = my = 1000 and nx = ny = 100,
the number of operations differ by a factor of O(104).

5.5.3 Chebyshev polynomial surfaces

We recall from section 5.1, that a polynomial curve pn(x) of degree n on the
interval x ∈ [xmin, xmax] has the representation3

pn(x) =
1
2
a0T0(x̂) + a1T1(x̂) + . . .+ anTn(x̂) =

n∑
k=0

′akTk(x̂),

3The notation
P′ indicates that the first term in the sum is halved.

The normalised variable z, in section 5.1, has been replace by x̂.
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where x̂ ∈ [−1,+1] is related to x by

x̂ =
(x− xmin)− (xmax − x)

xmax − xmin

and Tj(x̂), j = 0, . . . , n, are Chebyshev polynomials. A tensor product polyno-
mial surface pnxny (x, y) of degree nx in x and ny in y on the rectangular domain
(x, y) ∈ [xmin, xmax]× [ymin, ymax] is therefore represented by

pnxny
(x, y) =

nx∑
k=0

′
ny∑
`=0

′ak`Tk(x̂)T`(ŷ), (5.13)

where x̂ and ŷ are each normalised to lie in the interval [−1,+1]. We apply,
here, the standard convention that coefficients in the above representation which
have either k or ` zero are written as ak`/2, and the coefficient with both k and
` zero is written as a00/4.

The polynomial surface (5.13) has total degree nx + ny, the highest combined
power of x and y of a basis function. Another way of representing a polynomial
surface is to require that the total degree of the tensor product basis functions
is specified as n. Such a polynomial surface has the representation

pn(x, y) =
k+`≤n∑

k=0,`=0

ak`Tk(x̂)T`(ŷ).

Advantages

• For data on regular grids, the solution algorithms are efficient and, with
the use of orthogonal basis functions, numerically stable.

• Given polynomial approximation software components for one dimension
(evaluation of Chebyshev basis functions, etc.) the implementation of
algorithms for approximation with tensor product polynomials is straight-
forward, especially for data on regular grids.

• For data representing similar qualitative behaviour over the domain of
interest, it is usually possible to determine good approximations.

• The order of the polynomials can be used to generate nested sequences of
spaces from which to approximate the data.

Disadvantages

• For data representing different types of behaviour in different regions, a
tensor product representation can be inefficient.

• For scattered data there is no easily tested criterion to determine a priori
whether or not approximation with a particular order of polynomial will
be well-posed.
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5.5.4 Spline surfaces

Recalling section 5.2, a tensor product spline surface s(x, y) of order nx in
x with knots λ and order ny in y with knots µ on the rectangular domain
(x, y) ∈ [xmin, xmax]× [ymin, ymax] is represented by

s(x, y) = s(x, y,λ,µ) =
nx+Nx∑

k=1

ny+Ny∑
`=1

ck`Nnx,k(x,λ)Nny,`(y,µ), (5.14)

where the knot vectors λ and µ satisfy, respectively,

xmin = λ0 < λ1 ≤ λ2 ≤ . . . ≤ λNx−1 ≤ λNx < λNx+1 = xmax

and
ymin = µ0 < µ1 ≤ µ2 ≤ . . . ≤ µNy−1 ≤ µNy

< µNy+1 = ymax.

The spline surface (5.14) is a piecewise bivariate polynomial of order nx in x
and ny in y on (λi, λi+1) × (µj , µj+1), i = 0, . . . , Nx, j = 0, . . . , Ny. The
spline is (nx−k−1)-times continuously differentiable along the knot-line x = λi

if #(λ` = λi, ` ∈ {1, . . . , Nx}) = k (and similarly for the knot-line y = µj). So,
for example, a spline surface of order four in x and y for which the λi and
µj are distinct is a piecewise bicubic polynomial, that is twice continuously
differentiable along the lines x = λi and y = µj .

Advantages

• For data on regular grids, the solution algorithms are extremely efficient
and numerically stable. For scattered data, it is still possible to exploit
sparsity structure in the observation matrix but the gain in efficiency is
much less than that for the case of one dimension.

• Given spline approximation software components for one dimension (eval-
uation of B-spline basis functions, etc.) the implementation of algorithms
for approximation with tensor product polynomials is straightforward for
data on regular grids.

• For data representing similar qualitative behaviour over the domain of
interest, it is usually possible to determine good approximations.

• The knot vectors can be chosen to generate nested sequence of spaces from
which to approximate the data.

• For data on a rectangular grid, it is easy to check a priori whether a
particular choice of knots will lead to a well-posed approximation problem.

Disadvantages

• Splines require the knot vectors to be chosen, for the problems to be
linear. If the data or surface exhibits different behaviour in different
regions, the choice of knots can affect significantly the quality of the spline
representation [73].
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• For data representing different types of behaviour in different regions, a
tensor product representation can be inefficient.

• For scattered data, there is no easily tested criterion to determine a priori
whether or not approximation with splines defined by a pair of knot sets
will be well posed.

5.6 Wavelets

5.6.1 Description

Wavelets are now an important tool in data analysis and a survey of their
application to metrology is given in [146].

In one dimension, wavelets are often associated with a multiresolution analysis
(MRA). In outline, let L2(R) be the space of square integrable functions f :
R −→ R so that ∫ ∞

−∞
f2(x) dx <∞.

If f, g ∈ L2(R) we define

〈f, g〉 =
∫ ∞

−∞
f(x)g(x) dx,

and ‖f‖2 = 〈f, f〉. This inner-product is used to define orthogonality for
functions in L2(R).

A starting point for MRA is a function ψ(x), the mother wavelet. From ψ we
define a double sequence of functions

ψj,k =
1

2j/2
ψ(2−jx− k),

using translations and dilations. The mother wavelet is chosen so that {ψj,k}
forms an orthonormal basis for L2(R). Any f ∈ L2(R) can be expressed as

f(x) =
∞∑

j=−∞

∞∑
k=−∞

〈f, ψj,k〉ψj,k(x).

The functions {ψj,k}, k ∈ Z, form an orthonormal basis for a subspace Wj of
L2(R) and these subspaces are used to define a nested sequence of subspaces

. . . ⊃ Vj−1 ⊃ Vj ⊃ Vj+1 ⊃ . . .

where
Vj−1 = Vj ⊕Wj ,

i.e., any function fj−1 ∈ Vj−1 can be uniquely expressed as fj−1 = fj + gj , with
fj ∈ Vj and gj ∈Wj . We regard fj as a smoother approximation to fj−1 (since
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f(x) ∈ Vj−1 if and only if f(2x) ∈ Vj) while gj represents the difference in detail
between fj−1 and fj .

The orthogonality properties mean that computations using wavelets can be
made very efficiently. In particular, the discrete wavelet transform is used
to decompose a uniformly spaced finite set of discrete data points (j, fj) into
component functions at different frequencies (or scales). A major feature of
a wavelet analysis is that (unlike Fourier analysis) it can describe different
frequency behaviour at different locations.

Wavelets can also be used to analyse signals in higher dimensions. From the
orthonormal wavelet basis for L2(R),

{(ψj,k(x), j, k ∈ Z}

an orthonormal basis for L2(R2) is obtained by taking the tensor products
(section 5.5) of two one-dimensional bases functions

ψj1,k1,j2,k2(x, y) = ψj1,k1(x)ψj2,k2(y).

and these functions can be used for MRA in two dimensions.

Advantages

• Wavelets are able to represent different types of behaviour in different
regions.

• For data lying on a regular grid, algorithm implementations are efficient
and numerically stable.

• Wavelets provide a nested sequence of spaces from which to approximate
the data.

• Wavelets are important tools in filtering and data compression.

• Wavelets do not require the specification of subsidiary parameters (but a
choice of mother wavelet is required).

• Many wavelet software packages are available.

Disadvantages

• Most wavelet implementations are concerned with data on a regular grid.

• The relationship between the choice of wavelet and the effectiveness of
resulting analysis is not obvious.
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5.7 Bivariate polynomials

5.7.1 Description

Tensor product surfaces (section 5.5) are especially computationally effective for
approximating data where the xy-coordinates (xi, yi) are situated on a regular
grid. If the locations of (xi, yi) are scattered, the tensor product approach is
much less efficient. In the case of one dimension, given a set of data {(xi, yi)}m

i=1,
the Forsythe method generates, implicitly, a set of orthogonal polynomials φj(x)
such that

〈φj , φk〉 =
m∑

i=1

φj(xi)φk(xi) = 0, j 6= k.

Furthermore if there are at least n distinct xi, then approximating the data with
an order n (degree n − 1) polynomial is a well-posed problem – the associated
observation matrix has full rank. In two (or higher) dimensions conditions to
guarantee a well conditioned approximation problem are much more complex.
For example, if the data points (xi, yi, zi) are such that (xi, yi) lie on a circle
then the basis vectors corresponding to the basis functions x2, y2, x, y and
1 will be linearly dependent. More generally, if (xi, yi) lie on (or near to)
an algebraic curve (i.e., one defined as the zeros of a polynomial), then the
associated observation matrix will be rank deficient (or poorly conditioned).

In a paper by Huhtanen and Larsen [138], an algorithm is presented for gen-
erating bivariate polynomials that are orthogonal with respect to a discrete
inner product. It is straightforward to implement and includes provision for
the possibility of linear independency amongst the basis vectors. The algorithm
also provides a recursive scheme to evaluate the polynomial where the length
of the recursion is at most 2k + 1 where k is the degree of the polynomial. We
illustrate the use of this algorithm in fitting data generated on the surface

z = x4 − y4 + xy3 − x3y + 2. (5.15)

We have generated 101 data points (x∗i , y
∗
i ) uniformly distributed around the

circle x2+y2 = 1 and calculated z∗i according to (5.15) so that (x∗i , y
∗
i , z

∗
i ) lie ex-

actly on the surface; see figure 5.17. We have then added random perturbations
to generate data points (xi, yi, zi):

xi = x∗i + ei, yi = y∗i + fi, zi = z∗i + gi, ei, fi, gi ∈ N(0, σ2).

There are 15 basis functions associated with a bivariate polynomial of total
degree 4. For the data points {(x∗i , y∗i )} and degree k = 4 the algorithm
generates 10 orthogonal vectors out of a possible 15, the remaining five being
linear combinations of the other basis vectors. The maximum computed element
|(Q∗)TQ∗ − I| was 1.5543× 10−15. For the data points, {(xi, yi)}, the random
perturbations are enough to ensure that the basis functions are linearly inde-
pendent and the algorithm produces all 15 orthogonal vectors. The maximum
computed element of |QTQ− I| was 5.0774× 10−14.

This algorithm is certainly of interest for those who wish to approximate multi-
variate data with polynomials and it is likely there will be further developments.
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Figure 5.17: Curve defined by the quartic surface (5.15) intersected with the cylinder
x2 + y2 = 1.

Multivariate orthogonal polynomials is an area of considerable research activity
(see, e.g., [89]).

Advantages

• The Huhtanen and Larsen (HL) algorithm provides a method of approxi-
mating scattered data by bivariate polynomials.

• The algorithm is efficient compared to a full matrix approach and has
favourable numerical properties.

• The algorithm copes with possible rank deficiency in the basis functions.

• The HL algorithm is reasonably straightforward to implement.

• The same approach can be applied in higher dimensions.

• The total order of the polynomial can be chosen to generate a nested
sequence of spaces from which to chose an approximant.

Disadvantages

• Standard numerical tools for its implementation are not yet widely avail-
able.

5.7.2 Bibliography

Multivariate polynomials are discussed in [89, 138], for example.
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5.8 RBFs: radial basis functions

5.8.1 Description

Let Λ = {λj}, j = 1, . . . , n, be a set of points in Rp, and ρ : R −→ [0,∞) a
fixed function. A radial basis function (RBF) with centres Λ has the form

φ(x,a) = φ(x,a,Λ) =
m∑

j=1

ajρ(‖x− λj‖),

where ‖x‖ = (xTx)1/2 is the Euclidean norm of a vector. Defining

φj(x) = ρ(‖x− λj‖),

then φ is seen to be a linear combination of basis functions. Therefore, approx-
imation with RBFs follows the same general approach as with other empirical
models defined in terms of basis functions. Given a set of data points X =
{(xi, yi) ∈ Rp × R}, i = 1, . . . ,m, the associated observation matrix has

Cij = ρ(‖xi − λj‖).

In least-squares approximation, estimates of the parameters a are found by
solving

min
a
‖y − Ca‖2.

Common choices for the function ρ are i) ρ(r) = r3, cubic, ii) ρ(r) = e−r2
,

Gaussian, iii) ρ(r) = r2 log r, thin plate spline, iv) ρ(r) = (r2 + λ2)1/2, multi-
quadric, and v) ρ(r) = (r2+λ2)−1/2, inverse multiquadric. In practice, a scaling
parameter µ0 is required so that the RBF has the form

φ(x,a|µ0,Λ) =
m∑

j=1

ajρ(µ0‖x− λj‖).

If necessary, µ0 can be regarded as a parameter to be determined as part of
the fitting process, in which case the observation matrix C = C(µ0) is now a
nonlinear function of µ0 and the optimisation problem becomes

min
a,µ0

‖y − C(µ0)a‖2,

a nonlinear least-squares problem (section 4.2). This problem can be solved
using the Gauss-Newton algorithm for example. Alternatively, let a(µ0) solve
the linear least-squares problem

min
a
‖y − C(µ0)a‖2,

and set r(µ0) = y−C(µ0)a(µ0) and F (µ0) = ‖r(µ0)‖, the norm of the residuals
scaling parameter µ0. A univariate minimisation algorithm can be applied to
F (µ0) to find an optimal estimate.
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Advantages

• RBFs apply to scattered data.

• RBFs apply to multivariate data in any dimension. The computational
cost is O(mn(n+ p), where m is the number of data points, n the number
of centres and p the dimension.

• RBFs can represent different types of behaviour in different regions.

• It is generally possible to chose centres so that the data approximation
problem is well-posed, i.e., there is no rank deficiency.

• RBF algorithms are easy to implement, involving only elementary opera-
tions and standard numerical linear algebra.

• By choosing the set of centres Λ appropriately, it is possible to generate a
nested sequence of spaces from which to choose an approximant.

Disadvantages

• RBF basis functions have no natural orthogonality and can often lead to
poorly conditioned observation matrices.

• RBFs give rise to full observation matrices with no obvious way of increas-
ing computational efficiency.

• RBFs require the choice of subsidiary parameters, i.e., the centres and
scaling parameter(s).

5.9 Neural networks

5.9.1 Description

Neural networks (NNs), see, e.g., [25, 26, 129], represent a broad class of
empirical multivariate models. We present here two common types of network.

Multilayer perceptron

In a multilayer perceptron (MLP) [129, 159], a vector of inputs x is transformed
to a vector of outputs z through a sequence of matrix-vector operations com-
bined with the application of nonlinear activation functions. Often a network
has three layers of nodes – input, hidden and output – and two transformations
Rm −→ Rl −→ Rn, x −→ y −→ z with

yj = ψ(aT
j x + bj), zk = φ(cT

k y + dk),

or, in matrix terms,

y = ψ(Ax + b), z = φ(Cy + d) = M(x, A,b, C,d),

105



Software Support for Metrology Best Practice Guide No. 4

where A is an l×m matrix, C an n× l matrix, and b and d are l- and n-vectors,
respectively. The activation function is often chosen to be the logistic sigmoid
function 1/(1 + e−x) or a hyperbolic tangent function tanh(x). These functions
have unit gradient at zero and approach 1 as x→∞ and 0 or −1 as x→ −∞.
For classification problems, the network is designed to work as follows. The
value of yj indicates whether a feature specified by aj is present (yj ≈ 1) or
absent (yj ≈ 0 or −1) in the input x. The output z completes the classification
of the input according to the features identified in the hidden layer y: the input
is assigned to the qth class if zq ≈ 1 and zr ≈ 0 or −1, r 6= q. For empirical
modelling, the second activation function is usually chosen to be the identity
function φ(x) = x, so that all values of output are possible, and

z = M(x, A,b, C,d) = Cψ(Ax + b) + d, (5.16)

a flexible multivariate function M : Rm −→ Rn.

Given training data comprising sets of inputs and required outputs {(xq, zq)},
an iterative optimisation process – the back-propagation algorithm – can be
used to adjust the weighting matrices A and C and bias vectors b and d
so that M(xq, A,b, C,d) ≈ zq. Alternatively, standard large-scale optimisa-
tion techniques [67, 117, 120, 210] such as conjugate gradient methods can
be employed. However, the optimisation problems are likely to be poorly
conditioned or rank deficient and the optimisation algorithms need to cope
with this possibility. Many algorithms therefore employ large-scale techniques
combined with regularisation techniques [124, 125, 199].

MLP models are extremely flexible. Many of the problems associated with
implementing them for a particular application are in deciding how to reduce
the flexibility in order to produce a compact model while at the same time
retaining enough flexibility in order to represent adequately the system being
modelled.

RBF networks

Radial basis function (RBF) networks [36, 175, 176] have a similar design to
multilayer perceptrons (MLPs) but the activation function is a radial basis
function. Typically, we have

yj = ρj(‖x− λj‖), z = Cy + d,

where ρj is a Gaussian function, ρj(x) = exp{−x2/(2σ2
j )}, for example. More

generally, we can have

yj = exp
{
−1

2
(x− λ)TMj(x− λ)

}
,

where Mj is a symmetric, semi-positive definite matrix.

Advantages

• NNs can be used to approximate any continuous function f : Rm −→ Rn

[113, 135].
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• NNs can be used to perform nonlinear classification, in which data points
belonging to different classes are separated by nonlinear hyper-surfaces.

• NN models are straightforward to evaluate and back-propagation algo-
rithms, for example, are easy to implement.

Disadvantages

• The determination of optimal weights and biases is a nonlinear optimisa-
tion problem.

• The back-propagation algorithm can converge slowly to one of possibly
many local minima.

• The behaviour of the model on training data can be a poor guide to its
behaviour on similar data.

• The evaluation of the uncertainty associated with the fitted parameters is
difficult.

• The effectiveness of the network can depend critically on its design (num-
ber and size of hidden layers).

5.10 Geometric elements

In this section we consider a class of models that have characteristics in many
ways different from empirical models such as polynomials and splines. The
most common geometric elements are lines in two and three dimensions, planes,
circles in two and three dimensions, spheres, cylinders and cones. Less common
but important in some fields are ellipses and ellipsoids, tori, aspherical surfaces
and surfaces of revolution; see also section 5.11. Geometric elements generally
can be defined in terms of two sets of parameters a = (sT, tT)T, those s defining
their size and shape – shape parameters – and those t defining their location
and orientation - position parameters. For example, a circle in the plane can
be specified by one shape parameter describing its radius and two position
parameters describing the location of its centre. In other parameterisations,
there may be no such clear distinction.

Geometric elements are important in dimensional metrology, particularly co-
ordinate metrology and in manufacturing and other engineering disciplines.
They are used to represent the shape of manufactured parts and engineering
components. They arise in many systems for which a geometrical description is
required.

5.10.1 Working with geometrical elements

Most calculations with geometric elements involve the calculation of the distance
d(x,a) from a data point x (in two or three dimensions, depending on the
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element) to the profile or surface of the element in terms of its shape and position
parameters a. For example the least squares best-fit element to data X = {xi}m

1

is found by solving

min
a

m∑
i=1

d2(xi,a). (5.17)

This type of regression is known as orthogonal regression since the error of fit
at xi is taken to be the smallest distance to the curve or surface rather that the
distance calculated in a specific direction (such as parallel to the z-axis). This
type of estimation is considered in section 4.3. The use of orthogonal regression
is justified on the basis of maximum likelihood principles and/or on the basis
of rotational invariance, since the properties of an artefact’s shape determined
from measurements should not be dependent on the orientation in which the
artefact is measured, with respect to the co-ordinate system used.

Example: least-squares orthogonal regression with circles, implicit version

We model a circle implicitly as f(x,a) = (x−a1)2 +(y−a2)2−a2
3 = 0. Suppose

the data points xi = (xi, yi)T are generated by a co-ordinate measuring system
with random effects modelled as

xi = x∗i + εi,

where x∗i = (x∗i , y
∗
i )T is the data point lying on the circle f(x,a) = 0 and εi

represents a random effect. It is assumed that the components of εi = (εi, δi)T

are uncorrelated and drawn from a normal distribution N(0, σ2). The maximum
likelihood estimate of the circle parameters a is found by minimising

min
a,{εi}

m∑
i=1

(ε2i + δ2i ) =
m∑

i=1

(xi − x∗i )
2 + (yi − y∗i )2

subject to the constraints f(x∗i ,a) = 0. Given any a, this sum is minimised by
setting x∗i equal to the point on the circle f(x,a) = 0 nearest xi:

x∗i = a1 + a3
xi − a1

ri
,

y∗i = a2 + a3
yi − a2

ri
, where

ri = {(xi − a1)2 + (yi − a2)2}1/2.

For this x∗i ,

{(xi − x∗i )
2 + (yi − y∗i )2}1/2 = d(xi,a) = ri − a3,

and the optimisation problem reduces to (5.17). ]

Example: least-squares orthogonal regression with circles, parametric version

Alternatively, we model a circle parametrically as

x∗ = a1 + a3 cosu, y∗i = a2 + a3 sinu.
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The maximum likelihood estimation problem can then be posed as

min
a,{ui}

m∑
i=1

(ε2i + δ2i ) =
m∑

i=1

(xi − a1 − a3 cosui)2 + (yi − a2 − a3 sinui)2.

Given any a, this sum is minimised by setting ui according to

cosui =
xi − a1

ri
,

sinui =
yi − a2

ri
,

so that the optimisation problem again reduces to (5.17). ]

For the simpler geometric elements specified by parameters a, the distance
d(x,a) from a point x to the element can be calculated as an explicit function
of x and a. For more complicated elements, a numerical approach is required
to solve the associated foot point problems; see section 4.3.

Rotations and translations. Often the position parameters are defined in
terms of rotations and translations. Let

R(α) = Rz(γ)Ry(β)Rx(α)

be the composition of three plane rotations defined by

Rx(α) =

 1 0 0
0 cosα − sinα
0 sinα cosα

 , Ry(β) =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ


and

Rz(γ) =

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 .
A roto-translation can be written in the form

x̂ = T (x, t) = R(α)R0(x− x0),

and is specified by parameters t = (xT
0 ,α

T)T and fixed rotation R0. The inverse
transformation T−1 is

x = x0 +RT
0 R

T(α)x̂.

Example: orthogonal regression with cylinders I

Suppose we wish to fit a cylinder to data points {xi}m
1 . A cylinder is specified

by a point on its axis x0, an axis direction vector n and its radius. If the
cylinder axis is approximately coincident with the z-axis, we can parameterise
the cylinder as follows:

x0(a) =

 a1

a2

0

 , n(a) = RT
y (a4)RT

x (a3)ez, ez = (0, 0, 1)T,
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and radius a5, five parameters in all. This parameterisation becomes less stable
and eventually breaks down as the angle the cylinder axis makes with the z-axis
approaches a right angle. A family of parameterisations generated from this
parameterisation can used to describe cylinders in a general orientation and
location. Let n0 be the approximate axis direction and R0 a fixed rotation
matrix such that RT

0 n0 = ez. Similarly, let z0 be a point on the nominal axis.
Then the cylinder is parameterised in terms of x0(a), n(a) and its radius, where

x0(a) = z0 +RT
0

 a1

a2

0

 , n(a) = RT
0 R

T
y (a4)RT

x (a3)ez.

Members of this family of parameterisations are specified by the extra constants
determining the fixed translation vector and rotation matrix. In order to select
an appropriate member of the family, an initial indication of the axis is required.

The distance d(x,a) to a cylinder parameterised in this way is given by

d(x,a) = ‖(x− x0(a))× n(a)‖ − a5, (5.18)

where c× d denotes the cross product of vectors. ]

Example: orthogonal regression with cylinders II

We consider again orthogonal regression with cylinders, using a slightly different
approach so that the position and shape parameters are separated. In the first
approach described above, we think of moving and shaping the cylinder so that
it lies as close as possible to the data. In this second approach we think of
moving the data so that it is as close to possible to the cylinder.

A cylinder in standard position has its axis coincident with the z-axis. A cylinder
has one shape parameter, its radius, and a cylinder in standard position is given
by the equation

f(x, s) = f(x, y, z, s) = x2 + y2 − s2 = 0.

The distance from a point x = (x, y, z)T to a cylinder in standard position is
given by d(x, s) = (x2 + y2)1/2 − s.

Suppose, as before, we wish to fit a cylinder to data points {xi}m
1 . We assume

that the data has been transformed by an initial translation and rotated so that
the data approximately lies in the surface of the cylinder in standard position.
Let T be the roto-translation defined by t = (a1, a2, a3, a4)T, where

x̂(t) =

 x̂
ŷ
ẑ

 = Ry(a4)Rx(a3)

 x
y
z

−
 a1

a2

0

 .

The distance from a point x to the cylinder is given in terms of the position
parameters t and shape parameters s by

d(x,a) = d(x̂(t), s) = (x̂2 + ŷ2)1/2 − s. (5.19)

The advantages of this approach are firstly, the calculation of the distance
and its derivatives is simpler (compare (5.19) with (5.18)) and, secondly and
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more importantly, the calculations involving the transformation parameters are
separated from the shape parameters and are largely generic, independent of
the geometric element. ]

5.10.2 Bibliography and software sources

Least-squares and Chebyshev regression with geometric elements and related
form and tolerance assessment problems are considered in [5, 6, 7, 41, 42, 65,
95, 96, 97, 98, 102, 108, 114, 194, 211]. The package LSGE — least squares
geometric elements — is available for download from eurometros [9, 92].

5.11 NURBS: nonuniform rational B-splines

A nonuniform rational B-splines curve of order k is defined as a parametric
curve C : R −→ R2 with

C(u) =

∑n
j=0Nk,j(u|λ)wjP j∑n

j=0Nk,j(u|λ)wj
,

where P j ∈ R2 are the control points, wj weights and Nk,j(u|λ) B-spline basis
functions defined on a knot set λ (section 5.2).

NURBS surfaces S : R2 −→ R3 are generated using tensor products (section 5.5)
of B-spline basis functions:

S(u, v) =

∑n
j=0

∑m
q=0Nk,j(u|λ)Nl,q(v|µ)wjqP jq∑n

j=0

∑m
q=0Nk,j(u|λ)Nl,q(v|µ)wjq

,

where Nk,j(u|λ) and Nl,q(v|µ) are the B-spline basis functions, P jq ∈ R3 are
control points, and wjq weights.

Nonuniform rational B-splines (NURBS) are used for computer graphics and
extensively in computer-aid design for defining complex curves and surfaces
and are therefore important in co-ordinate metrology.

Advantages

• NURBS can be used to model and modify highly complex curves and
surfaces.

• The shape of the curve or surface is easily determined and modified by
the location of the control points. NURBS provide local control, so that
shifting one control point only affects the surface shape near that control
point.

• NURBS are invariant under scaling, translation, shear, and rotation,
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• NURBS can be used to define quadric surfaces, such as spheres and
ellipsoids, commonly used in CAD exactly. Parametric B-spline surfaces
can only approximate such surfaces and in doing so require many more
control points.

Disadvantages

Although NURBS are in principle straightforward to implement, efficient and
numerically stable approaches require appropriate use of the recurrence formulae
associated with B-splines.

• Data approximation with NURBS (fitting a cloud of points with a NURBS
curve or surface) is likely to give rise to rank deficient or poorly condi-
tioned problems. However there are a number of ways of approaching
approximation with parametric curves and surfaces, some of which give
rise to well conditioned problems (see, e.g., [39, 103]).

5.11.1 Bibliography and software sources

Curve and surface representation in computer-aided design is described in [93,
182], for example. A number of software packages for NURBS are available for
download including, for example, [195].
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Chapter 6

Introduction to model
validation

6.1 What is a valid model?

Having developed a mathematical model of a physical system, how do we know
if the model is a good representation of reality?

There are two aspects of model validity. The first is internal consistency. To
the extent that a model represents a set of mathematical statements, its validity
can be checked for mathematical correctness. Typically, a model has a set of
inputs described in terms of facts and assumptions about components of the
physical system. It also has a set of outputs in terms of predicted behaviour
of systems to which it applies. If the model is internally consistent then the
outputs are valid so long as the inputs are valid.

The second aspect of validity is external consistency with prior information
and/or experimental results. A model is valid if information extracted from
it is not contradicted by other valid information. The validation status of
a model is consolidated as it is shown to be consistent with more external
information. Validation of an internally consistent model focuses on the extent
to which the assumptions associated with the model apply, i.e., a validation of
the applicability of the model.

The main output of the modelling process is usually a measurement result,
i.e., an estimate of the value of a parameter, and a statement of its associated
uncertainty.

Example: a simple spring balance.

Consider a simple spring balance used to estimate the weight W of an object
based on the measurement of the extension of a spring. The linear extension
is converted into an angular motion of an indicating needle that moves over a
scale. The main inputs to the modelling process are:
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• Hooke’s Law for the extension e = H(w, k) of a spring in terms of the
applied load w and spring constant k.

• Hooke’s constant k for the particular spring.

• The standard uncertainty σk associated with the estimate k.

• The functional dependence of the position x = f(e) of the indicating
needle on the extension e of the spring.

• Random effects with standard deviation σx associated with reading the
position x of the needle on the scale.

• A specification of the minimum wmin and maximum wmax loads to be
applied to the instrument.

The main outputs from the modelling process are:

• A function
w = F (x, k) (6.1)

that converts the reading x of the indicator position into an estimate w of
the artefact’s weight.

• A rule to obtain the value

σw = σx

(
∂F

∂x

)
(6.2)

of the standard uncertainty σw associated with the estimate w.

The validation of the internal consistency addresses the question: Assuming the
inputs are valid, are the outputs valid? Such issues associated with this model
include:

V1 The correctness of the function F derived from Hooke’s law and the
functional dependence x = f(e).

V2 The correctness of the partial derivative of F .

V3 The expression for σw does not take into account the uncertainty in the
value of Hooke’s constant k and could therefore be overly optimistic.

V4 The expression for σw is based on a linear approximation to F at x. This
linearisation will be invalid if the function F is highly nonlinear.

The internal consistency validation does not necessarily require any in depth
knowledge of the metrological/physical system, only expertise in discrete mod-
elling. Once the internal consistency of a model is established, the focus of the
validation moves to the assumptions, explicit or implicit, associated with the
model inputs. An expert in the area might wish to investigate:

114



Discrete modelling and experimental data analysis

V5 The applicability of Hooke’s law to the type of spring.

V6 The assigned value for Hooke’s constant.

V7 The functional form x = f(e) relating the indicating needle to the spring
extension.

V8 The dependence of the system on environmental factors such as tempera-
ture. The model as it stands depends only on the spring constant k.

In this activity, the expert is assessing the consistency of the model with prior
information about the behaviour of similar systems. Finally, the validity of the
model in terms of its outputs can be tested against experimental data. In this
task, it is important that the statistical nature of the model outputs and the
experimental data are taken into account.

6.2 Model validation as risk management

While the need for model validation seems self-evident, validation will generally
require resources. It is therefore necessary to assess the risks associated with
an invalid model and then design and implement validation responses to limit
the risks to an acceptable level. In this, it is prudent to balance the risks
incurred by an invalid model with the cost of validation. In the sections below
we discuss the risks associated with each of the main components of the discrete
modelling process and indicate suitable validation responses. The analysis of
risks is discussed in SSf M Best Practice Guide No. 1: Validation of software in
measurement systems [206].
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Chapter 7

Validation of the model

In this chapter, we look at validation of how the model is built — the specifica-
tion of the functional and statistical models.

7.1 Validation of the functional model

The functional model describes the mathematical relationships between the
variables and parameters of the model. Typically, the functional model takes
the form

y = φ(x,a),

where y is the response variable and x = (x1, . . . , xp)T are the covariates or
explanatory variables, and a = (a1, . . . , an)T are the model parameters that
specify the function φ. In the case of a linear response depending on a single
variable we have

y = a1 + a2x,

for example. There are two main types of functional model. A physical model
is one for which there is a theory that defines how the variables depend on each
other. An empirical model is one in which a relationship between the variables
is expected or observed but with no supporting theory. Many models have both
empirical and physical components.

Validation of the functional model concerns i) its comprehensiveness, i.e., the
extent to which all the main variables and parameters are covered by the model
and ii) the correctness of the functional relationship between the variables and
parameters.

7.1.1 Comprehensiveness of the functional model

The specification of the functional model aims to achieve an appropriate level
of comprehensiveness.
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Risks. The risks associated with an overly comprehensive model are mainly
concerned with the unnecessary commitment of resources to:

• Develop, understand and manipulate the model.

• Monitor or control variables that may have no significant impact on system
behaviour.

• Solve computational problems associated with determining the model pa-
rameters from data.

The risks associated with a minimal model are mainly concerned with the impact
on how well the model performs, including:

• Scope of the model outputs.

• Validity of the model outputs.

• Flexibility of the model to cope with different hardware components or
operating conditions.

From knowledge of the physical system, all the factors and/or variables that
could have a potential influence on the system can be listed in a table or
datasheet and a status assigned to them according to their influence:

• Unknown parameter. The value of the variable is unknown and has to be
determined from a fit of the model to data.

• Parameter with prior estimate. The value of the variable is unknown and
has to be determined from a fit of the model to data. A prior estimate of
the variable is available along the associated uncertainty.

• Measured subject to uncertainty. The variable is to be measured and the
uncertainty associated with the measurement is likely to contribute to the
uncertainty in the outputs.

• Accurately measured. The variable is to be measured but the uncertainty
associated with the measurement is not significant compared to other
sources of uncertainty.

• Constant. The variable can be set to its nominal value and treated as
exact.

• Null. The value of the variable has no influence on the system and can be
omitted from the model.

Assigning a variable to a status high on this list is a move towards increasing the
comprehensiveness. In general, it is a good idea to start with a comprehensive
model and then justify and document each step in its simplification. For
example, a system may be moderately sensitive to temperature so that, on
a first analysis, temperature should be included in the model and assigned a
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status of ‘measured subject to uncertainty’. However, if the system is kept in
an accurately controlled temperature environment a status of ‘constant’ may be
sufficient. This assignment can be validated by numerical simulation.

Suppose the temperature controlled environment guarantees that the temper-
ature is kept within 1 ◦C of 20.0 ◦C and there is also available a temperature
sensor that measures with a standard uncertainty 0.2 ◦C. If

y = φ(t,x,a)

represents the functional model in terms of temperature t, other variables x and
parameters a, then a quick estimate of the sensitivity of y to temperature can
be determined by evaluating

φ(t0,x,a), φ(t0 ±∆t,x,a)

for t0 = 20.0 ◦C, ∆t = 1.0 ◦C and 0.2 ◦C and for typical values of the variables
x and a. This provides an estimate of the variation of the model values due to
variation in temperature in the ranges 20.0 ◦C ± 1.0 ◦C and 20 ◦C ± 0.2 ◦C.
Then:

• If the variation in the model values for the case ∆t = 0.2 ◦C is significant
compared to the likely uncertainty associated with y, then t should be
assigned a status of ‘measured subject to uncertainty’; otherwise

• If the variation in the model values for the case ∆t = 1.0 ◦C is significant
compared to the likely measurement uncertainty associated with y, then
t should be assigned a status of ‘accurately measured’; otherwise

• The temperature t is assigned a status of ‘constant’.

The interpretation of ‘significant’ will depend on circumstances. If the maximum
variation of the model response due to a variable in its operating range is less
than 1% of the uncertainty associated with the response, it may well be safe
to regard the variable as a constant. However, if the system has a nonlinear
response or in other ways can behave differently for different values of the
variables, it is possible that a variable that has no major impact in one set
of circumstances may well be significant in others. For this reason it is usually
preferable to err on the side of a comprehensive model. In particular, quantities
with prior calibrated values and associated uncertainties (section 4.11) can
usually be included in the model without introducing major complications at
the model solving stage (see, for example, [31, 106]).

Information about assumptions and status of the variables and parameters in
a model can be recorded in a data sheet such as table 7.1. If the design of the
system changes the data sheet can be updated to reflect the changes.

Validation responses.

• Design review by an expert in the metrology field, reviewing the data sheet
of model variables and checking assumptions.
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Variable/Parameter v1 v2 . . . vp

Nominal Value
Range

Measurement uncertainty
Status
Notes

Table 7.1: Example data sheet recording assumptions about the variables and
parameters in a model. Not all cells will be applicable to all variables or
parameters.

• Numerical simulation comparing the behaviour of comprehensive models
with simpler models.

7.1.2 Correctness of the functional model

Risks. The risks associated with an incorrect functional model are concerned
with functionality: the model gives invalid predictions. Often physical models
are derived from models of subcomponents of the system which are aggregated,
simplified or approximated. Errors can be introduced in a number of ways:

Typographical errors: errors in copying equations from source to where they are
used;

Conceptualisation errors: incorrect understanding of the underlying physics;

Approximation errors: inappropriate simplifications, e.g., linearisations, signifi-
cantly changing the behaviour of the model;

Scoping errors: models used outside the scope of their original application.

Validation responses for physical models. Appropriate techniques for
this aspect of model validation are:

• Design review by an expert in the metrology area to check the modelling
of the underlying physics.

• Design review by a modelling expert to check the mathematical derivation
of equations.

• Numerical simulations to check the effect of approximations, simplifi-
cations, linearisations, etc., on the model values (relative to the likely
measurement uncertainty).

• Evaluation of the model at variable/parameter values for which the phys-
ical response is known accurately.

• Numerical simulations to check the qualitative behaviour of the model
against expected behaviour. For example, if a response is expected to
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increase (or decrease) as a variable is increased, the model can be tested
to verify that it exhibits this behaviour.

Empirical models are often used to represent observed or expected behaviour,
for example, a calibration curve associated with a sensor’s performance. Since
empirical models are not derived from a physical theory their validation tends
to focus on how well they represent measurement data; see chapter 10. Al-
though there may be no explicit physical model available, there is often concrete
knowledge about the type of behaviour to be expected and it is important that
the empirical model is capable of reproducing this. Empirical models such as
polynomial curves (section 5.1) and Fourier series (section 5.3) have been used
successfully for many years. Part of their success is due to the fact that they
have proven approximation properties and can represent any smooth curve.
However, they are not appropriate for modelling systems in which the response
approaches a limit asymptotically (as in saturation or decay with time). For
these situations, an asymptotic polynomial model (section 5.4) would be more
appropriate.

Validation responses for empirical models.

• Design review by a metrology and/or modelling expert to check the em-
pirical model is appropriate for the expected type of behaviour.

• Numerical simulations to check the qualitative behaviour of the model
against expected behaviour.

7.2 Validation of the statistical model

If a typical functional model is of the form y∗ = φ(x∗,a) and describes the
relationship between y∗ and x∗ in the absence of random effects, a typical
statistical model associated with measurements {(xi, yi)}m

i=1 is of the form

yi = y∗i + εi, xi = x∗i , εi ∈ N(0, σ2),

which states that the variables xi are measured accurately but that the mea-
surements yi are subject to independent, normally distributed random effects
represented by εi with standard deviation σ. Thus, a complete statement of
the statistical model specifies (i) the uncertainty structure, i.e., which variables
are subject to random effects and what correlations exist between them, (ii)
statistical distributions for the random effects and (iii) values of parameters
associated with the distributions. While the derivation of the functional model
can often rely on physical theory, the statistical model attempts to describe
aspects of the system that are generally less well understood and, by their
nature, inexact.

Risks. A poor statistical model can lead to:
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Variable/Parameter v1 v2 . . . vp

Nominal value
Range

Distribution
Statistical parameters

Status
Notes

Table 7.2: Data sheet as in table 7.1 expanded to record information about the
functional and statistical model.

• Poor choice of solution method.

• Invalid model solutions.

• Invalid uncertainties associated with the model solution.

While an incorrect functional model will often be detected when the model is
fitted to measurement data, a poor statistical model can produce estimates of
the uncertainty associated with the fitted parameters that are out by a factor
of two or more without anything being obviously wrong. Since decisions about
the development or purchase of an instrument are made on the basis of an
uncertainty statement, the impact of a poor statistical model can be large.

Assumptions about the main components of the statistical model – uncertainty
structure, distributions and their parameter values – can be recorded in the
datasheet used to summarise the functional model (table 7.2). Assumptions
that need to be validated include the following.

Measurements of variables treated as exact. It is often assumed that only one
variable (the response variable) is subject to random effects. In practice, many
variables may be subject to random effects, some more significant than others.
A decision to treat any one as exact has to be justified.

Uncertainties treated as having equal variance. While in many situations it is
appropriate to assume that the random effects associated with a set of measure-
ments are drawn from the same distribution (and hence have the same variance),
the magnitude of these effects often have a dependence on the magnitude of
the variable. For example, if the measurement of y is subject to a relative
uncertainty then the statistical model

y = y∗(1 + ε), ε ∈ N(0, σ2), or y = y∗ + ε, ε ∈ N(0, σ2y2),

is appropriate. More generally, if estimates y = y(x) are determined from
measurements of variables x = (x1, . . . , xp)T with associated uncertainty (co-
variance) matrix Vx, then the uncertainty associated with y is estimated by

σ2
y = (∇xy)

T
Vx (∇xy) , (7.1)

where∇xy = ( ∂y
∂x1

, . . . , ∂y
∂xp

)T is the vector of partial derivatives of y with respect
to xj .

121



Software Support for Metrology Best Practice Guide No. 4

Random effects treated as independent. The random effects associated with a
sequence of measurements by an individual sensor might well have a correla-
tion structure and a time series analysis (or other methods) can be used to
characterise this structure (see, e.g., [32]). Often, a more important (and more
tractable) source of correlation is due to the dependence of estimates of variables
on a common set of measurements. Suppose that estimates of y = y(x, x0) are
determined from measurements of a variable x and constant x0. (For example,
y could be the length of a metal rod, x its temperature and x0 the coefficient
of thermal expansion for the metal.) If the measurements of xi and x0 are
modelled as

xi = x∗i + εi, εi ∈ N(0, σ2), x0 = x∗0 + ε0, ε0 ∈ N(0, σ2
0),

where εi and ε0 represent normally distributed random effects, then the covari-
ance of yi with yj is given by

cov(yi, yj) = σ2
0

∂y

∂x0
(xi, x0)

∂y

∂x0
(xj , x0).

This effect is termed structural correlation because the correlation appears as a
consequence of the structure in the functional relationship between the variables
and can be quantified and subsequently taken into account at the model solving
stage.

Probability distributions assumed to be normal. The assumption of normality
can usually be justified for a number of reasons including (from an empirical
view point) historical information on the behaviour of a sensor and (from a
theoretical view point) the Central Limit Theorem (see, e.g., [187, chapter 5]).
If the actual distribution is approximately symmetric, lightly tailed (vanishingly
small probability far from the mean) and unimodal (has one peak), then an
assumption of normality is usually safe. However, if it is known that the
distribution is far from normal, then such an assumption could lead to an invalid
model.

One area in which non-normality can be predicted is in the nonlinear transfor-
mation of a normally distributed variable. If y = x1 + x2t is a linear function
of a variable t, and t is measured subject to random effects modelled as

t = t∗ + ε, ε ∈ N(0, σ2
t ),

then the statistical model for y is

y∗ = x1 + x2t
∗, y = y∗ + δ, δ ∈ N(0, x2

2σ
2
t ).

This model is exact: if the variance of t is σ2
t , then the variance of y is x2

2σ
2
t

(section 2.4). However, if y = y(t) is a nonlinear function of t then the variance
σ2

y of y is approximated by

σ2
y =

(
∂y

∂t

)2

σ2
t . (7.2)

This approximation will be good so long as the curvature of y at t is small
compared with σt. This approximation needs to be validated as the following
two examples show.
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Figure 7.1 shows the curve y = 1/t and 200 data points (ti, yi) generated
according to the model

yi = 1/ti, ti = 3 + εi, εi ∈ N(0, 1).

The estimate of the standard deviation of yi derived from (7.2) is σy = 1/9 ≈
0.11 while the value obtained from the sample is 0.20. The estimate of the
variance of the yi given by (7.2) is derived using the approximating tangent
line to the curve at (3,1/3). The linearised estimate of the yi’s are shown on
the right hand vertical axis while the actual sample is shown on the left hand
vertical axis. The linearisation fails to account for the nonlinear behaviour of
the function.

Figure 7.2 presents the same type of information for the curve y = t2 and 200
data points (ti, yi) generated according to the model

yi = t2i , ti = 1 + εi, εi ∈ N(0, 1).

In this case, the predictions derived from the linearisation of the model implicit
in (7.2) are completely misleading: compare the spread of values of the two sides
of the figure.

Monte Carlo simulations (see section 8.2 and [71]), such as those used to generate
figures 7.1 and 7.2, can be used to check the actual variation of a function y(t)
of measured quantities compared with those predicted from a formula such as
(7.2) or the more general (7.1).

Validation responses for statistical models. Appropriate techniques for
this aspect of model validation are:

• Design review by an expert in the metrology field, reviewing the data
sheet for the statistical model for the measurement data and checking
assumptions.

• Design review by modelling expert to check the statistical models for
derived quantities.

• Numerical simulation to check the effect of approximations,
simplifications, linearisations, etc., associated with the statistical model.

• Monte Carlo simulations to check the variation in derived quantities
against the predicted variation.
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Figure 7.1: Actual and estimated variation of yi = 1/ti where ti are normally
distributed.
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Figure 7.2: Actual (left hand vertical axis) and estimated variation (right hand
vertical axis) of yi = t2i where ti are normally distributed.
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Chapter 8

Estimator validation

See also [10] on algorithm testing.

The previous chapter has been concerned with validating how the model has
been built. This chapter addresses how the model is solved, i.e., the choice of
estimator. It looks at the estimation of parameters and the evaluation of the
associated standard uncertainties.

Risks. A poor choice of estimator can lead to

• Biased estimates of the model parameters.

• Overly optimistic or pessimistic uncertainties associated with the fitted
parameters.

The measurement results and the associated uncertainties are the outputs from
the estimation process and the quality of these outputs is limited directly by
the estimator. The functional and statistical models may characterise the
measurement system comprehensively but this comprehensiveness will only be
translated into the measurement results if the estimation process also embodies
this characterisation. An (inefficient) estimator that makes poor use of the
data will produce parameter estimates that have a larger associated uncertainty
than warranted from the uncertainty associated with the data (section 3.3,
section 4.10). A possible consequence of this is that, unnecessarily, additional
measurements are undertaken or hardware upgrades are implemented in order
to meet the system performance specification.

8.1 Estimator validation issues

Models of experimental systems can be complicated for a number of reasons.
For example, the equations describing relationships between the variables and
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parameters may be quite involved or the data may be highly correlated. For such
systems, estimators which may be expected to perform well (from maximum
likelihood principles) could well require the solution of difficult optimisation
problems. In these circumstances, we may wish or be forced to simplify the
model and/or the optimisation problem in order to define an approximate esti-
mator that is easier to implement.

The following paragraphs outline typical situations in which estimator validation
is required.

Approximations in the functional model. As considered in section 7.1, the func-
tional model is often simplified to make it more tractable. Any such change to
the functional model will have an effect on the estimates of the fitted parameters
and consequently issues considered in the validation of the functional model will
be directly relevant to the choice of estimator. However, two additional aspects
of functional model validation are important at the model solving stage.

Firstly, while at the model building stage, we may be quite comfortable with
moderately complex functional models, when it comes to the practical step
of implementing methods to solve the equations derived from these complex
models a further degree of simplification may seem necessary over and above
those already adopted.

Secondly, for well-conditioned, linear problems (section 3.7, [68, 134]) we can
expect that a relative change in the functional model will have a similarly sized
relative change in the model solution. For poorly conditioned and/or nonlinear
problems the effect of an approximation of the functional model on the solution
parameters is not so easy to predict and it may be that a seemingly insignificant
change to the model in terms of the function values can have an unacceptably
large change in the model solution.

A linear approximation to a nonlinear model can have a significantly different
behaviour, qualitatively and quantitatively, from the nonlinear model. Fig-
ure 8.1 shows the linear approximation to an exponential model of the form
y = Ae−Bx. The linear model predicts that the response variable is zero at
x = 3. For the exact model, the response is never zero.

Approximations in the statistical model. Similarly to the case of the functional
model, at the model-solving stage additional simplifications to the statistical
model are made, either explicitly or implicitly, in order to produce a simpler
computational problem to be solved. Examples include (i) measurements of
variables treated as exact, (ii) input quantities treated as exact, (iii) random
effects in observation equations treated as independent, (iv) random effects in
observation equations treated as having equal variance and (v) random effects
treated as normally distributed.

The consequences of such approximations are in two areas. The first is that the
information in the data is not used to maximum advantage and the resulting
parameter estimates are not as good, in terms of their bias and variability
(section 3.3). Secondly, for most estimators, the estimate of the uncertainty
associated with the fitted model parameters is derived on the basis of a set
statistical model for the data. If the statistical model does not apply, the
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Figure 8.1: Linear approximation to an exponential model.

uncertainty estimates could be completely invalid. While it is acceptable to
apply a suboptimal estimator to data as long as the uncertainty calculations
reflect the true statistical model and estimator behaviour, uncertainty estimates
based on an approximate statistical model for any estimator can give misleading
information.

Approximate solution method. Approximations in the functional and statistical
model are generally reflected in changes to the error function to be minimised.
If an approximate solution method is employed to minimise the error function
then, again, the parameter estimates can be biased and/or the uncertainty
estimates invalid.

For these reasons, it is important that the choice of parameter estimation
method is validated. We describe three classes of validation techniques (i) Monte
Carlo simulation, (ii) null space benchmarking and (iii) estimator analysis.

8.2 Monte Carlo simulations

Monte Carlo simulation (see, e.g., [71]) is an important, general tool in modelling
and analysis and can be used effectively in estimator validation. The general
approach is as follows.

I Given a choice of model parameters a∗ = (a1, . . . , an)T, generate x∗

satisfying the functional model.
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II For q = 1, 2, . . . , N ,

II.1.q Generate perturbed data sets xq = x∗ + ∆q where ∆q is generated
according to the statistical model.

II.2.q Apply the estimator A to the data set xq to determine an estimate
aq = (a1,q, . . . , an,q)T of the model parameters. Store aT

q as the qth
row of an N × n matrix A.

III Compare statistics associated with A with a∗.

In step II.1.q, we need to be able to generate data from the appropriate statistical
distributions using corresponding random number generators (see, e.g., [86, 173,
197]). For step III we can, in particular, form the mean estimate ā whose jth
element āj is the mean of the jth column of A and the sample covariance matrix

V̄a =
1

N − 1
ĀTĀ (8.1)

where Ā is the mean-centred matrix defined by

Āij = Aij − āj .

The difference
βj = a∗j − āj

between the mean estimate and the true value of the jth parameter is a measure
of the bias of the estimator. The standard deviations sj defined by

s2j =
1

N − 1

N∑
q=1

(Aj,q − āj)2

of the columns of A, that is, the square roots of the diagonal elements of V̄a, are
a measure of the variability of the estimator. A combined measure of estimator
performance is given by the mean squared error (MSE)

MSEj =
1

N − 1

N∑
q=1

(Aj,q − a∗j )
2, (8.2)

or by the root mean squared error

RMSEj = (MSEj)1/2, (8.3)

for the jth parameter. We can also evaluate the model at ā or at any aq and
compare it with the model values at a∗. The differences in these model values
can be compared with the size of the perturbations ∆q.

In Monte Carlo simulations, the functional model is only required to generate the
exact data set x∗. This means that the behaviour of approximate estimators
can be validated against data generated using only function evaluations of a
comprehensive model.

As stressed in [71], the sample covariance matrix V̄a derived from the matrix
A of parameter estimates aq represents the covariance matrix of the actual
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distribution of the parameter estimates. No approximations or linearisations are
involved in its calculation and it can be used to validate uncertainty estimates
derived by other means.

The number of simulations performed is typically in the range 1000 to 100,000.
However, a smaller number of simulations will often identify errors in imple-
mentations, for example. The Monte Carlo simulations can be repeated for a
range of parameter values a∗ and different measurement strategies to give a
more complete picture of estimator behaviour and valuable information about
the effect of measurement strategy on the parameter estimates (chapter 10).

8.2.1 Monte Carlo simulation for a least-squares estimator

See section 4.2.

To illustrate, we consider a (nonlinear) least-squares approximation problem
(section 4.2). Suppose the functional and statistical model is of the form

y∗ = φ(x,a), y = y∗ + ε, ε ∈ N(0, σ2).

Given a data set {(xi, yi)}m
i=1, least-squares estimator A calculates (an estimate

of) the solution of

min
a

1
2

m∑
i=1

(yi − φ(xi,a))2.

The uncertainty (covariance) matrix associated with the fitted parameters is
estimated according to

Va = σ2(JTJ)−1, (8.4)

where J is the Jacobian matrix defined by

Jij =
∂

∂aj
(yi − φ(xi,a)), (8.5)

evaluated at the solution.

This estimator is appropriate for the model (and in fact is a maximum likelihood
estimator). However, if the function φ is highly nonlinear the estimator could be
biased.1 Secondly, the estimates of the uncertainty matrix associated with the
fitted parameters are based on a linearisation about the solution and could give
misleading results. The aims of the Monte Carlo simulation are to estimate the
bias in the parameter estimates and the validity of the uncertainty estimates.

Given a choice of a∗ and values of the covariates xi, i = 1, . . . ,m, the Monte
Carlo simulation in this case is summarised by:

I Calculate y∗i = φ(xi,a∗) and set z∗ = {(xi, y
∗
i )}m

i=1.

II For q = 1, 2, . . . , N ,
1Although maximum likelihood estimators are asymptotically unbiased (section 4.10), for

a fixed and modest number of data points they can be biased.
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II.1.q Generate yi,q = y∗i + εi,q, where εi,q is determined using a ran-
dom number generator for the normal distribution and set zq =
{(xi, yi,q)}m

i=1.
II.2.q Determine the least-squares estimate aq = A(zq) by solving

min
aq

m∑
i=1

(yi,q − φ(xi,aq))2,

and store aq as the qth row of an N × n matrix A.

III Compare the statistics associated with A with the choice of a∗.

Let ā and V̄a be defined as above (equation (8.1)). The bias of the estimator
can be measured by the difference between the mean parameter estimates and
the true values

β = ā− a∗,

and differences δ = (δ1, . . . , δm)T between the model predictions at ā and at a∗

where
δi = φ(xi, ā)− φ(xi,a∗).

The former can be compared directly with accuracy requirements on a while the
latter can be compared with the size of the perturbations (simulating random
effects associated with the measurements) in terms of the standard deviation σ.

The sample covariance matrix V̄a can be used to validate the estimate Va defined
in (8.4).

8.3 Null space benchmarking

The Monte Carlo simulation technique is a useful tool in validating estima-
tor performance or in comparing one estimator with another. In this section
we consider a more direct method of comparing one estimator with another,
particularly in the case where we wish to compare a simpler, approximate
estimator with a comprehensive, more complicated one. The main advantage of
the approach is that an implementation of the comprehensive estimator is not
required, although some analysis of its behaviour is generally required.

Suppose there are two estimators A and B associated with a measurement model
with A representing an optimal data analysis we would ideally like to use (e.g.,
a maximum likelihood estimator, section 4.10) and B an approximate estimator
that is already implemented. We wish to know whether or not B is fit for
purpose or if it will be necessary to implement A.

The main steps are as follows.

I Given a, determine a data set z (appropriate for the statistical model) for
which a = A(z), i.e., a is the solution supplied by estimator A for data
set z. Often, the uncertainty matrix Va associated with the parameters
estimates a can also be calculated.
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II Apply estimator B to z to determine estimates b = B(z).

III Compare b with a.

(IV) Compare the covariance matrix Vb of b with Va, if they are available.

The method can also be implemented in a Monte Carlo setting in which a
number of data sets zq are generated for which A(zq) = a.

The key to the approach is step I, determining the data set z. We now describe
ways to solve the problem for three important applications.

8.3.1 Null space benchmarking for least-squares problems

A common simplification in model fitting is to replace a nonlinear least-squares
problem with a linear least-squares problem. In this section we show how to
generate null space data for the nonlinear problem.

Suppose a nonlinear least-squares estimation process requires the solution of

min
a

1
2

m∑
i=1

(yi − φ(xi,a))2. (8.6)

The (first order) optimality conditions for a∗ to be a local solution of (8.6) is
that

JTf = 0

where J = J(a∗) is the Jacobian matrix of partial derivatives defined by (8.5)
evaluated at a∗ and f(a∗) = (f1, . . . , fm)T with fi = yi−φ(xi,a∗). This equation
states that the vector of residual errors f lies in the null space of the matrix JT.

The QR decomposition (section 3.7, [119]) can be used to generate an orthogonal
basis of the null space of any m× n, m ≥ n, matrix C. Let

C = Q

[
R1

0

]
, (8.7)

where Q is m × m orthogonal and R1 is n × n upper triangular. Let Q2 =[
qn+1 qn+2 · · · qm

]
be the submatrix of Q consisting of the last m − n

columns. If z is such that CTz = 0 then z can be written uniquely as a
linear combination of the columns of Q2. That is, there exists a unique ν =
(ν1, . . . , νm−n)T such that

z = Q2ν = ν1qn+1 + ν2qn+2 + · · ·+ νm−nqm, (8.8)

and vice versa: any such linear combination z will be such that CTz = 0. Since
Q2 is orthogonal the Euclidean norm of z in (8.8) is that of ν, i.e., ‖z‖ = ‖ν‖.

Given a choice of a∗, σ and values of the covariates xi, i = 1, . . . ,m, the null
space method for generating reference data and results is summarised by:

I Calculate y∗i = φ(xi,a∗) and set z∗ = {(xi, y
∗
i )}m

i=1.
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II Calculate the m× n Jacobian matrix J∗:

J∗ij =
∂

∂aj
(y∗i − φ(xi,a∗)),

and an orthogonal basis for the null space Q2 = [qn+1 . . .qm] of J∗T.
Generate ν = (ν1, . . . , νm−n) sampled from a normal distribution and
normalise them so that

‖ν‖/(m− n)1/2 = σ.

III Set
δ = (δ1, . . . , δm)T =

∑m−n
k=1 νkqn+k,

yi = y∗i + δi,
zδ = {(xi, yi)}m

i=1.

 (8.9)

Then if σ is small enough, a∗ are the least-squares best-fit model parameters to
zδ and δ is the vector of residuals

δi = yi − φ(xi,a∗)

and satisfies ‖δ‖/(m− n)1/2 = σ. Furthermore,

V ∗
a = σ2(J∗TJ∗)−1,

is an estimate of the covariance matrix for the least-squares estimator.

8.3.2 Null space benchmarking for generalised distance
regression

The ordinary linear and nonlinear least-squares estimators are appropriate if
only one measured variable is subject to significant random effects. However, in
many metrological situations, more than one of the measured variables is subject
to random effects and it is important to take this into account in determining
parameter estimates that are free from significant bias. A typical situation for
which this is appropriate is where the response y = φ(x,a) is modelled as a
function of the variable x and parameters a and both y and x are measured
subject to random effects, giving rise to a model of the form

xi = x∗i + δi, yi = φ(xi,a) + εi, δi ∈ N(0, σ2
i ), εi ∈ N(0, ρ2

i ).

The maximum likelihood estimate of the parameters is found by solving

min
a,{x∗i }

m∑
i=1

{
α2

i (xi − x∗i )
2 + β2

i (yi − φ(x∗i ,a))2
}
, (8.10)

with αi = 1/σi, βi = 1/ρi. Note that this problem involves a and the footpoint
parameters {x∗i } that specify the points on the curve closest to the data points
in the appropriate metric. In section 4.3.2, these types of problems are posed
as generalised distance regression (GDR) problems and effective methods for

132



Discrete modelling and experimental data analysis

their solution described. However, these problems are more complex than their
standard counterparts. In particular, even if φ is linear in the parameters a
the optimisation problem (8.10) requires nonlinear iterative techniques for its
solution. With this in view, given a problem of this type it may be worth inves-
tigating whether or not a generalised distance regression approach is required.
Here we show how the null space method can be used to benchmark ordinary
least-squares estimators against a GDR estimator.

The GDR problem (8.10) is a nonlinear least-squares problem for which the null
space data generation approach described above can be applied. Let

φ∗i = φ(x∗i ,a
∗),

φ̇i =
∂φi

∂x
(x∗i ,a

∗),

si =

(
φ̇2

i

α2
i

+
1
β2

i

)1/2

,

di =
1
si

(−(xi − x∗i )φ̇i + (yi − φ∗i )), (8.11)

and J∗ the Jacobian matrix defined by

J∗ij = − 1
si

∂φi

∂aj
(x∗i ,a

∗).

If a∗ and {x∗i } solve (8.10) for data X = {(xi, yi)}m
i=1 then necessarily (i) there

exists δ = (δ1, . . . , δm)T such that

xi = x∗i − δi
φ̇i

α2
i

, yi = φ∗i + δi
1
β2

i

, (8.12)

and (ii)
J∗Td = 0,

i.e.,
m∑

i=1

1
si

∂φi

∂aj
di = 0, j = 1, . . . , n. (8.13)

Substituting (8.12) in (8.11) we obtain

di = δisi

so that the conditions (8.13) on d become

ATδ = 0,

where Aij = ∂φi

∂aj
. The perturbations δi can be scaled so that the estimate of

the standard deviation of the residuals di is a pre-assigned value σ.

Taking into account this analysis, null space data can be generated according
to the following scheme:

Given a∗, σ, {x∗i }, {αi} and {βi},

133



Software Support for Metrology Best Practice Guide No. 4

I Set y∗i = φ(x∗i ,a
∗) and z∗ = {(x∗i , y∗i )}.

II For each i, calculate

φ̇i =
∂φ

∂x
(x∗i ,a

∗), si =

(
φ̇2

i

α2
i

+
1
β2

i

)1/2

.

III Calculate A given by

Aij =
∂φi

∂aj
.

IV Determine δ = (δ1, . . . , δm)T such that ATδ = 0 (using the QR factorisa-
tion of A, for example). For each i, set

pi = −δi
φ̇i

α2
i

, qi = δi
1
β2

i

,

and calculate S =
{∑m

i=1(α
2
i p

2
i + β2

i q
2
i )
}1/2 and K = (m− n)1/2σ/S.

V For each i, set
xi = x∗i +Kpi, yi = y∗i +Kqi.

Then a∗ and {x∗i } solves (8.10) for dataset z = {(xi, yi)}m
i=1 with

1
m− n

m∑
i=1

{
α2

i (xi − x∗i )
2 + β2

i (yi − φ(x∗i ,a))2
}

= σ2.

Furthermore, the estimate Va of the uncertainty matrix associated with the
fitted parameters a∗ for the GDR estimator is

Va = σ2(JTJ)−1, (8.14)

where the Jacobian matrix J can be calculated from Jij = Aij/si. This null
space approach allows us to generate data sets for which the GDR solution
estimates are known along with their uncertainties without having to implement
the estimator. All that is required are the evaluation φ, ∂φ

∂x and ∂φ
∂aj

. We can
use this information to benchmark the performance of an approximate estimator
both in terms of bias and variability against the GDR estimator.

8.3.3 Null space benchmarking
for generalised Gauss-Markov problems

We wish to generate test data for the problem of generalised Gauss-Markov
regression with curves (section 4.4). We assume that the uncertainty matrix V
is full rank. A first order condition for y∗ and x∗ to define a local minimum is
that

JTV −1

[
x− x∗

z− y∗

]
= 0,
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where, as before, y∗i = φ(y∗i ,a) and J is the Jacobian matrix defined in (4.27).
Therefore, if

JTδ = 0,

and [
x
y

]
=
[

x∗

y∗

]
+ V δ,

then these optimality conditions are satisfied. Below we describe a data gener-
ation scheme based on the analysis above that uses the generalised QR factori-
sation to improve the efficiency and numerical stability.

Suppose 2m × 2m uncertainty matrix V = LLT has been specified. The
simulation data is generated according to the following scheme.

I Fix parameters a] = (a]
1, . . . , a

]
n)T and abscissae x] = (x]

1, . . . , x
]
m)T.

II Generate y] so that y]
i = φ(x]

i ,a
]), i = 1, . . . ,m.

III Evaluate 2m× (m+ n) Jacobian matrix J for parameters x] and a] and
form the generalised QR factorisation for the pair [J, L]:

J = Q

[
R1

0

]
, QTL =

[
T11 T12

0 T22

]
U.

IV Evaluate the (m+ n)× (m+ n) matrix

V ] = KKT, R1K = T11.

V Generate at random am−n vector ζ and normalise it so that ζTζ = m−n.
Set

ε = Q

[
T12

T22

]
ζ, η = UT

[
0
ζ

]
.

VI Set [
x
y

]
=
[

x]

y]

]
+ ε.

Then a] is the generalised Gauss-Markov estimate associated with the data x
and y and V ] is the uncertainty matrix associated with the fitted parameters
x] and a]. The lower right n× n submatrix of V ] is the uncertainty matrix V ]

a

associated with the parameters a.

Steps V and VI can be repeated any number of times if required.

8.3.4 Validation criteria

One aspect relating to estimator validation is the criteria by which we can
accept or reject a particular method of analysis (see also [10]). Suppose data
z is collected and two methods of analysis A1 and A2 produce estimates of
the model parameters a1 = A1(z) and a2 = A2(z). There are two general
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approaches to determining how close the two estimates are to each other. The
first is to look at some norm of a1 − a2 and compare this with the uncertainty
associated with a, either as estimated from the analysis or as specified by the
requirements. The second looks at minimal perturbations of the data ∆1, ∆2

such that a1 = A2(z + ∆1), a2 = A1(z + ∆2). The size of these perturbations
can then be compared with the measurement uncertainty.

Example: linear least squares

Suppose a is the solution of the linear least problem

min
a

‖y − Ca‖, (8.15)

and u(aj) the corresponding standard uncertainties associated with the solution
parameters. Let b be the solution produced by an other estimator. The
closeness of b to a can be measured by the norm of their difference:

‖b− a‖2, or ‖b− a‖∞ = max
j
|bj − aj |,

for example. The measures can also take into account the standard uncertainty
in the estimates by considering quantities such as |aj − bj |/u(aj) or

(b− a)TV −1
a (b− a).

A measure based on a perturbation of the data can be derived as follows. The
solution a of (8.15) must satisfy

CT(y − Ca) = 0.

(This equation is just a restatement of the normal equations (4.1).) We ask what
perturbation ∆ of y is required to make b a solution of the linear least-squares
problem for data y + ∆ and observation matrix C. Let

fa = y − Ca, fb = y − Cb,

be the vectors of residuals associated with each solution and ∆ = fa − fb =
Cb− Ca be the difference in these residuals. Then

CT(y + ∆− Cb) = CT(y + Cb− Ca− Cb) = CT(y − Ca) = 0.

It can be shown that ∆ represents a minimal perturbation of y. The size of
the perturbations ∆ can be related directly to the uncertainties associated with
y. If these perturbations are relatively small, then the two approaches can be
regarded as having comparable performance (for the type of data considered).

8.4 Estimator analysis

In sections 8.2 and 8.3 we have described quantitative methods for validating
estimators. The main aim has been to validate the performance of an estimator
given a statement of the functional and statistical model. In this section, we
look at a more qualitative approach in which we start from the definition
of an estimator and then consider for which class of model it is (optimally)
appropriate. We can then assess if it is valid for a particular estimation problem
on the basis of how well matched the model is to the specified class.
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8.4.1 Analysis of least-squares methods

Least-squares methods are the most common estimators implemented and are
appropriate for many practical model fitting problems. For linear models the
Gauss-Markov Theorem (section 4.1.9) can be used to justify their use. We
recall that the theorem states that for models of the form

y = Ca + ε, ε ∈ E, E(E) = 0, V (E) = σ2I,

where C is an m×n full rank matrix, m ≥ n, the linear least-squares estimator

a = (CTC)−1CTy

is unbiased and has a smaller covariance matrix than that of any other linear
estimator. From this point of view, least-squares estimation is optimal for
these models. Note that there is no assumption that the random effects are
normally or even symmetrically distributed, only that they are uncorrelated
and have equal variance. This generality supports the use of least squares
methods. Assumptions about normality are usually only invoked when it is
required to provide coverage limits associated with the fitted parameters. The
theorem does not apply to nonlinear models. However, if the model is only
mildly nonlinear then it can be expected that nonlinear estimation techniques
will also have favourable properties. The theorem does not apply to models of
the form y = φ(x,a) if one or more of the variables xk are subject to significant
random effects.

Whenever a least-squares estimation method is proposed, it is a good idea to
examine the extent to which the prior conditions of the theorem concerning lin-
earity, correlation and variance hold. As described in section 4.1.6, least-squares
methods can be adapted to deal with unequal variances, known correlation, etc.,
and it is important to make sure the least-squares method is tuned as far as
possible to the model. Often a least-squares method is implemented without
sufficient consideration.

Validation responses

• Monte Carlo simulations to examine the bias and variation of the solution
estimates on data sets generated according to the statistical model.

• Monte Carlo simulations to compare the predicted variation of parameter
estimates with the actual variation on data sets generated according to
the statistical model.

• Apply the estimator to data sets for which the estimates provided by an
optimal estimator are known.

• Compare the actual variation of parameter estimates on data sets gener-
ated according to the statistical model with the predicted variation for an
optimal estimator.

• Compare the actual statistical model with the statistical model for which
the estimator is known to perform well.
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Chapter 9

Validation of model
solutions

The validation of estimators considered in the previous chapter was concerned
with the process of how a model solution is determined. In this chapter we
are concerned with the question of validating specific model solutions to data,
regardless of how these solutions were arrived at. There are two aspects to this
question, firstly, how well does the model represent the data and secondly how
well does the data specify the model. This second aspect is considered further
in chapter 10.

9.1 Goodness of fit and residuals

In solving a system of equations Ca = y where C is a square n × n matrix, a
solution a can be validated by calculating how well it satisfies the equations. If
the matrix C is full rank then (in exact arithmetic) the residual vector r = y−Ca
should be identically zero. For over-determined systems in which there are more
equations than parameters, not all the equations can be satisfied exactly in
general and the residual vector will be nonzero. A measure of the goodness of
fit is derived from a norm of r, e.g., the Euclidean norm

‖r‖2 =

(∑
i

r2i

)1/2

,

or the Chebyshev norm
‖r‖∞ = max

i
|ri|.

The central question in determining whether a specific model solution is a valid
fit to data relates to what is the expected behaviour of the residual vector: the
more sophisticated the model, the more sophisticated the validation criteria.
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9.1.1 Signal to noise ratio

A minimal model associated with a set of data specifies only the likely signal
to noise ratio, for example, in a statement of the form “the data is likely to be
accurate to 1 part in 104”. Suppose {(xi, yi)}m

i=1 represents the measurements
of a response variable yi corresponding to values xi for the covariates. A model
of the form

y = φ(x,a)

is fitted to the data and the residuals ri = yi − φ(xi,a) calculated. The ratio

R2 =

(∑
i y

2
i

)
−
(∑

i r
2
i

)∑
i y

2
i

is a measure of how much of the variation of the response y is accounted for by
the model φ. A value of 1 indicates that all of the variation is explained by the
model; value of 0 indicates that none has been accounted for. Related measures
are discussed in [40].

9.1.2 Statistical model for the data

A model fit can be validated against a statistical model for the data. For
example, suppose the model for data {(xi, yi)}m

i=1 is

yi = φ(xi,a) + εi, ε ∈ D(b),

where D(b) is a multivariate distribution associated with the random effects.
Given estimates of the fitted parameters a = (a1, . . . , an)T, we can calculate the
residuals ri = yi−φ(xi,a). If the model is correct the vector r can be regarded
as representing an observation drawn from D(b). If it is plausible that the
observed r is a sample from D(b) then we have no reason to doubt the model.
If, on the other hand, it is very unlikely that r represents a sample D(b) then
the model solution is called into question.

An important case is where ε ∈ N(0, σ2I) or is at least approximately normally
distributed. For this case, if

σ̂2 =
1

m− n

m∑
i=1

ri,

the model predicts that
σ̂2

σ2
∈ χ2

m−n,

that is, the sum of squares of the residuals is related to the χ2 distribution with
m−n degrees of freedom. We refer to σ̂ as the root mean square (RMS) residual.
We recall that the χ2

p distribution with p degrees of freedom has an expected
value of p and a variance of 2p. Distributions for 2, 5 and 10 degrees of freedom
are plotted in figure 9.1. For small values of p, the distribution is significantly
asymmetric. For large values, the distribution is approximated by N(p, 2p),
i.e., the normal distribution with mean p and variance 2p. For large numbers of
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Figure 9.1: χ2 distributions with 2 (solid), 5 (dotted) and 10 (dashed) degrees
of freedom.

degrees of freedom p = m−n, say p ≥ 50, the difference (σ̂2−σ2)/σ2 is expected
to be smaller in magnitude than 2(2/p)1/2 at approximately the 95% confidence
level. For small numbers of degrees of freedom it is better to compare this ratio
with the 2.5% and 97.5% points of the appropriate χ2-distribution. Adjustment
procedures for modifying the input uncertainties in light of the observed RMS
residual are discussed in [66].

The randomness of the residuals can be tested most simply by visual inspection.
For small numbers of residuals, it is usually quite difficult to show that there
is a nonrandom behaviour. For larger data sets, systematic behaviour is often
quite obvious.

9.1.3 Residuals and model selection

The RMS residual can be used to select a model from a range of model solutions,
for example, in choosing the degree of a polynomial fit. To illustrate this, data
(xi, yi) has been generated according to the model

y∗ = x+ 0.01x2 + 0.01x3 + 0.02x4, y = y∗ + ε, ε ∈ N(0, σ2), (9.1)

for x in the interval [0, 1] and three values of σ = 0.01, 0.001 and 0.0001. For
each value of σ, polynomials of degree 0 to 9 were fitted to the data and σ̂n

recorded for each degree n.

Figure 9.2 is the log plot of σ̂n against degree n for each of the three values of σ.
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Figure 9.2: Graph of log σ̂n of the RMS residual against order of polynomial fit
for data generated according to the model (9.1) with σ = 0.01, 0.001 and 0.0001.

For σ = 0.01 (upper curve), the RMS plot shows that increasing the degree from
2 to 3 reduces the RMS by a small amount but increasing the degree further
gives no improvement. Similarly for σ = 0.001, there is an improvement from
degree 3 to 4 but none beyond. On this basis we would chose degrees 2, 3 and
4 for σ = 0.01, 0.001 and 0.0001, respectively. In each case the saturation level
is log10 σ. This agrees with the plots of the residuals associated with the degree
2 (upper graph) and 3 (lower graph) fits shown in figure 9.3. The residuals
associated with the degree 2 fit show systematic cubic behaviour while those for
degree 3 appear random. A similar picture is shown in figure 9.4 for the case
σ = 0.0001 in which the residuals associated with the degree 3 fit show a quartic
(W-shaped) systematic behaviour while the degree 4 residuals appear random.

9.1.4 Validation of model outputs

So far in this chapter we have only considered the fit of a model solution to
data and its validation in terms of the goodness of fit against the statistical
model for the data; we have as yet paid no attention to where the model came
from or to any other characteristics of the model. However, an estimation
process will generally produce (and is usually required to produce) estimates
of the uncertainty associated with the fitted parameters and related statistical
information. If this extra information has been derived in a valid way, i.e., the
model and the solution process are consistent with each other, then it provides
additional model outputs that can be checked against actual behaviour.

We will examine these issues in more detail for the important case of the least-
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Figure 9.3: Graphs of residuals for degree 2 (upper graph) and degree 3 (lower
graph) polynomial fits to data generated with σ = 0.001.
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Figure 9.4: Graphs of residuals for degree 3 (upper graph) and degree 4 (lower
graph) polynomial fits to data generated with σ = 0.0001.
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squares fit of linear models of the form

y = φ(x,a) =
n∑

j=1

ajφj(xi),

and a measurement model of the form

yi = φ(xi,a) + εi, ε ∈ N(0, σ2I).

Given data {(xi, yi)}m
1 , m > n, let C be the observation matrix of basis functions

φj evaluated at xi, i.e.,
Cij = φj(xi).

It is assumed that C has full column rank. The least-squares model solution is
determined by solving the over-determined system of equations Ca = y in the
least-squares sense (section 4.1.4).

If the functional and statistical model is valid then all the model predictions are
valid. Conversely, if any one of these outputs is inconsistent with experimental
data then there must be some aspect of the model that is invalid, putting
into question the validity of all other model predictions. Each of the model
predictions, described in section 4.1.4, can be used to examine aspects of the
model validity.

The residuals and the RMS residual σ̂. Their role in model validation has
already been discussed above. If there is only a small number of degrees of
freedom associated with the system of equations then the expected variation
associated with σ̂ is relatively large and any statistics depending on its value
are also subject to relatively large variation. This is because there is only limited
information with which to validate the model. If only a small amount of data is
available then more emphasis should be placed in validating the model inputs
(assumptions) and its internal consistency.

If an experiment is repeated a number of times providing systems of equations
Ckak = yk, where Ck is mk × n, mk > n, residual vectors rk = yk − Ckak and
estimates σ̂k, k = 1, . . . ,K, then a combined estimate of the RMS residual σ̂ is
given by

σ̂2 =
1

m−Kn

∑
k

‖rk‖2 =
1

m−Kn

∑
k

(mk − n)σ̂2
k.

where m =
∑

k mk is the total number of equations. This value can be subse-
quently used in the uncertainty evaluation associated with the individual model
fits.

The value of σ̂ is also a useful measure of the quality of the data and a value
much larger than expected can indicate invalid input data. For this purpose,
the maximum absolute residual rmax = maxi |ri| should also be computed.

Uncertainty matrix and standard uncertainties associated with the fitted param-
eters a. The statistical information associated with the fitted parameters is a
key component of the model predictions. We know that, due to the stochastic
nature of experimentation, if we repeat an experiment we will obtain different
values for the fitted parameters. The uncertainty (covariance) matrix indicates
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the likely spread of parameter estimates. So, for example, if an experiment is
performed twice producing estimates ak = (ak,1, . . . , ak,n)T, covariance matrices
Vak

and standard uncertainties uk(aj), k = 1, 2, then, assuming a valid model,
the covariance matrix of the difference a1 − a2 is Va1 + Va2 and the standard
uncertainties of individual parameter differences are

u(a1,j − a2,j) =
(
u2

1(aj) + u2
2(aj)

)1/2
.

The actual differences can be compared with these standard uncertainties (tak-
ing into account the degrees of freedom). For a large number of degrees of
freedom, a difference in parameter estimates more than, say, three times the
standard uncertainty will indicate some aspect of the model could be invalid.

The uncertainty matrix also provides direct information about the effectiveness
of the experimental design (see chapter 10). At a very minimum, the com-
putation of and check on the standard uncertainties associated with the fitted
parameters is required to verify (or otherwise) that the information in the data
is sufficient to determine reliable estimates of the model parameters.

Covariance matrix and standard uncertainties associated with the model pre-
dictions ŷ. The standard uncertainties u(ŷi) associated with the model values
ŷi = φ(xi,a) indicate how well the model is defined at xi. Often, the uncertainty
associated with the model predictions is the key output of the modelling process.
We wish to understand a physical system. We build a model and gather a set
of measurements {(xi, yi)} to characterise the model. From this information,
we hope to predict the behaviour of the system at any set of values of the
independent variables x. The standard uncertainties associated with the model
predictions indicate how well the model has been characterised and provide a
measure of the quality of the predictions.

For example, suppose we wish to characterise the response of a system
y = φ(x,a) for x in the range [0, 1]. Measurements are made at values
(0.1, 0.2, . . . , 0.9)T of the covariate x. Measurements y = (y1, . . . , y9)T are
gathered subject to measurement uncertainty with variance σ2. The standard
uncertainty u(wq) of the model predictions wq = φ(ui,a) are then calculated
at values u = (0.00, 0.01, 0.02, . . . , 1.00)T. If these standard uncertainties are
sufficiently small relative to σ, then the system is adequately characterised.

Figure 9.5 (on page 146) graphs the residuals ri = yi − φ(xi,a) associated
with the fit of a quartic polynomial to data generated according to model (9.1)
along with values ±2u(wq) and the band ±2σ. The solid curves indicate that
in the range 0.1 ≤ z ≤ 0.9 the uncertainty in the model fit u(w) is less than
the uncertainty in the measurements but outside this range the uncertainty
associated with the model fit increases (quartically). The figure also graphs
the model uncertainty band for a quadratic fit to the data and shows that
these uncertainties are significantly larger than the measurement uncertainty
indicating that a quadratic model is an inadequate representation of the system.

The uncertainty in the model predictions can be used to differentiate between
two competing models. Figure 9.6 shows data generated according to the model

yi = Ae−Bxi sin(Cxi +D) + εi, ε ∈ N(0, σ2I),
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with σ = 0.001. The data is fitted with two models, the physical, harmonic
oscillator model used to generate the data and an empirical, polynomial model.

Figure 9.7 graphs the log of the RMS residual σ̂n against order n (= degree +
1) of the polynomial. On the basis of this a polynomial of degree 24 was chosen
to represent the data.

Figure 9.8 shows the residuals, the model prediction uncertainty band, i.e.,
±2u(ŷ) and the ±2σ band for the physical model fit. The figure shows that the
model is a good representation of the data and is well-characterised over the
range, including the interval in the middle where there is no data.

Figure 9.9 presents the same information for the polynomial fit. While providing
a good representation of the data, the polynomial model is poorly characterised
in the middle interval where the data is missing.

Figure 9.10 illustrates why this is so. It shows two degree 24 polynomials which
both fit the data well (visually) but differ significantly in the middle interval.

Validation responses.

• Goodness of fit in terms of the size of the residuals.

• Comparison of the residuals with the statistical model for the random
effects.

• Plot of the residuals to check for random/systematic behaviour.

• Plot of the RMS residual for a number of model fits to select an appropriate
model (e.g., the polynomial of appropriate degree).

• Calculate and check the uncertainty matrix associated with the fitted
parameters against requirements and/or expected behaviour.

• Calculate and check the uncertainty associated with the model predictions
against requirements and/or expected behaviour.
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Figure 9.5: Uncertainty band for the model predictions associated with a
polynomial of degree 4 (solid curves) and degree 2 (dashed curves) to data
generated according to the model (9.1) compared with the uncertainty in the
measured data. The residuals ‘*’ associated with the degree 4 fit are also plotted.
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Figure 9.6: Data generated according to a harmonic oscillation model.
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Figure 9.7: Graph of the log of the RMS residual σ̂n associated with a
polynomial fit against order n(= degree + 1) to data generated according to
a harmonic oscillator model (figure 9.6).
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Figure 9.8: Residuals and uncertainty band associated with the fit of a physical
model to data generated according to harmonic oscillator model (figure 9.6).
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Figure 9.9: Residuals and uncertainty band associated with the fit of a
polynomial model of degree 24 to data generated according to harmonic
oscillator model (figure 9.6).
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Figure 9.10: Two degree 24 polynomial fits to data generated according to
harmonic oscillator model (figure 9.6).
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Chapter 10

Validation of experimental
design and measurement
strategy

Once the functional and statistical models and estimation method have been
validated, it is possible to apply the estimator to examine issues concerning
experimental design and measurement strategy. In the sections below we con-
sider (i) system identifiability – the extent to which all the parameters can
be identified from the data and (ii) system effectiveness – the extent to which
parameters of the system can be determined to within uncertainty requirements.

10.1 System identifiability

A system is identifiable using a given measurement strategy if all the system
parameters a can be determined from the resulting measurement data. Usually,
the identifiability of a system corresponds to a matrix associated with the model
solution being full rank.

The rank of a matrix can be examined from its singular value decomposition
(SVD), section 3.7.1. Suppose

C = USV T, (10.1)

where U is anm×n orthogonal matrix, S an n×n diagonal matrix with diagonal
entries s1 ≥ s2 ≥ . . . ≥ sn, and V an n× n orthogonal matrix.

If C is of column rank p < n then its singular values sp+1 = . . . = sn = 0 and
for each vk, k = p+1, . . . , n, Cvk = 0. Conversely, if Cb = 0, b can be written
uniquely as a linear combination

b = αp+1vp+1 + . . .+ αnvn.
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Thus, vk, k = p + 1, . . . , n, provide an orthogonal set of basis vectors for the
linear space of vectors {b : Cb = 0}. These vectors can be used to analyse in
what way a system fails to be identifiable.

Suppose C is the observation matrix in a linear least-squares system of equations
and y0 = Ca0. Since Cvk = 0, k = p + 1, . . . , n then C(a0 + vk) = y0 also.
In other words, the vectors vk characterise the set of linear combinations of the
parameters that are not determined from the data.

For more general least-squares estimation problems of the form

min
a

∑
i

f2(xi,a),

system identifiability can be examined using the following approach. Given
software to calculate f and the associated Jacobian matrix Jij = ∂fi

∂aj
and

nominal values a0 of the parameters:

1 Generate a dense sample of data points {xi} satisfying the model equations
exactly so that f(xi,a0) = 0.

2 Calculate the associated Jacobian matrix J .

3 Determine the SVD of J = USV T and singular values s1, . . . , sn.

4 If J is full rank (sn > 0) then the system is identifiable.

5 If J is not full rank, so that sp+1 = . . . = sn = 0, examine the corre-
sponding columns vp+1, . . . ,vn of V to determine which combinations of
parameters are not determined from the data.

Example: incorrect parameterisation of a straight line.

A line in two dimensions is specified uniquely by two distinct points (x0, y0) and
(u0, v0) lying on the line. Assuming that x0 6= u0, let a = (x0, y0, u0, v0)T and

φ(x,a) = y0 +
v0 − y0
u0 − x0

(x− x0),

then the set of points on the line is described by {(x, y) : y = φ(x,a)}. However
the mapping

L : a 7→ {(x, y) : y = φ(x,a)}

is not a proper parameterisation (we know that only two parameters are re-
quired). For a data set X = {(xi, yi)}m

i=1 define

fi(xi, yi,a) = yi − φ(xi,a)

and J the m × 4 Jacobian matrix defined by Jij = ∂fi

∂aj
. Below are example

calculations for the case a = (1, 1, 5, 5) specifying the line y = x and data
X = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}. In this case the Jacobian matrix J is
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J =

1.0000 -1.0000 0 0

0.7500 -0.7500 0.2500 -0.2500

0.5000 -0.5000 0.5000 -0.5000

0.2500 -0.2500 0.7500 -0.7500

0 0 1.0000 -1.0000

and has singular value decomposition J = USV T with

U =

-0.4472 0.6325 0.5410 0.2405

-0.4472 0.3162 -0.2608 -0.6388

-0.4472 0.0000 -0.6107 0.6441

-0.4472 -0.3162 -0.1601 -0.3339

-0.4472 -0.6325 0.4906 0.0881

S =

2.2361 0 0 0

0 1.5811 0 0

0 0 0.0000 0

0 0 0 0.0000

V =

-0.5000 0.5000 0.7071 0

0.5000 -0.5000 0.7071 0.0000

-0.5000 -0.5000 -0.0000 -0.7071

0.5000 0.5000 0.0000 -0.7071

The singular values are the diagonal elements of the matrix S and it is seen
that the last two are zero (in floating point arithmetic they are of the order of
10−16 or smaller). The rightmost two singular vectors v3 and v4 of V indicate
the two modes of behaviour of the parameters a that are not specified by the
data. The vector v3 corresponds to (x0, y0) moving along the line y = x and v4

corresponds to moving (u0, v0). These two degrees of freedom can be removed
by fixing x0 and u0 at distinct values leaving a well defined parameterisation of
the line in terms of the values of the y-coordinate at x0 and u0.

Example: fitting a sphere to data on a circle.

The least-squares best-fit sphere defined by centre co-ordinates (a1, a2, a3)T and
radius a4 to data X = {xi = (xi, yi, zi)T}m

1 is found by solving

min
a

m∑
i=1

d2(xi,a)

where
d(xi,a) = {(xi − a1)2 + (yi − a2)2 + (zi − a3)2}1/2 − a4,

see section 5.10.

Below are the example calculations for the case a = (0, 0, 100, 100
√

2)T and data
set
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100.0000 0 0

70.7107 70.7107 0

0.0000 100.0000 0

-70.7107 70.7107 0

-100.0000 0.0000 0

-70.7107 -70.7107 0

-0.0000 -100.0000 0

70.7107 -70.7107 0

representing eight points uniformly spaced around the circle x2 + y2 = 1002 in
the z = 0 plane. For this data the Jacobian matrix is

J =

-0.5774 0 0.8165 -1.0000

-0.4082 -0.4082 0.8165 -1.0000

-0.0000 -0.5774 0.8165 -1.0000

0.4082 -0.4082 0.8165 -1.0000

0.5774 -0.0000 0.8165 -1.0000

0.4082 0.4082 0.8165 -1.0000

0.0000 0.5774 0.8165 -1.0000

-0.4082 0.4082 0.8165 -1.0000

with singular values sj and fourth right singular vector v4

s v4

3.6515 0

1.1547 0.0000

1.1547 -0.7746

0.0000 -0.6325

The vector v4 shows that by decreasing the z-coordinate of the sphere by 0.7746ε
then we can ensure the sphere surface passes through the data points if we simul-
taneously decrease the radius by 0.6325ε. The system becomes fully identifiable
if, for example, we add information about the radius from measurements of
sphere diameter. Physically, this corresponds to the well-defined solution of a
ball of radius 100

√
2 sitting on a cylindrical hole of radius 100.

If we perform the same analysis but with a = (0, 0, 0, 100)T, then we obtain
singular values and fourth right singular vector

s v4

2.8284 0

2.0000 0

2.0000 -1

0 0

The situation for this case is qualitatively different from the previous one, since
adding information about the radius does not lead to system identifiability. Even
if we know the sphere radius exactly, the z-component of the sphere centre is
not determined from the data (from first order information).
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10.2 System effectiveness

Given an identifiable system, i.e., one for which the Jacobian matrix is full rank,
it is possible to use the Jacobian evaluation software in numerical simulations of
an experiment to determine the likely uncertainties that will be obtained for a
given measurement strategy. In this situation, exact measurement data x∗i are
generated according to a specified measurement strategy and from this, the Ja-
cobian matrix J . Given an estimate of the standard deviation σ associated with
the likely random effects, the uncertainty matrix associated with the estimates
of the model parameters is given by

Va = σ2(JTJ)−1,

section 4.2.3. By changing the measurement strategy and monitoring the effect
on the variances of the parameters of interest it is often possible to improve
the experimental efficiency. Importantly, this can be achieved by using the
same data analysis modules required to determine estimates of the parameters
and their uncertainties from actual measurement data. In other words, with
very little additional effort the model solving tools can be used to improve
experimental strategy.

Example: sphere fit to data on an equatorial band.

Following on from the example in section 10.1, suppose we wish to fit a sphere
with nominal parameters a = (0, 0, 0, 100)T to data points lying in an equatorial
band at height between zero and 20 above the equator. We are limited to
choosing a total 30 data points uniformly distributed on circles at heights h1 = 0,
h2 = 10 and h3 = 20. What is the best distribution of points to determine a) the
radius a4 or b) the z-coordinate a3 of the centre? Four measurement strategies
Mk, k = 1, 2, 3, 4, are proposed specified by the number of points on each circle:

hk M1 M2 M3 M4

0 10 15 28 2

10 10 0 0 0

20 10 15 2 28

Assuming that the standard deviation for the random effects is σ = 0.01,
the standard uncertainties u(aj) = (var(aj))1/2 for each of the four sphere
parameters aj for the four measurement strategies Mk are

M1 M2 M3 M4

a1 0.0026 0.0026 0.0025 0.0025

a2 0.0026 0.0026 0.0027 0.0027

a3 0.0224 0.0183 0.0366 0.0366 z-coordinate

a4 0.0029 0.0026 0.0019 0.0071 radius

There results show that measurement strategy M2, placing equal numbers of
data points on the z = 0 and z = 20 circles and none on the z = 10 circle, is
best to determine the z-coordinate a3 of the centre while strategy M3, placing
nearly all the data points on the z = 0 circle (i.e., the equator) is best to
determine the radius. While strategy M1 seems appropriate, M2 out performs
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it in terms of determining both radius and z-coordinate. For either requirement,
M4 is a poor strategy.
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Chapter 11

Case Studies

11.1 Univariate linear regression: study 1

11.1.1 Description

In this case study we are concerned with fitting a linear model

y = a1 + a2x

to data points {(xi, yi)}m
1 . The case study uses this simplest of models to

examine:

• the effectiveness of different estimators on data generated according to
different statistical models; see section 3.3.

11.1.2 Statistical models

We consider the following statistical models.

M1 Standard experiment: the measurements of the response y are subject to
uncorrelated Gaussian random effects:

yi = a1 + a2xi + εi, εi ∈ N(0, σ2).

M2 The measurements of the response y are subject to uncorrelated Gaussian
random effects with standard deviation proportional to x:

yi = a1 + a2xi + εi, εi ∈ N(0, σ2x2
i ).

M3 The measurements of the response y are subject to correlated Gaussian
random effects drawn from a multinormal distribution with covariance
matrix V .
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M4 The measurements of both x and y are subject to Gaussian random effects:

xi = x∗i + δi, yi = a1 + a2xi + εi, δi, εi ∈ N(0, σ2).

11.1.3 Estimators

We consider the following estimators:

E1 Linear least-squares estimator which solves

min
a1,a2

m∑
i=1

(yi − a1 − a2xi)2.

This estimator is optimal for model M1.

E2 Weighted linear least-squares estimator which solves

min
a1,a2

m∑
i=1

w2
i (yi − a1 − a2xi)2,

with wi = 1/xi. This estimator is optimal for model M2.

E3 Gauss Markov estimator which solves

min
a

fTV −1f

where fi = yi − a1 − a2xi. This estimator is optimal for model M3.

E4 Othogonal regression estimator which solves

min
a,{x∗i }

m∑
i=1

(yi − a1 − a2x
∗
i )

2 + (xi − x∗i )
2.

This is equivalent to the nonlinear least-squares estimator

min
a

f2
i (a)

with
fi =

yi − a1 − a2xi

(1 + a2
2)1/2

, (11.1)

i.e., fi is the orthogonal distance from (xi, yi) to the line y = a1 + a2x.
This estimator is optimal for model M4.

E5 Approximately weighted linear least-squares estimator

min
a1,a2

m∑
i=1

w2
i (yi − a1 − a2xi)2,

with weights wi randomly assigned in the range [1, 2].

E6 Estimator which fits the line to the first and last data points only.
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All estimators except E4 (and E6) are implemented by solving a linear least-
squares problem involving the observation matrix

C =

 1 x1

...
...

1 xm

 ,
as described in section 4.1.

There are two approaches to finding the ODR estimator E4. The first is to treat
it simply as a nonlinear least-squares problem. We note that, if fi is given by
(11.1),

∂fi

∂a1
= − 1

(1 + a2
2)1/2

,

∂fi

∂a2
= −xi + a2(yi − a1)

(1 + a2
2)3/2

.

Initial estimates for the parameters can be determined using estimator E1 for
example. The second approach uses the singular value decomposition (SVD)
described in section 4.3.4. The ODR estimate passes through the centroid
(x̄, ȳ)T, where

x̄ =
1
m

m∑
i=1

xi, ȳ =
1
m

m∑
i=1

yi,

of the data (as does the E1 estimate) and has slope b2/b1 where b = (b1, b2)T

is the right singular vector associated with the smallest singular value of the
centred data matrix

z̄ =

 x1 − x̄ y1 − ȳ
...

...
xm − x̄ ym − ȳ

 ,
see [96].

11.1.4 Monte Carlo data generation

As an example, we consider lines with intercept a1 = 0 and various slopes and
10 data points with nominal x-coordinates x = 1, 2, . . . , 10. For each line, we
generate exact data lying on the line yi = a1 + a2xi and N replicate data sets

zq = {(xq,i, yq,i)}i = {(xi, yi) + (δq,i, εq,i)}i, q = 1, 2, . . . ,

where δq,i and εq,i are generated according to the appropriate statistical model.

11.1.5 Estimator assessment

We apply each estimator to each data set to determine best-fit parameters ak,q =
Ak(zq) and then look at the mean value āj,k and standard deviation sj,k of the
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parameter estimates, k = 1, . . . , 6, j = 1, 2. In the tables that follow, relative
measures of performance are presented. For each parameter aj , j = 1, 2, the
minimum standard deviation sj,min = mink sk,j is recorded. For each estimator
and parameter, the quantity

āj,k − a∗j
sj,min

, j = 1, 2,

is a measure of the bias relative to the standard deviation, and

sj,k/sj,min

a measure of the efficiency relative to the estimator with the smallest standard
deviation for the jth parameter. Tables 11.1–11.4 record these measures for
10,000 Monte Carlo simulations of data sets generated for the line y = x
according to each of the four models M1 – M4.

We note the following:

• For each of the first three models, only estimator E4, the ODR estimator
shows significant bias. This is to be expected as, apart from E4, all the es-
timators can be derived from each other by a reweighting and reweighting
has no effect on bias.

• For the first three models, the bias in estimator E4 arises from the fact
that the measure of approximation error in (11.1) is the same as E1 except
for the term (1 + a2

2)
1/2 in the denominator. This approximation error is

made smaller if a2 is increased, so that relative to E1 estimator E4 is biased
towards larger slopes. Similarly for model M4, all estimators apart from
E4 and E6 are biased towards smaller slopes relative to E4. These biases
are increased as the slope of the underlying line is increased. Tables 11.5
and 11.6 show the results for data generated under model M1 for the lines
y = 2x and y = 10x.

• For models M1, M2, and M3, the optimal estimators E1, E2, and E3
respectively, show the smallest standard deviations, i.e., they are most ef-
ficient. These results demonstrate the value of using the correct weighting
strategy or taking into account correlation in the data.

• For all models the variations (as measured by sj,k) in E1 and E4 are very
close to each other, as to be expected. For model M4, E1 has a slightly
smaller variation even although E4 is optimal. We can emphasise that
a good estimator has to have good properties with respect to bias and
efficiency and the minimum variance estimator may be entirely unsuitable
due to bias.

• Only estimator E6 is relatively unbiased for all models. However, it is
inefficient and not consistent in the sense that taking more data does not
improve its performance.

Estimator E6 may be seen as an unrealistic type of estimator in that its defi-
ciencies can be anticipated and it is therefore unlikely to be implemented. In
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fact, this type of estimator is often implemented in situations in which a small
subset of the data is used to determine values for a number of the parameters
and these parameters are subsequently treated as constants.

11.1.6 Bibliography

The performance of algorithms for univariate regression in metrology is consid-
ered in [38, 211], for example.

M1 E1 E2 E3 E4 E5 E6
a1 = 0.0000 0.0134 0.0123 0.0126 -0.1822 0.0188 0.0108

s1,min = 0.3436 1.0000 1.5100 1.2400 1.0100 1.0900 1.6300
a2 = 1.0000 -0.0209 -0.0192 -0.0053 0.1998 -0.0259 -0.0058

s2,min = 0.0554 1.0000 1.9100 1.4600 1.0100 1.1100 1.4200

Table 11.1: Estimates of the bias and efficiency of six estimators for data
generated according to model M1.

M2 E1 E2 E3 E4 E5 E6
a1 = 0.0000 0.0385 0.0163 0.0285 -0.3800 0.0560 0.0053

s1,min = 0.0603 2.3800 1.0000 4.0400 2.4000 2.7600 1.3100
a2 = 1.0000 -0.0326 -0.0195 -0.0018 0.1616 -0.0386 0.0008

s2,min = 0.0236 1.5700 1.0000 3.0700 1.5700 1.6500 2.3700

Table 11.2: Estimates of the bias and efficiency of six estimators for data
generated according to model M2.
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M3 E1 E2 E3 E4 E5 E6
a1 = 0.0000 0.0047 -0.0059 0.0035 -0.1977 0.0157 -0.0092

s2,min = 0.2487 1.2000 2.3500 1.0000 1.2100 1.1400 2.5000
a2 = 1.0000 -0.0232 0.0024 -0.0033 0.3470 -0.0420 0.0094

s2,min = 0.0247 1.5900 4.7500 1.0000 1.6100 1.7100 2.5200

Table 11.3: Estimates of the bias and efficiency of six estimators for data
generated according to model M3.

M4 E1 E2 E3 E4 E5 E6
a1 = 0.0000 0.2511 0.0507 0.2156 -0.0260 0.3370 -0.0681

s1,min = 0.4747 1.0000 1.5100 1.2600 1.0300 1.0900 1.7000
a2 = 1.0000 -0.2858 -0.3498 -0.0991 0.0288 -0.3893 0.0679

s2,min = 0.0760 1.0000 1.8600 1.4700 1.0300 1.1100 1.4800

Table 11.4: Estimates of the bias and efficiency of six estimators for data
generated according to model M4.

M4 E1 E2 E3 E4 E5 E6
a1 = 0.0000 0.0134 0.0123 0.0126 -0.2994 0.0188 0.0108

s1,min = 0.6872 1.0000 1.5100 1.2400 1.0100 1.0900 1.6300
a2 = 2.0000 -0.0209 -0.0192 -0.0053 0.3321 -0.0259 -0.0058

s2,min = 0.1107 1.0000 1.9100 1.4600 1.0100 1.1100 1.4200

Table 11.5: Estimates of the bias and efficiency of six estimators for data
generated for the line y = 2x according to model M1.

M4 E1 E2 E3 E4 E5 E6
a1 = 0.0000 0.0134 0.0123 0.0126 -0.3730 0.0188 0.0108

s1,min = 3.4359 1.0000 1.5100 1.2400 1.0000 1.0900 1.6300
a2 = 10.0000 -0.0209 -0.0192 -0.0053 0.4152 -0.0259 -0.0058

s2,min = 0.5536 1.0000 1.9100 1.4600 1.0000 1.1100 1.4200

Table 11.6: Estimates of the bias and efficiency of six estimators for data
generated for the line y = 10x according to model M1.
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11.2 Univariate linear regression: study 2

This case study involves the univariate linear model in which a response y is
modelled as a linear function of a single variable x:

y = a1 + a2x.

It is a continuation of the case study in section 11.1 which considered the
behaviour of different fitting methods for different statistical models.

11.2.1 Statistical model for correlated random effects

In this case study there is structural correlation associated with the random
effects. An example application is in modelling the linear response of a balance
to the application of a mass y where the mass is made up from a number
of component masses {mk}K

k=1 of same nominal mass along with a mass m0

present in all measurements. We assume that the component masses mk have
been calibrated using the same equipment so that the estimate mk is related to
the “true” mass m∗

k through

mk = m∗
k + µk, µk ∈ N(0, σ2

M ).

Furthermore the “constant” mass has also been measured so that

m0 = m∗
0 + µ0, µ0 ∈ N(0, σ2

0).

If, in the ith measurement, the mass yi is assembled from masses {mi1 , . . . ,miq
}

and the response xi is accurately measured, then an appropriate model is

y∗i = a1 + a2xi, y∗i = m∗
0 +

q∑
k=1

m∗
ik
,

yi = y∗i + εi + µ0 +
q∑

k=1

µik
, (11.2)

εi ∈ N(0, σ2), µ0 ∈ N(0, σ2
0), µk ∈ N(0, σ2

M ), k = 1, . . . ,K,

where µ0 accounts for uncertainty associated with the constant mass, µik
that

in the component masses and εi accounts for a random disturbance for that
measurement (due to random air buoyancy effects, for example). The random
effects associated with the yi are correlated with each other due to their common
dependence on the component masses and m0.

Since (11.2.1) gives the explicit dependence of yi on the measurement of {mk}
andm0 the correlation can be determined from the model. For example, suppose
in an experiment the masses mk are added one at a time until all K masses are
loaded and the response x accurately measured. Subsequently, the masses are
removed one at a time, so that two measurements are recorded for each set of
masses m1 + · · · + mq. Let VM be the (K + 1) × (K + 1) diagonal covariance
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matrix with σ2
M in the first K diagonal elements and σ2

0 in the (K + 1)th:

VM =


σ2

M

σ2
M

. . .
σ2

M

σ2
0

 ,

and G the 2K × (K + 1) matrix with

Gij =
∂yi

∂mj
, 1 ≤ j ≤ K, Gij =

∂yi

∂m0
, j = K + 1,

so that G has the form

G =



1 1
1 1 1
...

...
...

1 1 · · · 1 1
1 1 · · · 1 1
...

...
...

1 1 1
1 1


.

Then the covariance matrix for y = (y1, . . . , y2K)T is

Vy = GVMGT + σ2I, (11.3)

where I is the 2K × 2K identity matrix. The first term is the covariance that
arises from the measurements of the masses mk and m0 while the second is the
random, uncorrelated component.

For this model, the Gauss-Markov least-squares estimator (GMLS) that deter-
mines estimates by the solving

min
a

fTV −1
y f , (11.4)

where f = (f1, . . . , f2K)T with fi = yi − a1 − a2xi, is optimal (section 4.1.6). If
C is the observation matrix with (1, xi) in the ith row, the covariance matrix
Ṽa of the GMLS estimates is

Ṽa = (CTV −1
y C)−1. (11.5)

However, we can also apply the simpler linear least-squares estimator (LLS)
that solves

Ca = y

in the least-squares sense, so that mathematically,

a = C†y, C† = (CTC)−1CT.
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As before, an estimate of the covariance matrix of the fitted parameters is given
by

Va = σ̂(CTC)−1,

where σ̂ is an estimate of the standard deviation of the residuals.

We ask:

V1 Is the LLS estimator appropriate for this model?

V2 Are the estimates of uncertainties valid?

The covariance matrix for the LLS estimates for this model is

V ∗
a = C†Vy(C†)T. (11.6)

By comparing this matrix with Ṽa, we can assess the LLS estimator relative
to the optimal GMLS estimator. We can also use Monte Carlo simulation to
check the performance of the LLS estimator and examine the validity of the
evaluation Va. Given values of σM , σ0, σ, {xi}m

i=1 and the model parameters a,
we generate data sets zq = {(xi, yi,q)}m

i=1, q = 1, . . . , N , according to the model:

I Generate exact data
y∗i = a1 + a2xi.

IIq For each q,

II.1q Generate

µ0,q ∈ N(0, σ2
0), µk,q ∈ N(0, σ2

M ), k = 1, . . . ,K.

II.2q If the ith mass is assembled from masses {mi1 , . . . ,miq}, set

yi,q = y∗i + εi,q + µ0,q +
q∑

k=1

µik,q, εi,q ∈ N(0, σ2).

For each data set zq the LLS estimates aq are recorded along with the estimate

σ̂q =
1

m− n
‖rq‖

of the standard deviation of residuals calculated for the qth residual rq = yq −
Caq. As before, an estimate of the average covariance matrix is given by

Va = σ̄2(CTC)−1, σ̄ =

(
1
N

N∑
q=1

σ̂2
q

)1/2

. (11.7)

We have performed 5000 Monte Carlo simulations for the data set

x∗ = (1, 2, . . . , 8, 9, 9, 8, . . . , 2, 1)T

and a∗ = (1, 1)T and various values of σM , σ0 and σ. For each set of experiments,
we calculate:
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u(ãj) u∗(aj) ū(aj) u(aj)
E1 σM = 0.001, σ0 = 0.001, σ = 0.01
a1 5.4130e-003 5.4152e-003 5.1437e-003 5.4295e-003
a2 9.8478e-004 9.8489e-004 9.1406e-004 9.8536e-004
E2 σM = 0.01, σ0 = 0.001, σ = 0.001
a1 1.0684e-002 1.3956e-002 4.1260e-003 1.3906e-002
a2 3.5377e-003 3.6980e-003 7.3321e-004 3.6612e-003
E3 σM = 0.01, σ0 = 0.001, σ = 0.001
a1 1.0081e-002 1.0109e-002 6.5555e-004 1.0135e-002
a2 3.7093e-004 3.8079e-004 1.1650e-004 3.7730e-004

Table 11.7: Estimates of the standard uncertainties of the fitted parameters to
data generated according to the statistical model (11.2.1).

u(ãj) the standard uncertainty associated with the GMLS estimates calculated
according to (11.5).

u∗(aj) the standard uncertainty associated with the LLS parameter estimates
calculated according to (11.6).

ū(aj) the sample standard deviation associated with the LLS estimates aq.

u(aj) the standard uncertainty associated with the LLS parameter estimates
calculated from (11.7).

Results of these calculations are presented in table 11.7. We can also analyse
these results in terms of the estimates of the standard uncertainties u(ŷ) of the
model predictions ŷ at any point x graphed in figures 11.1–11.3.

From the table and figures, we note

• For the case σM = 0.001, σ0 = 0.001 and σ = 0.01 in which the in-
dependent random component εi dominates (E1), the behaviour of the
LLS estimator is very similar to that of the GMLS estimator. The statis-
tics based on the approximate model derived from (11.7) underestimates
slightly the uncertainty in the model predictions. The pairs of residuals
for each ordinate value xi show a random behaviour.

• For the case σM = 0.01, σ0 = 0.001 and σ = 0.001 in which the com-
ponent µk dominates (E2), the LLS estimator performs less well than
the GMLS estimator, but not drastically so. However, the uncertainties
based on the approximate statistical model completely underestimate the
uncertainties in the model predictions. The pairs of residuals exhibit a
strong correlation.

• For the case σM = 0.001, σ0 = 0.01 and σ = 0.001 in which the component
µ0 associated with the constant mass dominates (E3), the LLS and GMLS
estimator have very similar behaviour but the uncertainties based on the
approximate statistical model completely underestimate the uncertainties
in the model predictions. The pairs of residuals show a random behaviour.
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Figure 11.1: Estimates of uncertainty in the model predictions for the statistical
model (11.2.1) with σM = 0.001, σ0 = 0.001 and σ = 0.01 (E1). The three pairs
of graphs present ±2u(ŷ) as a function of x determined from three estimates of
the covariance matrix: (i) Ṽa, the covariance matrix of the fitted parameters for
the GMLS estimator (Eq. (11.5), solid curve), (ii) V ∗

a , the correct estimate of
the covariance matrix of the LLS estimates (Eq. (11.6), dashed curve essentially
coincident with the solid curve) and (iii) Va, the covariance matrix for the
LLS estimates based on approximate statistical model (Eq. (11.7), dot-dashed
curve). The residuals for an example fit are also graphed (‘*’).
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Figure 11.2: As figure 11.1 but with σM = 0.01, σ0 = 0.001 and σ = 0.001 (E2).
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Figure 11.3: As figure 11.1 but with σM = 0.001, σ0 = 0.01 and σ = 0.001 (E3).

This example illustrates an important point. The GMLS estimator is optimal
but the LLS estimator performs quite well for the three types of experiment:
the variation in the LLS estimates are not drastically worse than that of the
GMLS estimates. However, the estimates of uncertainties associated with the
fitted parameters based on the approximate statistical model can be completely
misleading. The uncertainties for the approximate statistical model cannot be
made valid simply by introducing a fudge factor to increase the estimate σ̂ of the
standard uncertainty of the residuals. The estimate of the model predictions for
experiment E2 graphed in figure 11.2 has the wrong shape compared with the
actual uncertainties. Changing the value of σ̂ will only change the scale, not the
underlying shape. In the case of the third set of experiments (E3), the residuals
shown in figure 11.3 are consistent with the approximate statistical model and
the fit of the model to data is a good one. From an analysis of the consistency
of the model with the measured data, we can be misled into believing that the
model outputs, including the uncertainty estimates, are valid when in fact they
are not.
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11.3 Fitting a quadratic to data

In this case study, we examine the problem of fitting a quadratic model

y = a1 + a2x+ a3x
2

to data {(xi, yi)}m
i=1 where both xi and yi are subject to uncertainty. The

complete model is of the form

xi = x∗i + δi, yi = a1 + a2xi + a3x
2
i εi, δi ∈ N(0, ρ2), εi ∈ N(0, γ2).

(11.8)
The preferred estimator for this type of model is the generalised distance re-
gression estimator (GDR, section 4.3) whose estimates are given by the solution
of

min
a,x∗

m∑
i=1

{
α2(xi − x∗i )

2 + β2(yi − φ(x∗i ,a))2
}

(11.9)

where φ(x,a) = a1 + a2x + a3x
2, α = 1/ρ and β = 1/γ. However, we want to

know if the linear least-squares estimates (LLS) determined by the solution of
the simpler problem

min
a

m∑
i=1

(yi − φ(xi,a))2

are also suitable.

If C is the m× 3 matrix with ith row given by (1, xi, x
2
i ) then the LLS estimate

of the parameters is defined mathematically by

a = C†y, C† = (CTC)−1CT. (11.10)

As before, an estimate of the covariance matrix of the fitted parameters is given
by

Va = σ̂(CTC)−1, (11.11)

where σ̂ is an estimate of the standard deviation of the residuals:

σ̂ = ‖r‖/(m− 3)1/2, r = (r1, . . . , rm)T, ri = yi − φ(xi,a). (11.12)

We ask:

V1 Is the LLS estimator appropriate for the model (11.8)?

V2 Are the associated estimates of uncertainties (11.11) valid?

We can use Monte Carlo simulation and null space benchmarking described in
sections 8.2 and 8.3 to answer these questions. Given values of ρ, γ, {x∗i }m

i=1

and the model parameters a∗, we generate data sets zq = {(xi,q, yi,q)}m
i=1, q =

1, . . . , N , according to the model:

y∗i = a∗1 + a∗2x
∗
i + a∗3(x

∗
i )

2,

xi,q = x∗i + δi,q, δi,q ∈ N(0, ρ2),
yi,q = y∗i + εi,q, εi,q ∈ N(0, γ2).
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For each data set zq the observation matrix Cq with ith row equal to (1, xi,q, x
2
i,q)

is calculated and the LLS estimates aq found by solving

Cqaq = yq.

The estimate σ̂q of the standard deviation of residuals calculated according to
(11.12) for the qth set of residuals rq = yq − Cqaq is also recorded. For small
data sets (number of data points m < 50, say), the estimates σ̂q will have
relatively large variation. Consequently, the estimates of the covariance matrix
of the fitted parameters will also vary. An estimate of the average covariance
matrix is given by

Va = σ̄2(CTC)−1, σ̄ =

(
1
N

N∑
q=1

σ̂2
q

)1/2

. (11.13)

From simulations we can compare the actual variation in the LLS estimates with
the variation predicted using the approximate statistical model. In this way we
can answer question V2. To answer question V1, we would like to compare the
variation in the LLS estimates with those for the GDR estimator. We can do
this using null space benchmarking.

In section 8.3.2, we showed how to generate data according to models like (11.8)
for which the GDR solution estimates are known. For the model (11.8), the data
generation scheme is as follows. Given a∗ = (a∗1, a

∗
2, a

∗
3)

T, α, β, σ and {x∗i },

I Set y∗i = φ(x∗i ,a
∗) = a∗1 + a∗2x

∗
i + a∗3(x

∗
i )

2 and z∗ = {(x∗i , y∗i )}.

II For each i, calculate

φ̇i =
∂φ

∂x
(x∗i ,a

∗) = a∗2 + 2a∗3x
∗
i , si =

(
φ̇2

i

α2
+

1
β2

)1/2

.

III Calculate A given by

Aij =
∂φi

∂aj
,

so that the ith row of A is (1, x∗i , (x
∗
i )

2).

IV Determine δ = (δ1, . . . , δm)T such that ATδ = 0 (using the QR factorisa-
tion of A, for example). For each i, set

pi = −δi
φ̇i

α2
, qi = δi

1
β2
.

and calculate S =
{∑m

i=1(α
2p2

i + β2q2i )
}1/2 and K = (m− n)1/2σ/S.

V For each i, set
xi = x∗i +Kpi, yi = y∗i +Kqi.
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Then a∗ and {x∗i } solves (11.9) for data set z = {(xi, yi)}m
i=1 with

1
m− n

m∑
i=1

{
α2(xi − x∗i )

2 + β2(yi − φ(x∗i ,a
∗))2

}
= σ2,

and the estimate Ṽa of the covariance matrix of the fitted parameters a∗ for the
GDR estimator is

Ṽa = σ2(JTJ)−1, (11.14)

where the Jacobian matrix J can be calculated from Jij = Aij/si.

We have performed 5000 Monte Carlo simulations for the data sets generated
for the quadratic defined by a∗ = (0, 0, 5)T and exact data {(x∗i , y∗i )}:

x* y* delta epsilon

-1.0000 5.0000 0.0050 0.0005

-0.8000 3.2000 -0.0156 -0.0020

-0.6000 1.8000 0.0100 0.0017

-0.4000 0.8000 0.0004 0.0001

-0.2000 0.2000 -0.0018 -0.0009

0 0 0 0.0015

0.2000 0.2000 0.0010 -0.0005

0.4000 0.8000 -0.0014 0.0004

0.6000 1.8000 0.0028 -0.0005

0.8000 3.2000 0.0141 -0.0018

1.0000 5.0000 -0.0143 0.0014

for different values of γ and ρ. Also listed above are example null space pertur-
bations δi and εi generated for the case ρ = γ = 0.01.

For each set of experiments, we calculate

u(ãj) the standard uncertainty of the GDR parameter estimates calculated ac-
cording to (11.14) for data generated using the null space method.

ū(aj) the sample standard deviation of the LLS estimates aj .

u(aj) the standard uncertainty of the LLS parameter estimates calculated from
(11.13).

Results of these calculations are presented in table 11.8.

We can also analyse these results in terms of the estimates of the standard
uncertainties u(ŷ) of the model predictions ŷ at any point x graphed in fig-
ures 11.4–11.6.
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Figure 11.4: Estimates of uncertainty in the model predictions for the statistical
model (11.8) with ρ = 0.001 and γ = 0.01 (E1). The three pairs of graphs
present ±2u(ŷ) as a function of x determined from three estimates of the
covariance matrix: (i) Ṽa, the covariance matrix of the fitted parameters for the
GDR estimator (Eq. (11.14), solid curve), (ii) V̄a, the estimate of the covariance
matrix of the LLS estimates determined from the Monte Carlo simulations
(dashed curve, essentially coincident with the solid curve) and (iii) Va, the
covariance matrix for the LLS estimates based on an approximate statistical
model (Eq. (11.13), dot-dashed curve). The residuals for an example LLS fit
are also graphed (‘*’).
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Figure 11.5: As figure 11.4 but for ρ = 0.01 and γ = 0.01 (E2).
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u(ãj) ū(aj) u(aj)
E1 ρ = 0.001, γ = 0.01
a1 0.0048 0.0049 0.0052
a2 0.0061 0.0063 0.0055
a3 0.0106 0.0107 0.0098
E2 ρ = 0.01, γ = 0.01
a1 0.0084 0.0186 0.0266
a2 0.0327 0.0404 0.0279
a3 0.0515 0.0668 0.0499
E3 ρ = 0.01, γ = 0.001
a1 0.0010 0.0181 0.0263
a2 0.0316 0.0401 0.0275
a3 0.0477 0.0664 0.0492

Table 11.8: Estimates of the standard uncertainties of the fitted parameters to
data generated according to the statistical model (11.8): u(ãj) is the standard
uncertainty of the GMLS parameter estimates calculated according to (11.14),
ū(aj) is the actual variation in the LLS estimates and u(aj) is the predicted
variation calculated assuming an approximate statistical model as in (11.13)

.
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Figure 11.6: As figure 11.4 but for ρ = 0.01 and γ = 0.001 (E3).
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From the table and figures, we note:

• For the case ρ = 0.001 and γ = 0.01 in which the uncertainty associated
with y dominates (E1), the behaviour of the LLS estimator is very similar
to that of the GDR estimator. The statistics based on the approximate
model derived from (11.13) underestimates slightly the uncertainty in the
model predictions.

• For the case ρ = 0.01 and γ = 0.01 in which the uncertainties associated
with x and y are equal (E2), the LLS estimator performs less well than
the GDR estimator, particularly in terms of the uncertainty of the model
predictions near x = 0. However, the uncertainties based on the approxi-
mate statistical model significantly underestimates the uncertainty in the
model predictions away from x = 0.

• The case ρ = 0.01 and γ = 0.001 in which the uncertainty associated with
x dominates (E3) is similar to that for (E2) only with larger differences in
behaviour.

This analysis is similar to the analysis carried out for the case of univariate
linear regression in section 11.2. In both cases, we are interested in determining
how well an approximate estimator performs against an estimator that is known
to be optimal. In the univariate regression case, we were able to derive correct
estimates for the actual variation of the approximate estimator for the statistical
model due to the fact that the estimates provided by the approximate method
were a linear function of the measurement data. For the case considered in this
section, the estimates defined in (11.10) are a nonlinear function of the data
since the matrix C† also depends on the measured x variables. This means that
it not so straightforward to provide valid estimates for uncertainty associated
with the LLS estimator. However, Monte Carlo simulations provide a simple
method of determining them.

11.4 Generalised maximum likelihood estim-
ation and multiple random effects

See section 4.11 and [31].

In many measuring instruments, the variance of the random effects associated
with the measurements has a dependence on the response value. As an example,
suppose the model is

η = Cα, Yi = ηi + Ei, Ei ∼ N(0, (σ1 + σ2ηi)2), (11.15)

with the random variables Ei independently distributed and that y is a set of
observations of Y . The likelihood of observing yi given α and σ = (σ1, σ2)T is

p(yi|α,σ) =
(
φi

2π

)1/2

exp
[
−φi

2
(yi − cT

i α)2
]
,
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where φi = φi(α,σ) = 1/(σ1 + σ2ηi)2.

The log likelihood L(α,σ|y) = log p(y|α,σ) is given by

−L(α,σ|y) = −
m∑

i=1

log p(yi|α,σ),

=
1
2

{
−

m∑
i=1

log φi +
m∑

i=1

φi(yi − cT
i α)2

}
.

For a prior distribution, we set

− log p(α,σ) = u2(log σ1 − log σ1,0)2 + v2(σ2 − σ2,0)2 + Const.,

where u and v are weights that reflect our confidence in the prior estimates
σk,0, k = 1, 2. This distribution reflects some prior information about σ but
none about α since with σ fixed, p(α,σ) is constant. The use of a log normal
prior distribution is intended to reflect our belief that the estimate σ0 is equally
likely to be an under- or overestimate by a multiplicative factor. As defined,
p(α,σ) is an improper distribution as its integral over α is infinite. We could
instead choose a prior which was zero outside some region Ω ⊂ Rn of sufficiently
large but finite volume. However, since our approximation to the posterior
distribution is based only local information, both priors would lead to the same
parameter estimates and uncertainties (so long as the region Ω contained the
solution estimate of α).

Estimates of α and σ are found by minimising

F (α,σ|y) = −L(α,σ|y) + u2(log σ1 − log σ1,0)2 + v2(σ2 − σ2,0)2,

with respect to α and σ. If H is the Hessian matrix at the solution (a, s)
and V = H−1 its inverse, then the standard uncertainties associated with the
estimates of the fitted parameters are the square roots of the diagonal elements
of V .

To illustrate the GMLE approach we have generated data according to the
model (11.15) for a quadratic response η = α1 + α2ξ + α3ξ

2 to data generated
with α = (0.0, 1.0, 2.0)T and firstly with σ = (0.10, 0.02)T: see figure 11.7. We
have set prior estimates σk,0 = 0.05, k = 1, 2, and weights 1) u = v = 0.0001
and 2) u = v = 10000.0, corresponding to weakly and strongly weighted prior
information, respectively. Table 11.9 gives the resulting estimates a and s along
with their associated uncertainties u. Table 11.10 gives corresponding results
for data generated with σ = (0.02, 0.10)T, figure 11.8, with all other parameters
as above. The tables show that for the weakly weighted prior information, the
posterior estimates of σ are reasonable while for the strongly weighted, the
posterior estimates are close to the prior values, as to be expected.

To obtain an indication of the validity of the uncertainty estimates u, we have
repeated these numerical simulationsN times, recording the estimates aq, sq and
uq, q = 1, . . . , N , and then calculating the sample means ā, s̄ and ū and sample
standard deviations s(a) and s(s). At the same time we compare the behaviour
of the GMLE algorithm with a weighted least-squares algorithm (WLS) which
we now describe.
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Figure 11.7: Data generated for a quadratic response and model (11.15) with
α = (0.0, 1.0, 2.0)T and σ = (0.10, 0.02)T.

Figure 11.8: Data generated for a quadratic response and model (11.15) with
α = (0.0, 1.0, 2.0)T and σ = (0.02, 0.10)T.
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u, v = 0.0001 u, v = 10000.0

a, s u a, s u

α1 0.00 0.0338 0.028 0.0471 0.018
α2 1.00 0.8400 0.145 0.7673 0.115
α3 2.00 2.1643 0.153 2.2375 0.138

σ1 0.10 0.0874 0.012 0.0502 0.001
σ2 0.02 0.0247 0.010 0.0547 0.006

Table 11.9: Estimates a and s of α and σ determined by the GMLE algorithm
and associated uncertainties u for data generated with α = (0.0, 1.0, 2.0)T,
σ = (0.10, 0.02)T, prior estimates σk,0 = 0.05, k = 1, 2, and weights 1) u = v =
0.0001 and 2) u = v = 10000.0 .

u, v = 0.0001 u, v = 10000.0

a, s u a, s u

α1 0.00 0.0142 0.008 0.0082 0.018
α2 1.00 0.8899 0.078 0.9182 0.120
α3 2.00 2.1537 0.119 2.1311 0.147

σ1 0.02 0.0145 0.004 0.0499 0.001
σ2 0.10 0.0997 0.010 0.0638 0.006

Table 11.10: Estimates a and s of α and σ — but for data generated with
σ1 = 0.02, σ2 = 0.10.

α1 α2 α3 σ1 σ2

α, σ 0.0000 1.0000 2.0000 0.1000 0.0200

ā, s̄ 0.0001 0.9990 2.0011 0.0977 0.0198

s(a), s(s) 0.0311 0.1572 0.1618 0.0131 0.0107

ū 0.0303 0.1541 0.1589 0.0128 0.0104

āWLS -0.0187 1.0085 1.9990

s(aWLS) 0.0341 0.1794 0.1871

Table 11.11: Results of 5000 Monte Carlo trials comparing GMLE and WLS
algorithms on datasets generated with σ1 = 0.10 and σ2 = 0.02.

α1 α2 α3 σ1 σ2

α, σ 0.0000 1.0000 2.0000 0.0200 0.1000

ā, s̄ 0.0000 1.0005 1.9990 0.0185 0.0998

s(a), s(s) 0.0092 0.0882 0.1307 0.0051 0.0113

ū 0.0086 0.0849 0.1259 0.0047 0.0109

āWLS -0.0007 0.9942 1.9566

s(aWLS) 0.0120 0.1142 0.1609

Table 11.12: Results of 5000 Monte Carlo trials comparing GMLE and WLS
algorithms on datasets generated with σ1 = 0.02 and σ2 = 0.10.
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Given a model of the form

η = Cα, Yi = ηi + Ei, Ei ∼ N(0, σ2
i ), (11.16)

with σi known, the appropriate least-squares estimate a of α is found by solving
the weighted linear least squares problem

min
α

m∑
i=1

w2
i (yi − cT

i α)2, (11.17)

with wi = 1/σi. The difficulty with applying (11.16) to the problem formulated
by (11.15) is that the standard deviations σ1 +σ2ηi depend on the unknowns α
through η. However, we can use the observed yi as an estimate of ηi and solve
(11.17)

with ci = (1, xi, x
2
i )

T and wi = 1/(σ1,0 + σ2,0yi) to provide a solution estimate
aWLS .

For the N Monte Carlo trials we record estimates aWLS,q, sample mean āWLS

and sample standard deviation s(aWLS). Tables 11.11 and 11.12 give the results
for N = 5000 Monte Carlo trials for data generated with α = (0.0, 1.0, 2.0)T,
σk,0 = 0.05, k = 1, 2, u = v = 0.0001, and σ = (0.10, 0.02)T and σ =
(0.02, 0.10)T, respectively. The tables show i) the GMLE algorithm produces
good estimates of both α and σ, ii) the estimated uncertainties ū are in line
with the sample standard deviations s(a) and s(s) and iii) on average, the
GMLE algorithm produces better estimates of the parameters α than the WLS
algorithm.

For both types of dataset illustrated by figures 11.7 and 11.8, the data has
provided sufficient information from which to provide point estimates of the
parameters σ. If we consider instead data as in figure 11.9, the fact that the
responses ηi are approximately constant means that there is little information
from which to determine both σ1 and σ2. Increasing σ1 has the same effect
as increasing σ2, for example. For this dataset, the results corresponding to
table 11.9 are presented in table 11.13. For the case of the weakly weighted
prior information, the estimate s of σ differs significantly from the values used
to generate the data but are consistent with the data. The correlation matrix
associated with the estimates s of σ is[

1.0000 −0.9874
−0.9874 1.0000

]
showing that σ1 is negatively correlated with σ2.
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Figure 11.9: Data generated for a quadratic response and model (11.15) with
α = (1.0, 0.0, 0.1)T and σ = (0.10, 0.02)T.

u, v = 0.0001 u, v = 10000.0

a, s u a, s u

α1 1.00 1.0319 0.032 1.0330 0.031
α2 0.00 -0.1340 0.149 -0.1362 0.146
α3 0.10 0.2304 0.147 2.2319 0.143

σ1 0.10 0.0011 0.050 0.0500 0.001
σ2 0.02 0.1078 0.050 0.0571 0.005

Table 11.13: Estimates a and s of α and σ determined by the GMLE algorithm
and associated uncertainties u for data generated with α = (1.0, 0.0, 0.1)T,
σ = (0.10, 0.02)T, prior estimates σk,0 = 0.05, k = 1, 2, and weights 1) u = v =
0.0001 and 2) u = v = 10000.0.
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11.5 Fitting a Gaussian peak to data

This case study concerns fitting a Gaussian peak to data.

11.5.1 Functional and statistical model

A Gaussian peak can be defined by

y = A exp
{
− (x− µ)2

2σ2

}
, (11.18)

in terms of three parameters, the peak height A, mean µ and standard deviation
σ or, more generally, in terms of quadratic coefficients a = (a1, a2, a3)T, as

y = ea1+a2x+a3x2
. (11.19)

(These two models are not equivalent since (11.19) can represent curves corre-
sponding to a negative σ2.) It is assumed that measurements of the variable
x are free from random effects but that measurements of y are subject to
independent random effects drawn from a normal distribution with standard
deviation σ:

y∗i = ea1+a2xi+a3x2
i , yi = y∗i + εi, εi ∈ N(0, σ2).

11.5.2 Estimators

We consider three methods of determining the best-fit parameters to data points
{(xi, yi)}m

1 .

The first is the nonlinear least-squares estimator (NLLS) that estimates aN by
solving the nonlinear least squares problem

min
a

m∑
i=1

(yi − ea1+a2xi+a3x2
i )2.

From maximum likelihood principles (section 3.4), we expect this estimator
to perform well. This type of nonlinear optimisation problem can be solved
iteratively by (variants of the) Gauss Newton algorithm (section 4.2.2). An
estimate of the covariance matrix V N

a of the fitted parameters is derived from
the Jacobian matrix J evaluated at the solution. If J is the m× 3 matrix

Jij =
∂fi

∂aj
, fi(a) = yi − ea1+a2xi+a3x2

i , i = 1, . . . ,m,

then
V N
a = σ̂2

N (JTJ)−1, (11.20)

where

σ̂N = ‖f‖/(m− 3)1/2 =
(∑

i f
2
i

m− 3

)1/2

.
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The second estimator arises from a transformation of (11.19). We note that if
we take natural logarithms of both sides of this equation, we obtain

log y = a1 + a2x+ a3x
2, (11.21)

an expression linear in the parameters a. From this transformation, we define
the linear least-squares estimator (LLS) that determines aL from the solution
of

min
a

m∑
i=1

(log yi − a1 − a2xi − a3x
2
i )

2.

If C is the m× 3 observation matrix with (1, xi, x
2
i ) in the ith row and z is the

m-vector with log yi in the ith element, then aL solves the matrix equation

CaL = z

in the least-squares sense (section 4.1.2). An estimate of the covariance matrix
of the fitted parameters is given by

V L
a = σ̂2

L(CTC)−1, (11.22)

where
σ̂L = ‖rL‖/(m− 3)1/2, rL = z− CaL.

The third estimator is the weighted linear least-squares estimator (WLLS)
which defines aW as the solution of

min
a

m∑
i=1

w2
i (log yi − a1 − a2xi − a3x

2
i )

2,

where wi ≥ 0 are specified weights (section 4.1). If z̃ and C̃ are the weighted
versions of z and C:

z̃i = wizi, C̃ij = wiCij ,

then aW and VaW
are estimated from

C̃aW = z̃, VaW
= σ̂2

W (C̃T C̃)−1, (11.23)

where, in this case,

σ̂W = ‖rW ‖/(m− 3)1/2, rW = z̃− C̃aW .

While, from maximum likelihood principles, the NLLS estimator is preferred,
the LLS estimator is the easiest one to implement. We ask two questions

V1 Does the LLS estimator provide adequate solutions?

V2 Are the uncertainty estimates provided by (11.22) valid?
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Figure 11.10: LLS fit of a Gaussian peak to simulated data.

11.5.3 Evaluation of LLS estimator using Monte Carlo
simulations

Given typical values of the parameters a∗ and a set of values x = (x1, . . . , xm)T

for the independent variable, we generate data according to the model:

y∗i = ea∗1+a∗2xi+a∗3x2
i , yi = y∗i + εi, εi ∈ N(0, σ2),

and then apply the estimator to the data. Below is an example data set

x y* y

-1.0000 0.0183 0.0175

-0.8000 0.0773 0.0770

-0.6000 0.2369 0.2359

-0.4000 0.5273 0.5279

-0.2000 0.8521 0.8524

0 1.0000 0.9999

0.2000 0.8521 0.8522

0.4000 0.5273 0.5263

0.6000 0.2369 0.2383

0.8000 0.0773 0.0772

1.0000 0.0183 0.0200

generated with a∗ = (0, 0,−4)T, i.e., for the curve y = e−4x2
, with σ = 0.001.

The solution estimates provided by LLS are a = (−0.0034, 0.0324,−3.9837)T.
From these estimates alone, it is not easy to say whether these are adequate
estimates or not. Figure 11.10 shows the fitted curve and the data points
{(xi, yi)} — the fit looks reasonable. However, in figure 11.11 we plot the
normalised residuals r/σ where

ri = yi − ea1+a2xi+a3x2
i . (11.24)
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Figure 11.11: Residuals ri ‘*’ for the LLS fit of a Gaussian peak to simulated
data compared with the perturbations εi ‘+’.

From this figure, we see that the residuals are much larger than we would expect
and have a non-random behaviour. Instead of most lying in the band ±2, 8 of
the 11 are outside it with three residuals greater that 6σ in absolute value.
From this view, we would say that the solution produced by the LLS estimator
is poor. If we repeat the same experiment in Monte Carlo simulations, we can
see if this behaviour is typical. For each of 5000 trials, we generate data sets zq,
determine the best-fit parameters aq and residual vector rq = (r1,q, . . . , rm,q)T

calculated as in (11.24). For each rq we determine an estimate

σ̂q = ‖rq‖/(m− 3)1/2.

Figure 11.12 is a histogram showing the spread of the normalised estimates
σ̂q/σ of the standard deviation of the residuals. This figure shows that the LLS
consistently produces fits with residuals significantly larger than those expected
from the value of σ used to generate the perturbations εi in the data. The
answer to question V1 would appear to be ‘No’.

The Monte Carlo simulations can also give an answer to question V2. For
the data set z, the covariance matrix Va of the fitted parameters calculated
according to (11.22) is

1.2968e-004 -1.9486e-021 -1.8214e-004

-1.9486e-021 1.4207e-004 -2.2979e-021

-1.8214e-004 -2.2979e-021 4.5534e-004

while that V̄a derived from the estimates {aq}50001 according to (8.1) is
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Figure 11.12: Spread of the normalised estimates σ̂q/σ of the standard deviation
of the residuals for the LLS fit of a Gaussian to data over 5000 Monte Carlo
simulations.

4.4171e-005 7.5385e-007 -2.2509e-004

7.5385e-007 3.2608e-004 -3.0955e-006

-2.2509e-004 -3.0955e-006 1.1879e-003

The two sets of standard uncertainties u(aj) and ū(aj)) of the fitted parameters
(i.e., the square roots of the diagonal elements of the corresponding covariance
matrix) are given in table 11.14. These results show that the uncertainty
estimates derived from (11.22) are not reliable.

u(aj) ū(aj)
a1 0.0114 0.0066
a2 0.0119 0.0181
a3 0.0213 0.0345

Table 11.14: Estimates of the standard uncertainties of the fitted parameters
for the LLS estimator computed from (i) equation (11.22) (second column), (ii)
5000 Monte Carlo simulations (third column).

11.5.4 Null space benchmarking for the LLS estimator

The Monte Carlo simulations have shown that the LLS estimator provides poor
estimates of the parameters and their uncertainties. However, we do not know
how well this estimator compares with the preferred NLLS estimator. In this
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section we use null space benchmarking (section 8.3) to answer the following
questions:

V3 How much do LLS parameters estimates differ from NLLS estimates?

V4 How variable are LLS parameter estimates compared with NLLS esti-
mates?

Given a choice of a∗, σ and values of the independent variables xi, i = 1, . . . ,m,
the null space method for generating reference data for the NLLS estimator is
summarised by:

I Calculate y∗i = ea∗1+a∗2xi+a∗3x2
i and set z∗ = {(xi, y

∗
i )}.

II Calculate the m× 3 Jacobian matrix J∗:

J∗ij =
∂

∂aj
(y∗i − ea∗1+a∗2xi+a∗3x2

i ),

and an orthogonal basis for the null space Q2 = [q4 . . .qm] of J∗T.
Compute random multipliers ν = (ν1, . . . , νm−3) satisfying

‖ν‖/(m− 3)1/2 = σ.

III Set
δ = (δ1, . . . , δm)T =

∑m−3
k=1 νkq3+k,

yi = y∗i + δi,
zδ = {(xi, yi)}m

i=1.

 (11.25)

Then if σ is small enough, a∗ are the NLLS best-fit model parameters to zδ
and δ is the vector of residuals

δi = yi − ea∗1+a∗2xi+a∗3x2
i

and satisfies ‖δ‖/(m− 3)1/2 = σ. Furthermore,

V ∗
a = σ2(J∗TJ∗)−1, (11.26)

is an estimate of the covariance matrix for the NLLS estimator.

In fact, the data set listed above was generated using the null space approach
so that a∗ = (0, 0,−4)T is the NLLS solution. The Jacobian matrix J∗ for the
exact data {(xi, y

∗
i )} is

-0.0183 0.0183 -0.0183

-0.0773 0.0618 -0.0495

-0.2369 0.1422 -0.0853

-0.5273 0.2109 -0.0844

-0.8521 0.1704 -0.0341

-1.0000 0 0

-0.8521 -0.1704 -0.0341

-0.5273 -0.2109 -0.0844

-0.2369 -0.1422 -0.0853

-0.0773 -0.0618 -0.0495

-0.0183 -0.0183 -0.0183
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u(aj) ū(aj) u∗(aj) |aj − a∗j |/u∗j
a1 0.0114 0.0066 0.0007 4.8709
a2 0.0119 0.0181 0.0023 14.3439
a3 0.0213 0.0345 0.0064 2.5445

Table 11.15: Estimates of the standard uncertainties of the fitted parameters for
the LLS estimator computed from (i) equation (11.22) (second column), (ii) 5000
Monte Carlo simulations (third column) along with estimates of the standard
uncertainties for the NLSS estimator (fourth column). The fifth column shows
the difference between the LLS estimate and NLLS estimate relative to the
standard uncertainties u∗j = u∗(aj).

from which we can calculate the covariance matrix V ∗
a

4.7894e-007 5.6509e-023 -2.5569e-006

5.6509e-023 5.1072e-006 -4.1411e-018

-2.5569e-006 -4.1411e-018 4.0917e-005

We can now compare the variation of the LLS estimates with those expected
using the NLLS estimator. Table 11.15 shows the two sets of estimates u(aj)
and ū(aj) of the standard uncertainties of the LLS fitted parameters (as in
table 11.14) along with those, u∗j = u∗(aj) for the NLLS derived from V ∗

a . It is
seen that actual variation ū(aj) is almost an order of magnitude greater than
that predicted for the NLLS estimates. The table also shows the difference
between the LLS estimate and NLLS estimate relative to the standard uncer-
tainties u∗j = u∗(aj). On the basis of these results, we can say that the NLLS
estimator will perform much better than the LLS estimator.

11.5.5 Analysis of the LLS estimator

From the large difference between the behaviour of the LLS and NLLS estimator
indicated from the null space benchmarking, it is clear that the transformation
(11.21) is producing a significant change in the model. In this section, we show
from an analysis of the LLS estimator why this is so. At the same time, the
analysis will indicate how to define a weighted least-squares estimator that can
be expected to perform better.

A linear least-squares estimator can be expected to perform satisfactorily if
the random effects associated with the data are uncorrelated and have equal
variance (from the Gauss-Markov theorem, section 4.1.9). We ask, therefore,

V5 To what extent are the random effects associated with the model equations

log yi = log(y∗i + εi), y∗i = a1 + a2xi + a3x
2
i , εi ∈ N(0, σ2),

correlated and of equal variance?
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If the εi are independent of each other, then so are log yi. However, if εi ∈
N(0, σ2), then the variance of zi = log yi is estimated by(

∂zi

∂y

)2

σ2 =
σ2

y2
i

. (11.27)

Hence, the variances of log yi are approximately constant only if the {yi} are
approximately equal.

For the data set z, the yi’s are not constant:

x y 1/y 1/y^2

-1.0000e+000 1.7454e-002 5.7293e+001 3.2825e+003

-8.0000e-001 7.6968e-002 1.2992e+001 1.6880e+002

-6.0000e-001 2.3595e-001 4.2382e+000 1.7962e+001

-4.0000e-001 5.2794e-001 1.8941e+000 3.5878e+000

-2.0000e-001 8.5240e-001 1.1732e+000 1.3763e+000

0 9.9986e-001 1.0001e+000 1.0003e+000

2.0000e-001 8.5222e-001 1.1734e+000 1.3769e+000

4.0000e-001 5.2625e-001 1.9002e+000 3.6109e+000

6.0000e-001 2.3825e-001 4.1973e+000 1.7617e+001

8.0000e-001 7.7181e-002 1.2957e+001 1.6787e+002

1.0000e+000 1.9995e-002 5.0011e+001 2.5011e+003

Equation (11.27) indicates that with weights wi = yi, the conditions of the
Gauss-Markov theorem will hold for the weighted least-squares estimator

min
a

m∑
i=1

y2
i (log yi − a1 − a2xi − a3x

2
i )

2, (11.28)

and we would expect this estimator to perform better than the unweighted
version.

11.5.6 Evaluation of WLLS estimator

We can repeat the validation process, this time for the WLLS estimator (11.28).
Table 11.16 gives the results for 5000 Monte Carlo simulations in the same
format as table 11.15. The results show (i), there is good agreement of the
WLLS estimate with the NLLS estimate (column 5), (ii) the estimates u(aj)
of the standard uncertainties derived from (11.23) are in good agreement with
estimates ū(aj) determined in the Monte Carlo simulations and (iii) the variation
in the WLLS estimates is close to the predicted variation u∗(aj) in the NLLS
estimates. From this we can conclude that WLLS estimator is fit for purpose
for this type of data. If the WLLS estimator is a good approximation to the
NLLS estimator, then it follows that the LLS estimator will behave similarly to
the weighted nonlinear least-squares estimator

min
a

∑
i

1
y2

i

(yi − ea1+a2xi+a3x2
i ).

This shows that the LLS estimator gives the largest weights to data points with
the smallest y-values. From the values of 1/yi, it is seen that the first and last
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u(aj) ū(aj) u∗(aj) |aj − a∗j |/u∗j
a1 0.0007 0.0007 0.0007 0.0188
a2 0.0023 0.0022 0.0023 -0.0093
a3 0.0065 0.0064 0.0064 -0.0423

Table 11.16: Estimates of the standard uncertainties of the fitted parameters
for the WLLS estimator computed from (i) equation (11.23) (second column),
(ii) 5000 Monte Carlo simulations (third column) along with estimates of the
standard uncertainties for the NLLS estimator (fourth column). The fifth
column shows the difference between the WLLS estimate and NLLS estimate
relative to the standard uncertainties u∗j = u∗(aj).

data point are given a weight more that 50 times the weight attributed to middle
data points. The LLS estimator is inefficient for this type of data because most
of the data points are essentially ignored.

11.5.7 Evaluation of nonlinear effects using Monte Carlo
simulations

Linearisation has so far entered into the calculations at two steps, firstly in the
calculation of the covariance matrix for the NLLS estimator and secondly in the
calculation of the variance of log yi. We therefore ask

V6 Is the estimate of the variance of log yi determined in (11.27) valid?

V7 Are the estimates of Va calculated in (11.20) valid?

To answer V6, we employ the following strategy.

I Given σ and a range of yi, calculate zi = log yi and an estimate u(zi) =
σ/yi of the standard uncertainty of zi.

II For each i and for q = 1, . . . , N calculate

yi,q = yi + εi,q, zi,q = log yi,q,

where εi,q is generated from a distribution with variance σ2.

III For each i calculate the standard deviation ūi of {zi,q}N
1 .

Table 11.17 summarises the results of N = 10000 Monte Carlo simulations with
σ = 0.001 and perturbations drawn from rectangular (uniform) and normal
distributions. For values of y far from zero relative to σ, there is good agreement
between the predicted and actual variations. Differences become significant
when y approaches σ in value.

The validity of the estimate Va for the NLLS estimates can also be examined
from Monte Carlo simulations. Below are the estimates Va calculated from
(11.20):
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yi zi = log yi u(zi) ūn(zi) ūr(zi)
0.0050 -5.2983 0.2000 0.2124 0.2061
0.0100 -4.6052 0.1000 0.1016 0.1009
0.0500 -2.9957 0.0200 0.0201 0.0200
0.1000 -2.3026 0.0100 0.0100 0.0100
0.5000 -0.6931 0.0020 0.0020 0.0020
1.0000 0 0.0010 0.0010 0.0010

Table 11.17: Comparison of the predicted standard deviation ū of log yi

with actual standard deviations un and ur generated by 10,000 Monte Carlo
simulations with perturbations drawn from normal and rectangular distributions
with standard deviation σ = 0.001.

4.7894e-007 5.6509e-023 -2.5569e-006

5.6509e-023 5.1072e-006 -4.1411e-018

-2.5569e-006 -4.1411e-018 4.0917e-005

and V̄a calculated in 5000 Monte Carlo simulations:

4.7215e-007 1.8884e-008 -2.5406e-006

1.8884e-008 5.0213e-006 -1.2392e-007

-2.5406e-006 -1.2392e-007 4.0844e-005

The two sets of standard uncertainties u(aj) and ū(aj) of the fitted parameters
(i.e., the square roots of the diagonal elements of the corresponding covariance
matrix) are given in table 11.18. The results show good agreement.

u(aj) ū(aj)
a1 0.0007 0.0007
a2 0.0023 0.0022
a3 0.0064 0.0064

Table 11.18: Estimates of the standard uncertainties of the fitted parameters
for the NLLS estimator computed from (i) equation (11.20) (second column),
(ii) 5000 Monte Carlo simulations (third column).

11.5.8 Valid uncertainty estimates for the LLS estimator

While we have found that (11.22) does not produce valid estimates of the
uncertainty in the fitted parameters for the LLS estimator, we can derive an
alternative estimate that is valid. The solution of the linear least-squares
problem

Ca = z

is defined by
a = C†z, C† = (CTC)−1CT,
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u(aj) ū(aj)
a1 0.0064 0.0066
a2 0.0176 0.0181
a3 0.0334 0.0345

Table 11.19: Estimates of the standard uncertainties of the fitted parameters
for the LLS estimator computed from (i) equation (11.29) (second column), (ii)
5000 Monte Carlo simulations (third column).

and the covariance matrix of the solution parameters is estimated by

Va = C†Vz(C†)T (11.29)

where Vz is the diagonal matrix with σ2/y2
i in the ith diagonal element. Ta-

ble 11.19 compares the standard uncertainties u(aj) calculated from (11.29)
and those ū(aj)) calculated from the Monte Carlo simulations. The results
show good agreement (certainly compared with those in table 11.14).

11.6 Estimation of the effective area of a
pressure balance

An important step in the calibration of pressure balances is the estimation
of the effective area of the piston-cylinder assembly. The effective area is a
function of pressure and is usually modelled as a linear function involving two
parameters. The calibration process therefore involves fitting a straight line
to measurement data, at first sight, a straightforward process. However, in a
typical cross-floating experiment in which a balance under test is hydrostatically
compared with a reference balance, there is a large number of factors that need
to be taken into account, including the uncertainties associated with (a) the
calibration of the reference balance, and (b) the masses generating the applied
loads. The fact that the same mass units are used in different combinations to
produce different loads means that there is correlation amongst the random ef-
fects associated with the mass measurements. Furthermore, there are additional
loads (or equivalents) that need to be measured or estimated from the data. In
this case study we analyse a number of algorithms for determining estimates
of the effective area parameters of a pressure balance from measurement data
recorded during a calibration experiment.

11.6.1 Models

At temperature t with applied mass m (corrected for air buoyancy), a pressure
balance generates a pressure p given implicitly by

p =
(m+ c)g

A(p,a)(1 + φ(t))
, (11.30)
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where φ is a known function of t, |φ(t)| � 1, that accounts for a temperature
correction, c is a measured constant obtained from a precise characterisation of
the balance, A(p,a) describes the effective area of the balance in terms of the
pressure p and calibration parameters a, and g is gravitational acceleration. In
practice, A(p,a) = a1 + a2p with a1 = A0, a2 = A0λ, and a2p small compared
to a1. Given a set of measurements pi, mi and ti of pressure, applied load and
temperature, and knowledge of c, calibrating a pressure balance means finding
values for the parameters a that best-fit the model equations (11.30).

In a cross-float experiment [82], the pressure balance to be calibrated is con-
nected to a reference balance whose effective area parameters b have previously
been measured, and the applied loads on the two balances are adjusted so
that both are in pressure and flow equilibrium. Suppose the reference balance
generates a pressure given by (11.30) with m, c, a and φ(t) replaced by M , C, b
and Φ((T )), respectively. Then, when the balances are in equilibrium, we have

(m+ c)g
A(p,a)(1 + φ(t))

=
(M + C)g

A(p,b)(1 + Φ(T ))
, (11.31)

where the pressure p is estimated from the calibration of the reference balance.

11.6.2 Estimators

We consider three related estimators to determine the best-fit parameters a to
measurement data [105].

The weighted linear least-squares estimator (WLLS) determines estimates of
the parameters a by solving

min
a

∑
i

w2
i f

2
i

where

fi =
(mi + c)g
1 + φ(ti)

− a1pi − a2p
2
i

a linear function of a = (a1, a2)T. The P -estimator (PLLS) determines param-
eter estimates by solving

min
a

∑
i

e2i

where

ei =
[
mi + c

Mi + C

] [
1 + Φ(Ti)
1 + φ(ti

]
− a1 + a2pi

b1 + b2pi
.

The ∆P -method (DLLS) determines parameter estimates by solving

min
a

∑
i>1

d2
i

where

di =
(mi −m1)g

[pi − p1 + (φ(ti)− φ(t1)p1][1 + φ(ti)]
− a1 − a2(pi + p1). (11.32)

We ask the general validation question
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V1 Under what circumstances are these estimators expected to perform well?

11.6.3 Analysis of estimator behaviour

All three estimators are linear least-squares estimators and so we can be guided
by the Gauss-Markov theorem (section 4.1.9). Let

yi = y(mi, ti) =
(mi + c)g
1 + φ(ti)

.

The WLLS can be expect to perform well if (i) the pressures pi are known
accurately, (ii) the random effects associated with yi are independent and (iii)
the weights wi are chosen to be inversely proportional to the standard deviation
of yi. Condition (ii) implies that both c and g are known accurately and the
uncertainties in mi and ti are independent from those of mj and tj , i 6= j,
for otherwise the uncertainties in yi would be correlated. If we model the
measurements of mi and ti as

mi = m∗
i + µi, ti = t∗i + τi, µi ∈ N(0, ν2

i ), τi ∈ N(0, ξ2i ),

then the variance of yi is estimated by

σ2
i =

(
∂y

∂m

)2

ν2
i +

(
∂y

∂t

)2

ξ2i

where the partial derivatives (sensitivity coefficients) are evaluated at (mi, ti).
If the weights wi are set to wi = 1/σi, then condition (iii) is satisfied.

If the pressures pi are known accurately, then ei ≈ fi/pi and so the PLLS
estimator can be expect to work well under the same conditions as WLLS with
the additional condition that (iv) the standard uncertainty associated with yi are
approximately proportional to pi. Since, pi is approximately proportional to mi,
this last condition will hold if the uncertainty associated with yi is dominated
by uncertainty associated with mi and that the uncertainty associated with mi

is proportional to mi.

The DLLS estimator is less obviously related to WLLS. The motivation for its
definition is that the constant c is eliminated from the calculation and so c does
not have to be estimated. We note that

a1 + a2(pi + p1) = {a1pi + a2p
2
i − a1p1 − a2p1} ×

1
pi − p1

,

and the first term of the right-hand side of (11.32) is an approximation to

(yi − y1)×
1

pi − p1
.

From this, we can argue that this estimator will perform well if the measurement
of y1 is known accurately and the standard deviation of the random effects of yi,
i > 1, is proportional to pi−p1. The results of Monte Carlo simulation verifying
this analysis are presented in [105]. We note that by choosing different weighting
strategies the WLLS estimator can approximate the behaviour of both PLLS
and DLLS.
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11.7 Circle fitting

11.7.1 Description

In this case study we are concerned with fitting a circle to data {(xi, yi)}m
1 . The

case study uses this simple model to examine:

• parameterisation of the model space; see section 2.3,

• bias in nonlinear models,

• the effectiveness of different estimators on data generated according to
different uncertainty models; see section 3.3.

11.7.2 Metrological area

Circle fitting is important in dimensional metrology where the assessment of
roundness of an artefact is one of the fundamental tasks. It is also important
in the use of automatic network analysers in electrical metrology.

11.7.3 Space of models

The space of models is the set of circles. We consider three parameterisations
associated with the equations

C1 : (x− a1)2 + (y − a2)2 − a2
3 = 0,

C2 : x2 + y2 + a1x+ a2y + a3 = 0,
C3 : a1(x2 + y2) + a2x+ y + a3 = 0.

The parameterisations C1 and C2 are equivalent to each other in that they can
represent exactly the same set of circles but not to C3. The parameterisation C3

can be used to model arcs of circles approximately parallel to the x−axis in a
stable way. Parameterisations C2 and C3 are two of a number of parameterisa-
tions derived from the following general equation for a circle

l(x, y) = A(x2 + y2) +Bx+ Cy +D = 0. (11.33)

(This equation cannot be used to parameterise the circle as replacing the co-
efficients with any non-zero multiple of them still defines the same circle. The
parameterisations C2 and C3 are derived by setting A = 1 and C = 1, respec-
tively. Other resolving constraints on A through D can be considered such as
A2 +B2 + C2 +D2 = 1.)

We note that if (x0, y0) and r0 are the circle centre coordinates and radius and
r the distance from (x, y) to the circle centre, then
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x0 =
−B
2A

, y0 =
−C
2A

,

r0 =
V

2|A|
, r =

U

2|A|
,

where in the above

U = [(2Ax+B)2 + (2Ay + C)2]1/2,

V = [B2 + C2 − 4AD]1/2. (11.34)

The signed distance d of (x, y) to the circle can be written as

d = r − r0,

= 2l/(U + V ),

=
2[A(x2 + y2) +Bx+ Cy +D]√

[(2Ax+B)2 + (2Ay + C)2] +
√

[B2 + C2 − 4AD]
. (11.35)

The derivatives of d with respect to A, B, C and D are given by

∂d

∂A
=

1
UV

[(x2 + y2)V − d(dV − 2D)],

∂d

∂B
=

1
UV

[xV − dB],

∂d

∂C
=

1
UV

[yV − dC], (11.36)

∂d

∂C
=

1
V
. (11.37)

11.7.4 Statistical models

We consider two types of statistical model.

M1 The measurements of x and y are together subject to uncorrelated Gaus-
sian radial random effects: if the true point on the circle is

(x∗i , y
∗
i ) = (a1 + a3 cos ti, a2 + a3 sin ti),

then

(xi, yi) = (a1 + (a3 + εi) cos ti, a1 + (a3 + εi) sin ti), εi ∈ N(0, σ2).

M2 The measurements of x and y are each subject to uncorrelated Gaussian
random effects: if the true point on the circle is (x∗i , y

∗
i ), then

(xi, yi) = (x∗i + δi, y
∗
i + εi), δi, εi ∈ N(0, σ2).
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11.7.5 Estimators

We consider three least-squares estimators of the form

min
a

m∑
i=1

f2
i (a).

E1 Least-squares ODR estimator with fi = di(a) where di(a) is the orthogo-
nal distance from the data point xi to the circle specified by the parameters
a. For example, if parameterisation C1 is used, then

di = ri − a3, where
ri = ((xi − a1)2 + (yi − a2)2)1/2.

This estimator is optimal for model M1 and has favourable properties for
model M2.

E2 Least-squares estimator associated with parameterisation C2 with

fi(a) = (x2
i + y2

i ) + a1xi + a2yi + a3.

Note that if (x0, y0) and r0 are the circle centre coordinates and radius
and ri is the distance from xi to the circle centre, then

a1 = −2x0,

a2 = −2y0,
a3 = x2

0 + y2
0 − r20, and

fi = r2i − r20.

E3 Least-squares estimator associated with parameterisation C3 with

fi(a) = a1(x2
i + y2

i ) + a2xi + yi + a3. (11.38)

Again, fi is linear in these parameters.

11.7.6 Estimator algorithms

Estimators E2 and E3 can be posed as linear least-squares problems

min
a
‖zk − Cka‖,

where, for estimator E2,

C2 =

 x1 y1 1
...

...
xm ym 1

 , z2 =

 −x2
1 − y2

1
...

−x2
m − y2

m

 ,
and, for estimator E3,

C3 =

 x2
1 + y2

1 x1 1
...

...
x2

m + y2
m xm 1

 , z3 =

 −y1
...

−ym

 .
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Estimates produced by E1 are found by solving the nonlinear least-squares
problem

min
a

m∑
i=1

d2
i (a),

using the Gauss-Newton algorithm (section 4.2), for example. To employ this
algorithm we are required to evaluate di and its derivatives ∂di

∂aj
. If parameteri-

sation C1 is used, then

di = ri − a3, ri =
√

[(xi − a1)2 + (yi − a2)2]

and

∂di

∂a1
= −(xi − a1)/ri,

∂di

∂a2
= −(yi − a2)/ri,

∂di

∂a3
= −1.

If parameterisation C3 is used then di and its derivatives can be evaluated as in
(11.35) and (11.36) with (A,B,C,D) = (a1, a2, 1, a3).

11.7.7 Monte Carlo data generation

In this case study, we generate two types of data:

D1 Data points {(xi, yi)} nominally lying uniformly around a circle centred
at (0, 0) with radius 1. Figure 11.13 shows an example data set.

D2 Data points {(xi, yi)} lying on the arc y = y0− (1+y2
0−x2)1/2, |x| < 1, of

a circle centred at (0, y0) and passing through (±1, 0). Figure 11.14 shows
an example data set.

For each circle, we generate data points (xi, yi) lying on the circle and N
replicated data sets

zq = {(xq,i, yq,i)}i = {(xi, yi) + (δq,i, εq,i)}i

where δq,i and εq,i are generated according to the appropriate statistical model.

11.7.8 Estimator assessment

We apply each estimator to each data set to determine best-fit parameters ak,q =
Ak(zq) and then look at the mean value āj,k and standard deviation sk,j of the
parameter estimates, k = 1, 2, 3, j = 1, 2, 3.
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Figure 11.13: Data uniformly distributed around a circle of radius 1.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 11.14: Data generated on an arc of a circle passing through (±1, 0).
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11.7.9 Experiment 1: data uniformly distributed around
a circle

In this experiment, we consider the behaviour of estimators E1 and E2 for data
uniformly distributed around a circle (D1) according to models M1 and M2.
For this type of data, we expect E1 to be unbiased for M1 but produce biased
estimates of the radius for M2. We expect E2 to provide biased estimates of
the radius for both models. The reasons for these expectations are as follows.
Let (x, y) be a point on the unit circle centred at the origin and consider
perturbations according to model M1:

xi = x(1 + εi), yi = y(1 + εi), εi ∈ N(0, σ2).

Then
ri − 1 = (1 + εi)(x2 + y2)1/2 − 1 = εi,

so that the expected estimate of the radius produced by E1 is 1 (since the
expected value of εi is 0). On the other hand,

r2i − 1 = (1 + εi)2 − 1 = 2εi + ε2i .

Since the expected value of ε2i is greater than zero, E2 will produce estimates of
the radius that are greater than the true radius for this type of data.

For data generated according to model M2, we have

xi = x+ δi, yi = y + εi, δi, εi ∈ N(0, σ2),

and

ri − 1 = (1 + 2δix+ 2εiy + δ2i + ε2i )
1/2 − 1 ≈ 1

2
[2δix+ 2εiy + δ2i + ε2i ]. (11.39)

In this case, the presence of the term δ2i + ε2i means that the expected value of
the radius produced by E1 is greater than 1. Similarly,

r2i − 1 = 2δix+ 2εiy + δ2i + ε2i , (11.40)

so that its expected value of the radius produced by E2 is also greater than 1.

Tables 11.20 and 11.21 show the results of applying both estimators (E1 and E2)
to data generated according to models M1 and M2, respectively. Each data set
zq = z+∆q represents the perturbation of a fixed data set z = {(xi, yi)}211 of 21
data points uniformly distributed around the circle centred at (x0, y0) = (0, 0)
with radius r0 = 1. Three sizes of perturbations were used: σ = 0.001, 0.01, 0.1.
For each trial, 5000 data sets were generated.

We apply each estimator to each data set to determine best-fit parameters aq =
A(zq). For each parameter aj , we calculate the mean value āj of the parameter
estimates, the difference bj = āj−a∗j between the mean value and the true value
a∗j , the standard deviation sj of the parameter estimates {aj,q}, and the ratio
bj/sj , j = 1, 2, 3.

We note the following:
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M1 bj = āj − a∗j sj = stdq{aj,q} bj/sj

E1 σ = 0.001
x0 6.4094e-007 3.0872e-004 2.0761e-003
y0 -1.1645e-006 3.0962e-004 -3.7610e-003
r0 -3.1300e-006 2.1746e-004 -1.4393e-002
E2 σ = 0.001
x0 6.5031e-007 3.0874e-004 2.1064e-003
y0 -1.1587e-006 3.0962e-004 -3.7424e-003
r0 -2.6998e-006 2.1746e-004 -1.2415e-002
E1 σ = 0.01
x0 6.4380e-006 3.0875e-003 2.0852e-003
y0 -1.1667e-005 3.0966e-003 -3.7677e-003
r0 -2.6998e-005 2.1746e-003 -1.2415e-002
E2 σ = 0.01
x0 7.3802e-006 3.0890e-003 2.3892e-003
y0 -1.1089e-005 3.0962e-003 -3.5815e-003
r0 1.6022e-005 2.1745e-003 7.3679e-003
E1 σ = 0.1
x0 6.9282e-005 3.1156e-002 2.2237e-003
y0 -1.2031e-004 3.1251e-002 -3.8497e-003
r0 1.7384e-004 2.1741e-002 7.9961e-003
E2 σ = 0.1
x0 1.6639e-004 3.1508e-002 5.2809e-003
y0 -6.4161e-005 3.1415e-002 -2.0424e-003
r0 4.4870e-003 2.1691e-002 2.0686e-001

Table 11.20: Estimates of the bias and efficiency of estimators E1 and E2 for
data generated according to model M1.
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M2 bj = āj − a∗j sj = stdq{aj,q} bj/sj

E1 σ = 0.001
x0 -3.5046e-006 3.0800e-004 -1.1379e-002
y0 -4.7664e-006 3.0712e-004 -1.5519e-002
r0 -2.8705e-006 2.1901e-004 -1.3107e-002
E2 σ = 0.001
x0 -3.4935e-006 3.0800e-004 -1.1343e-002
y0 -4.7681e-006 3.0713e-004 -1.5524e-002
r0 -2.4441e-006 2.1901e-004 -1.1160e-002
E1 σ = 0.01
x0 -3.4986e-005 3.0794e-003 -1.1361e-002
y0 -4.8097e-005 3.0705e-003 -1.5664e-002
r0 2.0558e-005 2.1902e-003 9.3866e-003
E2 σ = 0.01
x0 -3.3886e-005 3.0795e-003 -1.1004e-002
y0 -4.8260e-005 3.0715e-003 -1.5712e-002
r0 6.3196e-005 2.1902e-003 2.8854e-002
E1 σ = 0.1
x0 -3.3628e-004 3.0957e-002 -1.0863e-002
y0 -5.1712e-004 3.0828e-002 -1.6774e-002
r0 5.1554e-003 2.1867e-002 2.3576e-001
E2 σ = 0.1
x0 -2.4281e-004 3.1167e-002 -7.7906e-003
y0 -5.3501e-004 3.1140e-002 -1.7181e-002
r0 9.3823e-003 2.1828e-002 4.2982e-001

Table 11.21: Estimates of the bias and efficiency of estimators E1 and E2 for
data generated according to model M2.
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• For all experiments, the estimates of the centre coordinates (x0, y0) is
unbiased. The ratio of the bias to the standard deviation is of the order
of 0.01.

• For model M1 (table 11.20), estimator E2 shows a significant bias in the
estimate of the radius in the case σ = 0.1. No such bias is detected for
estimator E1.

• For model M2 (table 11.21), both estimators show significant bias in
the estimate of the radius in the case σ = 0.1 (with the bias for E2
approximately double that for E1; see equations (11.39), (11.40)).

Although the numerical experiments show that the bias does exist, it can be
argued that the bias is only apparent for noisy data (σ = 0.1) and that the bias
is only of the order of σ2. However, if the data is noisy, we often take more data
points so that the extra redundancy reduces the uncertainty in the parameter
estimates. Table 11.22 shows the results of repeating the experiment for model
M2 with σ = 0.1 but with each data set having 201 data points instead of
21. This results show that the standard deviations are reduced by a factor of
3 ≈ (201/21)1/2 but the bias remains the same, so that the bias as a percentage
of the standard deviation increases by a factor of 3.

Taking this further, we have fitted a circle using estimator E1 to 20,001 data
points generated according to M2 with σ = 0.1 and estimated the covariance
matrix Va of the fitted parameters according to

Va = σ̂2(JTJ)−1, σ̂ = ‖f‖/(m− n)1/2,

where J is the Jacobian matrix and f the vector of function values at the solution
(section 4.2). We obtain estimates

a = (4.7204e− 004,−6.9506e− 004, 1.0047e+ 000)T,

σ̂ = 1.0006e− 001 and

Va =

 1.0004e− 006 −5.3485e− 010 −2.1129e− 011
−5.3485e− 010 1.0019e− 006 3.9490e− 010
−2.1129e− 011 3.9490e− 010 5.0056e− 007

 .
The standard uncertainties u = (u1, u2, u3)T of the fitted parameters are the
square roots of the diagonal elements of Va so that

u = (1.0002e− 003, 1.0009e− 003, 7.0750e− 004)T.

Table 11.23 shows the confidence intervals of the form [aj−kuj , aj +kuj ], k = 2,
based on these estimates. It shows that intervals for the circle centre coordinates
(x0, y0) contain the true values but that for the radius r0 does not. In fact, k
has to be expanded to nearly 7 for the true value to be included.

The estimates of the covariance matrix and the standard uncertainties are valid
and are confirmed by Monte Carlo simulations.
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M2 bj = āj − a∗j sj = stdq{aj,q} bj/sj

E1 σ = 0.1
x0 -2.0745e-004 9.9786e-003 -2.0790e-002
y0 1.1825e-004 1.0189e-002 1.1605e-002
r0 4.8934e-003 7.0501e-003 6.9409e-001
E2 σ = 0.1
x0 -1.5901e-004 1.0153e-002 -1.5661e-002
y0 1.0889e-004 1.0244e-002 1.0630e-002
r0 9.7519e-003 7.0383e-003 1.3855e+000

Table 11.22: Estimates of the bias and efficiency of estimators E1 and E2 for
data generated according to model M2. Each data set has 201 data points.

M2 aj − 2uj aj + 2uj

x0 -1.5283e-003 2.4724e-003
y0 -2.6969e-003 1.3068e-003
r0 1.0033e+000 1.0061e+000

Table 11.23: Confidence intervals (k = 2) for the circle parameters for the best-
fit circle to 20,001 data points using estimator E1 for data generated according
to model M2.

This example illustrates the fact that for biased estimators, an analysis of the
uncertainty of the fitted parameters based only on the covariance matrix of the
fitted parameters can be misleading. For the case of circle fitting, the problem
is simple enough to allow for a complete analysis. For more complicated models,
we are unlikely to be able to quantify the extent of the bias in an estimator from
analysis alone. In these situations, Monte Carlo simulations provide a practical
method of analysing the behaviour of an estimator.

11.7.10 Experiment 2: data uniformly distributed on an
arc of a circle

In this experiment, we consider the behaviour of all three estimators for data
generated on an arc of a circle (D2) according to model M2 (figure 11.14). For
this type of data we expect E1 and E3 to be relatively unbiased. This is because
i) for this case models M1 and M2 produce almost the same type of data and
E1 is unbiased for M1 and ii), E3 produces almost the same estimates as E1
since fi in (11.38) is approximately the distance to circle. (If y0 � 1, the arc
of the circle approximates the line y = 0 and in the equation (11.33) for this
circle A,B,D ≈ 0. If follows from (11.35) that fi ≈ di.) However, we expect
estimator E2 to produce biased estimates of the y0-co-ordinate and the circle
radius since

fi = r2i − r20 = (ri − r0)(ri + r0) = di(ri + r0).

Since for y0 � 1, decreasing y0 and r0 leaves ri − r0 relatively unchanged but
reduces ri + r0, the estimates are biased to producing smaller radius.
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M2 bj = āj − a∗j sj = stdq{aj,q} bj/sj

E1 σ = 0.0001
x0 5.8940e-005 3.5956e-003 1.6392e-002
y0 4.9218e-002 1.3473e+000 3.6529e-002
r0 4.9217e-002 1.3473e+000 3.6530e-002
E2 σ = 0.0001
x0 5.8823e-005 3.5842e-003 1.6412e-002
y0 -2.7113e-001 1.3388e+000 -2.0251e-001
r0 -2.7112e-001 1.3388e+000 -2.0251e-001
E3 σ = 0.0001
x0 5.8940e-005 3.5956e-003 1.6392e-002
y0 4.9239e-002 1.3473e+000 3.6545e-002
r0 4.9238e-002 1.3473e+000 3.6546e-002
E1 σ = 0.001
x0 5.4955e-004 3.7073e-002 1.4824e-002
y0 2.2453e+000 1.4641e+001 1.5336e-001
r0 2.2453e+000 1.4641e+001 1.5336e-001
E2 σ = 0.001
x0 4.5515e-004 2.7664e-002 1.6453e-002
y0 -2.3631e+001 8.4045e+000 -2.8117e+000
r0 -2.3630e+001 8.4043e+000 -2.8117e+000
E3 σ = 0.001
x0 5.4956e-004 3.7074e-002 1.4823e-002
y0 2.2475e+000 1.4641e+001 1.5350e-001
r0 2.2475e+000 1.4641e+001 1.5351e-001

Table 11.24: Estimates of the bias and efficiency of estimators E1, E2 and E3
for data generated according to model M2. Each data set zq had 21 data points.

Table 11.24 shows the results of applying estimators E1, E2 and E3 to data
generated according to model M2. Each data set zq = z + ∆q represents the
perturbation of a fixed data set z = {(xi, yi)}211 of 21 data points uniformly
distributed on the arc from (−1, 0) to (1, 0) of the circle centred at (x0, y0) =
(0, 100). Two sizes of perturbations were used: σ = 0.0001, 0.001. For each
trial, 5000 data sets were generated. Table 11.25 shows the results of repeating
the calculation for σ = 0.0001 but for data sets with 2001 data points.

We apply each estimator to each data set to determine best-fit parameters aq =
A(zq). As above, for each parameter aj , we calculate the mean value āj , the
difference bj = āj−a∗j , the standard deviation sj , and the ratio bj/sj , j = 1, 2, 3.

We note the following:

• For all experiments, the estimates of the parameters produced by estima-
tors E1 and E3 are relatively unbiased. E1 and E3 show substantially the
same behaviour.

• Estimator E2 gives biased estimates of the y-co-ordinate of the circle centre
and radius r0 as expected. The bias relative to the standard deviation is
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M2 bj = āj − a∗j sj = stdq{aj,q} bj/sj

E1 σ = 0.0001
x0 -4.3570e-006 3.8809e-004 -1.1227e-002
y0 8.1324e-004 1.4732e-001 5.5202e-003
r0 8.1331e-004 1.4732e-001 5.5208e-003
E2 σ = 0.0001
x0 -4.3372e-006 3.8635e-004 -1.1226e-002
y0 -4.4556e-001 1.4611e-001 -3.0495e+000
r0 -4.4555e-001 1.4611e-001 -3.0495e+000
E3 σ = 0.0001
x0 -4.3570e-006 3.8809e-004 -1.1227e-002
y0 8.4313e-004 1.4732e-001 5.7231e-003
r0 8.4320e-004 1.4732e-001 5.7237e-003

Table 11.25: Estimates of the bias and efficiency of estimators E1, E2 and E3
for data generated according to model M2. Each data set zq had 2001 data
points.

large for σ = 0.001 or if there are a large number of data points.

While in the previous set of experiments, the bias in the estimators appeared
only for noisy data, the bias associated with E2 appears for reasonably accu-
rate data. Figure 11.15 gives a graphical example of the difference in the fits
produced by E1 and E2.

11.7.11 Comparison of parameterisations for arc data

Using parameterisation C3 (and related parameterisations) is a much more stable
approach for dealing with arc data than C1 or C2. We can see this by examining
the condition of the Jacobian matrices generated using the parameterisations
(section 3.7). For parameterisation C1, the ith row of the associated Jacobian
matrix J1 is [ ci si 1 ] where

ci = cos ti =
xi − a1

ri
, si = sin ti =

yi − a2

ri
.

For the data generated on an arc (D2), si ≈ 1 so that angle between the second
and third columns of Jq is small and gets smaller as a2 gets larger.

For parameterisation C3, and this type of data the ith row of the associated
Jacobian matrix J3 is approximated by [ x2

i xi 1 ] where −1 ≤ xi ≤ 1 and is
well conditioned. For the data sets here, the condition of J1 is of the order
of 105, while the condition of J3 is less than 10. As the radius increases, the
condition of J1 worsens to the extent that the optimisation algorithm is likely
to break down. There is no problem using parameterisation C3. On the other
hand, parameterisation C3 is unsuitable for data representing a complete circle.

202



Discrete modelling and experimental data analysis

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

Figure 11.15: Fits produced by estimators E1 (larger radius) and E2 (smaller
radius) to arc data.

This example illustrates the more general point that models can have different
parameterisations with different characteristics, some best for one type of data,
others suitable for a different type. Often a model is deemed inappropriate
because the wrong parameterisation is used when in fact the model is perfectly
satisfactory if an appropriate parameterisation is employed. Unfortunately, de-
termining a good parameterisation of a model for a given experimental situation
is often not straightforward.

11.7.12 Bibliography

The use of different estimators and parameterisations for circles and spheres
is discussed in [7, 77, 97]. The numerical properties of different circle fitting
algorithms are also considered in [65]. For more general issues in model param-
eterisation, see [103].

11.8 Circle fitting and roundness assessment

This case study is a continuation of the circle fitting case study in section 11.7.
We are concerned with fitting a circle to data points {xi = (xi, yi)}m

i=1. We
assume that the measurements of x and y are each subject to uncorrelated
normally distributed random effects: if the true point on the circle is (x∗i , y

∗
i ),
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then
(xi, yi) = (x∗i + δi, y

∗
i + εi), δi, εi ∈ N(0, σ2). (11.41)

We consider two estimators. The first is the nonlinear least-squares estimator
(NLLS) that solves

min
a

m∑
i=1

d2
i (a) (11.42)

where di(a) is the orthogonal distance from the data point xi = (xi, yi) to the
circle specified by the parameters a. For example, if the circle is specified by
centre co-ordinates (a1, a2) and radius a3, then

di = ri − a3, where (11.43)
ri = ((xi − a1)2 + (yi − a2)2)1/2.

NLLS estimates can be determined using the Gauss-Newton algorithm (sec-
tion 4.2). If J is the Jacobian matrix defined by

Jij =
∂di

∂aj

evaluated at the solution, then an estimate of the covariance matrix of the fitted
parameter is given by

V̂ N
a = σ̂2

N (JTJ)−1, (11.44)

where
σ̂N = ‖d‖/(m− 3)1/2.

We also consider
V N
a = σ2(JTJ)−1 (11.45)

calculated with the prior value of the standard deviation.

The second is the linear least-squares estimator (LLS)

min
a

m∑
i=1

(yi + a1(x2
i + y2

i ) + a2xi + a3)2. (11.46)

This estimator is derived from the implicit equation

y + a1(x2 + y2) + a2x+ a3 = 0 (11.47)

that can describe an arc of a circle approximately parallel with the x-axis. We
can convert from these parameters to the circle centre co-ordinates (x0, y0) and
radius r0 using the equations

x0 = − a2

2a1
, y0 = − 1

2a1
, r0 =

(1 + a2
2 − 4a1a3)1/2

2|a1|
. (11.48)

If C is the m × 3 observation matrix with ith row equal to (x2
i + y2

i , xi, 1)
and y = (y1, . . . , ym)T, then LLS estimates are found by solving the linear
least-squares problem

Ca = −y.
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An estimate of the covariance matrix of fitted parameters is given by

V L
a = σ̂2

L(CTC)−1, (11.49)

where
σ̂L = ‖rL‖/(m− 3)1/2, rL = y + Ca.

We also can calculate
V L
a = σ2(CTC)−1. (11.50)

We are interested in how these estimators behave for two types of data, the first
with data points approximately uniformly spaced around the circle as in fig-
ure 11.13, the second with data points on a small arc of the circle (figure 11.14).
It was shown in section 11.7 that the NLLS provided appropriate estimates of
the circle parameters for both types of data and the LLS provided appropriate
estimates only for arc data. Here we ask the question:

V1 Are the estimates of the covariance matrices given in (11.45) and (11.50)
valid?

We use Monte Carlo simulation to test these estimates.

In the first set of experiments we apply NLLS to data sets of 11 points uniformly
distributed around a circle centred at the origin (0, 0) with radius 1. The data
sets zq = {(xi,q, yi,q)}m

i=1 are generated from exact data (x∗i , y
∗
i ) lying on the

circle, and then perturbed according to the model

(xi,q, yi,q) = (x∗i + δi,q, y
∗
i + εi,q), δi,q, εi,q ∈ N(0, σ2).

aj u û ū
E1 σ = 0.001
a1 4.2640e-004 4.2656e-004 4.3465e-004
a2 4.2640e-004 4.2656e-004 4.2743e-004
a3 3.0151e-004 3.0162e-004 3.0263e-004
E2 σ = 0.01
a1 4.2640e-003 4.2653e-003 4.3477e-003
a2 4.2640e-003 4.2653e-003 4.2735e-003
a3 3.0151e-003 3.0160e-003 3.0256e-003
E3 σ = 0.05
a1 2.1320e-002 2.1306e-002 2.1797e-002
a2 2.1320e-002 2.1306e-002 2.1383e-002
a3 1.5076e-002 1.5066e-002 1.5106e-002

Table 11.26: Three estimates of the standard uncertainty of the fitted
parameters for the NLLS estimator for full circle data.
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We consider three estimates of the standard uncertainties of the fitted parame-
ters:

u(aj) calculated from (11.45) using the value of σ used to generate the data.

û(aj) calculated as in (11.44) but with σ̂N replaced by

σ̄N =

(
1
N

N∑
q=1

σ̂2
N,q

)1/2

,

i.e., the root-mean-square value of the estimates of the standard deviation
of the residuals σ̂N,q calculated for each data set zq,

ū(aj) the standard deviation of the parameters estimates aq determined in the
Monte Carlo simulations.

Table 11.26 gives these three estimates for σ = 0.001, 0.01 and 0.05. For each
value, the estimates u and û are consistent with the actual variation ū.

In the second set of experiments we apply both the NLLS and LLS estimators
to data generated from exact data {(x∗i , y∗i )} lying on the arc of a circle of radius
10 between the points (±1, 0):

x* y*

-1.0000 0

-0.8000 -0.0181

-0.6000 -0.0321

-0.4000 -0.0421

-0.2000 -0.0481

0 -0.0501

0.2000 -0.0481

0.4000 -0.0421

0.6000 -0.0321

0.8000 -0.0181

1.0000 0

As for the NLLS estimator, we consider three estimates of the standard uncer-
tainty of fitted parameters for the LLS estimator:

uL(aj) calculated from (11.50) using the value of σ used to generate the data.

ûL(aj) calculated as in (11.49) but with σ̂L replaced by

σ̄L =

(
1
N

N∑
q=1

σ̂2
L,q

)1/2

,

i.e., the root-mean-square value of the estimates of the standard deviation
of the residuals σ̂L,q calculated for each data set zq,

ūL(aj) the standard deviation of the parameters estimates aq determined in the
Monte Carlo simulations.
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Figure 11.16: Example data generated on an arc of a circle passing through
(±1, 0) with σ = 0.015.

aj uL ûL ūL

E3 σ = 0.001
a1 8.5784e-004 8.6436e-004 8.5467e-004
a2 4.7690e-004 4.8052e-004 4.6947e-004
a3 4.5740e-004 4.6087e-004 4.5450e-004
E3 σ = 0.01
a1 8.7793e-003 8.8464e-003 8.5501e-003
a2 4.7840e-003 4.8206e-003 4.6937e-003
a3 4.6197e-003 4.6551e-003 4.5456e-003
E3 σ = 0.015
a1 1.3339e-002 1.3441e-002 1.2827e-002
a2 7.1883e-003 7.2434e-003 7.0398e-003
a3 6.9695e-003 7.0230e-003 6.8186e-003

Table 11.27: Three estimates the standard uncertainty of the fitted parameters
for the LLS estimator for arc data.
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aj u ūL û ū
σ = 0.001

a1 4.7673e-003 4.6706e-003 4.7794e-003 4.6706e-003
a2 1.7027e-001 1.6938e-001 1.7070e-001 1.6938e-001
a3 1.6993e-001 1.6904e-001 1.7036e-001 1.6904e-001

σ = 0.01
a1 4.7673e-002 4.8813e-002 4.7793e-002 4.8746e-002
a2 1.7027e+000 1.9342e+000 1.7070e+000 1.9295e+000
a3 1.6993e+000 1.9310e+000 1.7036e+000 1.9263e+000

σ = 0.0125
a1 5.9591e-002 6.3093e-002 5.9739e-002 6.2950e-002
a2 2.1284e+000 2.6832e+000 2.1337e+000 2.6722e+000
a3 2.1241e+000 2.6793e+000 2.1294e+000 2.6684e+000

σ = 0.015
a1 7.1510e-002 8.1248e-002 7.1712e-002 8.0912e-002
a2 2.5540e+000 4.1562e+000 2.5613e+000 4.1189e+000
a3 2.5489e+000 4.1522e+000 2.5561e+000 4.1149e+000

Table 11.28: Four estimates the standard uncertainty of the fitted parameters
(circle centre co-ordinates and radius) for circle fits to arc data. ūL is the
estimate derived from variation in the parameters for the circles determined by
the LLS estimator and ū is that corresponding to NLLS.

Table 11.27 gives the estimates of the standard uncertainties of the circle pa-
rameters a (for the parameterisation of equation (11.47)) for the LLS estimator
for σ = 0.001, 0.01 and 0.015. The nominal values of the parameters are
a∗ = (−0.0503, 0.0000, 0.0503)T (to four decimal places). A value of σ = 0.015
represents noisy data as can be seen in figure 11.16. The table shows that the
estimates uL and ûL are consistent with ūL, the standard deviation of the Monte
Carlo estimates.

Table 11.28 gives the four estimates of the standard uncertainties of the circle
parameters a = (x0, y0, r0)T, centre co-ordinates and radius for the cases σ =
0.001, 0.01, 0.0125 and 0.015. The estimates are u, û and ū defined above along
with

ūL : the standard deviation of the circle centre co-ordinates and radius derived
from the LLS parameter estimates using (11.48).

From the results in the table we note:

• For all values of σ the estimates ūL and ū are consistent with each other.
This is because for this type of data the estimators produce virtually the
same circle fits.

• For accurate data, σ = 0.001, there is good agreement with the predicted
estimates u and û with the estimates ūL and ū derived from the actual
variation.
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• As the value of σ becomes larger, the agreement becomes progressively
worse: the estimates u and û underestimate the actual variation.

To summarise:

• We have two methods of fitting a circle to data, LLS and NLLS.

• For the type of data lying on an arc of a circle considered above, the two
methods provide give essentially the same fitted circles but defined by
different sets of parameters.

• The standard uncertainty estimates for the parameters determined by LLS
are valid but those provided by NLLS are not.

The reason that the two methods of uncertainty estimation have different be-
haviour is the parameters a determined by the LLS estimator depend approxi-
mately linearly on the data while those a = (x0, y0, r0)T determined by NLLS
do not. The calculation of V N

a in (11.44) assumes that the Jacobian matrix is
approximately constant in the neighbourhood of the solution and this is not the
case. In fact, we can see this from the equation for the y−co-ordinate of the
circle centre in terms of the LLS parameters:

y0 = − 1
2a1

.

For simulations with σ = 0.01, we have a1 = −0.0503 and, from table 11.27,
ū(a1) = 0.0085. Using these values, we can estimate the standard uncertainty
associated with y0 from

u(y0) =
∣∣∣∣∂y0∂a1

u(a1)
∣∣∣∣ = 1.6798.

This calculation assumes that the function is sufficiently linear at the value of
a0 and corresponds to the calculation of the standard uncertainty associated
with y0 from (11.45). However, we can use a simple Monte Carlo simulation to
estimate the uncertainty by generating

a1,q = a1 + εq, εq ∈ N(0, 0.00852)

and calculating the standard deviation of the results. For a Monte Carlo trial
with 5000 simulations, we obtain an estimate of ū(y0) = 1.9108. This shows
that the estimate based on linearisation is an underestimate. The situation is
illustrated by figure 11.17 which graphs y0 = −1/(2a) and its tangent line at
(−0.0503, 9.9404). The figure shows how a normally distributed set of a-values
(displayed on the lower horizontal axis) is mapped to a set of y-co-ordinate values
(displayed on the right-hand vertical axis) and a linearised set of estimates
of y-co-ordinates projected from the tangent line (displayed on the left-hand
vertical axis). The rapid change in curvature of the graph y0 = −1/(2a) relative
to the standard deviation of the a-values accounts for the discrepancy for the
two sets of estimates.
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Figure 11.17: Uncertainty estimates for the y-co-ordinate of a circle fitted to
data covering an arc of a circle.
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Figure 11.18: Approximate (un-normalised) distribution of radius values derived
from 5000 Monte Carlo simulations for the case σ = 0.0125.
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The nonlinearity associated with the estimation of the radius means that for this
type of data, the standard uncertainties provided by (11.45) can be unreliable.
However, even if the correct covariances are calculated (from Monte Carlo
simulations for example) the estimates of standard uncertainty alone do not
provide a complete picture of the distribution of the radius values due to its
asymmetry. For example, figure 11.18 shows the approximate (un-normalised)
distribution of radius values derived from 5000 Monte Carlo simulations for the
case σ = 0.0125.

11.9 Roundness assessment in the presence of
form errors

Form error is a measure of the departure of a workpiece from its nominal, ideal
geometry. It is a quantity that is estimated from measurements and, in common
with other measured quantities, valid ways of providing such estimates and eval-
uating their associated uncertainties are required. This case study is concerned
with the calculation of the radius and form error and their uncertainties from
measurements.

We first consider exactly the same model (11.41) and apply the NLLS estimator
(11.42) to determine estimates a and associated estimate of the covariance
matrix of the fitted parameters given by

V̂a = σ̂2(JTJ)−1, (11.51)

where σ̂ is the standard deviation of the residuals d = (d1, . . . , dm)T at the
solution, calculated according to

σ̂ = ‖d‖/(m− 3)1/2.

We also consider the estimate

Va = σ2(JTJ)−1. (11.52)

Suppose a circular artefact of nominal radius a3 = 100 is measured by ex-
perimenter A using a co-ordinate measuring machine (CMM). From previous
experiments, it is known that random effects associated with the CMM are
approximately normal distributed with standard deviation σ = 0.001.

Gathering data points uniformly space around the artefact, the experiment cal-
culates the best-fit circle parameters, residuals d and estimate σ̂ of the standard
deviation of the residuals and standard uncertainties u(aj) using (11.52) and
û(aj) using (11.51) of the fitted parameters. In section 11.8, it was shown that
these uncertainty estimates are reliable for this type of data and model.

The expected value of σ̂ is σ but the actual estimate is significantly larger. In
order to obtain more information, the measurements are repeated from which
mean estimates ā of the parameters a and estimates ū(aj) of their uncertainties
can be determined. There are now three estimates of the uncertainty of the
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Figure 11.19: Circle form and measurement data for experimenters A (‘*’) and
B (‘+’).

radius of the artefact. Which, if any, are valid? In order to resolve this
question, experimenter B is asked to repeat the measurements, calculating the
uncertainties using the three approaches. These uncertainty estimates for A and
B are shown in table 11.29. While for experimenter A the repeat experiments
seem to confirm the estimates u derived from (11.52) based on a prior estimate
of the uncertainty of the CMM measurement uncertainty σ, for experimenter B
the repeat experiments indicate that both estimates û and u underestimate the
actual variation.

The six sets of estimates produce a confusing picture. The explanation of why
they are so different comes from two sources a) form error and b) measurement
strategy. Figure 11.19 shows the actual shape of the circular artefact (with the
form error greatly magnified) and example measurement strategies for experi-
menters A (data points marked ‘*’) and B (marked ‘+’).

û u ū
A 8.6474e-004 2.5000e-004 2.2082e-004
B 3.2264e-004 5.0000e-004 1.7325e-003

Table 11.29: Two sets of estimates of the uncertainty in the radius of artefact: û
calculated from (11.51), u calculated from (11.52) and ū calculated from 5 repeat
experiments.
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The model (11.41) assumes that the departures from circularity in the data are
due purely to random, independent random effects associated with the CMM
measurements and that the artefact is perfectly circular.

In fact, the artefact has a profile, expressed in polar co-ordinates, of the form

r(θ,b) = r0 + s(θ,b)

where s(θ,b) is a periodic function depending on parameters b. A better model
is therefore

x∗i = a1 + r(θ∗i ,b) cos θ∗i ,
y∗i = a2 + r(θ∗i ,b) sin θ∗i ,
xi = x∗i + εi, yi = y∗i + δi, εi, δi ∈ N(0, σ2),

where the angles θ∗i specify where the artefact is measured. When experimenter
A first measures the artefact, the systematic errors associated with the departure
from circularity lead to much larger residuals and hence a larger estimate of σ̂
and standard uncertainties than those expected from the prior estimate of σ.
When A remeasures the artefact, the artefact is kept in its original position on
the CMM and the same measurement strategy is executed so that the measured
data is gathered from the same locations on the artefact. This means that
differences between A’s repeat measurements are accounted for by the random
effects associated with the CMM. For this reason, the estimates ū are consistent
with u.

When B measures the artefact, only four measurement points are chosen on the
artefact instead of the 16 chosen by A. For B’s first measurement, the systematic
errors associated with the form of the circle happen to have a small impact on
the residual errors and the estimate û is smaller than anticipated by u. When
B repeats the measurement, the artefact is replaced at random orientations so
that new sets of four points are measured on the artefact, leading a much larger
range of estimates for the radius and hence a larger ū.

11.9.1 Taking into account form error

The inconsistent information in table 11.29 arises from differences in measure-
ment strategy and experimental design in the presence of systematic effects
that have not been included in the model. This situation illustrates a general
problem in metrology: how to account for small systematic errors in uncertainty
estimation. In this section we look more closely at the problems of determining
estimates of radius and form error of a nominally circular artefact.

The first issue is what do we mean by form error. A mathematical definition
of roundness, i.e., form error for a circle, is as follows. Let P = {x = (x, y)}
be the set of points lying on the profile of a nominally circular artefact. Given
a circle C(a) defined in terms of centre co-ordinates (a1, a2) and radius a3, let
e(a) = maxx∈P d(x,a) be the maximum distance from a point in P to the circle,
measured orthogonally to the circle as in (11.43). Then the form error (peak to
valley) is 2e∗ where e∗ = e(a∗) is the value for e for the circle specified by a∗ for
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which e(a) is minimised. In other words, the form error is determined in terms
of the best-fit circle that minimises the maximum deviation.

Note that in order to determine an artefact’s roundness an accurate knowledge
of the complete profile is required. In general, only a finite number of points
gathered subject to random effects is available. The estimate of form error
derived from a finite set of accurate data is likely to be an underestimate of
the form error. On the other hand, if the uncertainty associated with the
measurements are comparable to the likely form error, it is possible that a
significant component of the form error determined from the data is due solely
to measurement error, potentially producing an overestimate.

In many circumstances, it is expected that the uncertainties due to the probing
strategy, as a consequence of form error, constitute the major contribution to
measurement uncertainty, as the example above shows. However, the relation-
ship between probing strategy and the reliability of the resulting estimates is
often complex. This leads to two fundamental problems: (a) how to assess the
uncertainties associated with a given choice of probing strategy, and (b) given a
measurement task, how to determine a probing strategy that is fit for purpose.

A solution to these problems can be found if we have a valid model of the likely
form and random effects associated with the measurements.

Example: circularity of a lobed circle.

Consider the problem of determining the roundness of a lobed circle. This
problem has practical importance since many manufacturing processes introduce
lobing to surfaces of revolution. A lobed circle (with q lobes) is described in
polar coordinates by

r(θ) = r0 +A cos(qθ + θ0);

and the roundness of such a lobed circle is 2A. If we sample the circle at angles
{θi}m

i=1, then the estimate of circularity obtained from the points is bounded
above by

2a = max
i
A cos(qθi + θ0)−min

i
A cos(qθi + θ0).

We wish to choose θi so that this bound is as close to 2A as possible. If there
are m points uniformly spaced around the circle, it is not difficult to show that
if m and q have no common factor, then

A ≥ a ≥ A cos
π

m
, m even,

A cos2
π

2m
≥ a ≥ A cos

π

2m
, m odd.

We note that for m odd, 2a underestimates the circularity by at least a factor
of cos π

2m and we can therefore take as our estimate of A

â = a/ cos
π

2m
≥ A cos

π

2m
.

Table 11.30 shows the value of cos π
2m for m small and prime. Five points will

detect 95% of the lobing if the number of lobes q is not a multiple of 5, while

214



Discrete modelling and experimental data analysis

m cos π
2m m cos π

2m

5 0.9511 19 0.9966
7 0.9749 23 0.9977

11 0.9898 29 0.9985
13 0.9927 31 0.9987
17 0.9957 37 0.9991

Table 11.30: Values of cos π
2m for small primes.

eleven points will detect 99% of the lobing if q is not multiple of 11. The use of
an even number of points for detecting lobing is not recommended. Figure 11.20
shows two distributions of six points on a three lobed circle; one set marked ∗
detects 100% of the lobing while the other set marked o fails to detect any
lobing. By contrast the seven points shown in figure 11.21 detects 97.5% of the
lobing, slightly above the theoretical minimum given in table 11.30.

The analysis in the example above exploits a known model for the expected
form error, namely lobing. In many situations, it is possible to derive a model
for the likely form error either from an assessment of the manufacturing process,
past history or from the detailed analysis of a number of typical workpieces.

Figure 11.22 shows the profile of a circular artefact in terms of its departure
for circularity at 2000 uniformly spaced data points. We wish to determine the
roundness of artefacts with similar profile characteristics from measurements
using a CMM.

V1 How do we assign uncertainties to these roundness estimates?

V2 How do we determine a measurement strategy sufficient to provide accu-
rate roundness estimates?

From the measurements, we define a virtual feature of the form

x∗ = a1 + r(θ,b) cos θ, y∗ = a2 + r(θ,b) sin θ, (11.53)

where r(θ,b) = a3 + s(θ,b) is a best-fit periodic function to the profile. In this
situation it is appropriate represent the profile as a Fourier series of the form

sn(θ,b) = b1 +
n∑

j=1

[b2j sin jθ + b2j+1 cos jθ]

parameterised by the 2n + 1 coefficients b = (b1, . . . , b2n+1)T. Fourier series
are a class of empirical functions that are well suited to modelling periodic
empirical functions. The Fast Fourier Transform algorithm (FFT) enables
the least-squares approximation of data by Fourier series to be implemented
efficiently and in a numerically stable way. In order to determine a suitable fit
it is necessary to select the number n of harmonics.
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Figure 11.20: Two sets of six points uniformly spaced on a three-lobed circle.
The points marked ∗ detect 100% of the lobing while the points marked ◦ fail
to detect any form deviation.
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Figure 11.21: Seven points uniformly spaced on a three-lobed circle detect at
least 97% of the lobing.
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Figure 11.22: Profile of a circular artefact determined from 2000 measured
points.

V3 What is a good choice of number n of harmonics for a Fourier series
representation of the data represented in figure 11.22?

This question can be answered using the strategy outlined in section 9.1:

• For n = 1, 2, . . . , fit a Fourier series sn = sn(θ,bn) of n harmonics to the
data (θi, ri) and evaluate residuals fn = (f1, . . . , fm)T where

fi = ri − sn(θi,bn).

• For each n, determine the estimate

σ̂n = ‖fn‖/(m− 2n− 1)1/2

of the standard deviation of residuals.

• Plot σ̂n and choose n where at a point where the decrease in σ̂n is judged
to have levelled off.

Figure 11.23 shows the values of σ̂n up to 50 harmonics. From this figure,
18 harmonics is judged suitable. Figure 11.24 shows the fits of Fourier series
with 5 and 18 harmonics to the data in figures 11.22. Figure 11.25 shows the
residuals fi corresponding to a fit to the profile by a Fourier series with 18
harmonics. These residuals look largely random, certainly in comparison with
those associated with a circle fit in figure 11.22.
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Figure 11.23: Estimates of the RMS residuals for fits of Fourier series up to
50 harmonics to profile data in figure 11.22.

0 1 2 3 4 5 6 7
−8

−6

−4

−2

0

2

4

6

8

10
x 10

−4

Figure 11.24: Fourier series with 5 (dashed) and 18 (solid) harmonics fitted to
the profile of a circular artefact.
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Figure 11.25: Residuals associated with the fit of a Fourier series of degree 18
to the profile of a circular artefact.

With r(θ,b) = a3 + s18(θ,b18) the virtual feature (11.53) is defined and can be
used to generate data sets simulating measurements of the artefact according
to a proposed measurement strategy. For example, suppose a measurement
strategy of eight data points uniformly distribution around the circle is to be
tested. Data sets can be generated according to

xi,q = a1 + r(θi,q,b) cos, θi,q + δi,q, δi,q ∈ N(0, σ2),
yi,q = a2 + r(θi,q,b) sin θi,q + εi,q, εi,q ∈ N(0, σ2),

with
θi,q = iπ/4 + φq, 0 ≤ φq ≤ π/4, i = 1, . . . , 8,

where φq is a randomly chosen phase angle specifying where on the circle the
measurements are made and δi,q and εi,q represent random effects.

Circle fitting software is then applied to these data sets to calculate the circle
parameters aq, residuals dq = (d1,q, . . . , d8,q)T and estimate

eq = max
i
di,q −min

i
di,q

of the maximum form error for the qth data set. From a number of repeat Monte
Carlo simulations we can determine the mean estimate ē of the form error and its
standard deviation ū(e). Table 11.31 presents these estimates for measurement
strategies with different numbers m and values σ = 10−7 representing accurate
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σ = 1e− 7 σ = 0.0005
m ē ū ē ū
4 0.0023 0.0010 0.0023 0.0011
5 0.0037 0.0016 0.0038 0.0010

14 0.0084 0.0011 0.0085 0.0012
19 0.0091 0.0008 0.0091 0.0010
25 0.0095 0.0005 0.0096 0.0007
31 0.0096 0.0003 0.0098 0.0007
38 0.0098 0.0002 0.0100 0.0006
47 0.0098 0.0001 0.0101 0.0006
57 0.0099 0.0001 0.0104 0.0006
68 0.0099 0.0001 0.0104 0.0005

Table 11.31: Mean estimates of the maximum form error ē and their standard
deviations ū for different numbers of data points m and noise levels σ.

measurement data and σ = 0.0005 for data generated for a circle with form
error e∗ = 0.01. The results show that for the case σ = 1.0−7, the estimates
of the form error e approach the true value of 0.01 and the standard deviation
approaches zero as the number of points m increases. For the case σ = 0.0005,
the estimate e overshoots the true value while the standard deviation levels off
at approximately 0.0005 as m increases. This data in represented graphically
in figures 11.26 and 11.27.

These results were generated from just one example profile: shown in fig-
ure 11.22. The experiments can be repeated for other profiles either based
on measurements of workpieces or synthesised from empirical models. For
example, we can generate profiles Pq represented by Fourier series with up to
twenty harmonics with Fourier coefficients bq selected at random and normalised
to represent form error e = 0.01. The measurement strategies can then be
tested on these range of profiles. Figure 11.28 presents the same information as
figure 11.26 calculated for 1000 randomly generated profiles.

From this type of simulation, it is possible to

• Quantify the bias in the estimate of form error due to under-sampling.

• Quantify the bias in the estimate of form error due to random measure-
ment error.

• Provide valid estimates of the uncertainty in form error estimates.

• Select a measurement strategy that provides adequate estimates of form
error.

Simulation is the only practical way of arriving at this information.
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Figure 11.26: Estimates of the maximum for error ē and ē ± 2ū where ū is
the standard deviation of the estimates determined from 1000 Monte Carlo
simulations for accurate measurement data, σ = 10−7.
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Figure 11.27: Estimates of the maximum for error ē and ē ± 2ū where ū is
the standard deviation of the estimates determined from 1000 Monte Carlo
simulations for measurement data with σ = 0.0005.
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Figure 11.28: Estimates of the maximum for error ē and ē ± 2ū where ū is
the standard deviation of the estimates determined from 1000 Monte Carlo
simulations for accurate measurement data, σ = 10−7. Each simulation involved
a profile represented by a Fourier series with 20 harmonics generated at random.

While this case study has been concerned with the effect of form error on round-
ness assessment, the underlying features are quite generic. Many experiments
in metrology are influenced by small systematic effects that are incompletely
characterised. For example, properties of materials are not known exactly and
materials are not perfectly homogeneous. The departure from homogeneity can
be modelled using empirical models and the effect of inhomogeneity examined
using simulations, both in terms of parameter estimates and estimates of their
uncertainties.
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11.10 Polynomial, spline and RBF surface fits
to interferometric data

We illustrate the use of polynomials, splines and RBFs in approximating data
arising from the interferometric measurement of an optical surface. Figure 11.29
(on page 225) shows an example set of measurements of heights zi in nanometres
over a regular 146× 146 grid.

We have fitted this data using the following models and algorithms:

A Gaussian RBF with centres on a regular 10× 10 grid,

B thin plate spline RBF with the same centres as A,

C 105 orthogonal polynomials of up to total degree 13 generated using the
algorithm of Huhtanen and Larsen [138],

D tensor product polynomial with basis functions γkl = Tk(x)Tl(y), 0 ≤
k, l ≤ 9, where Tk is a Chebyshev basis function of degree k, (i.e., 100
parameters in all),

E as D but with 0 ≤ k, l ≤ 39 (i.e., 1600 parameters),

F a tensor product bicubic spline with 6 interior knots along each axis (i.e.,
100 parameters in all), and

G as F with with 36 interior knots on each axis (i.e., 1600 parameters).

Figure 11.30 plots the fitted surface determined using algorithm A to the data in
figure 11.29 while figure 11.31 plots the associated residuals. Figures 11.32–11.37
graph the residuals associated with algorithms B – G. Figures 11.38 and 11.39
shows the fitted surfaces associated with algorithms E and G.

11.10.1 Assessment of model fits

Quality of fit

All methods generally produce a good fit. Visually the fitted surfaces seem to
model the data very well. Only the fit associated with the orthogonal polynomial
generated using the HL algorithm shows unwanted edge effects in the residuals
(figure 11.33). The RMS residual for all fits ranges from approximately 1 nm
for algorithms E and G involving 1600 parameters to 3 nm for algorithm B.

Computational efficiency

These experiments involve over 21,000 data points and approximately 100 to
1600 parameters and represent computational problems quite large by com-
parison with many approximation problems in metrology. The tensor product
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approaches for a regular grid data are approximately n times faster than the full
matrix approach associated with RBF approximation where n is the number of
parameters.

To give an idea of the computational requirements of the various algorithms,
using Matlab 6.5 and a Dell Optiplex GX240, Intel Pentium 4, 1.7 GHz PC, the
time taken for algorithm A was i) 8.5 s to determine the matrix D of distances
dij = ‖xi−λj‖, ii) 0.9 s to apply ρ to D, iii) 4.1 s to solve the linear least-squares
system, making a total of 13.5 s. By comparison algorithm D took 0.02 s. For
algorithm C, the time taken to generate the orthogonal basis was 9.8 s. The
time taken to calculate the matrix D is comparatively slow since it involves
two iterative loops. In Fortran, for example, this step would be relatively much
quicker. Similar remarks apply to the implementation of the HL algorithm in
Matlab.

Condition of the observation matrices

For the tensor polynomial and splines approaches, the condition numbers of the
matrices generated were all less than 10. For the Gaussian RBF (algorithm
A) the condition number was 4.2 × 106, while that for the thin plate spline
(algorithm B) was 1.1× 104. For the HL algorithm (C), the maximum absolute
value of the off-diagonal elements of the computed matrix QTQ was 4.0×10−14.

The data set in figure 11.29 lay on a regular grid and we were able to exploit
this in fitting tensor product polynomial and spline surfaces. The RBF approach
applies equally to scattered data. We have taken a random subset of the data
in figure 11.29 and fitted Gaussian and thin plate spline RBFs to the data.
Figure 11.40 plots the xy−coordinates of the data along with the RBF centres;
figure 11.41 plots the coordinate data. Figure 11.42 plots the residuals associated
with the fits of a Gaussian and thin plate spline RBF and bivariate polynomial
of total degree 13 generated using the HL algorithm.
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Figure 11.29: Measurements of an optical surface using interferometry. The units
associated with the vertical axis are nanometres.

Figure 11.30: Gaussian RBF fitted to interferometric data (figure 11.29).

225



Software Support for Metrology Best Practice Guide No. 4

Figure 11.31: Residuals associated with the fit of a Gaussian RBF (figure 11.30) to
interferometric data (figure 11.29).

Figure 11.32: Residuals associated with the fit of a thin plate spline RBF to
interferometric data (figure 11.29).
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Figure 11.33: Residuals associated with the fit of a discrete orthogonal bivariate
polynomial of total degree 13 to interferometric data (figure 11.29).

Figure 11.34: Residuals associated with the fit of an order 10 tensor product
Chebyshev bivariate polynomial to interferometric data (figure 11.29).
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Figure 11.35: Residuals associated with the fit of an order 40 tensor product
Chebyshev bivariate polynomial to interferometric data (figure 11.29).

Figure 11.36: Residuals associated with the fit of a tensor product bicubic spline with
6 interior knots along each axis to interferometric data (figure 11.29).
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Figure 11.37: Residuals associated with the fit of a tensor product bicubic spline with
36 interior knots along each axis to interferometric data (figure 11.29).

Figure 11.38: An order 40 tensor product Chebyshev bivariate polynomial fitted to
interferometric data (figure 11.29).
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Figure 11.39: A fit of a tensor product bicubic spline with 36 interior knots along
each axis to interferometric data (figure 11.29).

Figure 11.40: xy-coordinates of a subset of the interferometric data (figure 11.29).
The RBF centres are marked with an ‘o’.
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Figure 11.41: A randomly selected subset of the interferometric data (figure 11.29).

Figure 11.42: Residuals associated with the fit of a Gaussian RBF (top), thin
plate spline RBF (middle) and bivariate polynomial of total degree 13 (bottom) to
interferometric data (figure 11.41).
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Chapter 12

Best practice in discrete
modelling and experimental
data analysis: a summary

We summarise the main issues that need to be addressed in discrete modelling
and in metrological data analysis.

Functional model consists of:

• Problem variables representing all the quantities that are known or
measured.

• Problem parameters representing the quantities that have to be deter-
mined from the measurement experiment. The problem parameters
describe the possible behaviour of the system.

• The functional relationship between the variables and parameters.

Statistical model for the measurements consists of:

• The uncertainty structure describing which variables are known ac-
curately and which are subject to significant random effects.

• The description of how the random effects are expected to behave,
usually in terms means, variances (standard deviations) or probabil-
ity density functions.

Estimator. An estimator is a method of extracting estimates of the problem
parameters from the measurement data. Good estimators are unbiased,
efficient and consistent.

The behaviour of an estimator can be analysed from maximum likelihood
principles or using Monte Carlo simulations.

Estimator algorithm. An estimator requires the solution of a computational
problem. An algorithm describes how this can be achieved.
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Good algorithms determine an estimate of the solution that is close to
the true solution of the computational problem and is efficient in terms of
computational speed and memory requirements.

Problem conditioning and numerical stability. The effectiveness of an al-
gorithm will depend on the conditioning the computational problem. For
well conditioned problems, a small change in the data corresponds to a
small change in the solution parameters, and conversely.

The conditioning of a problem depends on the parameterisation of the
model. Often, the key to being able to determine accurate solution pa-
rameters is in finding the appropriate parameterisation.

A numerically stable algorithm is one that introduces no unnecessary ill-
conditioning in the problem.

Software implementation and reuse. Calculations with a model should be
split up into model key functions such as calculating function values and
partial derivatives.

Optimisation software in the form of key solver functions can be used
in implementing estimators that work with a wide range of model key
functions.

For some models, special purpose solvers that exploit special features in
the model are useful or necessary.

Many calculations required in discrete modelling can be performed using
standard library/public domain software.

EUROMETROS. The Metrology Software environment developed under the
Software Support for Metrology Programme aims to bridge the gap be-
tween library software and the metrologists needs, promoting and devel-
oping re-usable software performing the main calculations required by
metrologists.

The following summarises the validation techniques that can be applied
to validate each of these components.

Function model validation:

• Conduct design review by an expert in the metrology field to examine
the choice of model variables and check assumptions.

• Perform numerical simulations to compare the behaviour of compre-
hensive models with simpler models.

• Conduct design review by an expert in the metrology area to check
the modelling of the underlying physics.

• Conduct design review by a modelling expert to check the mathe-
matical derivation of equations.

• Perform numerical simulations to check the effect of approximations,
simplifications, linearisations, etc., on the model values (relative to
the likely measurement error).

• Evaluate the model at variable/parameter values for which the phys-
ical response is known accurately.
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• Perform numerical simulations to check the qualitative behaviour of
the model against expected behaviour.

• Conduct design review by a metrology and/or modelling expert to
check an empirical model is appropriate for the expected type of
behaviour.

• Perform numerical simulations to check the qualitative behaviour of
the model against expected behaviour.

Statistical model validation:

• Conduct design review by an expert in the metrology field to
examine the statistical model for the measurement data and check
assumptions.

• Conduct design review by modelling expert to check the statistical
models for derived quantities.

• Perform numerical simulation to check the effect of approximations,
simplifications, linearisations, etc., associated with the statistical
model.

• Perform Monte Carlo simulations to check the variation in derived
quantities against the predicted variation.

Estimator validation:

• Perform Monte Carlo simulations to examine the bias and variation
of the solution estimates on datasets generated according to the
statistical model.

• Perform Monte Carlo simulations to compare the predicted variation
of parameter estimates with the actual variation on datasets gener-
ated according to the statistical model.

• Apply the estimator to datasets for which the estimates provided by
an optimal estimator are known.

• Compare the actual variation of parameter estimates on datasets gen-
erated according to the statistical model with the predicted variation
for an optimal estimator.

• Compare the actual statistical model with the statistical model for
which the estimator is known to perform well.

Validation of the model solution:

• Examine the goodness of fit in terms of the size of the residual errors.

• Compare of the size of the residual errors with the statistical model
for the measurement errors.

• Plot the residual errors to check for random/systematic behaviour.

• Plot the root-mean-square residual error for a number of model fits
to select an appropriate model (e.g., the polynomial of appropriate
degree).
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• Calculate and check the covariance matrix for the fitted parameters
against requirements and/or expected behaviour.

• Calculate and check the uncertainty associated with the model pre-
dictions against requirements and/or expected behaviour.

Validation of the experimental design and measurement strategy:

• Examine the singular values of the matrix defining the solution for
exact data.
If the matrix is full rank, the measurements are sufficient to deter-
mine all the parameters. If the matrix is rank deficient the right
singular vectors contain information on what degrees of freedom are
left unresolved.

• Calculate the covariance matrix of the fitted parameters for data
generated according to the proposed experimental design. Check
that the uncertainties in the fitted parameters are sufficient to meet
the required uncertainty targets.
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