3 October, 2002

Best Practice Guide No.
12:

Guide for Test and
Measurement Software

Adelard, Drysdale Building, Northampton Square, London EC1V OHB
Tel: +44 (0)20 7490 9450, Fax: +44 (0)20 7490 9451

8.02

Page 2 of 133

© Addard and Crown Copyright 2002

Document details
Document control

Adelard’ s reference: D/209/7103/1

Status: DEfinitive
Version Review no./issued Date
v0.1G R/866/7103/1 30 July, 2002
v0.2C issued in Draft 1 October, 2002
v1.0 R/872/7103/2 2002-10-03

Authors

Tim Clement
Luke Emmet
Peter Froome
Sofia Guerra

3 October, 2002

Page 3 of 133

Preamble

This document is a best practice guide on the development of test and measurement software. It
provides practical general guidance covering the lifecycle phases of test and measurement
software development. It also contains language-specific guidance for severa of the most
important languages for the development of test and measurement software—LabVIEW, Visua
Basic, C/C++, Delphi and Java—as well as guidance on mixed-language programming covering
calling subroutines in Fortran and C from these devel opment languages and MATLAB.

Because of the amount of materia in the guide, it is supplied as an executable program that
installs a version configured to include only those languages of interest to the particular reader.

The guide has been developed for the DTI by Adelard as part of Phase 2 the Software Support
for Metrology programme (SSfM-2).

Best Practice Guide on the Development of Test and Measurement Software

Page 4 of 133

3 October, 2002

Page 5 of 133

Contents
[Part L OVEIVIEW ...ttt ettt teeteteeaeteeseseaseseeseseesenseseneesensesenseseneesens 9
[L.1 SCOPE Of thE QUITAINCE. ...ttt eesessersesessensesesenensesesasansesaeess 9
[1.1.1 Virtual iINSETUMENTS.......c..oeecueeeeeiieeeeeeeteee et eteeeeneeens 10
[L.2 USErsS and QUOIENCE..........ccveeeuieerieietieteeeeteeeteeet et eeteeteteetesee e eresetenereeesennenens 11
[1.2.1 TarQEL QUAIENCE ... eeeeeeieeeeeeeeasseneeeessanneeessnnneesssenseesessneeeesan 11
[1.2.2 SIGNPOSHING ettt eeeesee e eeesteeneeseesneeseeseeeneeseesneas 11
1.2.3 LevelSOf QUITANCE. ..o 12
[L.3 Other doCUMENtS aN0 FESOUICES...............cveeeeeeeeeseeerreeeereesersereeseeeeseseeseseesensesnanees 12
1.3.1 Use of INternet ref@renCeS.......ccuveeuee e 12
1.3.2 BOOkS and Other ref€renCES.......vvveivviiiiiciiceeeeeeeee s 12
1.4 Worked eXample. ..o 12
(1.5 GlOSSAINY ...ttt et e et e ene et e eneeneeare et eaeeeneeneeeeeenes 13
Part 2 GENEXal QUIAINCE.oeoeeeeeeeeeeeeeeeeeeeeveeeeeeseeeeesereeeeeeseseceeaesnensneensnenenesesncneseeeseses 15
E.l TR ge e [eiTe s T 15
.2 Lifecycle of test and measurement software development.............ccceeveeveervennnnn.. 15
D. 2.1 OVEIVIEW .ot eeteeeteesteessessnessnesenseenseessesssesssessnesenesenseenes 15
P.2.2 Rapid application development ... 17
E.2.3 Dynamic Systems Development Methodcoccevvevecvcvecrecneenee. 18
P.3 REQUITEMENtS OOSCIIDHON ...t eeeesee et seseeereesesesneesesesessesesasasseseeans 19
P.3.1 REQUITEIMENIS FEVIEW ...ttt eteeee e eeteesieeeneeeeeesseesseesneesneeans 22
DT T, 23
P.4.1 Design of nUMENCal algOrithimSoccueveiieeeeiiiiieeeieiieeeeeeeveereeeessareeeessas 25
A 1001 o 25
E.4.3 Design MOdelling...........ccviveeiiieiciceccece e 26
A4 DESION TEVIEWS ...ttt e eeeeeteeeeaeeesresesseeesnsessnsesesnresensesens 32
E.4.5 Fault tolerance and fail SAFEtY..........cooeeeeeieeeiiieeeeeeeeeeeeeeeeee 33
e e T 34
5. INETOTUCTION ..ttt eereeebeesreesneesnreennes 34
5.2 COUING SEANGAITS..............o.oooreomeeeereeemeeeeeeeneeeereeereeeneecereeeneeeeneeeeeeeecene 35|
P.5.3 Coding and software doCUMENEaHiONccoeveeeeiiieeiieiieeeiecieieeeesssseeeeeeans 36
P.6 Verification and Validation (VEV).........oeeweeoeeeeeeeeeeeeeeseeeeeeerersrerssenserenrenaesenes 39
D.6.1 TESNGuecvietieetieetieiteeeieeieeeteeeteeeteeeteesseeenreenreeseeeseesseesseesseesneesseensennes 39
0.6.2 COUBTEVIEBWScuviieiieieieeeeeee ettt eeteeeveeeeneeeeneeenseeesnreseseeenns 43
P.6.3 StatiC analySIS. ..o 43
A IS i e 44
D7 IMAINEENANCE ...ttt e e eeteeeeteeeeteeeeseeessseeenseeeaseeesasesessesesnseeesnseesnses 44
2.8 Configuration MaNBOEMENTccueeeuieiieeiieieeeieeieesieeseeesreeeeeeseesseesseeseseseeenseens 45
DO MEITICS. ..o 46
.10 Software and COMPONENE FEUSE.eeeeueeeeeeeeeeieeeeeeeeteeeeteeeeteeeeteeeeseeesreeeeseeeseas 46
.10.1 Softwarelibraries and in-line code reuse..........ccoveeeveeeeeeeeceeeeeeeeannnns 47
.10.2 Reusable software COmMPONENESc.ecveveereiiesesieeieseeeeeteereeeeeneans 47|
11 Mixed 1language ProOraMIMING.........cc.veeeiieeeeeeerereeessieeeessseseeeessmseeeessmmseeessmmseseesmses 49
E.lz TEM SOFtWAIr€ 8SSUIAINCE.oeeceveeeteeeeee et eeteeeeteeeeteeeeaeeeeeteeeeveeeeseeens 50
PI2T OVEVIOW oo 50
12.2 Risk assessment and Mitigation..............ocuveeeueeeeuieieeieieieceeeceeeeenens 51
2.3 PrOCESS AESIGN ...t 52
P.12.4 Assurance of software packages and COMPONENtS............covveeeerievenennn. 55
P.13 Human factorsin T&M software devel OpmENtcooeeeveeveevveeeveeereeerrernne 56

Best Practice Guide on the Development of Test and Measurement Software

Page 6 of 133

E.l&l General human faCtOrSiSSUES...........c.cveuveveuveeeereeieceeeietieenseeeseenseenas 56
.13.2 Human Computer Interface (HCI) designc.cccvvvevecvevecincerennne, 57
.14 Organisational support and |@VEIrageeeeueeeeeeeeeeeeeeeeeeeeeeeee e 62
P.15 OPEIAION ...c.ueeieecteeieesteeeieeeeeeteeiteesteesteesseeseeesseesseesseesseesnseenseanseesseessesssessesansenns 64
Part 3 Technology-Specific QUIGANCEcccuveveueereiereieteeietieieteeteeeteeeteeeeteeeete e reeerenenens 65
20 R [1 (oo [Tox £ o [O PP 65
3.2 How t0 select appropriatetoolS.ciuue e ee e e 65
B2.1 TNitial SEOCHON ..ooooooooooioooisoeosoesoesseeeseeeseeeeneeennens 65|

B.2.2 Upgrading existing toolS. ..o 66|

BB LADVIEW ...t eeeseeeeeeseereseseenseesenseenesnenesnneenes Gj
B3 INtroduction ... 67

.3.2 ReqUIrementS deSCriPtioNccueeeeueeieuieieiiieeieeeteeeeteeeeeeeeeeeeeneeeeneeas 67|

3.3 DIESON.......oooooowosowseeeeeereeeneeeeseeenseeeneeenseeneeeneeenseeeneeeneecereeenseeeeeeneeerrecene 67|

3.3.4 COOING ... eetiie i eeeee e s seteeeesssseeeassaseseesssssessssaseseessassreesssssreesans 72

3.3.5 Verification and validation.............cueeuiecrieiieieeiiiciiccieceee e 74

3.3.6 MAIMEENANCEcveeveeieieeeeeeteeeteeeteecteeteeeteeeteeeteeeteeeneeenreereesreessessneesseans 75

3.3.7 Configuration MANAOEMENTccuveeiiiieiieiiieeieeiseeeesssseressssseresssssereesans 75

3.3.8 MENICS.....ccveetieetiecieieiieeeeteeetee e OOV P PSPPSR PPPRPOPIOS 76)

5.3.9 Mixed language programming with LabVIEW.............cccccccvevecrvennannne.. 76
NI = 77
A1 INtroduction ... 77

4.2 ReqUIrements deSCHPLIONc.veeeeeeeeeeeieeeeeeeeeeeeteeeeeteeeeeeeeneeeeeereeeeas 78

3.4.3 DIBSION......uoiveieieeeeieeeiei e eete et eeteeseesaesseeereesseeaseeareesresareseneseseesreesreesns 78

SR T 1 o 81

B.4.5 VerifiCation a0 VAllGAH ON.............oooweeerseeeereeereeeereeerseceeeeeeseeeeeeceece 81

3.4.6 MaAINEENANCEccviiivieiieiiii ettt ettt teeebeesreeeseeesreereesreesreesssesnreens 81

3.4.7 Configuration ManNAgEMENLcccueeeveeieeieeiieeieeeieesreesreeseeeeeeneeeseeesns 82

B8 MEIIICS. ... oseeossesesoeseseeseeseeesseeeeeereeeeeeee 82

E.4.9 FUIther réSOUICES.........cccovveveveeeevreesecerraereens B 83

4.10 Mixed language programming with Visual BasiC............cccceeueenen...... 83

S 85
5. INETOTUCTION ..ttt ee e e ereeebeesreesneeenreennes 85

5.2 Benefitsand pitfallS.........ooeeoeieeeeiiieeeeeeee e 86

3.5.3 FUNEN NEID ..ttt e s st e e s sbeeeessneeeesans 87

3.5.4 Mixed language programming With C/CH+........ccccccouvvvvrvecnreirercnnnen. 87
SR 83
3.6.1 INtrOAUCTION ... ebe e e e eeneee e 88

3.6.2 Requirements deSCriplioncc.eeceeceeieiiieeceeeeeeeeeeeeceeseeseeeeeeeeeens 89

3.6.3 (DL Lo L 89

3.6.4 COOING ..ottt eeteeeeteeeteeeeseeesnsesenseeeanseeenseeeeseeesnes 90

3.6.5 Verification and validation................cocueeeeueeeeeeeeiieeeieeeieeeeeeeeeeeea 91

B.6.6 MaAINTENANCE ..o o1

3.6.7 Configuration MANAJEIMENTocveeeeieeeeesieeeeesieeeeeesssseeeeessmereessmsereessas 91

3.6.8 MEMNICS. ..o 92

3.6.9 FUMNEY TESOUICES ..o oo oo oo oeooesoene 92

3.6.10 Extending Javawith code from other lanquages..............cccouvvvvreueennns 92
=T T 93
%.1 INEFOTUCTION ...t nr e 93

%7.2 REQUITEMENES AESCITDEIONc.vvveeeereeeereeereeeeseeesereeeensesenseseeseeaeas 93

T D= T T 93

3 October, 2002

Page 7 of 133

A T T 94_1|
7.5 Verification and validation............c..ccveeeeiieiniecreeiie et 95
B3.7.6 MaAINEENANCE ...t eeteeeeteeeeteeeeseeeseseeesnseeesesessreeenseeenns 95
3.7.7 Configuration ManNagEMENLccueeeueeieeiieeieeieeieesreesreeeeeeeeeneeeseeesns 95
B.7.8 IVTEEIICS.........oooosooemseereeeeseeeesecerecensecenseeerseeeeneeeneecerecerseceereeeereeerecerneces 9%
3.7.9 FUIMNEN FESOUICES ...ttt e eeteeeeteeeteeessreeeseeenns 96|
3.7.10 Extending Delphi with code from other languages...............c.c............ 96
S = Y, 98
ADDPENTIX A TNEEINEL TESOUICES.........c.eeveeeeeeeeeeeeeeeeeeseeeeeeteeeerrerensereesereeseeseeessnsesseeesesaeseeseenens 99
AL USEr iNTEITaCe dESIONveeieecee ettt eeer e eneeeeeereesreesns 99
A.2 Component librariesonthe Internetccocveeivveececiiccecicece e 99
A.3 C/CH+ TESOUICES .. 100
A4 VISUBl BASICTESOUITES.........ccccveeeueeeeteeeeteeeeteeeeteeeeteeeeteeesaseseeseeesseesaseeesaseeensenens 100
A.4.1 General SitesSTor VB deVEIODE'S.......cooceeeiiieiiiieieeeeeee e 100,
A.4.2 Visua Basic coding Standards...........c..ceeeveeeieieeiiiiuieieiieeieeseeresnenan 101
AD LADVIEW FESOUICESecvveeeeeeteeetieetee e eeteeeteeeteeeteeeneeenreeteesreesseesnresnseenseesseenes 101
A6 JAVATESOUICTES.eeeiutiieeeteie e et e e eetteeeeetteeeeeteeeeseaseeeaseaseeeeesanreeeeeanseeaseanseeeseanes 101
A.6.1 General sitesfor Java devElOPErScocuvveeueeeiciiiieieeeieeee e 101
A.6.2 Java coding Standards..............ccuecveeeeiiieeeieieeseeeeee st 101
A.6.3 JAVATOOIS ...t e et e et e eeneeeereeeereeeenreeereeen 102
A.7 Dd phi resources................ BT PO PO VPO PP VPP PP PPPEPOPPPPPPPPPPPPPRY 102
A. 7.1 Genera sitesfor Delphi developers..........ccuvveeecveveciececiiececieen 102
A.7.2 Delphi coding StandardsS..........c.eeeeueeeeveieeiieeieeeeeeeeeeeeeee e 103
A 7.3 DEPNI TOOIS.... it e e e steesreeeneeeneeenees 103
A.8 Other T&M software teChNOIOGIES..........ccuveeecveeeceeeeeeeee e 103
A.O GENETAl FESOUICESuviivieitieitieiieeeteeeteesteesseesusessseeseeseesseesseeanseanseesseessaessnesasesnses 104
Appendix B BOOKS @Nd FEFErENCES ... 10§|
=T To 105
L LADVIEW .ottt et eneeeneeenreenreenreas 105
E.Lz VISUBL BASIC.........ooooovoooeoseemseemeeenseemseeeneeenseeeneeenseeneeeneeeneeeeeeneeeeecene 105
1.3 CICHt oo 105
E.1.4 JAV@ ..ttt e e e teeeenteeeebeeeenreeenreeeanreesreeeareeaan 106
N N =T 106
B.1.6 GENEIAl......c.ooiuiiieiiieeieeie et ea s e e sreesareenris 106
B.1.7 REGEH QUITES........ccviiiiieiieeee et see e teeeereeesneean 107
B.2 Other EfEIrENCES...........cccvveeeeeeeeieeeeeeeeeeeeeeeeee et eeie e e en et eeneteenereeneneanns 107
AppendiX C Visual BaSIC EXAMDIC...........oooeeeeeeeeeeeeeeeeeeeeeeeeevevereseseveeeeeseseeesesneneesesnceceseses 109
AppendiX D LabVIEW EXAMPIE..........c.voveeeeeeeeeerereeeeeeeeeeeeeeeeereeeeeeresenssessesseseessessssseasssssssensanes 111]
Appendix E Examples of mixed language programming................cc.eeeververeverevereereresvereenennnns 113
E.1 Calling aFortran DLL from Microsoft Visual CH+.........ccouveeeueeeeveeeciieeieeenee 113
E.2 Cadling aFortran Subrouting from DElphiccoccveveiiieicieiiecie e 114
E 2.1 MUIt-DIiMeNSIONa AITAY........ooooooooooooossooooorsioseesoeeseesseeeeseeeseereee 115|
E.2.2 Passing FUNCtions and ProCEAUIES.............coceueeeeveeeeierieeeeiireeeeerereeneees 115
E.2.3 NAG Library Routine DO3PCF Example Program Coded in
DT AT 115
E.2.4 String Handling and PaSSiNGcooeueiviieeeeeiiieeeeierseeeeerseeeeesseseeees 119

Best Practice Guide on the Development of Test and Measurement Software

Page 8 of 133

E.2.5 NAG Library Routine GO2EEF Example Program Coded in

| Do T 119
E.3 Calling C procedures from Visual BasiC.............c..ocveeeeeuvoreereeereereeveesscerenrerens 123
3.1 Multi-Dimensional AImay.......coocooinii 123
E.4 Visual Basic calling Fortran COmMPONENScc.veeeveeeeeerieieeieeteeeesieevesreeeenenas 124
E.5 Calling Fortran Subroutines from LabVIEW.........ccoooviieiiieeiieeeiieeeeeeeeeea 132
E.6 Incorporation of a Fortran Subroutine into MATLAB........cccccovevvevcvcciecee. 132
Figures
Hgure 1: T& M software lifecycle.o 1§|
FIQUIE 2: RAD TITECYCIO ..ttt e eneeneesneans 17
Figure 3: REQUITEMENES 0ESCIIPIION.c.veiiiiieeiieiieieiiiiiessesissssseeeessssseesssssssseesssssssesssssssesssssreesss 21
Figure 4: Requirements block diagram ... 23
ETQUIE 5: TOD-GOWN TESION........oo...ooomeeeemreeeeseeeereeeeneeeneeeeecceneeeneecereeeeneeeeneeeereeeenreceseeereceerece 24
FIQUIE 6: DataflOW GIAO0MBIM ...t ee et e s e st eessssbeeessssbesesssssseeessasseeesssssssessns 27
Figure 7: State tranSition Qiagramcocueeeiuiiiiiiiiie et eetee et ee ettt e eeeeeeeresbeeesnreesnreas 28
Ei gure 8: ObjeCt-0rented AESIGNcveceeeeeeieeeeeeeteeee ettt eeeteeteeeeereeeesreeneesreenes 29
Figure 9: SEqUENCE QIA0MAIMeeeeeeeeeeeeeeeeeeeeeeee ettt e et e eteeeeateeeeseeeenseeenseeesnsesesnseesnses 31
Figure 10: Statechart diagram. ... 32
FIOUIE 11 TSt SPECTICAIION -....oovcoovcoooosoososooooossoesoeeooeeseeeeeeseeeeeeeseeeeeneeeeeeerseeneeeeeeerseereeeeees 471
FFigure 12: Use standard controlsto invite standard user behaviours............cccveeevveecveeeennenne.... 58
Figure 13: Label controlsto indicate their fUNCHONc.cecueeieeiieiiccceec e cee e 59
E gure 14: How to confuse With USE OF COIOUNc.ecuviueecueieieieiiieieeeceeeeeeee et teeeeeeene 60
Figure 15: Use select boxes for enUmMErated OPLIONS...........ccvveeeeeiieeeeeeeiieeeeeesseereessaneeeeessmseeeessns 61
Figure 16: Employ input validation routinesto check userdata. ..o 61
F igure 17: 7. Check interface controls for unexpected behaviours............ccccccveevieccc e, 62
igure 18: State transition diagram implemented in LAbVIEWccovvvevvvvceviiieicncvverne 70
igure 19: Error handling ..o 73
EI gure 20: Coverage MEBSUTEMENE TOF LADVIEWoooooooorremeereeerseeeeseeeeseeeereeeeseeereeerecenes 75|
igure 21: LabVIEW MELIICS.......ccouveieiieeieiiieeeeeieeeeresveean SRS SO PP PP PP PRI 76
igure 22: Standard palette of VB interface controls for Visua Basic (Professional version) ... 80
Tables
le 1: Comparison of docUMENtation SLYIES.......c.cccuveereeiiieiieeiieeieeeteectecteeete et eve e 37
Table 2: Technigues for measurement SOftWare€ [eVEIS..........c.vecuvcuveceveeeeceeeeeeeceee e 54
Table 3: Datadictionary for LabVIEW PrOgramcc.eeeeveeeeueieeiieeeeeeeeeeeteeeeeeeveeeeeeeeneees 71
Table 4. Datadictionary for Visual BasiC PrOgraM.........eieeeceeieeieeeieeesieesieeseresseesseesesssesesseans 79

3 October, 2002

Page 9 of 133

Part 1 Overview

This guide aimsto provide practical assistance for the developers of test and measurement
(T&M) software, based on current best practice. It presents asimple lifecycle for T& M software
development and gives examples of techniques and methods that can be applied at each
lifecycle phase.

The guide has been produced as part of Phase 2 of the DT’ s Software Support for Metrology
(SSfM-2) programme, details of which are given at http://www.npl.co.uk/ssfm/| Several other
guides produced under this programme are relevant to T& M software.

The guide is based on three best practice guides produced under the first SSFM programme:
those covering the development of software for virtual instruments|39]] the development of
software for metrology and mixed language programming @ This guide addresses the
comments made on these earlier guides. A key point is the importance of developing and using
T&M software in a manner commensurate with the risk from errors in the measurement results,
which can be achieved by determining level of assurance for the T&M software (Bection 2.12)
and applying appropriate development methods and techniques from this guide. The guide is
intended to contribute to an organisationa environment that favours good practice and develops
the competencies of its staff—thisis elaborated in

Because of the amount of material in the guide, it is supplied as an executable program that
installs a version configured to include only those languages of interest to the particular reader.

1.1 Scope of the guidance

The guide provides guidance on designing, building, testing and documenting T& M software.
Both general guidanceis provided, applicable to arange of computer platforms and

devel opment environments, and a so some specific guidance for LabVIEW, Visua Basic,
C/C++, Java and Delphi. In the consultation and feedback during the SSfM programme, these
were identified as the most widely used T& M software devel opment languages. The guide
focuses on the PC because this isthe most popular platform; however, the majority of the
guidance is applicable to other platforms.

In aguide of thissizeit isimpossibleto cover detailed technical issues such as driver design,
and indeed it would be unnecessary since there is awealth of resources already available (see
Appendix A land |Appendix B) addressing detailed technical matters. The guide meets an
identified need in providing aformal structureto T&M software devel opment and maintenance,
into which these resources fit.

The aim of the guide isto present the good practices that have evolved in the software
development community in away that is appropriate to the needs of the T& M instrument
engineer, who may be working alone, and developing such software only as one aspect of their
work.

The guide concentrates on the development of T& M software. However, guidance for T&M
software users who buy off-the-shelf software componentsis contained in on

component reuse, Section 2.12.4]on the assurance of software packages, and in on
the selection of appropriate tools.

Best Practice Guide on the Development of Test and Measurement Software

http://www.npl.co.uk/ssfm/

Page 10 of 133

It should also be noted that by T& M software we mean relatively small systems developed by
an individual or small team, and not large-scal e data processing systems (e.g. Laboratory
Information Management Systems—LIMS) or major process control systems (e.g. for chemical
or nuclear plant).

For convenience, the guide uses theterm “T&M instrument” to describe the integrated T&M
software and hardware.

1.1.1 Virtual instruments

One particular class of T&M software is that which is part of so-called “virtual instruments’
(Vls). VI software can be distinguished from more speciaised T& M software because it makes
use of a general-purpose computer to provide the processing, and uses a computer screen to
provide the visual interface to the instrument. The general-purpose computer can also carry out
avariety of other tasks by loading other software.

The most widely used computing platform is the IBM-compatible PC, athough there are
development communities for other platforms such as the Macintosh, VM E-based and Unix-

based systems. The VI makes use of the services and architecture provided by these computing
platforms, in particular:

® standard I/O to hardware (such as serial ports, GPIB and other hardware standards)
* theuser interface, in particular a Graphical User Interface (GUI)

* the general-purpose software execution platform, such as an operating system and
various run-time libraries

* networking to other computers and devices

* thelnternet, for users with remote measuring and monitoring requirements

Various software technologies and development environments exist for developing Vs, such as:
* National Instruments LabVIEW
* variousversions of Basic (including Visud Basic, QuickBasic and so on)

* other software languages and environments (including C, C++, ActiveX, Java and so
on)

Many of these V1 attributes may also apply to specia-purpose T& M software, and the contents
of this guide apply equally to VIsand T&M software in genera, unless specifically stated
otherwise.

3 October, 2002

Page 11 of 133

1.2 Users and audience

1.2.1 Target audience

This guide isintended to be of use to the full range of T& M software devel opers, including:

specialist measuring instrument manufacturers
manufacturers of reference sources
measurement system integrators

research workers

in-house metrology system developers

test and validation engineers

auditors, reviewers and calibration signatories

1.2.2 Signposting

The main categories of readers of the guide are new users, developer-users, experienced
devel opers, and system or software devel opment managers. We suggest the following starting
points for each:

New user—If you are a new user, your main heed may be for guidance on getting
started, finding resources and avoiding common pitfalls. You are likely to have
specialist skillsin your measurement domain, yet may come to software devel opment
relatively late in terms of education and professional training. We suggest that you
begin with the T&M software lifecycle overview in and the section on
selection of tools (Bection 3.2 if you have not already chosen them. Then, using

Figure 1{as adirectory, you can read the parts of Part 2 not marked with “full-scale
meter” symbols, and the corresponding language-specific guidance in Part 3.

Devel oper-user—Within aresearch context, it istypical for the developer of T&M
software to be the same person as the end user. If you are a devel oper-user, your main
need may be for guidance on quality management, configuration management and
finding resources. Aswith the new user, your primary training is likely to be in the
measurement domain not software engineering. We suggest you check your current
development process against the general guidance in Part 2—the rapid application
development lifecycle shown in Eigure 2 jis likely to fit best. You should pay
particular attention to the guidance on assurance in Bection 2.12]and check your
processis applicable for the software integrity level of your T& M software. Y ou
should also make sure you follow the guidance on documentation.

Experienced developer—If you are an experienced developer, you will probably be
engaged in T&M software product development for internal customers within your
own organisation, or for external customers. Y ou may also provideaT&M software

Best Practice Guide on the Development of Test and Measurement Software

Page 12 of 133

help desk for your organisation. Y our main need may be for guidance on improving
the T& M software development lifecycle, sharing complex tool knowledge, user
interface design and integration. We suggest that you check your development
process against the guidance on assurance in Y ou may beinvolved in
larger or more critical developments, and so you may need to study the guidance
marked with “full-scale meter” symbols. We recommend you also look at the
guidance on human factorsin T& M software development and HCI design

(Section 2.13), and organisational support and leverage (:

* System or software development manager—If you are a manager concerned with
T& M software development, your main need may be for guidance on tool selection,
quality management, software assurance and maintenance. Asfor the experienced
devel oper, we suggest that you check your development process against the guidance
on assurancein All the guidance is relevant to internal quality
procedures for T&M software devel opment. We recommend you also look at the
guidance on human factorsin T&M software development (Bection 2.13) and
organisational support and leverage (Bection 2.14). You are likely to be concerned
about specific problem areas, and the guidance marked with “full-scale meter”
symbols may be of particular interest.

1.2.3 Levels of guidance

Three levels of guidance are provided. The mgority of the guidance appliesto all T& M
software. Some additional, more advanced, guidance is provided that is applicable to larger
T&M software projects and/or T& M software with higher software integrity requirements; this
isindicated in Part 2 by a“full-scale meter” symbol in the left margin, as here.

A A small amount of guidance is very advanced, and mainly deals with the highest software
Al integrity requirements. Thisisindicated in Part 2 by adouble “full-scale meter” symbol.

1.3 Other documents and resources

1.3.1 Use of Internet references

We have gathered a number of key Internet referencesto help all categories of developer find
useful information regarding T&M software technol ogies such as LabVIEW and Visual Basic,

and also some component libraries that are available. Some of these are presented in the
narrative of the report, and acompletelist is given in

1.3.2 Books and other references

There are a number of useful books, newsletters, leaflets etc. available from a variety of sources,

and these are listed in [Appendix B|

1.4 Worked example

The guidance isillustrated with aworked example. In aguide of this size, it isimpossible to
develop aredistically large example, and one that illustrates the range of T&M software that
can be congtructed in al the measurement areas. Therefore we have selected a simple example

3 October, 2002

Page 13 of 133

of asite entry system. Thisillustrates the basic principles without going into hardware-specific
or measurement-specific detail. It also has a control element, since control of actuatorsis
important in many measurement systems.

1.5 Glossary

The following specia terms and abbreviations are used in the guide.

AP Application Programming Interface.

B A formal method.

CASE Computer-Aided Software Engineering.

CIN Code Interface Node. A LabVIEW feature allowing code in another
language to be called.

COTS Commercial-off-the-Shelf hardware or software.

CcspP Communicating Sequential Processes. A formal method.

DAQ Data Acquisition.

DDE Dynamic Data Exchange. A Windows protocol for data exchange.

DSDM Dynamic Systems Development Method.

FFT Fast Fourier Transform.

G The underlying graphical, object-oriented language for LabVIEW.

GUI Graphical User Interface.

HCI Human-computer interface.

IDE Integrated devel opment environment.

IPR Intellectual property rights.

kloc Thousand lines of code.

MSL Measurement Software Level.

PLC Programmable Logic Controller.

RAD Rapid Application Development.

SIL Safety Integrity Level.

SMV Symbolic Model Verifier. A model checker.

Best Practice Guide on the Development of Test and Measurement Software

Page 14 of 133

STeP

T&M

T&M instrument
TCP/IP

UML

URL

VB
VBA
VDM

VI

Stanford Temporal Prover. A model checker.
Test and measurement.
Theintegrated T& M software and hardware.

A communication protocol.

Unified Modelling Language. Seefhttp://www.uml.org/}

Uniform Resource Locator. An Internet “address’, e.g.
http://www.adel ard.com/}

Visual Basic.

Visual Basic for Applications.

The Vienna Development Method. A formal method.
Virtual Instrument.

A formal method.

3 October, 2002

http://www.uml.org/
http://www.adelard.com/

Page 15 of 133

Part 2 General guidance

2.1 Introduction

This part of the guide contains general guidance that appliesto T& M software developed using
arange of software packages and languages. L anguage-specific guidanceis contained in Part 3.
More general information on software engineering methods and techniques is contained in
and ﬁ

This part is structured according to asimple lifecycle, illustrated in Thisfigure also
provides adirectory to the rest of Part 2.

2.2 Lifecycle of test and measurement software development
2.2.1 Overview

Software development processes are often described in terms of alifecycle. A ssimplelifecycle
for T&M software isillustrated in which also shows where the relevant guidanceis
located in this document.

Thefirst phase is about understanding the measurement requirements, including the accuracy
and dependability needed, and procuring hardware and software that will be able to deliver the
requirements. The output from this phase is a requirements description. The next phase presents
this more formally as a requirements specification that can either be the basis for in-house
development, or for a statement of requirements if the development isto be undertaken by
another organisation.

Once the requirements are understood, we can determine the importance of meeting those
requirements. This determines the amount of assurance needed in devel oping the software, and
hence some aspects of the process to be adopted, the configuration control to be used, and so on.

The next phase is where the software is designed and devel oped to meet the requirements. It
includes designing-in the appropriate level of assurance that the T& M software will be accurate
and reliable enough, for example by making provision for diverse checks on itsresults. Design
and development has to be undertaken within a configuration management system that will
enable traceability of the resultsto the hardware and the software version used.

During the operation phase, the output from the T& M software includes both the basic results
and the evidence of traceability and accuracy.

In fact, it islikely that the lifecycle will not be followed in alinear fashion, and there will be
some iteration between the phases, for example between risk assessment and requirements
gathering.

Finaly, most T&M software will be modified during its life. Thisinvolves repeating the
relevant parts of the requirements analysis and design and development phases. To ease

mai ntenance and modification, the possibility of changes should be taken into account from the
inception of the software, by specifying the likely changes in the requirements description and
by designing the software to make it easy to change.

Best Practice Guide on the Development of Test and Measurement Software

Page 16 of 133

Lifecycle processes

Gather user requirements
» understand measurement
requirements & accuracy
« select & procure hardware &
software environment

Lifecycle products

Requirements
* requirements

!

Specify

« record functional
requirements for system

v

Risk level assessment

« establish criticality of use &
software complexity

y

Design & code

* select techniques and
languages

,| description
* requirements
specification

* assurance approach

* human factors
approach

* organisational support

i

» software metrics

Software design
« design methods

Validate

Final
review

Deliver

v

Use & maintenance
* carry out measurement
* maintain and modify
software

;t- HCI design

e component reuse
j

Software code]

Verification &
validation

(- Results A
« evidence of
/v traceability and
accurac
| aceuracy y

J

Maintenance &

/ Assurance \

(configuration control /

>

\‘ modification records
L

~/

Figure 1: T&M software lifecycle

Guidance

3

U
(9%
o
=3
o
=
N

o
>
N
=
N

tion 2.13.1

U U U
o||o| |o
allal lo
=| =] |=
o o o
SIS |15
NN N
of || |-
a

Section 2.4
ection 2.13.2

Section 2.5

U
(1%
O
=
o
>
N
(o]

Section 2.15

Section 2.7

When selecting the actual methods and techniques to use through the lifecycle, it isimportant
that they can demonstrate an adequate level of software integrity. Thisisdiscussed in

3 October, 2002

Page 17 of 133

Most organisations operate some form of quality management system, within which T&M
software devel opment will take place. Thisislikely to follow the ISO 9000 series of standards.
A discussion of quality management in general is outside the scope of this guide, but all the
techniques described below can be fitted into a formal quality management system. NPL has a
compact quality manual tailored for T& M software projects, and the lifecycle diagramin
is consistent with this. This quality manual is available for download from NPL’s
Website (see Appendix A.9). A tool for producing a software quality plan based on arisk
assessment is also available (risk assessment is discussed in [Section 2.12.2|below).

2.2.2 Rapid application development

The type of lifecycle described above is often characterised as a“waterfall” development
process, in which each lifecycle stage proceeds primarily on the basis of a completed previous
stage, although there may be some iteration between phases. Much T& M software is actually
developed in a much more iterative way, often in what is known as arapid application
development (RAD) lifecycle RAD is amore exploratory way of developing softwarein
which requirements and design emerge together through the devel opment process, leading to the
modified lifecycleillustrated in Figure 2]below. Eventually, of course, the decision is made to
deploy and maintain the software, and then the RAD lifecycle reverts to Guidance for
the RAD lifecycle phasesislocated in the same sections of this document as for the equivalent
phases of the waterfall lifecycle.

Requirements
description

t v

Software
design

Outline |
description [] t —
Software

Software code

versions

'

Verification &
validation

Figure 2: RAD lifecycle

The outline description should be written in terms of functions or benefits to be delivered or
problems to be solved. From this, a more detailed requirements description is produced for each
iteration. The software is then produced and/or modified and reviewed against the outline
description and the requirements.

A RAD approach may be applicable to your T& M software development if:

* Thereisnot adefinitive statement of the requirements at the start of the project, and
you need to evolve the requirements through a series of working prototypes.

Best Practice Guide on the Development of Test and Measurement Software

Page 18 of 133

* You areaso the end-user, or you want the end-user to be closely involved throughout
the devel opment process.

* Thereisuncertainty over the potentia pitfalls of the software implementation
approach you have adopted, and you need these to be brought to light early in the
devel opment process.

* You need to confirm that all the technology to build new measurement sub-systemsis
available by: establishing the system architecture; demonstrating the performance of
algorithms; demonstrating the reliability of control sequences; or demonstrating the
correct operation of measurement sub-systems.

Software components (for example based on ActiveX or Corba) are often used as building
blocksin a RAD-style process. Thisis discussed further in Part 3 of this guide.

However, the adoption of a RAD-style lifecycle should not be seen as an excuse for poor
documentation or design. The requirements and design documentation described later in this
guide should eventually be produced to ensure the software can be tested, maintained and
understood by other people—and by the original developer after the passage of time. It is also
important to verify and validate the design and code and provide evidence for accuracy and
reliability. Good configuration control is also needed so that the devel opers can revert to the
previous version if necessary.

2.2.3 Dynamic Systems Development Method

A more formal way of managing a RAD-style development is as“ mini-projects’ as described in
the dynamic systems development method (DSDM) [33][34]35]| See A ppendix A.9ffor alink
to more information. Each mini-project is essentially a single pass through the RAD lifecycle
shownin and has the following general characteristics:

¢ afixed timelimit for completion—to prevent the mini-project growing into a project
initsown right

* high-level prioritised objectives—the priorities allow less important objectives to be
dropped in order to meet the “time box” for the mini-project

* early review and verification points
¢ formal issue of the software from each mini-project as a configuration item

* complete but not over-elaborate documentation

The DSDM method isinsistent that work is done properly, so the development products will
still be documented, reviewed, tested and released in the normal way. However, elapsed time
savings may come from devel oping functionality in close contact with technical users, doing
tasks in the correct order and starting tasks as soon as possible, e.g. review teams should be
managed so that they start work on documents as soon as they are available.

3 October, 2002

Page 19 of 133

2.3 Requirements description

Developing a good description of the requirements for the T& M software is a key objective.
Errorsin the requirements tend to propagate through the development and are only detected
during final testing, when they are very time-consuming and expensive to correct. For more
information on the process of requirements capture see

It may be desirable to categorise requirements, for example identify those that are essential,
desirable etc.

On large projects, it is agood idea to separate the requirements definition, which is a customer-
oriented description of what the T& M software should do, from the requirements specification,
which isamore precise description aimed at the software designers. However, since most T&M
software devel opments are relatively small projects, and much is developed in-house by user-
devel opers, a single description should suffice for in-house use or as a procurement
specification.

There are several special notations for expressing requirements, but for the majority of T&M
software devel opment projects natural language is sufficient. However, it will help to avoid
ambiguity and loosely worded requirementsif a standard format is adopted. The following
example (Figure 3) of part of the requirements description for our simple site entry barrier
system illustrates a possible format. The key requirements arein bold, and explanatory notes are
indicated by the rationale keyword.

There are a number of things you should include in the statement of requirements:

1. Thefunctionsthat the T&M software isto perform, described in natural language,
mathematics, diagrams etc. as appropriate. Include a mathematical specification of
output data values as a function of the input data values for the simpler processing of
basic measurement values (the implementation may compute the results differently,
using an efficient algorithm), or, for more complex processing, state or refer to the
algorithm. Include sufficient detail so that a user may calculate the uncertainty of the
measurement if necessary.

2. Theinterfacesto the T& M software from sensors and actuators, including specific
interface standards that apply.

3. Other inputs and outputs and their formats, e.g. to and from computer files and to
printed reports.

4. The human-computer interface (HCI) requirements, covering displays and contrals,
customisation options, etc.

5. The performance requirements for the T& M software, including:

. the measurement accuracy required, expressed as the uncertainty of
measurement if appropriate

. timing constraints, identifying the real-time requirements and non-time-critical
functions

Best Practice Guide on the Development of Test and Measurement Software

Page 20 of 133

. reliability, availability and safety requirements, expressed where possible in
numerical terms (e.g. the software shall return the correct value for 99.9% of
measurements) and/or measurement software levels or safety integrity levels

(see Baciion 2.12Jand [38]

. maintai nability requirements, identifying those requirements likely to change
over the software’ slifetime that should be easy to accommodate, such as
possible future hardware changes or likely extensions to the functionality

6. Constraints due to the computer used, memory and disk storage limits, etc.
7. Therequirementsfor built-in assurance features, such as error handling, self-checks,
sanity checks, diverse algorithms etc. (thisareais discussed in more detail in

:

8. Security requirements, to prevent unauthorised changes to data and programs.

9. Any applicable standards that apply to the hardware or software (international,
national or in-house).

10. Any special terms used.

3 October, 2002

Page 21 of 133

1. Overview

1.1 The requirement is for a replacement site entry control system to enable
operation by security personnel of an existing barrier and traffic light. The existing
system also provides a sensor that indicates when a vehicle is in the barrier area.

1.2 A plan of the site entry area is given in Figure X.
2. Safety features

2.1 The system shall not allow the barrier to be closed when a vehicle is beneath
it.

2.2 The traffic light shall be interlocked with the barrier to show red when the
barrier is not fully open.

3. HCI

3.1 The operator’s control panel shall provide buttons to open and close the
barrier, a mimic of the traffic light, a light showing when the barrier is open, and a
warning light showing when a vehicle is beneath the barrier. The control panel shall
be designed in accordance with good human factors principles.

Rationale: The traffic light is partially concealed from the security room and the mimic is
to give assurance of its correct operation.

3.2 The barrier shall start to move within 0.5 seconds of the appropriate button being
pressed.

4. Traffic light

4.1 When the barrier has been fully opened, the traffic light shall change to green.
Before the barrier starts to close, the traffic light shall change to red. The system
shall implement a standard UK traffic light sequence.

5. Interfaces
5.1 The barrier motor is controlled via an RS-232 interface.

5.2 The traffic light is composed of red, amber and green bulbs, independently controlled
via a RS-232 interface.

5.3 The vehicle sensor provides a 0—20mA signal, a value below 10mA meaning a
vehicle is present, and otherwise meaning no vehicle is present.

5.4 Detailed interface descriptions are given in Document Y.
6. Reliability

6.1 The system shall be implemented to Measurement Software Level 2 as defined in
SSfM Best Practice Guide No 1.

Figure 3: Requirements description

Best Practice Guide on the Development of Test and Measurement Software

Page 22 of 133

2.3.1 Requirements review
The requirements should be checked by someone other than the author before development is
commenced. Preferably, aformal review should be carried out. This should check that the
reguirements document is:
1. wvalid, i.e. it correctly describes the functionality and other properties of the software
2. consistent, i.e. it isinternally consistent and does not contain conflicts

3. complete, i.e. it contains all the requirements

4. realidic, i.e. it is atainable in the required time using the available hardware and
software, and the number and competence level of the devel opment team

5. comprehensible, i.e. it can be understood by the development and maintenance teams,
and the customer

Make sure that the proposed or required hardware is capable of meeting the performance
requirements (accuracy, throughput, etc.). For example, a manufacturer may quote the
performance of their data acquisition card as being that of the chip used at its heart, whereas the
supporting hardware may compromise performance to the extent that only a fraction of the
stated performance is achieved in any particular real application. Y ou may need to produce one
or more test programs to check the actual performance of the hardware. Several utility programs
are available for checking performance, for example the timing VIs included with

If your T& M software is safety-related or of the higher measurement software levels (see
, you should review the following aspects of the requirements where relevant:

1. theoveral architecture

2. the breakdown of component sub-systems, to make sure that the interfaces are clean
and modular

3. the boundary between Commercial-off-the-Shelf (COTS) products and any specially
devel oped software

4. externa interfaces
5. dataor object modelling (see aso
6. datarequirements and physical database specification

7. non-functional requirement constraints (e.g. reuse, availability, reliability, portability
and maintainability)

8. how special features, such as safety or security, are handled

9. adequacy of performance, including the results of performance models where
available

10. any specific options or alternatives to solve the T& M problem

3 October, 2002

Page 23 of 133

11. the impact of advancesin equipment capability

12. whether the correct balance has been struck between specially devel oped versus
COTS solutions

13. any limitations imposed by current technology on technical and design options
14. thetechnical risk

15. compliance with any higher-level requirements document if one exists (e.g. a
customer’ s specification), which can beillustrated by producing a compliance matrix

For complex T&M software, you should consider developing a system model as part of the
reguirements documentation. One possibility is ablock diagram that shows the data-flow
between system components. A block diagram for the access control system is shown below.

Control VI 0-20mA Vehicle
Present/Not Present sensor

Vehicle RS-232
present = Red Traffic
Amber light

Green

v

RS-232
Open/Closed

Barrier

A 4

Figure 4: Requirements block diagram

Y ou can aso produce a system model using object-oriented techniques. The use of object
modelsisillustrated for the design stage in Figure 8|below. An object-oriented system model
would resembl e this object-oriented design but be at a higher, more abstract level.

2.4 Design

Software design is the phase in which you decide how a system that meets the requirements will
be constructed. In complex projects, design can be divided into stages such as architectural
design, software specification (or functional specification), high-level design and low-level
design. For most T&M software projects, however, asingle design step will be sufficient,
although you may find it useful to use more than one type of diagram or notation to capture all
the design detail.

When creating the design, you should give some thought to how you can demonstrate that the
design meets the requirements. Thisis particularly important for the higher measurement
software levels, and is discussed further in bel ow.

Best Practice Guide on the Development of Test and Measurement Software

Page 24 of 133

Y ou should also make sure that your design clearly maps onto the implementation technol ogy
(e.g. language and COT S items) you have chosen.

Design can be carried out top-down or bottom-up, or a combination of the two. Top-down
design is generally best for big T& M software projects. The approach isto break the software
into a number of high-level modules, with ageneral specification of what they should do. Each
high-level moduleis then broken down some more, and so on, until there is enough detail to
enable coding to start. A top-down design for our example is show in

Main

Initialise Compute barrier
position

Compute traffic
light aspect

Hardware drivers

Figure 5: Top-down design

Bottom-up design is more appropriate to low-level problems such as driver design or
implementation of complex algorithms. Here complete modules are written and tested to carry
out specific tasks, and then assembled to provide the full functionality.

In the remainder of this section, we discuss;

the design of numerical agorithms
* how to deal with timing in design

* notations for design, including data flow diagrams, state machines, data dictionaries,
object oriented design, UML and formal methods

* designreviews

¢ fault tolerance and fail safety

The design of the user interface is discussed in

3 October, 2002

Page 25 of 133

2.4.1 Design of numerical algorithms

Computer arithmetic is only approximate and the approximations can have alarge impact on the
accuracy of the results. The design of numerical agorithmsis outside the scope of this guide,
but needs to be carried out by someone with suitable training and experience. If you choose to
use numerical software libraries, the design will need to show the interfaces to the library. See
[Section 2.12.4]for a discussion of numerical algorithm libraries. This subject is also covered in
other SSfM themes; see hittp://www.npl.co.uk/ssfm/ssfm1/|

Y ou should be aware that the basic mathematical functions supplied with programming
language implementations can have unexpected properties and are not always as well designed
asthey could be. As an example of the former, languages may implement exponentiation using
logarithms. Thiswill tend not to give the expected integral answer when both base and exponent
areintegers. As an example of the latter, trigonometric function implementations usually start
by reducing the argument to an angle in a 2 range around zero. Naive approaches can result in
alargeloss in accuracy for large arguments.

2.4.2 Timing

T&M instruments are almost always real-time systems, that is to say that the time at which they
produce results or carry out actionsisimportant to their correct operation. They may be hard
real-time systems, in which case out of specification timing is a definite failure (e.g. wherea
measurement depends on application of power to an actuator for a precise time); or they can be
soft real-time systems, when poor timing leads to degraded performance (e.g. it causes
unnecessary cycling of atemperature-controlled vessel).

Y ou should choose a design method and language for the T& M software that is capable of
meeting the timing requirements. Aspects that you need to consider include:

* Language—Programs in some languages, such as C (and assembler) have an obvious
relationship to the operations that will be executed in the hardware, making the run
time of the programs easier to predict. This helpsin checking that deadlines can be
met. The costs of operations may be less obvious in other languages, particularly
graphica ones. One particular complicating factor is the use of automatic garbage
collection, which removes the necessity for the programmer to manage storage
explicitly (with the attendant hazards of premature release or memory leaks) but may
impose adelay at unpredictable moments in the execution.

* Language implementation—Implementations that compile to the native machine
language of the underlying hardware (which includes most implementations of C and
C++) will run faster than implementations based on interpretation of intermediate
code (such as Java and most graphical languages). This speed may be necessary to
meet processing deadlines. Some implementations will offer different levels of
optimisation in the compilation, trading extra compilation time for reduced run time,
but you should be aware that the optimising analysisin compilers is complex and
compiler bugs are often revealed in these areas.

® Operating system—Hard real-time T&M software may require more precise timing
than can be guaranteed by operating systems such as Windows. There arereal time
operating systems for Intel processors, and some of these implement parts of the
Windows API, but most of the T& M devel opment tools will require completely

Best Practice Guide on the Development of Test and Measurement Software

http://www.npl.co.uk/ssfm/ssfm1/

Page 26 of 133

Windows (or similar) operating system environments. This can be resolved by a
design based on two or more processors, one running a non real-time operating
system and providing the user interface and the other(s) providing real time data
gathering and reduction, and implementing any time-critical control. The extra
processors may be in independent hardware, possibly in the form of a programmable
logic controller (PLC), or on aplug-in PC card.

* External libraries and components—T& M software often uses software timers for
timing or sampling. However, these internal software timers can be disrupted by any
external libraries (e.g. DLLS) or components that are called from the application. This
problem occurs when the external libraries take the control from the application and
do not hand back the control until the operation is finished, preventing the software
timers from incrementing during the external call. For example, a sample period of 1
minute could be offset by around 10 seconds each iteration if an external library takes
this much time to complete. Y ou should check that the overall timing requirements
for the application are not adversely affected by the use of any external libraries or
components.

* Design method—Fast programs are normally achieved by careful choice of
algorithms at the design stage, which may in turn affect decisions on data gathering.
For example, the Fast Fourier Transform algorithm is much faster than a naive
implementation of the mathematical definition of Fourier Transforms, but depends on
the number of samples being a power of 2. In afew cases, there may be a conflict
between modular design and speed, because the information hiding of the modules
means that cal culations may need to be repeated. This can usually be handled by a
careful choice of interfaces between modules.

* Network latencies—Increasingly T&M software uses a network to connect different
components of the software. Y ou should check that any network latencies or timeouts
do not break any timing requirements for the T& M software.

2.4.3 Design modelling

There are a number of ways of modelling the design of T& M software. In this section we
describe three of them: data-flow diagrams, state transition diagrams and object models. Textual
languages such as pseudo-code can also be used. Y ou should choose one or more notations that
capture the key design aspects of the data structures and proceduresin your T&M software. The
way these design notations map onto the entry barrier example is shown in Part 3.

It isagood ideato check that the design addresses key properties, e.g. safety properties. For
example, the state machine mode! (preserves the safety properties that the barrier
cannot be closed unless the vehicle sensor isfalse (i.e. no vehicleis present), and that the barrier
isopen unlessthelight isred.

3 On small projects, these notations can be produced just with a drawing package. For larger
projects, you could consider using one of the Case (Computer Aided Software Engineering)
tools that support these notations.

3 October, 2002

Page 27 of 133

Data-flow diagrams

Dataflow diagrams model the way in which data (shown as arrows) pass between the different

entitiesin the system. The entities are

* Processes, shown as round-cornered rectangles, which transform data from one form

to another.

* Datastores, shown as rectangles, where data reside when they are not flowing. They
often represent bulk stores such as files and databases, but in T& M applications we
may want to represent simple data representing the system state.

* External entities, such as users or external data stores and processes, or in T&M
systems, sensors and actuators, which act as sources or sinks for dataflows. These are

shown as shadowed boxes.

Figure 6]shows a possible data flow model of the barrier system.

Operator
I

Open/close
request
- Vehicle at
Vehicle barrier f Act on
sensor 'L user command
— @ @ |

Barrier
open/close
A4

Barrier

Current light
state

Traffic light I

state { Compute traffic }

light aspect

Bulb jstatus

A 4

Red } Amber} Green}

light light light

Figure 6: Data-flow diagram

To learn more about data-flow diagrams, see [24]]and

State machine modelling

A suitable way of describing T& M software whose behaviour depends on previous history is
state machine modelling. The following diagram shows the main part of the state machine for
the entry barrier example using the notation for sequential function charts defined in IEC 1131

The diagram shows a number of steps, with associated actionsin the box to the right. For
example, Step O carries out the action “Read Open button”, and sets the value of the feedback
variable OPEN accordingly. If OPEN istrue (arequest to open the barrier has been received),

Best Practice Guide on the Development of Test and Measurement Software

Page 28 of 133

the system movesto Step 1 (“Open barrier™); if it isfase (“—* means “not”), the system moves
to Step 3 (“Read sensor™).

Initialise
Step 0 Read Open button OPEN
&)
1 OPEN + - OPEN
Step 1 Open barrier Step 3 Read sensor SENSOR
Step 2 Set Green
—®
+SENSOR —+ - SENSOR
iy
Step 4 Read Close button CLOSE
-+ - CLOSE <+ CLOSE
[C'H
o

Step 5 Set Red

Step 6 Close barrier

Figure 7: State transition diagram

To learn more about state transition diagrams, see [24]]and

Data dictionaries

Another very useful design tool isthe data dictionary. Thisis basically an aphabetical list of

the names used in the design, together with a description of each named item. It can be

maintained as aword processor document, hypertext document, spreadsheet, database or within

aCasetool.

3 October, 2002

Page 29 of 133

Object-oriented design

An alternative design is shown below in object-oriented notation. Each rectangular box
represents a hardware control object. The top compartment in each box is the object’s name, the
next lists the attributes of the object, and the bottom compartment lists the operations that the
object isto implement. The straight lines between the objects show the association between
them. The direction of the arrows shows that messages can only be sent in the direction of the
arrow. The lines with diamonds at the end show aggregations, in this case the way the complete
traffic light is composed of three individual bulbs (the figures show that one traffic light is
associated with one red light, etc.).

Barrier
status : Boolean Control panel
— open_button : Boolean
open() T close_button : Boolean
close() ~—_ |red_bulb : Boolean
amber_bulb : Boolean
green_bulb : Boolean
~__—veh_sensor : Boolean
Vehicle sensor 4//// set_open()
status : Boolean set_close()

read_status() /

/
Ja

Traffic light

status : Integer
colour : {Red,Amber,Green}

set(c : {Red, Green})

rn 1 1
/ ‘1 1

Red light Amber light Green light
status : Boolean | |status : Boolean status : Boolean

set() set() set()

Figure 8: Object-oriented design

To learn more about object-oriented design, see

Best Practice Guide on the Development of Test and Measurement Software

Page 30 of 133

UML

=

A For larger T& M software projects, the Unified Modelling Language (UML) (see
http://www.uml.org/) provides a general purpose graphical language for modelling the system.
Although usually associated with object-orientation, UML can be used more generally due toits
different types of diagrams and the potential of being extended in controlled ways (using the so-
called extensibility mechanisms).

There are two aspectsto a UML model: the static structure and the dynamic behaviour.
Different types of diagrams provide for different viewsinto amodel. Typicaly, aUML model
is expressed using a combination of the diagrams below, which are;

* classand object diagrams—which include the type of diagram shown in w
above.

® use case diagrams—which can show how external systems and users interact with the
T&M software. They describe the functionality of the software as perceived by
outside external systems and users.

* interaction diagrams—which include the sequence and collaboration diagrams,
which shows the explicit sequence of messages between objects that implement the
behaviour of the software. Sequence and collaboration diagrams show the same
information, but they emphasi se different aspects of the behaviour.

* statechart diagrams—which typically describe the behaviour of classinstances (i.e.
objects), but they can be used to describe the behaviour of other entities. Statecharts
are an alternative notation for state transition diagrams such as the one shown in
-Fi gure 7

* activity diagrams—which can be used in much the same way as data-flow diagrams
such as that shown in Activity diagrams are avariant of statechart diagrams,
where the states represent actions or activities.

* implementation diagrams—which include the component and deployment diagrams,
which show the source code structure and run-time implementation structure.

Class and implementation diagrams model the static structure, while the other UML diagrams
model the behaviour of the software.

Asan illustration of how the different diagrams can be used, consider how the behaviour of the
barrier system can be modelled. The sequence diagram in Figure 9]shows some of the
interactions between the objects defined in Figure 8|during the set _cl ose operation of the
Cont r ol _Panel . Theflow of timeisfrom the top to the bottom of the diagram. The events
correspond to activations of the methods defined in and the method activation times
are shown by the boxes on the vertical lines below each object. For smplicity, the diagram
omitstheinitial check on the vehicle sensor, and assumesthat the Gr een | i ght iscurrently
showing and the Bar r i er isopen. Taking the eventsin order:

* amessageset (Red) issenttoTrafficlight bytheControl panel

3 October, 2002

http://www.uml.org/

Page 31 of 133

e theTrafficlight setstheG eenlight off andthe Anber |i ght on
* theTrafficlight setsthe Anber Ii ght off andtheRed | i ght on

* theControl panel closestheBarri er

. Control panel . Traffic light . Amber light : Green light : Red light . Barrier
4 set(Red) ‘ set(false)
set(true) U
set(false)
J set(true)

close()

Figure 9: Sequence diagram

A statechart diagram for each component models their behaviour and shows how the
components change state as a result of the execution of the operations. models the

behaviour of the Bar ri er component. In the diagram below, the Bar ri er hastwo possible
states:

* opened, which corresponds to the case when the attribute statusistrue

* closed, which corresponds to the case when the attribute statusis false

The state of the Bar ri er changes from opened to closed and vice versa as a consequence of the
execution of the operationscl ose and open.

Best Practice Guide on the Development of Test and Measurement Software

Page 32 of 133

close() -
‘ > status=True status=False

open()

Figure 10: Statechart diagram

Tools are available to support the development of UML models. These tools allow editing of the
graphical notation, support the link between different views of the model, and some enable a
source code framework to be generated automatically for T& M software languages such as
Visual Basic and C.

Formal methods

A For T&M software of the highest criticality, you should consider writing and validating
specifications and designs using a formal method. They may also be cost-effective for complex
real-time and concurrent T& M software, which may be impossible to reason about informally.

=,
=

A formal method has two components. Thefirst is a mathematically based notation within
which the specifications and designs can be expressed. Some of the notation may be similar to
that used in programming languages, but formal specification languages will also have aspects
intended for capturing requirements concisely rather than for efficient execution. The other
component is a set of rules for reasoning about specifications and designs, so that it can be
confirmed unambiguously that the designs have the properties required by the specifications.

Examples of formal methods include B, VDM, Z, and CSP. The UML specification (see) also
includes aformal (textual) language that can be used in addition to the graphica notation. The
Object Congtraint Language (OCL) is used to express constraints on the system being modelled,
typically classinvariants or pre- and post-conditions of operations, which cannot easily be
expressed using a diagram. Modelling systems and reasoning about their propertiesin these
languages requires a significant knowledge of discrete mathematics, although there are tools
that can help throughout the process. For systems that can be modelled as state machines, model
checking allows many interesting properties to be established (or disproved) automatically,
reducing the amount of specialist knowledge required. SMV (Symbolic Model Verifier) and
STeP (Stanford Temporal Prover) are examples of model checking systems, and Statemate
provides model checking tools for state charts. See Eppendix A.9|for links to more details.

2.4.4 Design reviews

The design should always be reviewed by someone other than the author. If you are operating
within an 1SO 9000 quality management system, reviews will be arequirement of the system,
but they are important anyway to avoid “mind-lock”, where you become blind to potential faults
in the design.

Design reviews can be carried out by means of:
® adesk check by an independent reviewer

¢ awalk-through (one type of walk-through is the Fagan inspection; see @

3 October, 2002

Page 33 of 133

Topicsto examine include:
* coverage of requirements
®* modularisation
® useof external code modules
e HCI
* error handling
® definition of input ranges
* initiaisation and tidying up
* capacity and performance

* correct use of design notations

Thislist can be expanded to address problems you have encountered with your own T&M
software designs.

The review should record agreed changes, and a procedural mechanism should be put in placeto
ensure they are carried out and checked.

2.4.5 Fault tolerance and fail safety

A systemissaid to be fail-safeif it can determine when dangerous faults have arisen, either
within the system or in the environment where it is being used, and go to a safe state. In the case
of ameasurement instrument, this will normally be an unambiguous indication that the
measurement may be erroneous. A system isfault tolerant if it can continue to operate safely in
the presence of faults. Thisis more difficult to achieve, and unless very high availability is
required (as might be necessary in a process control system) fail safety isthe more appropriate
design am. Both fail safety and fault tolerance can complicate the design and increase the
resources and processing needed by the software (in critical systemsin general, over 80% of the
code may be used to ded with faults rather than normal operation). They must be built in from
the earliest stages of design rather than patched into the final code.

There are a number of techniques that can be used to achieve fail safety or fault tolerancein
software.

* Buildinadiverse agorithm for key calculations. For fail-safety, this does not have to
be as accurate as the main agorithm, but can be used to set bounds within which the
accurate calculation should fall.

* Implement key calculationsin two or more programming languages. Thiswill give
protection from errorsin interpreters and compilers for individual languages. For

Best Practice Guide on the Development of Test and Measurement Software

Page 34 of 133

example, if your softwareisimplemented in LabVIEW, writeamodulein C or C++
to repeat important calculations.

* Useaninterval arithmetic approach. Thisinvolves carrying two or three sets of
values through critical calculations: the real data and data perturbed dightly from the
rea data. Comparing these values at the end will identify software and hardware
problems due to numerical instability, singularities, etc.

* Move critica softwareto special hardware interfaced to the T& M software, such asa
Programmable Logic Controller (PLC) or a processor on a plug-in card (as was

suggested to overcome timing problemsin Section 2.4.2). This provides segregation
of critical functions, diversity, and increased robustness.

The details of how errors are handled (and the consequent impact on the complexity of the code)
depend on the support provided by the programming language used for the implementation.
Thisis discussed in more detail in the language-specific parts of

See[[24] [for more details and alist of further references. [26]]also contains agood deal of
relevant material in Part 3 Section 7.4.3 and the related tables and definitions.

2.5 Coding
2.5.1 Introduction

A major concern for code devel opment is to satisfy the design intent and ensure that the
representation of the program is easy to understand and modify by the software owners (i.e. the
design, development, mai ntenance and management teams). Some estimates of maintenance
costs as a proportion of total development effort are in the region of 80%.

It is useful to remember that every piece of advice concerning code design isthere for the
benefit of its human devel opers; the underlying computing platform has no requirements, say,
for amodular design or easy-to-read code. In fact, purely from a system perspective, tightly
coupled, dense cade will typically run faster than code optimised for a human reader.

Thusiit follows that the underlying code for T& M software not only implements the software
and control functionality, but that it also:

* actsasarepository of design rationale—Comments and descriptions allow
subsequent devel opers and reviewers to understand the intention of the software and
the assumptions made in its devel opment.

* actsasan aide-memoire for the software developer—As modules and the software
architecture evolve, it should not be necessary for the developer to retain in his/her
working memory the precise functioning of each module. An appropriate level of
information hiding in separate modules or components means that the top level
design is more easily understood; the details can be explored if necessary.

* delineates the delegation of responsibilities for product design—For larger software
projects the software architecture can be seen as away of describing how

3 October, 2002

Page 35 of 133

responsibility for software servicesisto be divided. Thus ways of implementing a
service (e.g. implementing Fast Fourier Transforms) can be delegated to separate
development agencies (for example, third party component providers, other team
members and so forth), and subsequently reintegrated without huge disruption to the
overall product.

Most modern integrated software development environments (IDEs) provide facilities to help
the user write readable code, and navigation facilities to browse the emerging software
structure. Examples of thisinclude syntax-based text coloration, drag and drop interface design,
online help and so on. Much of the software project is now managed by the devel opment tool
itself. Due to the syntactic checking of development environments such as Visua Basic and
LabVIEW, the scope for coding errorsis now largely confined to semantic errors. However, the
rich editing environments a so allow devel opers to write code that is quite impenetrable to a
new user, and to build user interfaces with almost any kind of behaviour. The importance of
code that is easy to read and understand is accepted in standard software development
Processes.

Devel opers can improve the comprehensibility of their code by thinking about how the code
will be read and understood and adopting coding standards where appropriate.

2.5.2 Coding standards

Most languages have a community of users who evolve simple coding standards to support
software developers using those languages. These coding standards are usually a set of
conventions and good practices that allow developersto infer more easily the behaviour of code
by reading the code itself. In some sectors (e.g. safety critical), these standards may go asfar as
to proscribe certain coding practices. Specific guidance for particular languagesis givenin

Part 3 of thisguide.

It should be noted that coding standards imply a cognitive overhead, especialy when first
introduced, as they require the developer to remember a set of practices, conventions and
restrictions in their software design. The longer-term benefits are code that is easier to
understand, review and modify.

Some aspects of coding standards are obviously language-dependent, and we give some specific
standards in Part 3. Some general rules you should follow are given below.

* Avoid ambiguous language features—f you are using a language for which several
compilers are available, avoid the use of features of the language that are interpreted
differently by different compilers.

* Avoid complex language features—Avoid complex or obscure language features if
possible, asthey will be particularly error-prone.

* Keep program units small—Keep program modules small, preferably so that each
modul e fits onto asingle A4 page or a single computer screen. However, do not use
modules that are so small that the data flow between them becomes complicated.

* Avoid global variables—Do not use global variables and data unlessit is essential.

Best Practice Guide on the Development of Test and Measurement Software

Page 36 of 133

Write readable programs—Make your programs readable by using upper and lower
case letters, meaningful identifiers, blank lines, white space and indentation.

Comment your code—Use enough comments to make your code understandable by
someone else. The code for the entry control system illustrates areasonable level of

comments (see [Appendix Cland Appendix D). See also for further

details on commenting and coding documentation.

Write defensive code—Use the principles of defensive programming, i.e. make your
code as robust to errors, unexpected inputs, etc., as possible. In particular, make sure
that sensor and actuator errors propagate to the user interface so that the user can see
that a problem has occurred.

Reuse code where you can—Devel oping libraries of T&M software components will
improve the maintainability of your software and will also improve integrity, asthe
components will be used and debugged over arange of applications (see also
[Section 2.10). Also make use of the extensive libraries and on-line resources

maintained by the suppliers of T&M software languages (see Appendix A.2[for some
of these).

Minimise use of low-level language—If you have to use alow-level language, or even
assembler language, to operate a particular interface, keep the amount as small as
possible. Write it as much like a high-level language as possible; e.g., if you are using
assembler, construct control structures such as for and while loop, and usethemin
preference to jumps.

Y ou may also wish to define standard interfaces to external librariesin your coding standards:

seeSection 2.10.2

2.5.3 Coding and software documentation

Documentation styles

Good code documentation is essential for assuring the quality of code and verifying its function,
and ensuring its maintainability.

Useful things to document for each procedure or subroutine include:

Function—A short description/summary of the intent of the procedure or function.
Assumes—T hings that are assumed to be set or true when the procedure is called.

History—A brief description ocedure has been modified as the program
has devel oped. w

Inputs—Short description of the input variables and their datatypes.

Returns—The datatypes of the output(s) of the procedure (if any).

3 October, 2002

Page 37 of 133

* |ssues—A list of known limitations and outstanding issues for the procedure.

Some documentation should be included with the code (code comments) and other parts
produced as a separate document. Advantages and disadvantages of these two approaches are

givenin[Table 1]

Advantages Disadvantages

In-line comments In-line comments can be The dispersa of the

easily modified and updated documentation over the

as the code devel ops so that collection of software files
the documentation isalways | means that there may be no
in step with the code one document that contains
the documentation for the
code. To mitigate against this
atop-level description should
also be maintained

Separate document | A separate document provides | More effort is needed during
asingle point of access for the | development to keep
documentation for the code. documentation up to date.

Does not require users to have | The documentation can get
development environment to | separated from original code,
view the documentation. resulting in out-of-date
documentation

Can be more discursive and
can contain other
documentation that is more
appropriately stored in
separate documentation, such
asinstallation instructions,
system requirements, other
global considerations such as
hardware set-up issues

Table 1: Comparison of documentation styles

In practice a mixture of both is probably the best way forward. Separate documents should
provide an abstraction of the code, explaining the algorithms and design of the software, and
describing behaviour that is only evident because of the environment (e.g. interrupt service
routines, code to stop race conditions, etc.). In-line comments describe the more local, detailed
behaviour of the code.

On a practical note, documentation is so important that even if you do not create it asthe codeis
written (for example, if inaburst of creativity you create a whole block of code in one sitting),
you should go back and do the documentation later. Y our documentation should be finished
before the point where it is needed as an input to an activity, so for example test specifications
must be completed before testing begins, design documents must be finished before design

Best Practice Guide on the Development of Test and Measurement Software

Page 38 of 133

reviews, and user documentation (user guide, installation requirements and so forth) must be
delivered with the software.

If you are developing a component for other developersto build on (as a subroutine or ActiveX
control) it is good practice to create a couple of examples to show how the component isto be
used (e.g. in the most typical development languages). This hel ps acceptance as users can more
easily seeif your component addresses their requirements. See also

Code layout and commenting

Some basic advice on code design and layout is given below:

Code layout and white space—The use of white space has long been acknowledged
as an important component in both standard software devel opment and graphical
design. White space helps the reader “ parse” the code or representation into
meaningful chunks, which are then investigated further according to the goals of the
user. In text-based languages such as Basic and C you should use nesting and
indentation to show thelogical structuresin the code, where possible. This alows
readersto skip into, or over, data and control structures. In graphical languages you
can use layout to show overall program flow and structures.

Commenting—All code should be well documented and commented. Comments
should explain to the reader what is happening at key points in the code (including
unusual design decisions) but not just tranditerate the code. Each main component of
the software (e.g. function, procedure, user interface) should also have a summary at
the start explaining the overall functionality of that aspect of the program.

Proximity relations—These are often interpreted by readers asimplying an
underlying logical or temporal relationship. This applies primarily to graphical
languages such as LabVIEW. Thus graphical components that are close together will
by default be interpreted as being related in some way. This can be further reinforced
in user interfaces by the judicious use of boxes or frames around related objects.

Sandard reading stereotypes— n countries where the written language is historically
European-derived, text and graphical representations have a “default” reading of top-
left to bottom-right, which reflects the mode of reading textsthat islearnt in early
educational experiences. This means that user interfaces and graphical representations
will receive a standard reading in the absence of knowledge of the representation or
program’ s functionality. Some graphical languages (e.g. G for LabVIEW) allow
developersto create code that violates this default reading behaviour. For this reason
itis generally recommended that graphical language representations be broadly
structured top-left to bottom-right, where appropriate.

Give variables and functions meaningful names—If you take careto give your
variables and functions meaningful names, you can develop code that almost reads as
an English narrative. Thus:

If CalibrationlsConplete() Then
Wit eDat aToFi | e(Fi | eNanmePat h, Ti nePeri od)

isto be preferred to:

3 October, 2002

Page 39 of 133

If cal conpl () Then
wdata(f, t)

* Other expectations and reading behaviour—Other standard interpretations of
graphical languages and interfaces will depend on domain experience and exposure to
different representations and their modelling clichés. For example, users familiar with
windows-based environments will easily recognise the behaviour of menus, check-
boxes and push-buttonsin any windows interface. Other visual representation
stereotypes include the use of lines between nodes to denote causal connections, data
dependencies (e.g. in dataflow diagrams), and temporal relationships (items on left
generally happen before those on right).

2.6 Verification and validation (V&V)

Verification isthe process of checking that the code accurately implements the design
(colloquially, that it “does the thing right”), and validation is the process of checking that it
meets the user’ s requirements (that it “does the right thing”).

V&V can be carried out by testing, and by a number of techniques that do not involve executing
the software, including reviews and static analysis. We recommend that you supplement testing
with at least one of these other techniques.

2.6.1 Testing

It isimportant to realise the limitations of testing as a method for achieving software reliability.
In most T&M software, there are so many combinations of inputs, outputs and internal states
that it would be completely impractical to test them all. This means that at the point you start
using your software for real measurements, only a small proportion of the possible tests will
have been carried out.

Testing is a huge subject, and for further information see Below we give an overview of
“formal” testing, by which we mean testing that is defined by awritten test specification and
test execution, and which should be carried out for all T&M software where reliance isto be
placed on the results. In addition, you may wish to carry out informal testing at the module level
to give confidence that the integrated software will function correctly.

Test specification

Thefirst stage of testing isto develop atest specification. Thisisa document that lists al the
teststhat are to be carried out, and gives the expected answers. It is highly desirable that the
majority of the tests are written by someone other than the developer. Again, thisisto avoid
“mind-lock”, where the developer writes tests to show that what they intend does happen, but
what they intend does not actually meet the requirements.

Thetest specification should include the following:

* “Realigtic” teststhat represent the likely values to be encountered when using the
T&M software.

Best Practice Guide on the Development of Test and Measurement Software

Page 40 of 133

* Boundary tests, that involve valuesjust inside or just outside the specified limits for
each input. Include special cases such as empty arrays, empty strings, and zero where
normally a positive integer will be used (e.g. for “number of scans”).

* Unusual combinations of inputs, including physicaly unlikely input val ues.

* Error handling. These include negative values where positive is expected (e.g for
“number of scans’), out-of-range inputs, missing files and bad path names, and tests
that cause modules or functions within the T& M software to return an error.

® Userinterface tests. These should include cancelling dialogue boxes, pressing
inappropriate buttons, aborting the T& M software when it is running, and random

typing at the keyboard. See also [Section 2.13]on user interface design issues.

® Stresstests. These test the T& M software under extreme operating conditions. They
should include exposing the software to maximum data rates, writing large disk files,
operating the software with several other applications running, etc., as appropriate.
Each test should be annotated with which items in the requirements description it checks.

An example of atest specification for the barrier control exampleis shown in

3 October, 2002

Page 41 of 133

Testno. 11

Relevant requirement: 2.1

Test criteria: The test is passed when all expected results are observed.
Test set-up: Barrier emulator attached to instrument interface.

Pre-conditions: 1) The vehicle sensor interface reads False (no vehicle). 2) Barrier
close signal to interface.

Step no. | Action Expected result
1 Press Open button Barrier raise signal to interface
2 Send True signal to vehicle Vehicle present panel light

sensor interface from emulator | illuminates

3 Press Close button No change to barrier interface

4 Send False signal to vehicle 1. Vehicle present panel light
sensor interface from emulator | extinguished

2. Barrier close signal to interface

Figure 11: Test specification

Where the development is being carried out for a customer, it is usual to include a set of
acceptance tests as the basis for formal acceptance of the T& M software. These are often based
on measurement scenarios and will be devised to “sell off” the requirements in the contract or
other procurement document. The acceptance tests can be written by the customer, or by the
devel oper and agreed with the customer.

For the majority of T&M software developments, it will be sufficient to carry out the majority
of formal testing at the “black-box” level, i.e. without looking inside the software. However,
you should also test modules or subroutines implementing complex calculations, e.g. FFTs.

=

If the T& M softwareis at the higher measurement software levels, it will be necessary to carry
out structural testing to aim to achieve a specified level of test coverage. Thisis ameasure of
the proportion of the program that the testing has executed. Test coverage is described in terms
of the proportion of the “objects’ that make up the software that are to be tested; not
surprisingly, the higher the proportion of objectsthat are tested, the better the reliability of the
software isfound to be in service, al other things being equal. Test coverage can be expressed
in terms of statement coverage (the number of source code statements covered), branch
coverage (the number of branches covered following a conditional statement), equivalence
partition testing (functional testing at the module level), etc. It can be surprisingly hard to
achieve high levels of coverage in software containing code to cover rarely encountered

Best Practice Guide on the Development of Test and Measurement Software

Page 42 of 133

situations. A realistic goal for smple T&M software is 100% statement coverage and 50%
branch coverage. For complex T&M software, it may be difficult to exceed 90% statement
coverage.

Also for T&M software at the higher measurement software levels, you may be able to use

reference test sets. These are very high quality sets of tests and expected results. Data sets may
be available concentrating on boundaries and other known areas of difficulty. A difficulty in
using them for T& M software testing is that they are aimed at specific measurement problems
and algorithms and are not general enough to apply to much of the software’ s functionality.
Moreinformation is contained in

Y ou could also consider carrying out some statistical tests. These are tests, selected to be

representative of the normal operation of the T& M software, that give a statistical estimate of
the reliability of the software in use. Roughly speaking, if you carry out 2.3n test measurements
without failure, there is a 90% confidence that the mean time to failure of the softwareis at least
n measurements. One way of generating enough tests to give ahigh level of assuranceisto
generate test values randomly within the expected usage profile. More information on statistical
testing is contained in

Test execution

Thefirst stage of testing is normally to exercise the T& M software isolated from the hardware,
by writing software test modules that mimic the behaviour of the hardware and record or display
the data sent to them. (Thisis the approach we have taken with the worked examples, where an
asynchronous procedure is used to model the behaviour of a car approaching the barrier.) These
test modules can be substituted for the normal driver modules during testing, or they can be
built into the software and data can be directed to and from them by setting a suitable “test”
variable. Data for these test modul es to send to the software can be stored in a special disk file
or, if there are not too many test cases, inthe “.ini” file for the software.

User input can be by hand, or from another program that allows test data to be recorded and
played back. This can either be a genera -purpose test program (see for examples) or a
specialy-written program.

Test results can be checked by hand, by entering the expected results into the test scripts for an
automated test program, or by running the tests on diverse software and comparing the results
(with allowance for small variations in numerical results)—thisis known as “back-to-back”
testing. One of these diverse programs could, for example, be an earlier version of the T&M
software written using a different language.

The test results should be documented, for example by producing anew version of the test
specification with the actual results next to the expected ones.

Keep the test programs and test data sets under configuration control, as they can be used for re-
testing the software if changes are made, as discussed in

Al If there aretest coverage targets, it will be necessary to run the tests on a more complex test

harness that measures the statements, branches etc. covered. Such atest harness will slow the
software down and may give problems in hard real-time situations.

3 October, 2002

Page 43 of 133

2.6.2 Code reviews

Code reviews should be carried out in much the same way as design reviews (see [Section 2.4.4).
Topicsto examine include:

Does the code correctly implement the design?

Have the appropriate mechanical checks been carried out?
Isthe code clear and easy to understand?

Is the code adequately commented (see w?

Isit easy to relate the code to the design?

Does the program have sufficient capacity and performance?
Are the agreed standards adequate, and being followed?

Is the configuration item properly identified and traceable?

2.6.3 Static analysis

Y Theterm static analysisis normally used to refer to analysis of programs, without executing
them, by specia software tools. Static anaysistools are only available for some T&M software
languages and are recommended for T& M software at the highest measurement software levels
(although they can be beneficially used at lower levelsto detect faults earlier in the lifecycle
than testing). Compilers and interpreters carry out some static checking, particularly for
consistency of datatypes. Additional tools may be used for:

=

checking conformance to coding standards

checking data use through programs, by examining the sequence in which variables
are read from and written to in order to detect any anomal ous usage (e.g. variables
that are read from before they are written to)

checking control flow through programs (e.g. identifying multiple entries into loops,
sections of code from which there is no exit, or unreachable code)

checking information flow, to identify dependencies between module inputs and
outputs, in order to check that these are as defined and that there are no unexpected
dependencies

checking performance, by analysis of worst case conditions to ensure timing,
accuracy and capacity requirements are met

A Static analysis aso includes semantic analysis, which considers whether the code has the
intended meaning. Semantic analysisis an example at the code level of the use of formal

Best Practice Guide on the Development of Test and Measurement Software

Page 44 of 133

methods (see the section on formal methods under Bection 2.4.3). There are two broad
approaches. Thefirst considers whether the code has a meaning that is definitely not intended,
such as overflowing array bounds, dividing by zero, and so on. (The kind of behaviour that will
cause arun-time exception if it occursin use.) Thisrequires only the code, and for some
languages tools are available that will carry out the analysis automatically, at least to the point
of highlighting places in the code that need further consideration.

The second approach considers whether the code has the intended meaning, as expressed by a
separate design or specification. This could be provided by the formal specifications described

in or may be developed separately, typically at afunction level. Again, there are
tools to support the comparison of the specification with the meaning of the code.

2.6.4 System tests

Y ou should aso plan for and execute the normal type of end-to-end system tests that you would
do on a conventiona instrument, using reference data and specimens, etc.

2.7 Maintenance

During thelife of the T& M software, it is almost inevitable that you will want to make some
changes. These may be corrective, because afault has been discovered, perfective, to improve
some aspects of the software’' s performance while still meeting the original requirements, or
adaptive, to change it to do a different job.

The maintenance of software always involves a design change to the program or to its data.
Maintenance therefore requires reporting of problems, diagnosis of the cause, implementation of
acorrection to the design, testing, and installation of the correction on the software in the field.
The relevant parts of the T& M software’ s documentation should be revised in line with the
change. It isagood ideato keep a specia set of tests, known asregression tests, for checking
revised software. Regression tests should include al or most of the origina tests, and be
augmented with tests illustrating problems that have occurred. Before the modified softwareis
released for use, it should have passed the regression tests.

Before you make a change, you should evaluate the need for it and its impact. (This sort of

change control isamandatory part of formal quality systems.) Generally, this evaluation should
be done by means of areview by developers and users, which should consider:

* theimportance of the change (does it impact critical results, or isit cosmetic?)

* thedirect impact of the change (doesit affect many modules or isit local?isit easy to
implement or does it involve tricky real-time aspects?)

¢ theindirect impact of the change (will error logging still work? will failure recovery
still work?)

* there-verification and re-validation that will be required, including regression testing

Y If your T&M software isin the higher software criticality levels, you should implement some
sort of formal in-service fault reporting system (this is sometimes known as a DRACAS—data
recording and corrective action system). This could be based on a ssimple database to collect

‘ 3 October, 2002

Page 45 of 133

error reports, or on a more elaborate bug tracking system such as Bugzilla and the like (see
[Appendix A.9). Y ou should provide a mechanism for users to contact you with problems they
have encountered with the software, and devise a procedure for analysing the problems and
deciding on what corrective action to apply (as described above), and then reissuing corrected
software if necessary. Y ou should also share any lessons learnt with othersin your organisation
who produce similar T& M instruments (see

2.8 Configuration management

Configuration management isimportant for T& M software for two reasons:

* |t ensuresthat a measurement can be related to a particular software version. Thisis
asimportant for T& M software as recording the serial numbers of instruments.

* |t enablesthe reconstruction of previous configurations of the software. This“re-
hydration” of previous versions may be necessary to answer a customer query, where
the customer is using a previous version, or to roll back to a previous version during
the software development if a development path proves problematic.

Users must be able to determine the version of the software they are using. Thisis best done by
placing it on the T& M instrument’ s front panel or by adding an item to the Help menu. The
software version number should also be printed on all reports and certificates generated by the
software.

The basic principal of configuration control for small software projectsisto create * safe
islands” (libraries), which record a snapshot of the software at some key point in its
development. This may be at key review stages, incremental versions, beta releases, released
versions and so forth. These libraries are created by saving the software filesin a secure
repository and recording enough contextual information to allow the correct version to be re-
hydrated at some later date. Each should be uniquely identified by a version number or letter,
and should have an associated configuration record that identifies all the congtituent itemsin
the version, and gives a brief summary of the key aspects.

If there is adevel opment team, there needs to be an identified librarian for the library, whose
responsibility is to check out files to the developers, ensuring that only one developer is making
changesto each file at any one time, and to check in modified files.

The library should be backed-up daily, for example to afloppy disk, Zip drive, tape drive, CD-
ROM, or ancther networked computer. If the development is important from a safety or
business point of view, the backup should be protected from fire and theft.

Small software development projects (say afew screens of code) can easily be managed
manually. For larger projects you may wish to employ a custom configuration management tool.
For text-based languages the following tools are available:

* Microsoft Visual SourceSafe. Seebt.tp#msdn.umsott.com/m.ed

* CVS—the most widdly used configuration management tool in the free software
community. See pttp://www.cyclic.com/|

Best Practice Guide on the Development of Test and Measurement Software

http://msdn.microsoft.com/ssafe/
http://www.cyclic.com/

Page 46 of 133

* MKS Source Integrity ™ 7.4—source code configuration management tool from MKS.
See http://www.mks.com/|

® Clear Casefrom Rational. SeeLII.p..LbAMML.La[.LonaLchLl

2.9 Metrics

& For more critical developments, you may wish to collect some metrics (measures) of the T& M
software. Metrics are best used comparatively, for instance to compare project progress to
previous, similar T& M software projects, or to identify error-prone modules within the
software. Metrics can be used:

* To measure fault density—BY far the most common measure is the number of
residual faults per thousand lines of code (kloc), although this figure depends on the
interpretations of “line of code” and “fault”, and the point in the lifecycle at which it
is measured.

* Tomeasuresize or complexity of software—T here are various measures of software
complexity, many of which are supported by tools, although these have to be used
with care. The most effective uses for these kinds of metrics are to identify problem
areas (which have anomalously high complexity measures), and to estimate
development or maintenance effort.

Metrics can also be used to measure the software development process rather than the software
itself, e.g. to assess the degree of control and repeatability provided by the process.

See[[18]Jfor more details on all these types of metric.

2.10 Software and component reuse

The aim of this section is to provide guidance on the reuse of code and software componentsin
T&M software. The specific issue of the assurance of software componentsis addressed in

Section 2.12.4

Although a separate best practice guide on software reuse (METROS) is being maintained under
the SSfM programme we present an overall perspective asit appliesto T&M software
devel opment.

There are two common approaches to software reuse for software applications:
* software libraries and in-line code reuse

* stand-alone software components

Section 2.11|contains guidance on mixed language programming, which may be relevant when
using libraries written in another language (e.g. the NAG Fortran libraries).

3 October, 2002

http://www.mks.com/
http://www.rational.com/

Page 47 of 133

2.10.1 Software libraries and in-line code reuse
In this subsection, we consider the use of existing source codein T& M software.

As T& M software developers write code, useful routines can be abstracted and re-used in other
modules or programs. When other programs are developed, these functions can be integrated
into the project and saved as part of the project files.

Since the devel oper has access to the underlying source code, the software functions and
procedures can be assured as part of the whole application. Any limitations in the software can
be overcome by reworking parts of the software and tailoring it to the requirements of the
application.

Some drawbacks of this approach are that the reuse is limited to the language (and generally the
platform) on which the library is based. Moreover thereisarisk that subtle data manipulation
algorithms might be modified by users not familiar with the issuesinvolved. Y ou should also
check that any assumptions about the way that the library is to be used still hold.

Also third-party software developers have historically not favoured this approach as it exposes
some commercial risks of distributing the underlying intellectual property in the form of the
underlying source code. (In languages where source libraries are the norm, this can be addressed
by code obfuscation.) In-line software reuse within an organisation is more common due to the
freer movement of intellectual property.

Any software that is reused should be well-documented (see to alow efficient
evaluation by potential users as to its applicability and interface requirements.

2.10.2 Reusable software components

Software components are discrete bundles of functionality with standard defined interfaces that
hide much of the internal functionality. Often these components make assumptions about an
application or “middleware” layer, which provides the framework in which their interfaces can
be exposed; in short the component simply “plugs-in” to the devel opment environment.

Most modern development environments have facilities for incorporating reusabl e software
components into software.

The most obvious example of this historically has been the use of standard device driversto
allow high level code to interface to a hardware component, such as a voltmeter. Modern
examplesinclude COM components in a Windows 32-bit architecture and sub-VIsin
LabVIEW, for example to implement:

* Interface components—These provide graph controls, dider bars, push buttons and so
on.

* Interface-less components—These provide a smple or standard devel oper interface to
some underlying functionality. Components or T& M software that interface to
databases, or provide data manipulation services, are examples of these.

Another exampleisthe NAG libraries, examples of whose uses are shown in

Best Practice Guide on the Development of Test and Measurement Software

Page 48 of 133

Another implication of the lack of source code is that the end-user is limited to methods and
properties supplied by the component devel oper.

Developing software components

If you aim to devel op a software component for other devel opers to use, you will need to
develop a usable API (Application Programming Interface) for your component, and support the
assurance activities for the software component by its end users.

A usable AP is based on concise documentation and a coherent underlying object model to
support other developers in determining how to interface to your component, how to distribute
it, what errorsto expect and so forth.

In designing the interface to the component you will need to handle unusual combinations of
inputs through a good error model. Some effort is therefore needed in making a component
more generic than may have been necessary in its original application.

Procuring software components

Asaevaluator of available software components, you need to build a picture of the suitability of
a component to your application’ s specific requirements, to assure the quality of any external
software, and support the users and devel opers of the software.

The following issues can be used to form the basis of ajudgement:
* Rdiability of the component—Thisisdiscussed in m

* Dependencies on other components—What other libraries or components are
required to use the component, and what versions of these libraries are needed?

¢ Distribution aspects—Are there any licensing issues? For example some components
are not royalty-free for subsequent application distribution (although thisis becoming
less common).

* Availability of source code—For long term availability, and modification.
* Cost of component.

* Ease of use and evaluation—What is the quality of documentation? Are there any
sample applications to illustrate how it can be used? Are there evaluation versions of
the software for building a prototype? Evaluation should be against a defined set of
criteria based on the requirements for the T& M software.

® Sde effects—Are there any unwanted/unexpected side-effects of the software? An
exampleisan interface control that behaves in an unexpected way—see the
discussion on twiddle knobs and modal didoguesin [Section 2.13.2

3 October, 2002

Page 49 of 133

2.11 Mixed language programming

In many cases, the implementation language of a standal one software component isincidental:

it is merely the language in which the desired functionality happens to have been implemented.
In other cases, the use of a second language has specific benefits. It may, for example, provide
easier access to the underlying hardware. Device drivers are often written in C or C++ for this
reason. It may also offer higher performance for intensive computations through being compiled
rather than interpreted.

The problems that arise in mixed language programming depend on how tightly the interface
between the languages is defined. There will always be issues of parameter and result types. For
the basic types (integers and floating point), the languages are likely to use different names for
the same underlying hardware type, and the problem isjust one of determining the
corresponding names used. The main pitfal here is that these basic types may come in variants
with different sizes, and the same variant must be used on each side. Even at thislevel, there
may be no obvious correspondence in some cases. for example, many languages assume that
integers are signed, but C and C++ also support unsigned integers.

Data structures (strings, records, arrays, and objects) cause far more problems, because each
language makes its own decisions about how the components will be laid out in storage. For
example, arrays may be indexed starting at 0, 1, or a program-defined lower bound. Two-
dimensional arrays may be represented with either elements in the same row being adjacent in
store or elements in the same column being adjacent in store. (Most languages adopt the former
convention, but Visual Basic and Fortran use the latter.) The order of componentsin structures
is not necessarily the order in which they appear in the source, and may not even be defined by
the language.

Calling conventions can also differ. Parameters are passed on a stack in most language
implementations, but they can stack parametersin left-to-right or right-to-left order, and can
give the job of unstacking parameters on return to the caller or the callee. Languages can also
pass either the current value of the parameter (which may be copied back to the parameter
variable on exit) or apointer to the variable that allows it to be updated directly.

Error handling may also be very different in the two languages. The only language independent
technique is to return an error indication through a parameter or the result of afunction.

There may be special naming conventions to be considered in calling external code. Where
identifiers are case sensitive in the called language, the name must be reproduced exactly in the
calling language. (This may cause problemsif that language is not case sensitive.) Where the
called language is not case senditive, it may standardise the case used internally, and this may be
reflected in the name exported to the caller. Some systems modify the names of interface
symbols (by introducing aleading underscore, for example) to reduce the chances of a name
clash.

When using a mixed language approach, for whatever reason, you should therefore: be sure that
you understand the details of the procedure calling interface that will be used, and any
annotations that need to be made to procedure declarations or callsin your program to take
account of this. It may be worth devel oping a simple program to test any mixed language
interfaces that are to be used before committing the design of the full system to their use.

If developing the library to be called aswell asthe calling code, consider the range of potentia
calling languages to be supported and:

Best Practice Guide on the Development of Test and Measurement Software

Page 50 of 133

* Restrict the parameter types to those that have a common representation on each side.
Where possible, use only basic types rather than structures.

® Use appropriate methods of indicating errors.

* Document the procedure names that the caller will have to use (which are not
necessarily those in the source).

* Provide examples of thelibrary usein al the planned calling languages. Where those
languages require declarations of external procedures, provide appropriate collections
of definitions.

2.12 T&M software assurance

Where measurements are being made and the resultant data sets manipulated by computer
technology, it isimportant that you have a healthy scepticism of the results and awareness of the
ways in which data and algorithms can be in error or misleading. The relationship between user
trust in software and its validity isacomplex one, but users can migudge the actual integrity of
aT&M softwarein both directions. Gullibility errors can occur when, for example, a user
interface presents bad data in a seemingly authoritative manner. Incredulity errors are perhaps
less obvious, but can occur, for example, when the perception of a credible product is unduly
influenced by an unreliable beta version. Interfaces with low usability will tend to reduce users
perception of credibility even if the underlying data and computation are valid.

The Institute of Chemical Engineers publishes a set of guidelines that remind engineers of
their responsibilities in decisions based on computing technology, and provide practical advice
on common classes of error that can exist in the software and organisational processes, and we
recommend that you obtain a copy.

The remainder of this section describes a systematic approach to the assurance of T& M
software.

2.12.1 Overview

Much T&M software is used in applications where errors can have adverse commercial or even
safety consequences. As aresult, users will need assurance that the likelihood of errors has been
controlled. In some cases, this assurance will be formally examined by aregulatory authority.
Very early in the development of the software, you should address the extent of the assurance
needed and how it will be produced. Thisinvolves:

® carrying out arisk assessment (M

* designing a process for assuring the application software in away appropriate to the
risk (Bection 2.12.3

* identifying the means for assuring any off-the-shelf software packages used in the
development (including devel opment environment and operating system) to the

identified level (Bection 2.12.4

3 October, 2002

Page 51 of 133

3 For small, non-critical T&M software, it is sufficient to consider assurance informally.
However, for larger T& M software, and certainly for saf ety-related software or software in the
higher measurement software levels, we recommend that you produce a Dependability Case for
the software A dependability case presents a convincing and valid argument, based on
evidence, that a system is adequately dependable for a given application in a given environment.
The idea generalises that of a safety case to cover issues not directly concerned with safety.

For T& M software, the dependability case could be quite short, but should justify the allocation
of level and the choice of development process, including the use of software packages, and
provide evidence that any numerical dependability targets have been met. Y ou should also make
sure you aware of any sector-specific standards you should be applying.

2.12.2 Risk assessment and mitigation

Thefirst step in addressing assurance is to establish the possible consequences of software
failure. These may be loss of business revenue due to a process shutdown or the need to recall
out-of -specification components, personal injury or loss of life, or environmental damage from
escaping materials. The more severe consequences are less tolerable, and will require stronger
assurance that they do not occur.

Where an instrument is being developed in isolation, it will not be possible to judge these
application-level consequences. Typical consequences at the instrument level are that it will fail
to complete a measurement, or that the results will be outside some tolerance, and you should
attempt to characterise and document the frequencies of such failures. The instrument user can
then decideif thisis adequate for their particular application.

The consequences of software failure can often be mitigated by relatively simple hardware or
procedural means. For example:

* Anemergency stop button can allow the user to force the system to a safe state in the
event of failure.

* A hardwired interlock can prevent the software from commanding an operation in a
dangerous situation.

* A toughened glass screen, remote operation, or aremote viewing camera can protect
the users from an otherwise dangerous failure.

* A “sanity check” performed by the user can detect errorsin the calculation of aresullt.
Thisinvolves designing the user interface to prompt the user to do arough cal culation
to check the result. The user interface will need to provide suitable intermediate

results. If the instrument produces a certificate, a space can be provided for the rough
calculation. See also [Bection 2.13.2

These external mitigations can reduce the level of assurance required for the software and hence
are an important part of the design of the application or instrument as a whole. Remember,
though, that safety procedures are not always carried out properly, either deliberately or through
omission, and so hardware safety features are to be preferred when they are practicable.

The end result of the risk assessment will be ajudgement of the criticality of the software, or, in
more complex and critical applications, a numeric target for the failure rate of the software as a

Best Practice Guide on the Development of Test and Measurement Software

Page 52 of 133

whole or itsindividual functions. For example, in an approach designed by NPL (see
, Software isjudged as

Not critical, if it has a negligible effect on overall result, and thereis no danger of
loss of businessincome or reputation.

e Significantly criticd, if it may result in incorrect results but these will definitely be
spotted, or there is potential for loss of income or reputation.

* Substantialy critical, if it may result in seriousdly incorrect results or errors may not
be spotted, or it islikely to lead to loss of income or reputation if faulty.

* Lifecritical, if it may result in personal injury or loss of life.

The SSfM Best Practice Guide No. 1: Measurement System Validation [38]]assesses criticality
similarly, on ascale from 1 to 4, while |EC 61508 [26]]assigns a Safety Integrity Level from 1 to
4 based on the tolerable failure rates.

2.12.3 Process design

The development process must be designed to provide assurance commensurate with the
consequences of software failure and itsa priori likelihood of occurrence. The latter depends
mainly on the complexity of the program. The NPL approach assesses software as very simple,
simple, moderately complex or complex based on the complexity of the functionality and how
easy it isto understand, the size of the software, the ease of modification, the degree of control
of external systems, and the complexity of the mathematics involved.

Thelikelihood of failureisincreased if the software;

is difficult to test

* isreliant on key staff, isto be produced by inexperienced staff, and/or isto be
produced by alarge team

* isto be produced to ambitious timescales
* hasambitious or poorly defined requirements

* incorporates new technology or anovel design

On the other hand, the likelihood of failure is decreased if the software:

* has an aternative means of verification
* isto be produced by experienced staff

* utilisesamodular approach

The NPL approach isimplemented by a software tool that derives a Software Integrity Level
(again from 1 to 4, but not related to the Safety Integrity Level of that takes these factors

3 October, 2002

Page 53 of 133

into account. The SSfM Best Practice Guide No. 1 derives a Measurement Software Level
(from 1to 4) in asimilar but less agorithmic way.

In each approach, the index level is used to choose an appropriate process. Thiswill include
both techniques that have a good likelihood of achieving the MSL or SIL (e.g. an appropriate
programming language); and techniques to evaluate (at least to some degree) the achieved
integrity (e.g. testing). For example, the SSfM Best Practice Guide No. 1 makes the following

recommendations.

M easur ement software Technique Referencein this document
level

1 Review of specification Section 2.3
Mathematical specification Section 2.3
Defensive programming Section 2.5.2
Code review Section 2.6.2
Structural testing Section 2.6.1
System testing Section 2.6.1
Numerical reference results T

2 Review of specification
Software inspection of T
specification
Mathematical specification Section 2.3
Static analysis Section 2.6.3
Boundary value analysis T
Defensive programming Section 2.5.2
Code review Section 2.6.2
Numerical stability T
Statement testing Section 2.6.1
Statistical testing %ﬂon 2.6.1
Boundary value testing tion 2.6.1
Accredited testing T
System testing %ﬁon 2.6.1
Stresstesting tion 2.6.1
Numerical reference results T
Back-to-back testing

Best Practice Guide on the Development of Test and Measurement Software

Page 54 of 133

M easur ement software Technique Referencein this document
level
3 Software inspection of T
specification
Mathematical specification Section 2.3
Static analysis Section 2.6.3
Boundary value analysis T
Numerical stability T
Verification testing Section 2.6.1
Statistical testing Section 2.6.1
Statement testing Section 2.6.1
Branch testing Section 2.6.1
Boundary value testing Section 2.6.1
Stresstesting Section 2.6.1
Back-to-back testing Section 2.6.1
4 Mathematica specification Section 2.3

Formal specification Section 2.4.3
Static analysis Section 2.6.3
Numerical stability T
Qualification of T
mi croprocessor
Verification testing Section 2.6.1
Branch testing Section 2.6.1
Boundary value testing Section 2.6.1
Source code with executable |

T Outside the scope of this guide.

¥ Thisistesting against a validation suite developed by athird party. It is very unlikely that

such suites will be available for much T&M software.

9 Thisissupply of the source code to users together with the executable program.

Table 2: Techniques for measurement software levels

Safety-related T&M software should be developed in accordance with IEC 61508 [26]] This
makes process recommendations based on the Safety Integrity Level, which is based purely on
the assessed criticality of the software. The standard identifies a large number of techniques,
which are marked as “not recommended”, “don’t care”, “recommended” or “highly
recommended” according to the SIL. Highly recommended techniques should normally be used.
However, the assessment of a priori risk can be used as ajustification for omitting highly
recommended techniques where they are inappropriate for the T& M software under
consideration. Thus for example a SIL 2 program may be of low a priori risk because it is very
simple and is to be developed by experienced staff. Although IEC 61508 has static analysis (see
as a highly recommended technique at this SIL, the decision might then be taken
to omit this and rely on testing (see Bection 2.6.1].

3 October, 2002

Page 55 of 133

2.12.4 Assurance of software packages and components

T&M software frequently relies on one or more off-the-shelf software packages, which may
include an operating system (e.g. Windows 98 or Windows 2000), a graphical programming
language (e.g. LabVIEW), a programming environment (e.g. Visual Basic editor), a compiler
(e.g. C compiler), etc. It may also use avariety of other software components, as discussed in
Y ou should give some thought to how you are to justify the software integrity of
these packages as well as of your application program.

This section also applies to the assurance of complete third-party T& M software components
(e.g. Visor sub-Vls).

Users should be wary of using third party software especialy in critical applications. You
should define in your quality system what tests and other forms of assurance are required. Be
aware that even well known packages contain undocumented features (see
http://www.eeggs.conV|for alist of some, such asthe flight simulator in Microsoft Excel 97).

Generally users do not have access to the underlying source code, either because the component
has been developed in a different language, or because the component devel oper wishesto
protect their intellectual investment by not giving away the source code. Therefore assurance
has to be based on a combination of trust (e.g. atrusted supplier), first-hand experience (e.g.
number of hours of bug-free operating experience) and other evidence (good documentation,
wide industry support, good technical support, etc.).

A basic level of assurance for a software package is the following:
® reasonable documentation

¢ development to an appropriate quality management standard, typically the 1SO 9000
series

* pre-release testing using alarge test suite, with faults logged and corrected; there

should be atarget for the number and severity of known faults at release (no software
above afew thousand lines of source codeisfault free)

¢ adequate configuration control, so the version nhumber can be established and faults
and fixes related to a specific version

® aprocessfor recording and publicising faults found in service

* periodic maintenance releases to fix faults rather than add new features

Y ou can build on this basic level of assurance with:

¢ information about the package in your organisation, if there are anumber of users and
faults are logged

* information from an established user base in asimilar application area, including a
“reference site” (possibly identified by the package supplier) or a successful
implementation reported in the published literature

Best Practice Guide on the Development of Test and Measurement Software

http://www.eeggs.com/

Page 56 of 133

¢ information about the package in more genera use, for instance from the Internet—
this may be anecdotal, but the absence of bad reports gives some confidence in the
package, whereas repeated reports of problems are a cause for concern

Y ou will find that some packages are particularly problematic, such as some ActiveX
components that are poorly documented.

The assurance of the numerical computationsin your T&M software will be increased if you
use one of the established, high-quality libraries of numerical software, such asthe NAG
LINPACK [44]]or NPL libraries[28]]

If you cannot obtain adequate assurance from the software packages you are using, and you

cannot switch to others, you will have to add design features to mitigate potentia problems, as
discussed in

A detailed discussion of the assurance of packages and componentsis contained in

and [}

IEC61508 i mposes specific requirements for the validation of packages and componentsin
safety-related software.

2.13 Human factors in T&M software development
2.13.1 General human factors issues

In this section we address a number of important human factors issues arising in the
development of T& M software. General advice on human factors in measurement and
calibration can be found in Human factors impact two particular classes of T& M software
user:

* Design, development and maintenance roles—T hese include other devel opers,
maintainers, testers, reviewers, software managers and so forth, typically in the same
organisation or department.

* End users—Usable softwareis critical for customer satisfaction and acceptance.
Usahility is not just restricted to a well-designed graphical interface (if applicable),
but should also consider the interaction logic (how will the user expect the system to
behave) and integration with other desktop systems (e.g. spreadsheets etc).

Some general human factors points that can be borne in mind in systems development are:

* Limitations of working memory—Cognitive research has demonstrated that thereisa
limit to how much information can be held at any time in a person’s working
memory. Although the exact amount is a matter for debate, some general evidence
suggests about seven itemsE|at any time. This can be somewhat increased by
chunking (i.e. grouping together related items in one “chunk”). What this meansis

1 Consider how long a telephone number can easily be recalled through simple repetition alone.

3 October, 2002

Page 57 of 133

that you should not expect your users to remember large amounts of information
(such asinitialisation settings, the behaviour of a complex procedure, and so forth).

® Common error classes—A useful distinction is made between two common classes of
error, namely: (a) dips and trips (a correct plan incorrectly executed); and (b)
mistakes (where incorrect actions are initiated based on an incorrect user goal,
underlying user model, or plan of what should be done). The most common dlips and
trips can quite easily be caught by awell-designed interface that validates user input
or performs basic syntax checking on code asiit is written. Mistakes are harder to
prevent, and require a transparent user model that allows a correct mental model to be
built, and relevant labelling and contextual information (e.g. in the form of
meaningful messages and labels, hypertext help on the interface, and so forth).

These general human factors issues should be borne in mind when designing and documenting
T& M software, and are one of the motivations for the guidance on requirements description,
design and coding ([Section 2.3(Section 2.5) above. Even if thereis only one developer (i.e. the
“developer-user™), well-designed and documented code is much easier to revisit after a period of
absence.

Human factorsin the design of the T& M human computer interface are discussed next.

2.13.2 Human Computer Interface (HCI) design

Introduction

Designing a user interface for the T& M instrument is an important aspect of T& M software
design—especially where the T& M instrument is to be used by someone who is not the
developer. A good user interface should not intrude and get in the way of efficient use of the
instrument; at best it should be “invisible” in as much asit provides asimple and intuitive
interface to the instrument.

Most development environments have powerful facilities for building graphical interfaces.
Generally the temptation to produce a“flashy” interface should be avoided; simple layout,
standard controls, colours and fonts are preferred. Have a thought for the end user of the
instrument.

Usability is based on a clear understanding of how the end user will expect the instrument to
behave (in terms of the instrument behaviour and functionality) coupled with a smple approach
to interface design. Remember that 90% of the time the user will be using other pieces of
software, and so your interface should build on (and not subvert) their general expectations of
how software interfaces should behave.

There are a number of risks that can occur from poor interface design:

* T&M software often controls sensitive instruments with a physical interface to the
real world—an out of range value may damage measurement hardware and samples.
Y our user interface should expect the user to enter out-of-range and meaningless
values.

Best Practice Guide on the Development of Test and Measurement Software

Page 58 of 133

* T&M software that presents datain a misleading way can lead the user to make
incorrect inferences about the measurement itself. For example, avalue simply
presented as a number may be misinterpreted without a proper indication of its units.

* Aninstrument that is hard to understand and control will result in user frustration and
reduced perceived credibility of the instrument and its supplier.

There are plenty of resources for HCI design. It is not our intention to replicate existing materia
here. However, some summary points are briefly discussed below. A selection of Internet

references concerning interface design can be found in

General rules for usability

Make use of user stereotypes of computer interfaces where possible. Remember that 90% of the
time users will be using other applications rather than your T& M software. They will have
certain expectations of how many interface controls will work. Therefore you should use
standard controls where possible, and adhere to standard user interface designs and conventions
(e.g. interms of order of menu items—file, edit and so forth—and positions and names of
buttons). In the following example, users may not realise that they can click the image of the
printer to print. A standard button is much more inviting.

. Interface example !IEIE

Figure 12: Use standard controls to invite standard user behaviours

Group controlslogically according to their function and relationship to the underlying logic of
the instrument.

Add labelsto theinterface to indicate the function and meaning of information that users are
entering or interpreting. This should include measurement units where applicable, and also a
description of what the control isfor. Other ways of providing contextual information isvia
tooltips, help buttons and messagesin the status bar. Dialog box messages should also have
meaningful text in them.

g [0-10 walkz]
400 [0-1000 milizeconds)]
[~ Output b file

3 October, 2002

Page 59 of 133

Figure 13: Label controls to indicate their function

Use standard fonts (typically the default fonts) where possible. In terms of on-screen readability,
sans-serif fonts (Arial, Verdana, Helvetica and so on) are generally considered more readable
than serif fonts (Times Roman and so on). Script-based cursive fonts are very hard to read on-
screen.

When presenting numerical datafor visual comparison, use the following in order of preference:
length (e.g. bar chart, linear displacement, graph display), angle (dial knobs and indicators),
colour (which should only be used for crude comparisons).

Larger applications should have an integrated help file. Include help on the interface where
appropriate.

Use progress bars or other indications of activity (hour glass cursors etc.) to indicate the
progress of any activitiesthat can take along time (longer than a couple of seconds). Otherwise
the user may believe the system has crashed and attempt to close the application forcefully.

If datais saved from an application, let the user choose where the file will be saved.

Standard exit routes should be labelled so users know how to end the program. It is normally
good practice to create an explicit “stop” button to alow the program to clean up before
finishing, rather than just aborting it.

Relationship to hardware interfaces

An appropriate interface for computer interaction is not always the same as the best onefor a
hardware device. If you want to create a control panel for an existing device, don't just re-
implement the hardware asit is. This will require usersto be familiar with the older hardware
device to become accustomed to the functioning of the new interface. Users will expect the
software interface to use standard controls with familiar behaviour where possible.

Another reason for not simply re-implementing the hardware control panel isthat some physical
controls that allow sensitive manual fingertip control do not work well for a keyboard-mouse
interaction mode. An example of this hardware control panel fixation isthe use of very small
control knobsthat are hard to control with a mouse. Instead, use existing hardware control
panels as guidance, but try to build the new interface using standard controls where possible and
think of the functionality (rather than just replicating the look of the original instrument).

Lastly, software interfaces enable some interlocks etc. to be implemented much more easily
than in hardware. For example, itissimple to “grey out” a software control that is not applicable
at the current stage in a measurement, whereas creating hardware interlocks to prevent the
operation of controls according to the setting of othersis complex and expensive.

Modal effects
Be careful about presenting information that is live but that freezesin certain modes.
A particular situation arises when modal dialogs are used. These dialogs are designed to lock

out the rest of the application and will prevent the user from reaching all other parts of the
interface (in particular any abort/stop buttons that have been defined). They will aso stop other

Best Practice Guide on the Development of Test and Measurement Software

Page 60 of 133

displays updating (e.g. the temperature display does not update when the printer dialog is
displayed).

With standard software packages, some modal interaction is unavoidable, but should be reduced
asfar as possible (e.g. by using drop-down menus rather than dialogs). Some warning of modal
effects can be provided on the user interface, for example by greying-out displays that do not
update while amodal dialog is displayed.

Use of colour

Use colour sparingly. Where colours are used, use standard colours, with default (usualy grey)
for items that do not use colours. Colours can be used to good effect in drawing attention to
some behaviour (a value exceeding some set-point) or to indicate a change of state (like an LED
indicator). However remember that a significant proportion of male users are red-green colour
blind. Colour is abad way to indicate subtle comparative values (e.g. using shades of green to
show values that need to be compared); use linear or angular displacement instead (e.g. agraph

or length display).

Colours also have standard cultural connotations and these shared meanings should be
overridden with care. For example green will generally be interpreted as indicating a “ good” or
“acceptable” response; red denotes an “undesirable”’ or “hazardous® state. As an example of
ambiguous use of colour, in Figure 14](where the Y es button isin green and the No button isin
red) consider which is the hazardous response and whether the colours reflect this.

Delete All Records B=
Are pou sure you want to delete
all records from the databaze?

Yes | Ho |

Figure 14: How to confuse with use of colour
If your users are from other cultures you should consider whether the colours you employ have
different connotations to the ones intended.
The use of garish colours should be avoided.

Error avoidance and handling

Although the rules above will help the user avoid errors by understanding the interface, you
should design-in specific features to avoid and detect errors.

When there are a number of options to choose from, use a select box or enumerated list, rather
than relying on the user to type in the value. This reduces the scope for user error.

3 October, 2002

Page 61 of 133

. Use a zelect box for enumerated oplions !Em

Channel to be opened

Open channel

[nput channel 2
CDuput channel 3
Duput channel 4

Figure 15: Use select boxes for enumerated options

Use input validation for fields where users enter data by checking whether the value entered is
of the right type and in the correct range.

200 (0-100 raillivalts]

Cancel |

& Please enter a number between 0 and 100 millivalks

Figure 16: Employ input validation routines to check user data

Design the interface to reject input that is not appropriate for the state of the measurement, for
instance by greying-out controls.

Third-party controls

When using third-party controls you should verify that the interface behaviour is as expected
and there are no unwanted interaction modes. For example, the dia knob in the National
Instruments “ ComponentWorks® ActiveX control library (and also in LabVIEW) alowsthe
user to adjust the value of the knob up to its maximum and then pass directly to its minimum
value (i.e. clock-wise from 0-10 and then smoothly to 0 in the following example) in asingle
mouse movement. Thisis contrary to the usual experience of a hardware knob with a minimum
and maximum value. For instruments controlling sensitive samples this could cause damageto a
specimen. A safer approach might be to use alinear dlider, or not to have real-time response to
user interaction.

Best Practice Guide on the Development of Test and Measurement Software

Page 62 of 133

Figure 17: Check interface controls for unexpected behaviours

Use of different operational modes

Y ou may design your T& M software to run in different modes. A particular exampleisthe
provision of asimulation mode for checking the software and for training. Thisis potentially
dangerous if the user does not readise that they are in simulation mode when making a critical
measurement.

Therefore you should make messages regarding operational mode obvious by appropriate use of
font size, colour, brightness and flashing display. M essages should also be present continuously,
not intermittently.

It may be appropriate to have some sort of access control (e.g. via a password) to prevent
inadvertent or unauthorised use of special modes, but it is normally better not to require a
password to return to normal mode, in case the software is left inadvertently in the specia mode
and the normal user does not know the password.

2.14 Organisational support and leverage

In this section we discuss some of the organisational issues that are important in the
development of T& M software expertise and competencies within the organisation. Although
ultimately software is written by individuas, it isimportant to address these issues and discuss
synergies between organisational-level behaviours and individual practice.

Many of these practices come under a broad banner of what is sometimes termed “knowledge
management” . Although thisis a somewhat nebulous term, the basic ideaisto address how an
organisation makes the best use of itsintellectua assets. At apractical level, there are anumber
of practicesthat can enhance the devel opment of software expertise:

* Knowledge sharing and the development of expertise—Devel oping competencies and
skillsisakey strategy for organisations to increase their intellectual capital. In large
organisationsit istypical that “ pockets of expertise” develop inisolation in different
departments. Users with expertise in certain areas can be encouraged to share their
experiences through recognition of the value of this expertise. Certain kinds of
knowledge (e.g. so called “tacit knowledge”) are hard to transfer via documentation
and other tangible artefacts (for example, knowledge concerning operation of
complex equipment and the interpretation of results). Two organisational structures

3 October, 2002

Page 63 of 133

that aid the dissemination of expertise are “ mentor-apprentice” relationships and
knowledge-sharing networks. Mentor-apprentice relationships are good for
transferring tacit knowledge in which an experienced developer works with newer
employees. “ Knowledge-sharing networks” are informal groups of individuals who
have a specialist interest in a certain problem, research area or technology, both
within an organisation and in other organisations or companies. They are typically
characterised by aloose coupling and informal communication and knowledge
sharing. Building on these emergent networks can be achieved through tolerant
organisational support rather than a strict management approach.

® Organisational culture—Thisrefersto the set of unwritten rules and practices
concerning “how we do things around here”. Individua practices are modulated by
the practices and culture of the organisation in which the are working.

® Accessto resources (Internet, external and internal)—Self-directed learning is the
basis for much of the learning that takes place within an organisation. In comparison
to formal training courses, which may be relatively costly, developers can learn from
books, each other and the Internet. Devel opers need to be encouraged to contribute to
these resources, which include.

O Intranet—Aninternal intranet is an excellent mechanism for sharing expertise
and devel oper resources within an organisation. Anintranet is a corporate
information architecture based on Internet standards and technologies (Web
browsers, email, search engines). Devel opers use an intranet for developing
internal code libraries, Web pages on issues and concerns, illustrative code
snippets and examples. Email is a powerful technology for communication and
collaboration. At amanagerial level, organisations can put quality documentation
(procedures, work ingtructions, coding standards, etc.) on the intranet to allow
easy dissemination, updating and hypertext referencing.

[0 Books and materials—These include departmental libraries and internal support
documentation (quality standards, procedures, etc.).

O Linkswith other organisations—For example, this can be through common
interest clubs such as the SSfM specid-interest groups.

O Internet—The widest range of material for software developersis on the Internet
(see also Appendix A). Organisations should collect URLs of useful sites and
monitor relevant list servers. Although there are security and IPR concerns
arising from the use of material from the Internet (e.g. viruses), organisations are
ill-advised to prevent devel opers from accessing these resources, athough some
restrictions may be appropriate. Conversely, individuals using these resources
need to be aware of the security and assurance issues of using materials from the
Internet.

* Training—Formal training courses exist for most T&M software development
technologies (e.g. LabVIEW, Visual Basic). Organisations should identify courses
that address the needs of different levels of developer.

Organisational knowledge-sharing practices should be designed to provide a benefit and
incentive for participating individuals.

Best Practice Guide on the Development of Test and Measurement Software

Page 64 of 133

2.15 Operation

Detailed guidance on T&M instrument operation is outside the scope of this guide. However,
there are anumber of things you should do to maintain the integrity of the software and its
results over time, which should be part of your operating procedures. They include:

* Operator training—Ensure that the operators are provided with adequate user
documentation, and given appropriate training where necessary.

® Checking the measurement environment has not changed—Ensure that the
environment in which the T& M software operates has not changed away from the
original assumptions with respect to the nature of the sample, calibration samples,
throughput, ambient temperature, vibration, electrical noise, etc. If you reuse T& M
software on another computing platform, you need to re-validate is as described

abovein

® Checking the hardware—Ensure the hardware is still operating correctly by doing
disk fault checks, examining system log errors (e.g. the Windows NT error log can
show card driver errorsthat are not shown elsewhere), etc.

® Checking performance and calibration—Carry out a* sanity check” on performance
and calibration, and record the results. Thisiseasier if it is“designed-in” to the

software, as discussed in [Section 2.4.5

¢ Data archiving—Ensure that measurement data is adequately archived and kept
securely away from the T& M instrument.

* Routine maintenance—Carry out necessary preventative maintenance and re-
calibration on plug-in cards and other T&M instrument hardware items.

* Perfective and adaptive maintenance—Make sure there isaway in which users can
feed back their experience of the T& M software and make suggestions for

improvements. See also

3 October, 2002

Page 65 of 133

Part 3 Technology-specific guidance

3.1 Introduction

In this section we present a number of best practices associated with the dominant technologies
for developing T& M software, namely:

LabVIEW and the graphical programming language G

Visual Basic/Visua Basic for Applications (VB/VBA) together with ActiveX objects
C/C++

Java

Delphi

For each technology we provide specific guidance following the lifecycle described in Part 2.

3.2 How to select appropriate tools

3.2.1

Initial selection

In choosing between technol ogies there are a number of aspectsto consider:

Existing investment in hardwar e and software—Are you migrating from an existing
system? For example, upgrading from QuickBasic to Visual Basic will beless
onerous than re-implementation in another language.

Availability of drivers—Are hardware drivers available for your proposed
development platform? Y ou may decide to write your own driver, but thisis not
awaysatrivia task.

Throughput/determinacy requirements—Are there any real-time or high speed data
capacity requirements that rule out certain platforms. For example, Windows 95 is
non-deterministic in the sense that it is not always possible to guarantee
measurements at a specific time interval (for example, the system of interrupts can
interfere). Other platforms are available (for example VME, LabVIEW RT or
embedded systems) that are deterministic, but this may limit your choice of

devel opment software.

Skills available—Does your organisation have an existing skills base in one or more
languages? Even though most modern development environments are quite user-
friendly, there is still alearning curve in adopting new tools and technologies. Most
organisations tend to underestimate this.

Customer requirements (e.g. platform, integration etc)—Are there any end-user
requirements in terms of platforms or integration with existing systems?

Best Practice Guide on the Development of Test and Measurement Software

Page 66 of 133

* Long-term software and I T strategy—Y ou should consider how the proposed toal fits
in with your organisation’s long-term software strategy. For example, there may be
risks in using obscure languages or hardware components that may not have good
long term technical support, or may not have an upgrade path. Further, thereis arisk
of “lock-in" if you invest heavily in one particular vendor. Asthe amount of effort
increases you should use tools and technol ogies based on industry-based and non-
proprietary standards where possible to reduce these risks.

3.2.2 Upgrading existing tools

The market in software devel opment tools is such that vendors release new versions with new
features at frequent intervals. This raises the issue of which version to use for new
devel opments, and whether to upgrade old T& M software to use new versions.

When a new version of atool appears, the first stage isto do an impact analysis to determine the
nature of the changes (e.g. the object model might have changed, or just the editing
environment). Usually vendors have a“what’s new in thisversion” section in the
documentation.

Asagenera principle, you should upgrade existing T& M software if you do not want the code
to become legacy software. Otherwise, when you upgrade the computing platform (e.g. to anew
operating system), there are likely to be changes that make software maintenance more difficult,
even if the T& M software continuesto run.

3 October, 2002

Page 67 of 133

3.3 LabVIEW
3.3.1 Introduction

LabVIEW is a software development environment produced by National Instruments
(http://www.ni.com/). It uses awholly graphicalplapproach to developing software. T&M
programs developed in LabVIEW are referred to as “virtual instruments’, and for this reason the
term is used throughout this section. LabVIEW has always had a focus on supporting software
instrumentation and comes with large libraries of examples, wizards and documentation.

In the consultations that preceded devel opment of this guide, we found LabVIEW to be the
most widely used technology for VIs. Thisis partly because its graphical, data-flow
programming language provides a more hardware-like notation for non-programmersto use,
and partly because of the extent of support for measurement hardware.

National Instruments also provide other VI products, such as LabWindows CVI (an integrated C
environment for VI development), LabVIEW RT (which generates embedded executables that
run in real time on dedicated hardware, leaving the PC to provide non-time-critical functions
such as graphical interfacing and networking) and BridgeVIEW (aversion of LabVIEW for
industrial supervision and control).

Technical support and documentation from National Instruments and third-parties is of a
high standard. The on-line help for LabVIEW is supplemented by a range of technical support
on the National Instruments Web site, which can be navigated in anumber of ways, including
searching on function names.

Theillustrations were prepared using LabVIEW 5.1.

3.3.2 Requirements description

All the general guidance in [Bection 2.3]on developing the requirements description applies well
to LabVIEW.

3.3.3 Design
See [Bection 2.4ffor general guidance.

Top-down design is appropriate for large LabVIEW VIs. We recommend that top-down design
starts with the user interface, by establishing the front panels that will be needed, and the
controls and indicators. Thiswill also identify the need for real-time analysis, data
manipulation, etc. The design can then proceed by identifying functional blocks or sub-VIsfor
the major functions asillustrated in Although sub-V Is provide a powerful way of
hiding detail, be careful about creating “ spaghetti code” by making the hierarchy too deep and
with too many wires connected to each sub-V 1. Thisis discussed some morein
below. For more guidance on top-down design, see Program Design in the LabVIEW Online
Reference help.

2 An overview of other visual programming languages can be found at: Visual Language Research
Bibliography: http://www.cs.orst.edu/~burnett/vpl.html

Best Practice Guide on the Development of Test and Measurement Software

http://www.ni.com/

Page 68 of 133

Bottom-up design will be more appropriate for driver sub-Vls, low-leve bit handling, numerical
algorithms etc. LabVIEW provides alarge number of driversand it will save programming
effort, and probably make your VI more reliable, if you make use of existing driversin your
design, or onethat is close and can easily be modified. If you are using a National Instruments
board, the data acquisition (DAQ) examples included with LabVIEW are a good starting point.

Timing
See Section 2.4.2[for general guidance.

Users report that LabVIEW typicaly runs six times slower than Visual Basic. If your
application has hard real-time requirements, you may need to consider LabVIEW RT or use of
another language.

Because it runs on dedicated hardware, LabVIEW RT gives protection against operating system
problems and the core functionality will continue even if the operating system crashes;
however, the user interface will be lost.

Design modelling
The design notations illustrated in [Section 2.4.3|can all be applied to LabVIEW.

¢ Dataflow diagrams (M—Th@e map onto functional blocks, with the data
flows corresponding to wires.

* Satetrangtion diagrams (M—These map onto the state machine structure
provided in LabVIEW by a Case structure within a While Loop. The state number is
the case variable, which is fed back from the output of one case to the input of the
next using a shift register in the While Loop. Figure 18[a,b,c) shows the Case blocks
for the transitions from Step 0 and Step 1 of our example. (Note that, becauseit is
necessary to provide the same terminalsin all blocks for a Case, we have to output an
aspect value even though it is not required by the state transition diagram; the
“change inhibit” Boolean isto prevent the traffic light responding to this. Note also
that we reset the Open button if it isTrue.)

* Object models (M—Th&ee map onto blocks or sub-V1s. The attributes of each
object represent indicators, controls, shift registers, etc. Note that the G language is
object-oriented, and a LabVIEW program itself is composed of objects. Thusthe
front panel isan object, with attributes (e.g. Front Panel.ShowScrollBars) that can be
accessed viathe Property Node structure on the Application Control Functions pop-
up menu.

3 October, 2002

Page 69 of 133

Step 0 | Read Open button OPEN
I
J[OPEN J(- OPEN
Stepl || Open barrier Step 3
[{
Step 2
Ta[0, Default pf
From shift Hl True H To shift register:
register: — | Open buttan | gl |l Step 1
Step 0 %} Open button
Fol~ Light stays red
TEN Change inhibit
(a) StepOto Step 1
Step0 || Read Open button OPEN
I
J(OPEN J[- OPEN
Step1 [Open barrier Step 3
Step 2
L0, Default t[
From shift "' Fales H To shift register:
register: — | Open button | ------ il Step 3
Step 0
Fed~ Light stays red
Change inhibit

(b) Step O to Step 3

Best Practice Guide on the Development of Test and Measurement Software

Page 70 of 133

Step 0 [| Read Open button OPEN
Jf OPEN J(-~ OPEN
Stepl || Open barrier Step 3
Step 2
W1 M
From shift f ictar-
- To shift register:
egiter. () [T | 7 Sepz
Step 1
W hed ™ Light stays red
[TE S Change inhibit

Figure 18: State transition diagram implemented in LabVIEW

Be careful about order of execution of LabVIEW blocks. Blocks that are not sequenced by
means of a sequence block or data flow may execute in any order, and not in the left-to-right,
top-to-bottom order implied by the layout. (We take advantage of thisto model the approaching
vehicle in the worked example.)

Data dictionary

We recommend that you maintain a data dictionary for LabVIEW Vs, as described in
If you wish, you can add pictures of the front panels to illustrate the controls and

(c) Step 1 to Step 2

indicators. Part of the data dictionary for the exampleisgivenin

3 October, 2002

Page 71 of 133

Name Description Type
Aspect Internal variable with four Enumerated type (underlying
values representing traffic type Integer): “red”,
light aspects “red_amber”, “green”,
“amber”
Change inhibit Internal variable to prevent Boolean
traffic light state machine
responding to aspect data
when not required
Close button Control (switch when Boolean, local variable

released): True = released.
Clicked by user to close
barrier

u‘

Enable controller

On/off control for the VI,
linked to indicator showing
value

Enable barrie[|

9 OFF

Boolean, local variable

Greenl Indicator: State of the green Boolean, local variable
bulb: True=on Q
Table 3: Data dictionary for LabVIEW program
UML

UML can be used for LabVIEW design. Statechart and activity diagrams and class diagrams
map well onto LabVIEW programs as described above. The other diagramsin the UML are
more suitable for conventional programming languages like Visual Basic and C++.

Formal methods

Formal methods such as VDM and Z can be used with LabVIEW. Statecharts can also be used
for LabVIEW Vlsthat are state-based, asin our example. Methods such as B that are intended
to trandate into a procedural language are less suitable. Pre- and post-conditionsin UML
models can also be used.

Design reviews

Design reviews are as important with LabVIEW as a procedural language. Some review
checklistsfor LabVIEW are contained in LabVIEW with Style, which is on the CD-ROM with

See[Bection 2.4.4]for general guidance.

Best Practice Guide on the Development of Test and Measurement Software

Page 72 of 133

Fault tolerance and fail safety

All the guidance in Bection 2.4.5|appliesto LabVIEW.

Y ou can implement diverse calculationsin LabVIEW and another programming language in
several ways. Y ou can call code in another language directly from ablock diagram using a Code
Interface Node (CIN). You can call 32-bit libraries (dynamic linked librariesin Windows, code
fragments on the Macintosh or shared librariesin Unix) using the Call Library function. Y ou
can aso run adiverse VI as a separate application, and communicate with it via TCP/IP or
Windows DDE protocaols.

LabVIEW RT givesyou away of running time-critical or other critical code independently of
the Windows system.

3.3.4 Coding

The guidance in Bection 2.5]should be applied to LabVIEW as follows. Further guidance on
good programming style is contained in LabVIEW with Style, which is on the CD-ROM with

Coding standards
A LabVIEW coding standard should include the following guidance:

* Keep VIssmall—You should try to size each V1 or sub-V1 so that you can view it al
at once on the screen. Sometimes thisis very hard on asmall screen and if possible
use alarge screen—17 inch or preferably 21 inch. Although modularisation using
sub-Visisagood way of control the complexity of diagrams, you should not
arbitrarily cut your VIsinto sub-VIs as this can result in complex wiring. Try to
restrict each sub-V1 to three or four inputs and outputs. If you genuinely need to pass
many related wiresto asub-VI (e.g. adata set from an instrument), bundle them
together in acluster.

* Avoid global variables—LabVIEW provides two sorts of “globa” variables: loca
variables which are global to a V1, and global variables which are global to all Visin
memory. Sometimes their use is essential. However, using them obscures the data
flow. It also sets up the possibility of race conditions, the situation where these
variables are read or written to in a different order from the one you expected,
because of an asynchronous sub-V|I or block. You can find all instances of local and
global variables using the Find command on the Project menu, or by right-clicking on
one instance and selecting Find.

* Write defensive code—Y ou should always include an error handler for any /O call,
including file handling. Particularly if you are writing re-usable Vs, you should also
check for as many other things that might go wrong as you can think of: these include
errorsin input data, such as out-of-range values, impossible numbers, etc.; and errors
when calling software libraries and operating system functions, which may exist in
different versions on different computers. Error handling should be done at the point
in the hierarchy at which the error can be fixed (often at or near the top level), and the
approach is to propagate error messages through the program using a special wire,
which you test to see whether to carry out normal processing or just pass the error on.

3 October, 2002

Page 73 of 133

LabVIEW has a standard format for error information: the error cluster. Thisisa
cluster with three components. a Boolean value, set to Trueif an error exists; an error
code; and a string defining the source of the error. There are also three built-in error
handlersincluded in the Time & Dialog functions. See Error Handling and Check
For Errors (under Good Diagram Style) in the LabVIEW Online Reference help for
more details, and Error Codes for alist of built-in error codes. It is aso possibleto
define your own error codes, as explained in the help.

Error handling for the entry barrier exampleisillustrated in If the vehicle
sensor reports an error, the simple error handler is called and the state machine goes
to step 7, where it sets a safe state (barrier open and light on red) and then loops until
the VI isrestarted.

* Useenumerated types and clusters—One feature that should be used where
applicable is enumerated types; these are labels (strings) associated with unsigned
integers, which enable meaningful names to be used instead of integer values; for
examplered, red_amber, green and amber stand for 0...3 in our example. You
should also make use of clusters to group related wires. See Enumerated Constants
and Clustersin the LabVIEW Online Reference help for more details.

* Reuse VIs—Where possible, make use of the extensive library of drivers and
examples maintained by National Instruments, provided with the LabVIEW
distribution, from their Web site, and on the Instrupedia CD-ROM.

CEm— Dd—
F'reven_t change_ o "Red" Error state - Open barrier, set
if "Wehicle entering' e, i light red and ztay unhil restart

el n : Rt

Yehicle entering||

o o |

Figure 19: Error handling

Coding and software documentation

LabVIEW programs look very different from text-based |anguages such as Visual Basic.
Guidelines for laying out and documenting LabVIEW programs are follows:

* Write readable programs—Producing readable LabVIEW programs involves neat
layout, by obeying the left-to-right, top-to-bottom convention, avoiding crossing

Best Practice Guide on the Development of Test and Measurement Software

Page 74 of 133

wires and wires running under blocks and icons, achieving neat wiring by aligning
sources and sinks, and keeping wires parallel. If you create sub-VIs, try to give them
ameaningful icon, using text if there is no suitable image. See Good Diagram Style
under Program Design in the LabVIEW Online Reference help for more details.

* Comment your code—LabVIEW provides severa way of commenting your code. The
diagram in Appendix D shows some of these, and the worked example (obtainable
from pttp://www.adel ard.com/) also contains examples of Description dialog boxes
and change histories.

0 You can place text comments anywhere on the diagram using the text tool. This
isuseful to add comments to individual case and sequence structures, and also
to label wires, which you can do by setting the foreground colour transparent
(T) and placing the label over the wire. Because of the limited “real estate” on
aLabVIEW diagram, you will have to restrict free-text comments; you can fit
more comments in by using a scrolling string constant on the diagram.

O You canright-click on any block or wire and fill in the Description dia og box.
Thisis another way of labelling key wires. It is aso useful for making general
comments on structures such as While and Sequence. It is helpful to include an
index to Sequence and Case structures with several blocks.

O You can produce a help page. Thisis particularly useful if you are writing re-
usable Vls. See Creating Your Own Help Filesin the LabVIEW Online
Reference help for more details.

O Y ou can use the File, Print Documentation feature. This offers a choice of
formats. One option includes the complete diagram, with individual Case and
Sequence blocks shown afterwards. Y ou can print the report directly, or save it
to afile; thisis more useful, asit allows you to add your own commentary. It is
also possible to copy the diagrams in the report and use them in your own
documents.

3.3.5 Verification and validation

Testing
The general guidancein Bection 2.6.1]is all applicableto LabVIEW.

If your application is sufficiently critical to require measurement of test coverage, LabVIEW
presents a problem. Since the conventional code produced by the LabVIEW compiler is not
accessible, standard test coverage measures cannot be applied. The aternativeisto obtain a
measure of coverage of the diagram. For procedural Ianguages tooI sare available that

“instrument” the code by adding statements to record cover do not eX|st for
LabVIEW, and, it will be necessary to instrument the diagr -
possibility, where execution of each option in a Case structure mcrements an element inaglobal
array. This adds complexity to the diagram (although it could be packaged as a sub-V1 with the
array number as input), and also will slow the program down.

For critical Vs, the goal will be to achieve 100% coverage of structures, and of frames and
loops in Sequence and Case structures.

3 October, 2002

http://www.adelard.com/

Page 75 of 133

[0. Default pf &

Figure 20: Coverage measurement for LabVIEW

National Instruments supply a VI known as the Test Executive Toolkit that enables automated
test case execution and reporting. Alternatively, tools such as Microsoft Visual Test can be used
to supply values to the user interface and check the settings of the indicators.

Code reviews

Code reviews should be undertaken with LabVIEW just as with a conventional language.
Although the notation resembles wiring diagrams, users report that it takes a while to become
conversant with dataflow programming, and therefore all members of the review team will need
to be familiar with LabVIEW programming. See Bection 2.6.2]for general guidance and
LabVIEW with Style or style checklists that could be considered during reviews.

Static analysis

Dataflow analysis is done by the LabVIEW compiler, which identifies broken wires and type
mismatches. Control flow is enforced by the compiler.

LabVIEW does not provide facilities for information flow analysis or timing analysis. Since the
underlying G language does not have a mathematically formal definition, semantic analysisis
not possible.

3.3.6 Maintenance

The general guidance in Bection 2.7Jis all applicable to LabVIEW.

3.3.7 Configuration management
See Bection 2.8for adiscussion of the need for configuration management.

The software version number should be displayed on the VI front panel and inthe VI's help
page if provided. It should also be included on any printed reports.

We recommend that you keep a history of your VI using the History window (on the Window
menu). This has arevision number that automatically increments each timethe VI is saved, and
an areafor adding comments. It can be configured in various ways from the History itemin the
Preferences item on the Edit menu, for example to pop-up the window automatically on closing
the VI. See History, Preferencesin the LabVIEW help for more details. The history can be
included in reports printed from the File, Print Documentation item.

The LabVIEW library structure, which placesal ViIsin asingle file, was introduced to
overcome the eight-character limit on filenames in Windows 3.1 PCs. This limitation does not

Best Practice Guide on the Development of Test and Measurement Software

Page 76 of 133

apply to later versions of Windows, and since the libraries can become very large and unwieldy,
and also occasionally become corrupted, we recommend that you do not use them unless you
need to maintain Windows 3.1 compatibility.

For small Vs, you can implement configuration management by using a series of directoriesfor
each version. For larger developments, the Pro G Toolkit provides a Source Code Control
system.

3.3.8 Metrics

Standard metrics are intended for procedural languages and do not apply well to LabVIEW.
However, LabVIEW does provide aV1 Metrics item under the Project menu. This providesa
number of metricsincluding the number of nodes, structures and diagrams, the size of the
diagram, the number of wire sources, controls and indicators, etc. Some of the metrics for the
example are shownin

“Nunber of Nodes” netric and other statistics for “Traffic_Lights10.vi”.
Li st excludes files in vi.lib.
Nunber of user Vis: 6

Nunmber of vi.lib VIs: 2

of nodes structures di agr ans max di ag depth
diag wi dth (pixels) di ag height (pixels) wre sources control s
indicators attrib reads attrib wites global reads

gl obal wites | ocal reads local wites connector inputs

connector outputs

Traffic_Lightsl0. vi

123 12 28 5
715 474 112 3
6 0 0 0
1 2 20 0

Figure 21: LabVIEW metrics

It is hard to compare these directly to conventional metrics, and it will be necessary to build up
apicture of your VI developments over a period of time. These metrics could be combined into
asingle value by weighting and summing them, in an anal ogous way to function points (see

[18]).

Another metric that may apply to LabVIEW is fan-in/fan-out, which for dataflow diagramsis a
count of the number of wires entering and leaving each structure, plus use of local and global
variables.

3.3.9 Mixed language programming with LabVIEW

General issues of mixed language programming are discussed in|Section 2.11

An example of calling aFortran library from LabVIEW isgivenin

3 October, 2002

Page 77 of 133

3.4 Visual Basic
3.4.1 Introduction

Basic (Beginners All-purpose Symbolic Instruction CodeEb was developed at Dartmouth
College in the 1960s, and was designed to be a very simple language to learn and trand ate.
Originally it was intended as a teaching aid, although its potential became clear and many early
microcomputers came with Basic interpreters and then later compilers. Microsoft adopted the
technology early on, Basic being the first program it sold.

Early T&M software devel opers adopted Basic as their devel opment language, given its ease of
use and support across awide range of platforms as the microcomputer emerged as a generic
computing platform.

Today, Basic can be considered as afamily of languages (IBM-Basic, QuickBasic, Visua
Basic, VBA and so orEb, although the most important variant for the purpose of developing
programs on aPC isVisual Basi (ﬂ(V B) from Microsoft, given the breadth of industry support
and the general prevalence of the Windows operating system. T&M software written in ol der
variants are till around, for example there are till programs written in QuickBasic used in
older T&M software.

Visual Basicisafull development environment for the Windows platform, and recent additions
toitsfunctionality includes basic object-orientation and support for third party controls viathe
32bit ActiveX architecture. The general model for interface and application design isto use
Visual Basic to manipulate defined objects (for example an output display on the user interface,
or an object that controls a hardware device), and to respond to events generated by the user
interface or system objects. At the time of writing, Visual Basic comesin three versions, all
based on the same underlying language model:

* Visual Basic—A full Windows application development environment.

* VBA (Visual Basic for Applications)—A version of Visual Basic that is embedded in
Windows applications and allows the user to script and control predefined application
objects. VBA alows application devel opers to provide a generic programming
interface to their application. Current versions of Microsoft Office applications use
VBA. Applications are generally distributed as an “ Add-In” for the particular
application or as afile that contains the embedded macros and customisations. Some
SCDA control applicationfl have a VBA interface that allow usersto build

3 A history of the early years of BASIC can be found at: http://www.fys.ruu.nl/~bergmann/history.htmi

4 A collection of General Basic Resources can be found at the Chipmunk Basic home page:
http://www.nichol son.com/rhn/basic/

5 Microsoft Visual Basic Home page: http://msdn.microsoft.com/vbasic

6 See for example iFIX from Intellution: http://www.intellution.com

Best Practice Guide on the Development of Test and Measurement Software

Page 78 of 133

customised applications by scripting the SCDA objects and user interface
components.

* VBScript—A cut-down version of Visual Basic, primarily used in developing
dynamic Web applications (server-side and client side scripting). Here the principle
of scripting predefined objectsis the same; the only limitation is the inability to
define new objects and collections directly. Applications are typically distributed as a
collection of script files.

Migration from other (generally older) versions of Basic to VB is generally quite
straightforward, given that the underlying control structures are the same. Tricky aspects can be
that user interfaces in older version used custom graphics libraries, which some developers
found difficult to use and debug. User interfaces are easier to implement using a modern GUI
tool such as VB, which provides a good range of widgets and controls and allows the importing
of third party interface controls.

Online help (help files) and Internet support for VB is generally very good.

In the rest of this section we assume the reader is using VB5 or later, although some of the
discussion appliesto VBA applications and older versions of basic.

A Visua Basic project consists of atop level project file (.vbp) and associated modules, forms
and classes. The project fileis atext file and contains references to the other files, so that they

are |oaded into the development environment when the project is opened. The project’s forms

provide the user interface to the application.

The model for building a VB application is generally event driven, that is to say the logic of the
application is triggered by user-driven and application-driven events.

3.4.2 Requirements description

The general guidance in Bection 2.3Japplies.
3.4.3 Design

For simple applications al of the code can be stored on the form. For larger applications where
you reuse functions defined, you should create modules to contain the functions and methods.
Give the modules meaningful names to help locate the functions.

Define variables with their object types (string, object, collection, database and so on).
Otherwise VB will treat them as variants (a general purpose variable type), which uses more
memory. The other advantage of declaring variable typesis that you get drop-down lists of
available properties and methods according to where you are in the object hierarchy. In VB,
variables are declared using the “Dim ...” statement. Use “ Option Explicit” at the head of each
module and form. Thiswill force you to declare variables before they are used.

Rename controls as they are added to the user interface, and give them meaningful names, such
as.

* “Textl” - “txtUserName’

3 October, 2002

Page 79 of 133

e “Buttonl” - “btnlnitialiseCalibration”

e andsoforth

Give variables useful names that encapsulate the use of the variable and its datatype; use coding
standards if you want, but the most important aspect is to be consistent.

Data dictionary

The equivalent data dictionary for the traffic light exampleis givenin The main
moduleisgivenin

Name Description Type

blnRequestOpen arequest for the barrier tobe | Boolean
opened—fired by btnOpen

binRequestClose arequest for the barrier to be | Boolean
closed—fired by btnClose

binVehicleArrived asimulator of arandom car Boolean
arriving at the barrier

bInVehiclelnZone a detector whether acar isin | Boolean
the zone

iCurLightState avariablefor the current light | Integer (specifically 0,1,2,3)
display

Table 4: Data dictionary for Visual Basic program

Timing

Visual Basic was not originally designed for building applications with critical timing
requirements, although it will cope well with medium to low data capacities. For high-speed
applications you should use a dedicated DAQ card.

To build apolling application in VB you can use the timer control as atop level event driver.

Reuse of components

ActiveX (aso known as COM) is the most widely used technology for creating reusable
components on PCs. The basic concept revolves around the idea of an ActiveX server that hasa
unique identification reference. When the ActiveX component is loaded on the same machine as
the running application, the application creates an instance of the object that is delivered by the
ActiveX server. When the object has been created, its properties can be set and retrieved, and its

methods can be invoked.

Visual Basic 5 or later allows the user to develop his’her own ActiveX controls (which have a
user interface) and ActiveX DLLs (which have no user interface), which can be compiled and
distributed for inclusion in other projects.

Best Practice Guide on the Development of Test and Measurement Software

Page 80 of 133

Items such as speciaist interface controls or device drivers can be implemented as controls.
Although device drivers are traditionally implemented as libraries, the advantages of
implementing them as components are that you can devel op a more robust interface with proper
error handling.

Thereisawide range of existing interface and data manipulation components available. The
National instrument “ ComponentWorks” collection of controlsis agood starting point for users
wishing to connect to National Instruments hardware devices.

A list of some of the available component repositories on the Internet is given in

User interfaces

Visual Basic comes with an in-built palette of standard controls, such as push-buttons, text
boxes and other basic elements. This collection of controls can be extended by loading other
available components that are currently loaded in Windows. General advice on user interface

designisgivenin pection 2.13.2

General !

Eflaen S 20O EE ~

D S o a ow B8

=

Figure 22: Standard palette of VB interface controls for Visual Basic
(Professional version)

Most of the standard interface controls have simple property sheets and good documentation to
support efficient use.

Y ou should always consider whether the functionality you desire can be implemented using
familiar controls before investigating more complicated interface components. A general
discussion of interface design issues can be found in

If you obtain a COTS component from the Internet, experiment with and adapt any sample files
to develop your understanding of how the component behaves.

Debugging
The debugging facilities available in Visual Basic are quite good. These include:

* theuse of break points and facilities for stepping through the code

3 October, 2002

Page 81 of 133

* “live” rewriting of codeif thereis an error when the code is run in the devel opment
environment

For T&M software development there is often areal-time aspect to the software. For example a
monitor loop might poll a hardware device every 500 milliseconds, get the result and writeto a
file. These real-time aspects can be hard to debug, as stepping through the code will disrupt the
timing component of the application.

A good general resource on VB design and coding is
3.4.4 Coding

Coding standards

See [Bection 2.5ffor general guidance on code development. In addition, there are a number of
coding standards for Visual Basic (see Appendix A.4.2[for further details). A useful book on
avoiding common errors and error handling in VB code is

It isgood practice to ensure that * Option Explicit’ is present in each moduleto force al
variables to be declared.

There are three main approachesto error handling in VB:

1. Noexplicit error handling—Thisis not such a bad idea, since the errorswill bubble
up to the calling procedure, and so can be handled there.

2. User defined error handler—These are typically implemented with “On error Goto
label” . If you create an error handler, you should cover al eventualities, otherwise a

procedure may just fail silently (see next item). This error handler can pass them up
to ahigher level if necessary.

3. Ignore Errors—Errorsin a procedure can be ignored with “On error resume next”.
This should be used with caution as all errors are ignored.

Coding and software documentation

Genera guidance on software documentation issuesis given in pection 2.5.3

For smple VB programsit is adequate to document the code by summarising the program and
adding comments to describe its function in the source code itself.

Each module should have a comment section at the head of the procedure that explains the
constraints, limitations, assumptions and history of the module.

3.4.5 Verification and validation

General guidance on V&V isgivenin

3.4.6 Maintenance

General guidance on maintenance is given in

Best Practice Guide on the Development of Test and Measurement Software

Page 82 of 133

3.4.7 Configuration management

General guidance on configuration management is given in

In VB, aproject is managed by means of a project file (*.vbp), which isatext file. This project
file contains alist of the forms and modules that are included in the project, and any references
to ActiveX controlsthat are referenced.

Manual configuration control

There are two ways of doing manual configuration control in VB. The basic ideaisto create a
separate folder that has saf e copies of the current version of the project files. VB project files
(*.vbp) contain full path references to the forms and modules contained in the project. This
means that if you save or copy across a project file to anew location, it will still retain
referencesto the previous version of the files. In order that previous modules and forms are not
modified, you need to make sure the new project contains references to a new set of files. In the
following we assume that all the project files are stored in the same directory (currently called
“v01”). Two aternative approaches are given below:

* Either—Create a new folder named after the version of the project (say “v02"). Open
the existing project from v01 and save the project in the new location (v02) AND save
each object (module, form, class module, etc.) individually to this new location. Set
al filesin vO1 to be read-only.

* Or—Copy the exigting folder (vO1) and its contents to a new folder (say “v02"). Open
the new (v02) project file (. vbp) in atext editor, removing hard-wired paths for the
entries that refer to forms and modules that are part of the previous version (vO1) of
the project. When you re-open in VB, the new (local) files should be opened. Set all
filesin vO1 to be read-only.

Tool supported configuration control

The most appropriate configuration control application for VB is Microsoft Visual SourceSafe,
since it integrates into the Visual Basic Development environment. Other configuration

management tools are listed in

Other files

When you distribute a Visual Basic application you need to use the Visua Basic “ Application
Setup Wi zard”ﬂto bring together al the files needed to distribute the application. This generates
a“.swt” filethat lists all of the project files, DLLs and ActiveX controls needed for distributing
the application. It isagood ideato save local copies of these system files with your application
so that thereis a complete record of the resources needed.

3.4.8 Metrics

General guidance on metricsis givenin

7 This is known as the “ Package and Deployment Wizard” in VB6.

3 October, 2002

Page 83 of 133

3.4.9 Further resources
There is avery wide range of resources for developing Visual Basic Programs.

For T& M software development there are a number of books that outline how to write a
program that can interface to the seria or parallel portson aPC (see :

3.4.10 Mixed language programming with Visual Basic
General issues of mixed language programming are discussed in|Section 2.11

Visual Basic shares with Fortran the property that arrays are laid out with elements in the same
column adjacent. Multi-dimensional arrays passed as arguments to most languages will have to
be transposed. Fortran arrays start at index 1, so if the library being called isin Fortran, the
command “Option Base 1” should be placed at the start of the Visual Basic module to make VB
arrays also start at index 1.

External components and libraries can be used in Visua Basic for Applications aswell as
Visua Basic.

Thetable below lists the mapping between Visua Basic types and C types, which we can take
as a common basis for comparison.

C types Visual Basic types
doubled:; doubled

float r; singler

inti; longi

boolean; long |

chars; string*1ls

The use of structures, afeature commonly used in C programs, may also be accommodated. For
example atype Spline might be defined as:

typedef struct {
I nteger n;
doubl e *I| anda,;
doubl e *c;
Integer initil;
I nteger init?2;
} Spline;

The corresponding Visual Basic user-defined type would be defined as:
Type Spline

n As Long
| anda As Long

Best Practice Guide on the Development of Test and Measurement Software

Page 84 of 133

c As Long

initl As Long

init2 As Long
End Type

The major deviation is that the C pointers to type double have been approximated to integers of
type Long.

Calling C subroutines from Visual Basicis discussed in
Examples of calling Fortran libraries from Visual Basic aregivenin

3 October, 2002

Page 85 of 133

3.5 C/C++
3.5.1 Introduction

A small number of T& M software developers use C and its object-oriented superset C++ to
develop T&M software, or libraries for other T& M software.

C/C++ is much less amenabl e to the casual developer who wantsto pick up a new language to
solve some problem; a simple windows application typically requires considerably more effort
and knowledge (e.g. of the operating system and general computing principles) than the
equivalent program written in VB or LabVIEW. However use of C++ coupled with application
generating “wizards’ and libraries, e.g. those provided in Microsoft Visual C++, can produce
applications reasonably quickly.

The main advantage of using C/C++ over other languages is that the developer can have
complete control over every aspect of the application. Thisis because C and C++ are powerful
languages that allow the developer greater flexibility and control of both high and low-level
programming structures. An example of thisisthat C/C++ programmers can implement their
own low-level data processing and memory management al gorithms through direct
manipulation of user-defined byte-structures and other low-level library functions.

Asaresult C/C++ programs for T& M software tend to be focused towards one particular
operating system (especialy for applications with a user interface). Windows applicationsin C
interact with the user interface part of the operating system using cals directly to the windows
API (Application Programming Interface), which is the lowest level available to applications
programmers.

For Windows applications the most common development environment is Microsoft Visua C
(http://msdn.microsoft.com/visualc), although Borland (http://www.borland.com/) also produce
aWindows devel opment environment for C/C++.

C/C++ programs can be staIicaIIyﬁcompi led into very small and efficient libraries and
executables. For this reason, and the increased flexibility of the language, C (but not C++) is
well-suited to as alanguage for developing low-level device drivers and for manipulating high
volume bytestreams—e.g. for very high-capacity DAQ (Data Acquisition).

In this best practice guide we provide only an overview of some of the issues concerning the
development of C/C++ programs, rather than expand the lifecycle as we have for LabVIEW and
Visual Basic. We have adopted this position for two reasons:

1. Therearereatively low numbers of developer-users compared to LabVIEW and
VB.

2. Developers who use C/C++ are generally more aware of the importance of adopting
good software engineering practices and tend to come from computing-based
backgrounds.

8 |.e. without any references to external libraries or components.

Best Practice Guide on the Development of Test and Measurement Software

http://msdn.microsoft.com/visualc
http://www.borland.com/

Page 86 of 133

For developing complete VIs using C, agood starting point is LabVIEW CVI
(http://www.ni.com/cvi/), which is a collection of user interface tools, instrument drivers,
analysisroutines, and 1/0O libraries for users of standard C/C++ development tools from
Microsoft, Borland, Symantec, and WATCOM.

3.5.2 Benefits and pitfalls

Good points
Some good points of using C are as follows:

* Thelanguage' slow-level nature means there is an obvious mapping for each
language feature to equivalent machine code, which results in more predictable
performance.

* Variables can be defined (and initialised) in the smallest possible scope, giving good
locality and information hiding.

* Literalscan be named and safely modified.
* Statictyping.

® Simple assertions can be executed at run-time and also by the macro preprocessor at
compile-time to check for errors.

* Declarations have attributes for controlled access to hardware addresses and for
indicating the initialised but unchangeable nature of avariable.

* Independent compilation of “modules’, the linkage of which can be made safe by
using appropriate tools.

Bad Points

Most of the potentia pitfalls (of which there are many) arise from the fact that C/C++ issuch a
powerful language. Compilers tend to accept at face value any instruction written by the

devel oper, using coerci orElwhere necessary. This can result in developers adopting lazy
programming styles to implement shortcuts in their programs; the language is seen to be defined
by what is accepted by the compiler.

References [13]]and [14]]fully explore the issues of “safe” coding in C in the light of the many
potential hazards. Some notable problems include:

® Useof “=" and “==". In C, an assignment statement (=) has atruth value and
therefore can be used in atest instead of = = by mistake. Thus:

if (a = 0){
/1 do sonet hi ng

9 Forcing one datatype (e.g a string) to be evaluated as a different one (e.g. an integer).

3 October, 2002

http://www.ni.com/cvi/

Page 87 of 133

}

will be interpreted by the compiler as“set ato 0" (which returns true), and resultsin
the statement being evaluated always.

* Useof side-effectsin aprocedure. Thisis generally discouraged as undesirable
coding style since it makes it harder to debug a program and track how it actually
should behave.

® String manipulation (which isimportant for parsing strings) can be error-prone.

® Useof multipleinheritance in C++ is generally considered hard to understand and
manage.

* Case statementsrequire a“break” to mark the end of each distinct case, otherwise the
next case is executed as well as the one intended.

Resolution

“Safer C” is one attempt to restrict C to a safe subset of programming constructs and
practices. In the automotive industry the MISRA (Motor industry Software Reliability
Organisation) guidelines (see http://www.misra.org.uk/} have been devel oped to support the
development of an agreed safe subset of C for embedded automoative systems. Both of these
have static analysistool support.

3.5.3 Further help

A small selection of further resources for C/C++ are listed in [Appendix A.3Jand
Appendix B.1.3|

3.5.4 Mixed language programming with C/C++

An example of the way Fortran subroutines can be called from C/C++ programsisgivenin

Best Practice Guide on the Development of Test and Measurement Software

http://www.misra.org.uk/

Page 88 of 133

3.6 Java
3.6.1 Introduction

There are two components to Java: the Java programming language, and the Java platform on
which it runs.

Like C++, the Java programming language is object oriented: that is, a program consists of a
number of class definitions that encapsul ate descriptions of data types and the methods that
operate on them. Its basic syntax and choice of keywords follow the C traditions, but it is not
just another object-oriented extension of C. The language design allows for strong type
checking amost everywhere and storage management is completely automatic (there are no
explicit pointers, or calls to allocate and free storage), so a number of the most error-prone
aspects of C are removed. It is aso inherently multithreading, so a program can be expressed as
anumber of concurrent tasks.

The Java platform is responsible for the execution of Java programs. Java programs are
normally compiled to a standardised “bytecode” form representing instructions to an abstract
JavaVirtual Machine (JVM). The Java platform implementation for a particular processor and
operating system configuration interprets this bytecode as a series of hardware instructions and
operating system calls. The same program can therefore be run without code changes on any
system where a JVM has been implemented. Implementations exist for most
workstation/operating system combinations and have been embedded into consumer devices
such as digital set-top boxes and mobile telephones. The bytecode representation resultsin
compact programs that can readily be served over networks, and the integration of the VM
with standard Web browsers allows programs (appl ets) to be embedded in HTML pages and
executed on the client machi neE|Agai n, thisisindependent of the hardware and operating
system that that machineisusing. The VM & so imposes gtrict limits on the local machine
resources that the applet can access, so the client isless vulnerable to the downl oading of
potentially malicious code. (This may, however, restrict the functionality that an applet can
provide.) In the VI area, this potentia has been exploited to allow instruments to be controlled
remotely from anywhere on a network.

Java class libraries provide standard data structures, input-output, and the elements of graphical
user interfaces. Asin Visua Basic and C++, Java programs with GUIs are typically event
driven, with user actions on the interface control s invoking methods within the code.

Javais supported by a number of integrated devel opment environments (IDEs). The Java Bean
interface provides the Java analogue of an ActiveX control: a user interface component that can
be developed by the user or obtained from athird party, and added to an application by dragging
it into the application interface and establishing handlers for its various events. The appearance
of aBean can aso be atered through interaction with the IDE, without explicit programming.

A number of test equipment manufacturers have used Java either to define Java Beans or remote
interfaces to specific items of measurement equipment. A Java Beans package will typically

10 Unfortunately, disputes between Microsoft and Sun have meant that Internet Explorer is supplied with
version 1.1 of the VM, so if applets are to be widely distributed they must be compatible with this
version.

3 October, 2002

Page 89 of 133

contain classes for interfacing to instruments (which is easy if they support the TCP/IP protocol
and somewhat more difficult for instruments using GPIB or other busses), and other classes for
providing T&M instrument displays (meters, pen recorders and so on), scaling, disk logging and
the like. These can then be combined with Java Beans such as the Swing GUI classes which
provide user input devices to build complete instruments. Simple examples can be constructed
using only alittle Java code to glue the components together.

Java platform implementations, Java compilers, and many of the Beans and IDEs are made
available freely and often on an open source basis. This, in conjunction with the possibility of
presenting the virtual instrument interface on aWeb browser, can significantly reduce software
licensing costs.

Java and its development environments have been through a number of versions, and changesin
the structure of libraries and components may require changes to be made when using old code
in newer settings.

Javais supported by a strong advocacy group and agreat deal of on-line material, including
extensive tutorial s on the language and development environments.

Al It should be noted that the licensing conditions for most Java implementations warn that it is not

designed or intended for use in safety-related systems, and is not warranted for fitnessin such
applications. Given that very little software is warranted to be suitable for anything, the Java
user is probably no worse off than the user of other languages, but this emphasi ses the need for
devel opers of safety-related systems to gather their own evidence of fitness of their product for
its purpose.

3.6.2 Requirements description
The general guidancein Bection 2.3]applies.
3.6.3 Design

A Java application with a GUI will contain aclassthat is a subclass of one of the GUI container
classes provided by the Javalibrary. Each control on the interface is represented by an interface
variable of the appropriate class for the control and is suitably initialised when an instance of the
main formis created. (The initiaisation includes defining handlers for each control event of
interest, aswell as details of the presentation of the control.) The mai n method of the main
form class creates an instance of the class and displaysit. Because all the form structureis
expressed as Java code, this can be programmed directly, but the GUI builder component of an
IDE will normally generate most of the code automatically.

If using a GUI builder, you should ensure that the controls are given meaningful names as they
are added to the user interface. The strong typing of Java makes the use of type prefixes
recommended for Visua Basic less necessary.

Timing
The interpretation of bytecode inherent in the Java platform entails some loss of speed, so Java
is not the best choice for applications with heavy data processing reguirements or tight response

time limits. However, threading allows quick response to external events while updating
displays less frequently. Some Java platform implementations for embedded applications offer

Best Practice Guide on the Development of Test and Measurement Software

Page 90 of 133

real-time capability, and there is an effort underway to produce a standard definition for real-
time Java.

The Java library includes atimer control that can be used as a top-level event driver.

Reuse of components

Reuseisacentral goal of object oriented languages, and Java provides strong support for
combining class definitions into reusable packages (which will typically include a number of
classes). Java Beans provide an open standard, platform-independent alternative to ActiveX
components.

User interfaces
A general discussion of interface design issues can be found in Bection 2.13

The Swing collection of Java foundation classesisincluded in the Java platform and provides a
good selection of standard controls, including push buttons, text boxes and file system browsers.
There are a number of on-line tutorials describing the contents of the classes and giving
examples of their use. The collection of controls can be extended to include more specialised
controls from third parties, usually packaged as Java Beans as described above. It is aso
relatively easy to construct new controls, although it is better where possible to use standard
control mechanisms rather than adopt custom approaches with functions that may not be
immediately clear to the user. The look and feel of Javainterfaces can be changed relatively
easily to fit in with the windowing style of the host platform.

Many third party controls are supplied as source code as well as examples of use, so their
behaviour can be fully understood and even modified if necessary.

Debugging

Java IDEs normally provide code debugging capabilities. For example the Sun Forte
Community Edition IDE supports breakpoints (including conditional breakpoints based on
variable values), watches on variable values, observation of the call stack and so on. The
debugger can monitor activity in multiple program threads simultaneoudly.

Asusual, any program requiring areal time response to input devices is not amenable to
breakpoint-based debugging. If the program has been designed as a set of threads, it may be
possible to debug those that are not time-critical without affecting the others.

3.6.4 Coding

Coding standards

See[Bection 2.5]for general guidance on code development. There are a number of suggested
standards for Java coding, and some on-line examples are listed in Appendix A.6.2| There are
also toolsthat can automatically check for compliance with these standards (see

Appendix A.6.3).

Java adopts a throw-and-catch approach to handling errors. The “catching” side of thisiswritten
astry {<bl ock>} catch {<exception handl er s>}.Any exception thrown inthe
block withinthet r y part is matched against the exceptions for which handlers are defined in
the cat ch part. Those that match are processed by the corresponding handler, while the rest
continue to propagate up through the calling structure of the program. Exceptions can be thrown

3 October, 2002

Page 91 of 133

by fundamental operations such as division by zero, library code, or the user’s own code using
thet hr ow statement. This mechanism makes very explicit which errors will be handled and
how they will be treated at any point in the code, without burdening it with explicit error flags.

Coding and software documentation

Genera guidance on software documentation issuesis given in pection 2.5.3

The obvious places to document Java code are at the starts of packages, classes and methods.
Thej avadoc tool defines some conventions for structuring these comments and a method of
extracting them to produce documentation as HTML pages (or in a number of other formats).

3.6.5 Verification and validation

Genera guidance on V&V isgivenin

There is abroad range of toolsto support verification and validation. We have already
mentioned tool support for coding standards. Other tools offer deeper static analysis (which can
identify dead code, uninitialised variables and similar problems), test suite construction and
execution, code coverage assessment and so on. These tools may be offered commercialy or as
freeware or shareware. A short list of examples and a pointer to amore complete listing are
givenin Appendix A.6.3]

3.6.6 Maintenance

General guidance on maintenanceis givenin

In an ideal world, code would be associated with sufficient documentation to allow the impact
of proposed maintenance changes to be assessed. In practice, this may not be the case, and there
are anumber of Javatools available for constructing call trees, classtrees and other structural
views of existing Java code, browsing from uses to definitions, and similar code understanding
tasks. One particular issue that arisesin object oriented languages isthat of refactoring: that is,
changing the class structure of the code to express better the rel ationships between different
ideas and maximise the re-use of method definitions.

3.6.7 Configuration management

General guidance on configuration management is given in

The Java package and interface mechanisms, and the Java Beans conventions, provide
convenient units for configuration control. Java | DEs such as the Sun Forte Community Edition
IDE and Borland’ s JBuilder define the notion of a project to encompass a complete

devel opment.

Manual configuration control

Asthe discussion of Visual Basic shows, IDE project files normally include lists of component
source files, and copying the current devel opment directory may not be enough to checkpoint
the development. Y ou should refer to the IDE documentation to determine the steps that are
necessary.

The Sun Forte Community Edition IDE allows an existing project to be renamed and saved
using the Save Asitem on the file menu. Thisis enough to start a new development branch.

Best Practice Guide on the Development of Test and Measurement Software

Page 92 of 133

Tool supported configuration control

Both the Sun Forte Community Edition IDE and JBuilder provide an interface to the CVS
version control system. Other version control systems can be supported in Forte by defining an
alternative connection to the interface.

Distributing applications

Java applications assume nothing more than the existence of the corresponding version of the
Java platform on the receiving machine. All controls and libraries that are specific to the
application are represented in the bytecode of the application. This avoidsthe “DLL hell”
associated with Visual Basic and Visual C++ application distribution (and the need for the
packaging tools designed to avoid it).

3.6.8 Metrics

Genera guidance on metricsisgivenin

A number of Javatoolswill report complexity metrics for code, typically in conjunction with
other forms of static analysis.

3.6.9 Further resources

Thereisavery wide range of resources for Java developers, reflecting the open source roots of
the language. A few mgjor sites are listed in Appendix A.6.1|

3.6.10 Extending Java with code from other languages

The Java Native Interface (INI) supports interfacing with so-called “ native methods” in a
platform-independent way, which avoids many of the problems raised in INI
supports both Java calling native code and a native application calling Java, although in the
context of testing and measurement the former is more likely. A tutorial on NI is presented in
http://java.sun.com/docs/books/tutorial/nativel./index.html |

In principle, the native methods could be written in any language. However, because the
methods must be able to interpret the type names used in the interface and make use of pointers
to the Java environment and current objects that are passed by the method call, it is easiest to
implement them in C or C++. The native code can then use the header files provided with the
Java SDK or produced when compiling the Java code. A C wrapper function that obtains the
necessary data and passes it on can be used to call other languages. Thiswill certainly be
necessary if using code from abinary library.

When native methods are used, the Java platform can no longer guarantee that downl oaded
appletswill not interfere with the host machine, and so applets containing native code may be
rejected by local security policies.

3 October, 2002

http://java.sun.com/docs/books/tutorial/native1.1/index.html

Page 93 of 133

3.7 Delphi
3.7.1 Introduction

Delphi isa proprietary IDE from Borland that supports the programming language Object
Pascal, an object-oriented extension of Pascal. Object Pascal was originally developed by Apple
in conjunction with Niklaus Wirth, and has a variety of implementations although Delphi isthe
most commercially significant. Delphi was originally developed as a Windows system, but has
recently been released in aversion for Linux known as Kylix. Unlike Java, Delphi applications
are sensitive to differences between the platforms such as file name conventions, but because
Delphi programs are compiled to native code rather than interpreted there is no performance
penalty in using it.

Object Pascdl, like Java and C++ (but unlike Visual Basic) is atrue object oriented language,
with encapsulation, inheritance and polymorphism. Like Pascal, it is strongly typed, provides
pointers, and requires explicit memory allocation and release. Like C++, it is possible to write
programs without using objects: these are essentially Pascal programs, in the same way that C
programs are legal C++. It istherefore a hybrid language rather than being purely object
oriented.

The Delphi IDE allows the user to construct interactive applications by dragging and dropping
controls onto forms, adjusting their visua properties, and linking the events they generateto
handler code. Controls may be defined either using Borland' s proprietary Visua Component
Library (VCL) conventions or as Microsoft ActiveX controls. Many vendors provide |aboratory
instrument controls as ActiveX components and some also provide them in VCL format. The
usual range of generic controlsisincluded as part of Delphi.

A personal use version of Delphi is available for free download, while enriched versions
designed for professional and enterprise use are sold as commercia products.

Borland supplies a substantial body of documentation on-line, and there are also a number of
third party Delphi sites.

3.7.2 Requirements description
The general guidancein Bection 2.3]applies.
3.7.3 Design

The structure of an Object Pascal GUI program built with Delphi or Kylix is very much like that
of aVisua Basic program. Thereis amain form, where the visual design of the GUI is
recorded, with a corresponding unit (the Object Pascal equivalent of a module) where the event
handlers are defined. For asimple application thisis al that is needed. More complex
applications may define anumber of subforms, and may also have units with no associated
forms that contain the definitions for the underlying model that the GUI manipulates. Controls
are placed by dragging them onto the interface from a pal ette of available options. The IDE will
construct a code skeleton for each event handler that is required, but the user must fill in the
details of the action to be taken. Controls on the form are explicitly represented by objects of the
appropriate type declared in the unit.

Best Practice Guide on the Development of Test and Measurement Software

Page 94 of 133

Y ou should ensure that the controls are given meaningful names to replace the defaults created
by the IDE as they are added to the user interface.

Timing

Because Delphi produces native code from the Object Pascal source, execution speeds should be
comparable with C and C++. Thereisthird party support for developing device drivers for
custom devices, even in difficult environments such as Windows NT. However, operating
system limitations will probably require the use of a dedicated DAQ card at high datarates.

Multiple threads are possible in Delphi, in much the same way as they arein C++, but are not as
tightly integrated into the languages as they are in Java.

Delphi includes atimer control that can be used as a top-level event driver for polling input
devices.

Reuse of components

Object Pascal isunusual amongst object oriented languages in that class definitions are not
stand-al one components of the language. Instead one or more classes will be encapsulated in a
unit, in the same way that Java groups classes in packages. Both languages require explicit
mention of any units used by another definition. In practice, reuse is most readily managed by
packaging code into a control or library.

The community of Delphi developersis smaller than that for C++ or Java, but large enough to
offer achoice of components for common requirements (database support, import from and
export to standard applications, and so on) as off-the-shelf items.

User interfaces
A general discussion of interface design issues can be found in Bection 2.13

Debugging

The Delphi IDE provides the usua code debugging capabilities, including conditional
breakpoints based on variable values, watches on variable values, variable value display and so
on.

Asusual, any program requiring areal time response to input devices is not amenable to
breakpoint-based debugging, but Delphi provides logging facilities so that actions can be
tracked and assessed retrospectively. Debugging can be applied simultaneously to several
Processes.

3.7.4 Coding

Coding standards
See[Bection 2.5]for general guidance on code devel opment.

There are a number of suggested standards for Object Pascal coding, and some on-line examples
arelisted in Appendix A.7.2| In general, they tend to deal with issues of naming and layout,
rather than identifying areas of the language that are to be avoided as particularly error-prone.
They often suggest conventions for Hungarion notation, the practice of prefixing avariable
name with an indication of its type that is often adopted in Visual Basic programs. Thisis
generally agreed to be less necessary in strongly typed programming languages, and tends to
generate strong feelings for and against.

3 October, 2002

Page 95 of 133

The Delphi IDE generates alot of code automatically, and this will follow Borland’ s layout
conventions. There are other editors and source code formatters that will also generate code
following conventions. However, given the absence of language-oriented rules, thereis aso an
absence of automatic rule checkers of the kind found for C/C++ and Java.

Like Java, Object Pascal uses athrow-and-catch approach to handling errors. Exception
handlingiswrittenusingatry {<bl ock>} except {<exception handl ers>}
statement. If an exception isthrown in the block within thet r y part, its code is matched against
the handlersinthe cat ch part. If thereisamatch, the exception is handled by the
corresponding code, while other exceptions continue to propagate up through the calling
structure of the program. Exceptions can be thrown by fundamental operations such as division
by zero, library code, or the user’s own code. This method is much less prone to exception
handling errors than setting error handlers procedurally, asin Visual Basic.

Coding and software documentation

Genera guidance on software documentation issuesis given in pection 2.5.3

The obvious places to document Object Pascal code are at the starts of units and procedures.
The coding standards referenced above usually include recommendations for commenting.

3.7.5 Verification and validation

General guidance on V&V isgivenin

There are a number of tools that support verification and validation. We have already mentioned
the limited tool support for coding standards, and in particular there seemsto be little help in
static analysis of code and data flow. However there are tools for test execution and coverage
measurement, and for more specialised tasks such as source code profiling and resource leak
tracking. There appearsto be less available for test generation than in the case of C/C++ or Java.
Both commercial and community tools are available. A short list of examplesisgivenin
Appendix A.7.3] and links to other tools are included at the general siteslisted in

Appendix A.7.1

3.7.6 Maintenance
General guidance on maintenanceis given in

Aswith Java and C++, tools are available for extracting structural information from existing
code.

3.7.7 Configuration management

Generd guidance on configuration management isgivenin

Manual configuration control

Unlike many other IDEs, a Delphi project is defined by afile that contains the main program
and references those files that it imports explicitly in the code. It is thus easy to determine
whether any absol ute paths need changing and change them appropriately when generating a
new version.

Best Practice Guide on the Development of Test and Measurement Software

Page 96 of 133

Tool supported configuration control

Delphi can be extended with third party software to provide version control support within the
IDE (see Appendix A.7.3).

Distributing applications

Like Java, Delphi integrates all imported controls into the application, so applications are
straightforward to distribute (provided ActiveX controls are not used). Tools are available for
analysing dependencies between units, and for generating instalers for applications (see
Appendix A.7.3).

3.7.8 Metrics

General guidance on metricsis givenin

There are Delphi tools that will report complexity metrics for code (see A ppendix A.7.3).

3.7.9 Further resources

Delphi has an active user community that iswell represented on the Web. A few major sites are
listed in Appendix A.7.1| There are also books on Delphi and Object Pascal.

3.7.10 Extending Delphi with code from other languages

Borland Object Pascal supports the use of foreign language proceduresin a partialy platform-
dependent way. Both the Linux and Windows versions support VCL components. Delphi can
make use of ActiveX controls and DLL libraries, while Kylix can incorporate ELF format
object files produced by other compilersincluding GCC. Strong type checking is maintained up
to a point because the procedures, their parameters and their results must be declared as
external, but there is no check that the description given matches the definition. Procedure
names must be copied carefully, with attention to the cases of the characters, and parameter
types must also be matched carefully. Mistakes will cause run-time errors that might not be
revealed in some cases.

Object Pascal supports a number of calling conventions through keywords in the definitions of
external procedures. For calling functionsin DLLs that conform to the Windows API
conventions, the appropriate choiceisst dcal | , asin:

function S18AEF(var X Doubl e;
var | FAIL: Integer): Double;
stdcal | ;

external ‘nagsx.dll’;

which shows acall to aNAG Fortran DLL procedure. Object Pascal passes its parameters by
value unless, as here, they are qualified by the keyword var , in which case they are passed by
reference as expected by Fortran.

This declaration shows how a single external procedure would be defined, but Object Pascal
also allows the definition of units containing many external procedures that can then be
imported wherever they are needed, which is the most effective way to define the connection to
aDLL. With thisform of declaration, the compiler handles the loading of the DLL with the

3 October, 2002

Page 97 of 133

application (but will not report afailure to load). It is also possible to load DLLs explicitly and
check the returned resullt.

An example of calling a Fortran library subroutine from Delphi is givenin

Best Practice Guide on the Development of Test and Measurement Software

Page 98 of 133

3.8 MATLAB

The MATLAB environment integrates mathematical computing, visualisation, and a powerful
technical language. A built-in interface enables the access and import of instrument data. In the
consultations preceding the development of this guide, MATLAB was identified as being less
commonly used for T&M instrument devel opment as the languages discussed above, so this
section addresses just the integration of external programs.

MATLAB provides ameansto call Fortran (and C, C++ and Java) routines through “ gateways” .
At their simplest, these gateways call the MATLAB API to copy their input arguments from
MATLAB storage to Fortran variables and arrays, call the Fortran routine and finally copy the
results back into MATLAB storage.

Gateways are notorioudy unforgiving when mistakes are made and can be very difficult to
debug. It is recommended that al arguments are checked in the gateway to ensure that the
arguments have a valid data type and structure. Input array arguments should be also checked to
ensure they are the right size, where possible. The consistency of all data should be checked
where possible. The aim of verification is, obvioudly, to ensure that the input datain MATLAB
matches the Fortran storage allocated and the dimensions passed to the MATLAB API copy
functions, and vice versafor the output arguments.

The example Gateway provided later in this document clearly illustrates that its productionis a
non-trivial programming task if undertaken from scratch. Fortunately some commercial tools,
for example the NAGWare Gateway Generator (see [17]), ease the task considerably. These
tools produce the necessary gateways by analysing the source code, Fortran in the case of the
NAGWare product, and producing gateways from the information obtained.

It should be noted that this interface to MATLAB may not be viewed strictly as mixed language
programming as, in later examples, al of the coding is actually performed in Fortran. However
the MATLAB environment, which enables the execution of the subroutine, can be viewed as the
non-Fortran component in the application as, just as with conventional mixed language
programming, certain interfacing rules must be followed precisely. Indeed the similarity is
reinforced as the compiler, to be used to compile the Gateway and the subroutine, must be able
to generate a calling convention compatible with MATLAB. As a consequence not al compilers
will be able to compile codes that can be accessed from within MATLAB.

An example of calling a Fortran library subroutine from MATLAB isgivenin

3 October, 2002

Page 99 of 133

Appendix A Internet resources

The Internet is probably the broadest and most comprehensive collection of information
resources regarding computers and software. Most of thisinformation is available free, and
increasingly software and content vendors are using the Internet to provide a distribution
channel for their products.

One of the main problems in using the Internet is finding those resources of whose existence
you are unaware. Probably the easiest way isto use some of the Internet search engines such as
Google (http://www.google.com/), AltaVista (http://www.altavista.com/) or HotBot
(http://www.hotbot.com/).

Other key resources include Web directories such as Y ahoo! (http://www.yahoo.com/} which
attempt to provide some structure to key resources in the form of categories.

Apart from the many useful links provided here, we recommend that you familiarise yourself
with Internet search engines and large Web directories. Many of the siteslisted below also
collect related links, which will provide further points for your own exploration.

A.1 User interface design

The following links are good starting points for finding out more about good interface design
practices.

o ttp i useit comil Jackob Nielson's Web site on usability
. bleJAMMALiﬂtctﬁ.techomLf_ame.hlmjlsys interface Hall of Fame and Shame
° inLLprAuAMJ.aslagg.cgmdBruce Tognazzini’ s Web site on usability and interface

design

. iaLLp;.Lbumw.badd&signs.coleBadDesignscom

A.2 Component libraries on the Internet

ActiveX isakey technology for building Windows applications. There are a number of Web
sites that collate ActiveX controls. Some controls are user interface widgets, others are for data
processing. Often component vendors provide evaluation copies of software for download.

. bnpibwuxbmas.comLpLoductseatch.aspJV BXtrasisatools catalogue for Visua
Basic

° b&pihwwgmnpgnentsoume.codeomponentSource; “The definitive source of

software components’, a UK based reseller of third party components

° iaLt.p;LbAqu.actmex,caleActiveX.com; large repository of ActiveX components

(mostly freeware and shareware)

Best Practice Guide on the Development of Test and Measurement Software

http://www.google.com/
http://www.altavista.com/
http://www.hotbot.com/
http://www.yahoo.com/
http://www.useit.com/
http://www.iarchitect.com/fame.htm
http://www.asktog.com/
http://www.baddesigns.com/
http://www.vbxtras.com/productsearch.asp
http://www.componentsource.com/
http://www.activex.com/

Page 100 of 133

. bnpibmwgne;pmattetmdereymatter; independent supplier of software and

consultancy servicesto the programming and Web devel opment community

. bt.t.p;.LLwMAu.ppanadise.cgmdProgrammers’ Paradise; another online component

repository

° bn.p;lbmmu.ni.cmmgd@National Instruments' “ ComponentWorks” suite of

ActiveX instrument controls

° ianp#AAMMgglgbal-maj-chcgleGlobal Majic provide their own collection of

instrumentation controls

A.3 C/C++ resources

* Microsoft Visual C++ home page: bnp.lesdn.mLcmsof.meMsuaLcd

* Microsoft Foundation Classes Development guidelines (contains useful information
on C++ generdly):
http://msdn.mi crosoft.conVlibrary/backagrnd/html/msdn mfcgde.htm|

* Association of C and C++ users: |hII-p.lL\AMMJ-.aCCLI.OLgA (but you have to pay tojoin)

® Motor Industry Software Reliability Association: lﬂILpJL\MAML.mJSEa.OLg.J.IKLl
e LabVIEW CVI: http/iwmay ni comicvi/l

A.4 Visual Basic resources

A.4.1 General sites for VB developers

° innpllmsdn.ml.cv;nsnf.t_mmmhasmdM icrosoft Developers Network Visual Basic site
. bnpibmwxbilel.pet.camLIVB helper, avery good Web site for Visual Basic

(especialy /links)

. LIILP;LL\AMBAL.f-LeaLbCOde.CDleFI‘ee VB Code, contains awealth of controls, sample

applications and snippets to downl oad

3 October, 2002

http://www.greymatter.co.uk/
http://www.pparadise.com/
http://www.ni.com/cworks/
http://www.globalmajic.com/
http://msdn.microsoft.com/visualc/
http://msdn.microsoft.com/library/backgrnd/html/msdn_mfcgde.htm
http://www.accu.org/
http://dmoz.org/Computers/Programming/Languages/C/
http://dmoz.org/Computers/Programming/Languages/C/FAQs/
http://dmoz.org/Computers/Programming/Languages/C++/
http://www.misra.org.uk/
http://www.ni.com/cvi/
http://msdn.microsoft.com/vbasic/
http://www.vb-helper.com/
http://www.freevbcode.com/

Page 101 of 133

bnplbmmuxbweb_chtectony.codeB WebDirectory—a Web directory of VB-

related links

,,,,, b.htmlA collection of VB-

related Ilnks o

bLLp;LLwAmdc&naoLen&M\cmLBSOthme.hLmLh ntroduction to Visua Basic 5.0

Programming, an online tutorial on VB5

A.4.2 Visual Basic coding standards

Mmmmww@mmz& Microsoft

Consulting coding standard

banAAMAM.xoc.nethtandatdsteddi ck VBA naming standards; widely used and

referred to

— _ - |

A.5 LabVIEW resources

Some key LabVIEW Internet resources are listed below:

National Instruments’ LabVIEW sitelm-t-p;#MAAN-.ni-.chLLavaaul

LabVIEW listserver (email discussion list) and general LabVIEW users’ site:
http://www.info-labview.org/|

LabVIEW webring: lttp:

A.6 Java resources

A.6.1 General sites for Java developers

ial.t.p.'#j.ava.s,m.comtl A large collection of official Java resources, including

downloads of Java implementations.

An IBM-supported site containing

tutorlals how- tos and p0| nters to Java tools

iqnp;mm}noundup,comd Another collection of tutorials, articles and downloads

supported by a number of companies with an active role in Java devel opment.

A.6.2 Java coding standards

h:u;r.p:ujaua.s.ummldocstcodecmud The official Sun Java coding conventions.

Best Practice Guide on the Development of Test and Measurement Software

http://www.vb-web-directory.com/
http://www.geocities.com/SiliconValley/Pines/4038/dev/vb.htm
http://www.dcs.napier.ac.uk/hci/VB50/home.html
http://support.microsoft.com/support/kb/articles/q110/2/64.asp
http://www.xoc.net/standards/
http://www.gui.com.au/html/coding_standards.htm
http://www.ni.com/labview
http://www.info-labview.org/
http://www.webring.org/cgi-bin/webring?ring=labview;list
http://java.sun.com/
http://www-106.ibm.com/developerworks/java/
http://www.jroundup.com/
http://java.sun.com/docs/codeconv/

Page 102 of 133

. adf] Largely about naming and
documentan on, but Wlth good adV| ceona broad range of issues. Also availablein
book form

|hI.Lp;lAAMM1_geoson_noLj.auasml.e.hlmL] A compact list of recommendations with

associated rationale.

haltp:lL\MAw.andpmd.cangotchasbLle A list of common pitfallsin Java.

A.6.3 Java tools

The following is not intended as an exhaustive list, or as an endorsement of any of the tools
mentioned, but purely as an illustration of the range of tool support available. A more complete
list is available at http://industry.java.sun.com/sol utions|

o http://wan borland comyjbuilderd. Describes the Borland JBuilder IDE.
. bnpmmu_j.enssoﬁ.cgmd A coding standards compliance checker with a fixed set of

coding conventions.

e b tp:/hwananmmsing a,cngstyLe.hLle‘ A coding standards compliance checker and

metric calcul ator.

&N A test generator

and statlc analyser -

° iatt-p-lAAANw-tasLecsedge-cgm/-g;-t-ld' A test coverage measurement tool
° bnpll;aua.s.ncomq.ZseL}auacbcd Describes atool for generating HTML

documentation from comments and added tags in the Java code.

. iolip.llueﬁea:ch.ccmpaq.comtsaaaecj A research tool that detects a significant class

of Java programming errors by static analysis rather than testing, using alimited form
of semantic analysis.

. bnplbmmuwloolscomb.q_htmd A tool for browsing and extracting structure from

existing Java programs.

. blr.p.mmmu.t:ef.a:tm.t.mmd A tool for refactoring, and a discussion of the nature and

benefits of the technique.

A.7 Delphi resources

A.7.1 General sites for Delphi developers

banMManeumuemdeeLphﬁ.htm] Top page of alarge independent Delphi

resource, with many linksto other sites and some local FAQs and other information.

‘ 3 October, 2002

http://www.ambysoft.com/javaCodingStandards.pdf
http://www.geosoft.no/javastyle.html
http://www.mindprod.com/gotchas.html
http://industry.java.sun.com/solutions
http://www.borland.com/jbuilder/
http://www.jenssoft.com/
http://www.mmsindia.com/jstyle.html
http://www.parasoft.com/jsp/products/home.jsp?product=Jtest&/
http://www.testersedge.com/gjtk/
http://java.sun.com/j2se/javadoc/
http://research.compaq.com/SRC/esc/
http://www.scitools.com/uj.html
http://www.refactorit.com/
http://www.inner-smile.com/delphi5.htm#first

Page 103 of 133

Ihttp: /wnan simplythebest net/infoldelphi htmi| One page on an independent site with

many links to tools, tutorials, and example source code.

A.7.2 Delphi coding standards

The conventions for layout and naming (together with afew coding style
recommendations) that Borland uses for the Delphi code it distributes.

|hI.t.p;.lL\AaAm.econos.deldeLphucs.ht.ml.l Mainly concerned with naming and layout, but

with some pointers to correct and readable code.

lnttp: s ocdelphi org/standard html Widely referenced coding standard, again

mostly concerned with naming and layout.

A.7.3 Delphi tools

haﬁplbwmpwmmg&e&cm&a.htm] The SourceCoder tool formats source code,

calculates metrics, and instruments code for test coverage and profiling
measurements.

hﬁpibmmulamatedqamnipmduc&mempmof_aspl A memory and resource leak

debugger. A vital tool where storage is managed explicitly in the program

lhttp: /s prodelphi del] A Delphi profiler: also availablein a Linux version for

Kylix.

..o/ momenaces AA:III

structure diagrams from source code.

h:apzﬂdunil,sowcef.otge.netd An open source testing framework for Delphi programs.
Mpmu.mnepsmue.conidl:mf.,htm] A tool for generating installation scripts for

applications.

|ht-t-p-#]-vcléoumef-oz:ge-net¢| A repository of open source VCL components for Delphi.
haltpibmwiueaccsougﬁ.ndev.hr.m] Version control that can be integrated with Delphi.

nn/eng.html A tool to generate

A.8 Other T&M software technologies

There are other specialist technologies for building T& M software. Anillustrative selection is
given below:

Quatech designs and manufactures communication, data acquisition and signal
conditioning PCMCIA, ISA and PCI adapters for PCs. See http://www.quatech.con/|

Best Practice Guide on the Development of Test and Measurement Software

http://www.simplythebest.net/info/delphi.html
http://community.borland.com/soapbox/techvoyage/article/1,1795,10280,00.html
http://www.econos.de/delphi/cs.html
http://www.ocdelphi.org/standard.htm
http://www.preview.org/e/scintro.htm
http://www.automatedqa.com/products/memproof.asp
http://www.prodelphi.de/
http://ourworld.compuserve.com/Homepages/wviehmann/eng.htm
http://dunit.sourceforge.net/
http://www.inner-smile.com/dl_inf.htm
http://jvcl.sourceforge.net/
http://www.freevcs.org/index.htm
http://www.quatech.com/

Page 104 of 133

A.9

Pico Technology Ltd are manufacturers of PC based test & measurement equipment,
PC based oscilloscopes, spectrum analysers, data acquisition, temperature and
environmental monitoring devices. Seehttp://www.picotech.com/|

Windmill Software Limited specialise in data acquisition and control software for
Windows. Seehttp://www.windmill.co.uk/windmill.html|

Superlogics develop WinVIewlL E afree software tool for building simple DAQ
applications. See http://www.superlogics.com/|

General resources

For information on UML see‘qt.t.pJ.L\AAAAu.umL.o::gA
For information on the Rational tools, see Lm'.p.lAAMMLtauonaLcamd

For information on formal methods and safety critical software development
generally, see http://archive.comlab.ox.ac.uk/safety.html|

For general links on safety related computer systems, see Llnp-lbmmadeland-comtl
For general guidance on the use of formal methods, see Ionplbmwu.ew.cs.otgll

For information on the PolySpace static analysis tool for run-time exception
checking, seettp://www.polyspace.com/|

For information on specific formal model checkers, see w
icad.eecs.berkel ey.edu/~kenmcmil/smv|(SMV) and http://www-step.stanford.edu/|
(STeP)

For information on the Dynamic Systems Development Methods (DSDM), see
http://www.dsdm.org/|

NPL’s compact quality manual for T&M software projects, with atool for producing
a software quality plan based on arisk assessment, is available from
http://www.npl.co.uk/ssfm/theme3/project3 2/procedure.html |

For information on Bugzilla, seeb&lemmoz&laotngucq.ectsLbL@zmahabom_htle

Other general links for bug tracking software can be found at
http://dmoz.org/ Computers/Software/Configuration Management/Bug Tracking/Fre
e

3 October, 2002

http://www.picotech.com/
http://www.windmill.co.uk/windmill.html
http://www.superlogics.com/
http://www.uml.org/
http://www.rational.com/
http://archive.comlab.ox.ac.uk/safety.html
http://www.adelard.com/
http://www.ewics.org/
http://www.polyspace.com/
http://www-cad.eecs.berkeley.edu/~kenmcmil/smv
http://www-cad.eecs.berkeley.edu/~kenmcmil/smv
http://www-step.stanford.edu/
http://www.dsdm.org/
http://www.npl.co.uk/ssfm/theme3/project3_2/procedure.html
http://www.mozilla.org/projects/bugzilla/about.html
http://dmoz.org/Computers/Software/Configuration_Management/Bug_Tracking/Free/
http://dmoz.org/Computers/Software/Configuration_Management/Bug_Tracking/Free/

Page 105 of 133

Appendix B Books and references

B.1 Books

B.1.1 LabVIEW

[1]

[2]
[3]

[4]

Gary Johnson, LabVIEW Graphical Programming, 2" Edition, McGraw Hill, 1997.
ISBN 0-07-032915-X. (With a CD-ROM including a style guide, LabVIEW with Syle.)

Instrupedia, CD-ROM from National Instruments.

LabVIEW technical resource, periodical publication on CD-ROM of technical articles,
published by L TR publishing, http://www.ltr.con/|

Alliance Solutions, Directory of third Party Products and services, published annualy by
National Instruments.

B.1.2 Visual Basic

[5]

[6]

[7]

(8]

[9]

[10]

Rod Stevens: Bug Proofing Visual Basic: A Guideto Error Handling and Prevention,
John Wiley & Sons, 1998. ISBN 0471323519.

John Clark Craig, Webb Craig, Jeff Webb Microsoft Visual Basic 6.0 Developer’s
Workshop, Microsoft Press, 1998. ISBN: 157231883X.

Jan Axelson & Janet Axelson, Parallel Port Complete, Peer-to-Peer Communications,
1997. ISBN 0965081915.

Jan Axelson & Janet Axelson Serial Port Complete, Lakeview Research, 1998. ISBN
0965081923.

Grier et a: Visual Basic Programmers Guide to Serial Communications, Mabry
Software Inc, 1997. ISBN 1890422258.

Microsoft Visual Basic 5.0 Programmer’s Guide Microsoft Corporation ISBN: 1-57231-
604-71997

B.1.3 C/C++

[11]

[12]

[13]

[14]

Campbell J, C Programmers’ Guide to Serial Communications, Sams, 1993. ISBN
0672302861.

Dhananjay V. Gadre, Programming the Parallel Port; Interfacing the PC for Data
Acquisition and Process Control, R&D Books. ISBN 0879305134.

Les Hatton, Safer C: Developing Software for High Integrity and Safety Critical Systems,
McGraw Hill, 1995. ISBN 0-07-707640-0. See also
http://www.oakcomp.demon.co.uk/SaferC.html |

A Koenig, C Traps and Pitfalls, Addison Wedley, 1988.

Best Practice Guide on the Development of Test and Measurement Software

http://www.ltr.com/
http://www.oakcomp.demon.co.uk/SaferC.html

Page 106 of 133

[15]

MISRA Development Guidelines for Vehicle based Software, The Motor Industry
Software Reliability Association, MIRA, 1994.

B.1.4 Java

[16]

The Elements of Java Style. Vermeulen, Ambler, Bumgardner, Metz, Misfeldt, Shur &
Thompson. Cambridge University Press, 2000. ISBN: 0-521-77768-2.

B.1.5 MATLAB

[17]

NAGWare Gateway Generator—Numerical Algorithms Group Ltd, Jordan Hill Road
Oxford OX2 8DR.

B.1.6 General

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

N E Fenton and S L Pleeger, Software Metrics: A Rigorous and Practical Approach, 2nd
edition, International Thomson Computer Press, 1996.

lan Sommerville and Pete Sawyer, Requirements Engineering, John Wiley and Sons,
1997. ISBN 0471974447.

IChemE, The Engineer’s Responsibility for Computer Based Decisions, The Institution of
Chemical Engineers, Geo. E. Davis Building, 165-171 Railway Terrace, Rugby, CV21
3HQ, UK.

IEC 1131-3 Programmable controllers, International Electrotechnical Commission, 1992.

T Gilb and D Graham, Software Inspection, Addison-Wesley, 1993. ISBN 0201631814.

BS 7925, Software testing. Part 1: 1998, Vocabulary; Part 2: 1998, Software component
testing.

lan Sommerville, Software Engineering, 5 Edition, Addison-Wesley, 1995. ISBN 0-201-
42765-6.

JA McDermid (editor), Software Engineer’ s Reference Book, Butterworth-Heinemann,
1991. ISBN 0-750-961040-9.

IEC 61508, Parts 17, Functional Safety: Safety-Related Systems, 1999.

DMOZ entry on software testing:
Ihttp://dmoz.org/Computers/Programming/Software Testing/|

G T Anthony and M G Cox, “The National Physical Laboratory’s Data Approximation
Subroutine Library”, in JC Mason and M G Cox (editors), Algorithms for
Approximation, Clarendon Press, Oxford, UK, 1987.

G Booch, Object-oriented Analysis and Design with Applications, Benjamin Cummings,
1993, ISBN 0805353402.

Rapid Application Development (RAD) issue, DoD Software Tech News VVolume 2, No
1., 1998 (see aso http://www.dacs.dtic.mil/awareness/newsl etters/)

3 October, 2002

http://dmoz.org/Computers/Programming/Software_Testing/
http://www.dacs.dtic.mil/awareness/newsletters/

Page 107 of 133

[31]

[32]

[33]

[34]

[35]

[36]

Methods for assessing the safety integrity of safety-related software of uncertain pedigree
(SOUP), Report No: CRR337, HSE Books 2001. ISBN 0 7176 2011 5.
www.hse.gov.uk/research/crr pdf/2001/crr01336.pdf|

Justifying the use of software of uncertain pedigree (SOUP) in safety-related
applications, Report No: CRR336, HSE Books 2001. ISBN 0 7176 2010 7.
http://www.hse.gov.uk/research/crr pdf/2001/crr01337.pdf |

Dynamic Systems Devel opment Method, version 2, Tesseract Publishing, Farnham, 1995.

J. Stapleton, Dynamic Systems Development Method: The method in practice, Addison
Wedley, 1997.

R Woodhead, M Atkinson, J Stapleton, M Bray and M Blackman, Dynamic Systems
Development Method and Tickl T, DISC TickIT Office, British Standards Institution,
London, 1997.

Adelard Safety Case Development Manual. Adelard, 1998. ISBN 0 9533771 0 5. See
http://www.adel ard.co.uk/resources/ascad/|

B.1.7 Related guides

[37]

[38]

[39]

[40]

[41]

[42]

B.2

[43]

[44]

Cathy Thomas, Owen Daly-Jones and Andrew Harry, Measurement Good Practice Guide
No. 8: Human factorsin Measurement and Calibration, National Physical Laboratory,
1998.

Brian Wichmann, Software Support for Metrology Best Practice Guide No. 1:
Measurement system validation: Validation of measurement software—Revision for
safety systems, Draft. See

http://www.npl .co.uk/ssfm/downl oad/documents/ssfmbpgl draft.paf|

Software Support for Metrology Best Practice Guide No. 2: The Development of Virtual
I nstruments. http://www.npl.co.uk/ssfm/downl oad/documents/ssfmbpg2. pdf|

Software Support for Metrology Best Practice Guide No. 3: Devel oping software for
metrology. http://www.npl.co.uk/ssfm/downl oad/documents/ssf mbpg3. pdf|

Software Support for Metrology Best Practice Guide No. 8: Mixed Language
Programming. http://www.npl.co.uk/ssfm/downl oad/documents/ssf mbpg8. pdf|

R Barker, Software Support for Metrology Best Practice Guide No. 5: Software Re-use:
Guideto METROS. See dso
Ihttp://www.npl .co.uk/ssfm/downl oad/documents/ssfmbpg5. pdf|

Other references

The NAG Fortran library, The Numerical Algorithms Group Ltd, Wilkinson House,
Jordan Hill Road, Oxford, OX2 8DR, UK.

JJDongarra, C B Molder, JR Bunch and G W Stewart, LINPACK User’s Guide, SIAM,
Philadel phia, 1979.

Best Practice Guide on the Development of Test and Measurement Software

www.hse.gov.uk/research/crr_pdf/2001/crr01336.pdf
http://www.hse.gov.uk/research/crr_pdf/2001/crr01337.pdf
http://www.adelard.co.uk/resources/ascad/
http://www.npl.co.uk/ssfm/download/documents/ssfmbpg1_draft.pdf
http://www.npl.co.uk/ssfm/download/documents/ssfmbpg1_draft.pdf
http://www.npl.co.uk/ssfm/download/documents/ssfmbpg1_draft.pdf
http://www.npl.co.uk/ssfm/download/documents/ssfmbpg1_draft.pdf
http://www.npl.co.uk/ssfm/download/documents/ssfmbpg5.pdf

Page 108 of 133

3 October, 2002

Page 109 of 133

Appendix C Visual Basic example

For the Visual Basic implementation of the traffic light example, using the specification from
The main monitoring loop (which is called by atop-level timer control) islisted
below.

The main structures of the code that map to the state transition diagram (see are

marked in bold and labelled according.

The program and the source code can be downloaded from Adelard’ s web site,
http://www.adel ard.conv|

Sub CheckWor | dSt at e()
‘function: This is the overall nonitoring state machine
‘ Refer to the State nmachine specification for full details.

every time the nonitor loop is run, but there is an interlock
‘ whereby the barrier will not close if there is a car in the
‘ barrier zone
‘call ed by: MonitorWorl dTi mer
“history: 17/9/99 LCE created procedure
‘safe to open barrier at any tine
I f bl nRequest Open Then
Me.txtBarrierstate = “...opening barrier...”
Me.txt Barrierstate. Refresh

STEP1& 2 GotolightState (2)
Me.txtBarrierstate = “Barrier open”
bl nRequest Open = Fal se ‘no need to request anynore
‘the following line inplenments slightly different behaviour
“if it is included or comented out.
“If included then close requests can be cancelled if there is a
car in the zone
‘otherwise if cormented out then barrier will close eventually if
the request close
‘is pushed
bl nRequest Cl ose = Fal se
El se

‘is there a car in the barrier zone?
I f bl nVehicl el nZone Then
I f bl nRequest Cl ose Then

Basically, requests to open or close the barrier are considered

Me.txtBarrierstate = “...waiting for vehicle to pass...”
El se

Me.txtBarrierstate = “...vehicle passing...vrm.vrnf
End |f

El se
‘no car in zone so we can close barrier
I f bl nRequest C ose Then
Me.txtBarrierstate = “...barrier closing...”
Me. txt Barri erstate. Refresh

Best Practice Guide on the Development of Test and Measurement Software

http://www.adelard.com/

Page 110 of 133

STEP5& 6 GotolightState (0)

Me.txtBarrierstate = “Barrier closed”
bl nRequest Cl ose = Fal se ‘no need to request anynore

El se
‘no open or close requests in this |oop
‘so barrier stays in its current alignment
If iCurLightState = 2 Then Me.txtBarrierstate = “Barrier

open”
If iCurLightState = 0 Then Me.txtBarrierstate = “Barrier
cl osed”
End If
End |f
End |f
End Sub

3 October, 2002

Page 111 of 133

Appendix D LabVIEW example

This appendix shows the top-level diagram for the site entry barrier example. It shows the initialisation phase, followed by the main state machine (the
While Loop and the left-hand Case structure), which determines how to set the barrier on the basis of the buttons and the vehicle sensor. The state
machine on the right computes the traffic light aspects.

The complete example includes a free-running sub-V | that models the behaviour of avehicle passing the barrier when the traffic light is green.

Note the way the diagram is documented by areas of text and a scrolling string constant.

The complete VI hierarchy can be downloaded from Adelard’s Web site, http://www.adelard.com/

Best Practice Guide on the Development of Test and Measurement Software

http://www.adelard.com/

Page 112 of 133

I ain ztake maching
|nitialization
Traffic light state machine
jooooooooooo 0-Start [test open button] =]
Fed 1 1-Open barrier [
- 2-5et green
[T [TF])
It 3-Test for wehicle -
ellow 1
o] 0. Default pef
Green 1

ehicle entering

-|| Enable contraller _F’
""" B arrier apen

10000000 oooo

Open button

{z>

These controls
are acceszed

by local variables Llase button
[TF]

inhibit

E arrier open| [Contral vehicle sub V1] || @ Fun example
Start vehicle | | o +} | [Pause for other applications] Enable controller
zub| T

3 Octaober, 2002

Page 113 of 133

Appendix E Examples of mixed language
programming

In this appendix we provide some example procedures illustrating mixed language
programming, specifically calling the NAG Fortran libraries from C++, Delphi, Visual Basic,
LabVIEW and MATLAB, and C libraries from Visual Basic. They are taken verbatim from
SSfM-1 Best Practice Guide 8.

E.1 Calling a Fortran DLL from Microsoft Visual C++

The following isillustrates how the interface to aNAG Library routine that has multi-
dimensional arrays and character strings in the user interface. The example istaken from a PC
using the CVF and Microsoft Visual C/C++ compilers.

There are in addition different conventions adhered to by the C language from that of Fortran.
For example, Fortran routines assume that array indices start at 1, whereas the usua C
convention is that indices start at 0. Care must also be taken with two-dimensiona arrays.
Fortran conventions stipulate, for example, that element (2,1) is next to element (1,1) in the
physical storage of the array. C convention has element (1,2) next to (1,1) (i.e. Fortran stores by
column, C by row). The result is that the C programmer often has to provide the transpose array
to Fortran routines and to interpret returned array information accordingly.

C character strings and Fortran character strings are handled differently. In the CVF
implementation a string argument is passed by value as a structure consisting of a 4-byte
argument address, followed by the length of the string.

The following example illustrates the use of the NAG DLLsusing Microsoft Visual C++,
version 4.2.

#i ncl ude <stdio. h>
#def i ne CONST const
typedef struct { char *str; int val; } Fortran_character_arg;

extern void __stdcall FO1QCK(
CONST int *m

CONST int *n,

double a[1],

CONST int *|da,

doubl e zeta]],

int *ifail

);

extern void __stdcall FO1QDF(
CONST Fortran_character_arg trans,
CONST Fortran_character_arg wheret,
CONST int *m

CONST int *n,

double a[],

CONST int *|da,

CONST doubl e zeta[],

CONST int *ncol b,

double b[],

CONST int *|db,

doubl e work[T,

int *ifail

)

Best Practice Guide on the Development of Test and Measurement Software

Page 114 of 133

/* Sinplified exanple programfor FO1QDF */
mai n()

int i,ifail,j,m=5n = 3,ncolb = 2;

int lda =mldb = m

Fortran_character_arg tr = {“Transpose”, 9};
Fortran_character_arg se = {“Separate”, 8};

/* Initialise arrays in columm major order */
static double a[3][5] =

.0, 1.6, 2.0, 1.2,
.5, -0.4, -0.5,
.5,

-0.3,
2.8, 0.5 -2.9

[1¢) N =]
NN N

.1, 0.9, 0.6, 0.0, -0.8,
.0, 0.0, 1.32, 1.1, -0.26

{
2
2
2
}
static double b[2][5] =
{
1
0
}
d

oubl e worKk[2], zeta[3];

printf(“FO1QDF Exanpl e Program Results\n\n");

ifail = 0;
FO1QCF(&m &n, (doubl e *)a, & da, zeta, & fail);
ifail = 0;

FO1QDF(tr, se, &m &n, (doubl e *)a, & da, zet a, &icol b, (doubl e
*)b, & db, work, & fail);

printf(“Matrix Q *B\n");

for (i=0; i<m i++)

for (j=0; j<ncolb; j++)
{

printf(“% “,b[jI[i]);
}

printf(“\'n");

}

return O;

}
E.2 Calling a Fortran Subroutine from Delphi

AsBorland Delphi isa PC product the general rulesfor best practice may be relaxed provided
that Fortran/Delphi inter-calling is the only consideration. The following examples demonstrate
how Delphi can be used to call routines from the NAG Library DLL implementation.

One important point to bear in mind when calling the NAG DLLs from Delphi is that the actual
parameters must be of type var. Thisis because the Fortran calling convention requires
parametersto be passed by reference and not by value. It is not necessary to include the library
itself in the compilation linker list in Delphi; the DLL can be called straight from the code itself
and the compiler will link it automatically.

Thereferenceto the DLL is as a procedure or function, defined as external in the Delphi code.
This procedure needs to have the same name as the DLL routine called. Delphi is case sensitive,
so the NAG name must bein capital letters (the Delphi name construct may be used to change
thisif desired).

Consider the following example:

functi on S18AEF(var X: Doubl e;
var | FAIL: Integer): Double;
stdcal | ;

external ‘nagsx.dll’;

3 October, 2002

Page 115 of 133

The stdcall directive is required to ensure that the right-to-left calling convention is used, and to
specify that the routine is responsible for cleaning up the stack and not the program. The Fortran
DLL expectsthis calling convention. The function or procedure can then be called as a normal
routine, e.g.:

WiteLn(SL8AEF(X, IFAIL));
E.2.1 Multi-Dimensional Array

Arrays of more than one dimension have to be transposed before they can be passed to the
Fortran DLL. Thisis because Fortran assumes that an array such as A[2,2] is stored in
contiguous locationsin column order, i.e. as A[1,1], A[2,1], A[1,2], A[2,2]. Pascal, on the other
hand, stores the elementsin row order as A[1,1], A[1,2], A[2,1], A[2,2]. Note that the Pascal
arrays handed as actual parametersto a Fortran DLL must be defined as data types asin the
example. A Pascal variable array defined in the var section, passed as an actual argument,
overwrites other parameter values and can cause system failure. See exampl e of
function/procedure passing for illustration of multi-dimensional array handling.

E.2.2 Passing Functions and Procedures

Many of the NAG Libraries require subroutines and functions to be passed as parameters. To
achieve thisin Delphi each procedure or function to be passed needsits own data type, defined
under the type heading. This allowsit to be passed to the DLL through the parameter list. The
type definition needs to have the same number and type of parameters as the subroutine itself.
Note that var is not required since only a copy of the procedure needs to be made during the
passing. Note that stdcall is required both on the definition of the function/procedure and on the
definition of the datatype to ensure the correct caling convention is used, as before.

E.2.3 NAG Library Routine DO3PCF Example Program Coded in Delphi

This code uses the routine DO3PCF, which integrates a system of linear or nonlinear parabolic
partia differentia equations (PDES). Thisisfound inthe NAG DLL NAGDO3.DLL. This
program illustrates the use of multi-dimensiona arrays and function/procedure passing as
described above. Note that it aso uses the external function X01AAF, found in NAGSX.DLL,
to find pi.

unit D03Code
interface

uses
W ndows, Messages, SysUtils, O asses, Gaphics,
Controls, TFornms, D al ogs;

type

TForml = cl ass(TForm
private

{ Private declarations }
public

{ Public declarations }
end;

var
TFormL: TFor ni;

i mpl enent ati on

{$R *.DFM {Conpiler D rective}

Best Practice Guide on the Development of Test and Measurement Software

Page 116 of 133

type

U ArrayType = array [1..20, 1..2] of Double;

UQUT_ArrayType = array [1..1, 1..6, 1..2] of Double;

{Note: the two arrays above are defined as the transpose of the parameter requirenents
to ensure conpatibility with Fortran DLLs.}

WArrayType = array [1..1128] of Double; {1..NW
X ArrayType = array [1..20] of Double; {1..NPTS}
XQUT_ArrayType = array [1..6] of Double; {1..1NTPTS}
I WArrayType = array [1..64] of Integer; {1..NW
NPDE_ArrayType = array [1..2] of Double; {1..NPDE}
P_ArrayType = array [1..2] of NPDE_ArrayType;
PDEDEFType = Procedure(var NPDE: |nteger;

var T: Doubl e;

var X Doubl e;

var U NPDE_ArrayType;

var DUDX: NPDE_ArrayType;

var P: P_ArrayType;

var Q NPDE_ArrayType;

var R NPDE_ArrayType;

var | RES: Integer);

stdcal | ;

BNDARYType = Procedure(var NPDE: |nteger;

var T: Doubl e;

var U NPDE_ArrayType;

var UX: NPDE_ArrayType;

var | BND: |nteger;

var BETA: NPDE_ArrayType;

var GAMVA: NPDE_ArrayType;

var | RES: Integer);

stdcal | ;

{The two types above are Procedure types. These need to be defined so that the
procedur es

BNDARY and PDEDEF can be passed as paraneters (of type procedure) to the DLL.}
var

NPDE: | nt eger 2;

NPTS: I nteger = 20;

I NTPTS: | nteger = 6;

I TYPE: Integer = 1;

NEQN: | nteger;

N W | nteger;

NVK: | nt eger;

NW | nt eger;

I nt eger;
I nt eger;
FAI L: Integer;

l:
J:
|
ALPHA: Doubl e;
ACC. Doubl e;
HX: Doubl e;
Pl : Doubl e;

PI BY2: Doubl €;
TOUT: Doubl e;

TS: Doubl €;
I ND: | nteger;
I T: Integer;

| TASK: | nteger;

| TRACE: | nteger;

M Integer;

U U ArrayType;

UQUT: UCQUT_ArrayType;

W WArrayType;

X: X _ArrayType;

XOUT: XOUT_ArrayType = (0.0,0.4,0.6,0.8,0.9,1.0);
IW I WArrayType;

Procedure DO3PCF(var NPDE: |nteger;

var M Integer;

var TS: Doubl e;

var TOUT: Doubl e;

PDEDEF: PDEDEFType; {The two procedure paraneters,}

3 October, 2002

Page 117 of 133

BNDARY: BNDARYType; {defined above under type}

var U U ArrayType;
var NPTS: Integer;
var X: X _ArrayType;
var ACC. Doubl e;

var W WArrayType;
var NW | nteger;

var |W | WArrayType;
var NIW [nteger;

var | TASK: | nteger;
var | TRACE: Integer;
var | ND: Integer;

var | FAIL: Integer);
stdcal | ;

external ‘nagD03.dll’;

Function XO01AAF(var Pl: Double): Doubl e;
external ‘nagsx.dll’;

Procedure DO3PZF(var NPDE: | nteger;
var M Integer;

var U U ArrayType;

var NPTS: |nteger;

var X: X_ArrayType;

var XOUT: XOUT_ArrayType;
var | NTPTS: Integer;

var | TYPE: |nteger;

var UCQUT: UQUT_ArrayType;
var | FAIL: Integer);
stdcal | ;

external ‘nagD03.dll’;

{ PDEDEF—+0 define the system of PDEs}

Procedur e PDEDEF(var NPDE: | nteger;
var T: Doubl e;

var X: Doubl e;

var U NPDE_ArrayType;

var UX: NPDE_ArrayType;

var P. P_ArrayType;

var Q NPDE_ArrayType;

var R NPDE_ArrayType;

var | RES: Integer);

stdcal | ;

begi n

Q1] : = 4. 0*ALPHA* (U 2] +X*UX[2]) ;
g2]:=0.0;

R 1]:= X*UX[1] ;

Ri2]:= UX2]-U1]*U2];
P[1,1]:= 0;

P[1,2]:= O;

P[2,1]:= 0;

P[2,2]:= 1.0-X*X

end;

Procedur e BNDARY(var NPDE: | nteger;
var T: Doubl e;

var U NPDE_ArrayType;

var UX: NPDE_ArrayType;

var | BND: | nteger;

var BETA: NPDE_ArrayType;

var GAMVA: NPDE_ArrayType;

var | RES: Integer);

stdcal | ;

begi n

if (IBND=0) then

begi n
BETA[1] :
BETA[2] :
GAMVA[1] :
GAMVA[2] :

end

0;

1;

U1,
Uiy 2]

Best Practice Guide on the Development of Test and Measurement Software

Page 118 of 133

el se
begi n
BETA[1] :
BETA[2] :
GAMVA[1] :
GAMVA[2] :
end

end;

1,
0;

-U 1]
U2];

Procedure Set Up;

var

I: Integer;

begi n

NEQN: = NPDE * NPTS;

NI W = NEQ\+24;

NWK: = (1 10+6* NPDE) * NEQN,

NW = NVK+(21+3* NPDE) * NPDE+7* NPTS+54;

ACC. = 1. OE-4;
M= 1;

| TRACE: = 0;
ALPHA: = 1. 0;
I ND: = 0;

I TASK: = 1;

{Set spatial nesh points}
Pl BY2: = 0. 5* XO1AAF(PI);
HX: = PI BY2/ (NPTS-1) ;
X[1]:= 0;

X[NPTS] : = 1;

for I:=2 to (NPTS-1) Do
begi n

X[11:= SIN(HX*(1-1))

end;

nitial conditions}

{Unit defines the initial PDE condition}

Procedure Uinit(var U U ArrayType;
var X: X_ArrayType;

var NPTS: |nteger);

var

I: Integer;

begi n

for 1:= 1 to NPTS Do

begi n
ul,1]:
ul,2]:
end;
end;

2. 0*ALPHA* X[|] ;
1.0;

begi n

WitelLn(' DO3PCF—Exanpl e programresults’);
Set Up;

WitelLn;

WitelLn(‘Accuracy requirement = ‘, ACO);
WitelLn(‘ Paraneter alpha = ‘, ALPHA);
Wite(* T/ X"');

for 1:=1to 6 Do

Wite(XQUT[I]: 6);

WiteLn;

Uinit(U, X, NPTS);
for 1:=1to 5 Do
begi n

IFAIL: = -1;
TOUT: = 10* TQUT;

3 October, 2002

Page 119 of 133

DO3PCF(NPDE, M TS, TQUT, PDEDEF, BNDARY, U, NPTS, X, ACC, WNW | W N
W
| TASK, | TRACE, I ND, | FAIL) ;

DO3PZF(NPDE, M U, NPTS, X, XOUT, | NTPTS, | TYPE, UQUT, | FAI L) ;
WiteLn;

Wite(TOQUT: 6, U1l]');

for J:=1 to INTPTS Do

Wite(UOUT[1,J,1]: 5," ');

WitelLn;

Wite(* U2]');

for J:=1 to INTPTS Do

Wite(UOUT[1,J,2]: 5, ');

WitelLn;

end,

WiteLn(‘ Nunmber of integration steps in time' ,IW1]);
WiteLn(‘ Nunmber of residual evaluations of resulting ODE
system ‘', IW2]);

WiteLn(' Nunber of Jacobian evaluations’,IW3]);
WiteLn(‘ Nunmber of interations of nonlinear solver’,IW5]);
end.

E.2.4 String Handling and Passing

Severa Fortran DLLs require strings or characters to be passed as parameters. The strings need
to be null terminated, and defined either with Pchar, or as an array of characters such as:

strng = array [0.. 2] of Char;

The example program uses an array of characters for smplicity. Note that the array has to be
zero based. The DLL routine will expect a zero based string array and will fail if it does not
receive one.

The routines expect the length of the string in characters to be passed after the string itself. The
best way to do thisisto pass this as an extrainteger parameter after each string or character,

e.g..
procedure Q2EEF(...;

var NAME: Strng_ArrayType;
NAVE_Len: | nteger;

var NEWAR Strng;
NEW/AR Len: | nteger;
.siac;'al I

external ‘nag®2.dll’;
and in calling:

QO2EEF(. .., ..., NAMVE, 3,..., NEW/AR, 3,...);

The extra parameters can be added with no problems because an integer is expected after each
string, character or array of strings, such as Strng_ArrayType.

E.2.5 NAG Library Routine GO2EEF Example Program Coded in Delphi

This code uses the routine GO2EEF to carry out one step of aforward selection procedure to
enable the “best” linear regression model to be found. This example was chosen to illustrate the
problems that arise through passing strings to Fortran DLLSs. It also includes another exampl e of
multi-dimensiona array handling.

unit @02Code;

Best Practice Guide on the Development of Test and Measurement Software

Page 120 of 133

interface

uses
For ns;

type

TForml = cl ass(TForm
private

{ Private declarations }
public

{ Public declarations }
end;

var
Forml: TForni;

i npl enent ation

{$R *. DFM
{ Q2EEF—Exanpl e Programin Del phi 2}

type

X ArrayType = array [1..8, 1..20] of Doubl e;

{X Array, and Q Array bel ow, are defined as the transpose of the paraneter
requirenents to ensure conpatibility with Fortran DLL.}

Strng = array [0..2] of Char;

{A Null terminated string. Note the zero basing of the array of characters.}
Strng_ArrayType = array [1..8] of Strng;

| SX_ArrayType = array [1..8] of Integer;

WIY_ArrayType = array [1..20] of Double;

EP_ArrayType = array [1..9] of Double;

Q ArrayType = array [1..10, 1..20] of Doubl e;

WK_ArrayType = array [1l..16] of Double;

var
I: Integer;
J: Integer;
NVAX: | nteger = 20;
MVAX: I nteger = 8;

| STEP: | nteger;

MEAN: Char ;

WEI GHT: Char;

N I nteger;

M I nteger;

X X_ArrayType;

NAME: Strng_ArrayType;
I SX: | SX_ArrayType;

Y: WIY_ArrayType;

WI: WIY_ArrayType;
FI'N: Doubl e;

ADDVAR: Bool ean;
CHRSS: Doubl e;

F: Doubl e;

MODEL: Strng_ArrayType;
NTERM | nt eger;

RSS: Doubl e;
I DF: | nteger;
| FR I nteger;

FREE: Strng_ArrayType;
EXSS: EP_ArrayType;
Q QArrayType;

LDQ I nteger;

P: EP_ArrayType;

WK WK_ArrayType;

| FAI L: | nteger;
NEW/AR: St rng;

Procedure (V2EEF(var | STEP: | nteger;
var MEAN:. Char;

MEANL: | nt eger;

var WElI GHT: Char;

3 October, 2002

Page 121 of 133

W.: | nteger;
var N Integer;
var M Integer;

var X: X _ArrayType;
var LDX: Integer;

var NAME: Strng_ArrayType;

NAME_L:
var |1SX: | SX_ArrayType;
var MAXI P: |nteger;
var Y: WIY_ArrayType;
var WI: WIY_ArrayType,;
var FIN. Doubl e;

var ADDVAR: Bool ean;
var NEWAR: Strng;
NVAR L:
var CHRSS: Doubl e;
var F: Doubl e;

var MODEL: Strng_ArrayType;

MODL_L:
var NTERM | nteger;
var RSS: Doubl e;
var | DF: Integer;
var |FR Integer;

var FREE: Strng_ArrayType;

FREE_L:
var EXSS:. EP_ArrayType;
var Q Q ArrayType;
var LDQ Integer;

var P: EP_ArrayType;
var WK WK_ArrayType;
var | FAIL: Integer);
stdcal | ;

external ‘nag®2.dll’;

I nt eger;

I nt eger;

I nt eger;

I nt eger;

Procedure R;

var

Tenmp: Char;

begi n

Read(Tenp) ;

end;

Procedur e ReadDat a;

var

I: Integer;
J: Integer;

begi n

ReadLn;
Read(N, M;

R {Ski p bl ank space—See subroutine above}

{Ski p heading in datafile}

Read(MEAN, VEI GHT) ;

If (McMVAX) and (N<=NMAX) then

begi n
for 1:
begi n
for J:
begi n

1 to N Do

1to MDo

Read(X[J,11]);

end;

Read(Y[1]);

If (VEI GHT=" W) or

Read(WIT1]);

end;
end;
R

for J:= 1 to MDo

begi n

Read(1SX[J]);

end;
R

for 1:=1to MDo

begi n

(VEI GHT=" W) then

Best Practice Guide on the Development of Test and Measurement Software

Page 122 of 133

for J;=01to 2 Do {note the zero basing of the array and | oop}
begi n

Read(NAME[I, J]);

end;

R

end;

Read(FIN);

end;

Procedure FreeVars;

begi n

Wite('Free variables: ');
for J;:=1to IFR Do

begi n

Wite(FREE[J]);

Wite(* *);

end;

WiteLn;

WitelLn(' Change in residual sumof squares for free variables:’);
for J;:=1to IFR Do

begi n

Wite(EXSS[J]);

Wite(* *);

end;

WitelLn;

WiteLn;

end;

begi n

WitelLn(' GO2EEF Exanpl e Program Results’);
| STEP: = 0;

|FAIL: = O;

ReadDat a;

for 1:=1 to M Do

begi n

| FAI L: =0;

@GD2EEF(| STEP, MEAN, 1, VI GHT, 1, N, M X, NMAX, NAME, 3, | SX, MVAX, Y, W,
FI N, ADDVAR, NEW/AR, 3, CHRSS, F, MODEL, 3, NTERM RSS, | DF,

| FR, FREE, 3, EXSS, Q NVAX, P, WK, | FAI L) ;

{NB Fortran requires the length of the strings to be passed i mediately follow ng the
strings thensel ves.

Therefore it expects an integer after every string paraneter.}
if (1FAlL<>0) then

begi n

WiteLn(‘*IFAIL = *,IFAIL);

Exit;

end;

WitelLn;

WitelLn(‘Step ‘,|STEP);

i f (ADDVAR<>TRUE) then

begi n

WiteLn(‘No further variables added maximumF =, F);
FreeVars;

Exit;

end

el se

begi n

WitelLn(' Added variable is ‘', NEW/AR);

WiteLn(‘ Change in residual sum of squares =, CHRSS);

WiteLn(‘F Statistic = *,F);

WiteLn;

Wite(*Variables in nodel: ‘);

for J:=1 to NTERM Do

begi n

Wite(MODEL[J]);

Wite(* *);

end,

WitelLn;

WitelLn;

WitelLn(‘ Residual sum of squares = ‘', RSS);
WitelLn(' Degrees of freedom= *,I1DF);

3 October, 2002

Page 123 of 133

WitelLn;

if (IFR=0) then

begi n

WiteLn(‘No free variables remaining);
Exit;

end;

FreeVars;

end;

end;

end.

E.3 Calling C procedures from Visual Basic
E.3.1 Multi-Dimensional Array
In Visua Basic, multi-dimensional arrays are stored by columns (as in Fortran) rather than by
rows, which isthe C convention. This means that care must be taken when a C procedure has
two-dimensional array (matrix) arguments.
For example, assume that a 3 by 2 matrix:

11 12

21 22

31 32

isstored in aVisual Basic 2-dimensional array a in the natural manner, asin the following code
fragment:

Dma(2, 1) As Doubl e

a(0, 0) =11
a(1, 0) =21
a(2, 0) =31
a(0, 1) =12
a(l, 1) = 22
a(2, 1) =32

The array a consists of 6 el ements stored in column order, asfollows:

11 21 31 12 22 32.

However, the C convention dictates that two-dimensional arrays are stored in row order.
Suppose the array a (above) were passed to a NAG C procedure, say the NAG C library routine
fO2wec which computes the Singular Value Decomposition (SVD) of the matrix:

Call fO2wec(3, 2, a(0, 0),....)

where the first two arguments specify the number of rows and columns in the matrix. The NAG
C Library procedure would treat the array as representing a 3 by 2 matrix stored in row order:

11 21
31 12
22 32

Best Practice Guide on the Development of Test and Measurement Software

Page 124 of 133

which is not the intended matrix a.

One solution to this problem is to store the matrix in aone-dimensional array al, with the
eemental(i, j) storedinal(i—) * (tda + j—1),wheret daisthetrailing
dimension of the matrix (in this case 2).

Dim al(5) As Double
Dimtda As Long

tda = 2

al(0) = 11

al(1l) = 12

al(2) =21

al(3) = 22

al(4) = 31

al(5) = 32

Call fO2wec(3, 2, al(0), tda....)

Another solution isto store the transpose of the matrix a in atwo-dimensional array at , with
t da now being the leading dimension of the array at :

Dmat (1, 2) As Double
Dimtda As Long

tda = 2

at(0, 0) =11

at(0, 1) =21

at(0, 2) = 31

at(1, 0) = 12

at(1, 1) = 22

at(1, 2) = 32

Call fO2wec(3, 2, at(0, 0), tda,....)

The Visual Basic array at can be larger than is needed to store the 2 by 3 matrix A'; in order
that the C routine accesses the correct array elementsit is essential that t da is set to the correct
value, i.e. the actual size of the trailing dimension of the array rather than the size of the matrix.

E.4 Visual Basic calling Fortran components

Visual Basic users may use DLLsto boost the capabilities of their application. The secret liesin
inserting the appropriate “Declare” statementsin aVisual Basic module.

The following example applies to Microsoft Excel, but most of it applies equally to Visua Basic
generally.

Open the Excel workbook and create a module by clicking on the Tools, Macro, Visual Basic
menus of Excel 97. Insert the “Declare” statement into the module. For illustration we will use
NAG Library routine S14AAF (a double precision function that takes two scalar arguments, the
first of which is double precision and the second is integer).

If the source code for the DLL iswritten in Fortran it is worth making sure that that the
command “Option Base 1” is a the top of the Module. This ensures that any VBA arrays
declared start their indices at 1, making them compatible with the Fortran routines. It isalso
good practice to ensure that “ Option Explicit” isaso present. Unlike C, VBA arrays store by

3 October, 2002

Page 125 of 133

column and are thus compatible with Fortran. Experienced VBA programmers may how use the
Fortran routine as though it had been written in VBA, subject to the conventions contained in
the “Declare’ statement.

The following code appears in a modul e of the workbook:

Option Base 1
Option Explicit

Decl are Function S14AAF Lib “NAGSX. DLL" (x As Double, ifail As Long) As Doubl e

The simplest functions may be used directly. To see this, move to an ordinary Worksheet in this
Workbook and select a cell before clicking upon the Function Wizard (fx) on the Excel Ribbon.
In the “User Defined” section, you will find the NAG S14AAF routine. Proceed as prompted by
the Wizard, putting the dummy value O for IFAIL when finally prompted for this. If you have
typed in valid input for the parameters, the function is now evaluated and placed in the cell
selected. (Y ou might wish to type in the value 1.25 for X, O for IFAIL and verify that the cell
valueis now 0.9064.)

From the above it can be seen that interfacing with subprograms that only utilise basic scalar
typesisreatively trivial. In many cases though data must be obtained from a worksheet into a
VBA array. This example a so shows how Fortran CHARACTER data is handled even though,
in general its use is discouraged. The example shows areal matrix multiply operation using 2
BLAS routines, DGEMM and DGEMYV, which compute a matrix-matrix product and a matrix-
vector product respectively.

The specification of DGEMM is asfollows:

SUBROUTI NE DGEMV{ TRANSA, TRANSB, M N, K, ALPHA, A LDA B, LDB, BETA C, LDC
CHARACTER*1 TRANSA, TRANSB

INTEGER M N, K, LDA, LDB, LDC

REAL ALPHA, A(LDA *), B(LDA *), BETA, C(LDC,*)

The specification of DGEMV isasfollows:

SUBROUTI NE DGEM/(TRANS, M N, ALPHA, A LDA, X, INCX, BETA, Y, INCY)
CHARACTER*1 TRANS

INTEGER M N, LDA, INCX, |NCY

REAL ALPHA, A(LDA *), X(*), BETA, Y(*)

The following code appears in a modul e of the workbook:

Option Explicit

‘Make explicit declaration of variables compul sory.

‘Necessary because a Variant will not suffice as an argunent to a
FORTRAN routine

Option Base 1

“Useful because FORTRAN array start at 1, whereas VBA array index fromO
by defaul t

Decl are Sub DGEMV Lib “NAGF06.DLL" (ByVal trans As String, _

ByVal length_trans As Long, m As Long, n As Long, al pha As Double, _
a As Double, lIda As Long, x As Double, incx As Long, beta As Double, _
y As Doubl e, incy As Long)

Decl are Sub DGEMM Li b “NAGF06. DLL” (ByVal transa As String, _

Best Practice Guide on the Development of Test and Measurement Software

Page 126 of 133

ByVal |ength_transa As Long, ByVal transb As String,

ByVal |ength_transb As Long, _

m As Long, n As Long, k As Long, al pha As Double, a As Double, _
Ida As Long, b As Double, Idb As Long, beta As Double, c As Doubl e,
I dc As Long)

Private Function dinension(nmyVariantArray) As Long
‘Determines the dinension of an array or vector
Dimretval As Long, i As Long

On Error Resunme Next

Do Until retval = -1

retval = -1

i =i +1

retval = UBound(myVariantArray, i)
Loop

di mension = i &

End Function

Sub Assenbl e(x, a)
Takes an argunent X and forma VB array A (ReDi nmmed)
Dims As String
Dimbits As Long, i As Long, j As Long
Dimm As Long, n As Long
Di m nyX As Range
Di m dks As |nteger

s = TypeNane(x) ‘Since x mght be a NAME, or a selection or range
Sel ect Case s

Case “String”

Set nyX = Range(x)

Case “Variant()”
dks = di nensi on(x)

If dks = 1 Then

n = UBound(x)
m=1
ReDima(m n)
For j =1 Ton
a(1, j) =x(j)
Next j

Exit Sub

El se

If dks = 2 Then
n = UBound(x, 2)
m = UBound(x, 1)
ReDima(m n)

For j =1 Ton
For i =1 Tom
a(i, j) =x(i, j)
Next i

Next j

Exit Sub

End | f

End | f

Case El se

Set nyX = x
End Sel ect

bits = myX Areas. Count ‘ For this sinple exanple bits should be 1

‘Now get the overall dinmension of the matrix
m = nyX. Rows. Count

n = nyX. Col ums. Count

ReDima(m n) ‘ VB Array redi mensi oned

Assenbl e the matrix A
For j =1 To n
For i =1 Tom

3 October, 2002

Page 127 of 133

a(i, j) = nyX Cells(i, j).Value
Next i

Next j

Exit Sub

End Sub

Sub Assenbl ev(x, a)

Takes an argunent X and forma VB array vector

Dims As String

Dimbits As Long, i As Long, j As Long,
Dim m As Long, n As Long, p As Long

Di m nyX As Range

s = TypeNane(x) °

Sel ect Case s
Case “String”
Set nyX = Range(x)

Case “Variant()”
n = UBound(x)
ReDi m a(n)

For j =1 Ton
a(j) =x(j)

Next j

Exit Sub

Case El se
Set nyX = x
End Sel ect

bits = myX Areas. Count
‘ Now get the overall
m = nmyX. Rows. Count

n = nyX. Col ums. Count

‘Cater for possibility of row vector

If m> n Then

p=m

El se

p=n

End I f

ReDima(p) * VB Array redi mensi oned
Assenbl e the matrix A

k =0

For j =1 Ton

For i =1 Tom

k =k +1

a(k) = myX Cells(i, j).Value

Next i

Next j

End Sub

Function NAGDgemm(a, b, Optional c,

k

Since x mght be a NAME, selection or

Opti onal

(ReDi nmmred)

As Long

r ange

For this sinple exanple bits should be 1
di nensi on of the matrix

al pha, Optional beta,

Optional transa, Optional transb) As Variant
‘The matrix nultiply routine

Dim m As Long, k As Long, n As Long

Dimi As Long, j As Long

DimnyTransa As String * 1, nmyTransb As String * 1

Di m nyAl pha As Doubl e,
Di m nyA() As Double, nyB() As Doubl e,
‘ Entry—deal with optional paraneters
If IsMssing(transa) O VarType(transa)
nmyTransa = “N’

El se

myTransa = transa

End If

If IsMssing(transb) O VarType(transb)

nmyBet a As Doubl e
myC() As Doubl e

vbError O IsNull(transa) Then

vbError O IsNull(transb) Then

Best Practice Guide on the Development of Test and Measurement Software

Page 128 of 133

nmyTransb = “N’

El se

myTransb = transb

End I f

If IsMssing(al pha) O VarType(al pha) = vbError O IsNull (al pha) Then
nyAl pha = 1#

El se

If IsNuneric(al pha) Then
nyAl pha = al pha

El se

myAl pha = al pha. Val ue
End |f

End If

If IsMssing(beta) Or VarType(beta) = vbError O IsNull (beta) Then
nyBeta = O#

El se

If IsNuneric(beta) Then

myBeta = beta

El se

nyBeta = bet a. Val ue

End If

End If

Cal |l Assenble(a, nyA) ‘ copy contents of a into VBA array nyA
Call Assenble(b, nyB) ‘ copy contents of b into VBA array nyB

Sel ect Case nyTransa ‘whether to transpose A
Case “N’, “n”

Sel ect Case nyTransb ‘whether to transpose B

Case “N', “n”

m = UBound(nyA, 1)
k = UBound(nyA, 2)
n = UBound(nyB, 2)

If IsMssing(c) O VarType(c) = vbError O IsNull(c) Then
ReDi m nyC(m n)

Call Assenble(c, nyC) * copy contents of c into VBA array nmyC
End If

If ((UBound(nyB, 1) <> k) O (UBound(nyC, 1) <> m O (UBound(myC, 2)
<> n)) Then

“Array di mensioning error

ReDi m nyC(1, 1)

myC(1l, 1) = CVErr (x| ErrVal ue)

NAGDgemm = nyC

Exit Function

El se

Call DGEMM nyTransa, 1, nyTransb, 1, m n, k, myAl pha, nyA(l, 1), m

nyB(1, 1), k, nyBeta, nyC(1, 1), m
NAGDgemm = nyC

Exit Function

End I f

Case “T", “t", “C", “c”

m = UBound(nyA, 1)
k = UBound(nyA, 2)
n = UBound(nyB, 1)

If IsMssing(c) O VarType(c) = vbError O IsNull(c) Then
ReDi m nyC(m n)

El se

Cal |l Assenble(c, nyQ)

3 October, 2002

Page 129 of 133

End If

If ((UBound(nyB, 1) <> n) O (UBound(nyC, 1) <> m O (UBound(myC, 2)
<> n)) Then

“Array di mensioning error

ReDi m nyC(1, 1)

myC(1l, 1) = CVErr (x| ErrVal ue)

NAGDgemm = nyC

Exit Function

El se

Call DGEMM nyTransa, 1, myTransb, 1, m n, k, myAl pha, nyA(1, 1), m
nyB(1, 1), n, nyBeta, myC(1, 1), m
NAGDgemm = nyC

Exit Function

End If

Case El se

‘I nput argunent error

ReDi m nyC(1, 1)

myC(1l, 1) = CVErr (x| ErrVal ue)
NAGDgemm = nyC

Exit Function

End Sel ect

Case “T", “t”, “C", “c”

Sel ect Case nyTranshb

Case “N', “n”

m = UBound(nyA, 2)
k = UBound(nyA, 1)
n = UBound(nyB, 2)

If IsMssing(c) O VarType(c) = vbError O IsNull(c) Then
ReDi m nyC(m n)

El se

Call Assenble(c, nyQ)

End |f

If ((UBound(nyB, 1) <> k) O (UBound(myC, 1) <> nm) O (UBound(nmyC, 2)
<> n)) Then

“Array di mensioning error

ReDim nyC(1, 1)

myC(1l, 1) = CVErr (x| ErrVal ue)

NAGDgemm = nyC

Exit Function

El se

Call DGEMM nyTransa, 1, nmyTransb, 1, m n, k, myAl pha, nyA(1, 1), Kk,
nyB(1, 1), k, nyBeta, myC(1, 1), m

NAGDgemm = nyC
Exit Function

End I f

Case “T", “t", “C, “c”

m = UBound(nyA, 2)
k = UBound(nyA, 1)
n = UBound(nyB, 1)
|

f IsMssing(c) O VarType(c) = vbError O IsNull(c) Then

Best Practice Guide on the Development of Test and Measurement Software

Page 130 of 133

ReDim nyC(m n)

El se

Cal |l Assenble(c, nyC)
End I f

If ((UBound(nyB, 1) <> n) O (UBound(myC, 1) <> nm) O (UBound(nmyC, 2)
<> n)) Then

“Array di mensioning error
ReDim nyC(1, 1)

myC(1l, 1) = CVErr (x| ErrVal ue)
NAGDgemm = nyC

Exit Function

El se
Call DGEMM nyTransa, 1, myTransb, 1, m n, k, myAl pha, nyA(1, 1), Kk,

nyB(1, 1), n, nyBeta, nmyC(1, 1), m
NAGDgemm = nyC

Exit Function

End |f

Case El se

‘I nput argunent error

ReDim nyC(1, 1)

myC(1l, 1) = CVErr (x| ErrVal ue)
NAGDgemm = nyC

Exit Function

End Sel ect
Case El se

‘I nput argunent error

ReDi m nyC(1, 1)

myC(1l, 1) = CVErr (x| ErrVal ue)
NAGDgemm = nyC

Exit Function

End Sel ect
End Function

Function NAGDgenv(a, x, Optional y, Optional alpha, Optional beta,
Optional trans) As Variant

‘ Matrix tinmes vector routine

Dim m As Long, n As Long

Dimi As Long, j As Long

DimnyTrans As String * 1

Di m nyAl pha As Doubl e, nyBeta As Doubl e

Dim nyA() As Double, nmyX() As Double, nyY() As Double

If IsMssing(trans) O VarType(trans) = vbError O IsNull(trans) Then
myTrans = “N’

El se

nmyTrans = trans

End I f

If IsMssing(al pha) O VarType(al pha) = vbError O IsNull(al pha) Then
myAl pha = 1#

El se

If IsNuneric(al pha) Then
nyAl pha = al pha

El se

myAl pha = al pha. Val ue
End |f

End | f

If IsMssing(beta) Or VarType(beta) = vbError O IsNull (beta) Then
myBeta = O0#

3 October, 2002

Page 131 of 133

El se

If IsNuneric(beta) Then
myBeta = beta

El se

nyBeta = bet a. Val ue

End If

End I f

Cal |l Assenble(a, nyA)
Call Assenbl ev(x, nyX)

Sel ect Case nyTrans

e "N, “n’
UBound(myA, 1)

Ca
m
n UBound(myA, 2)

In i w

If IsMssing(y) O VarType(y) = vbError O IsNull(y) Then
ReDi m nyY(m

Cal | Assenblev(y, nyY)
End |f

If (UBound(nyY, 1) <> m Then

“Array di mensioning error
ReDi m nyY(1)

myY(1l) = CVErr (x| ErrVal ue)
NAGDgenv = nyY

Exit Function

El se

Call DGEMW(nyTrans, 1, m n, nyA pha, nyA(l, 1), m
nyX(1l), 1, nyBeta, nyY(1l), 1)

NAGDgenv = nyY

Exit Function

End If

Case “T", “t", “C’, “c”
m = UBound(nyA, 1)

n UBound(myA, 2)

If IsMssing(y) O VarType(y) = vbError O IsNull(y) Then
ReDi m nyY(n)

El se

Cal | Assenblev(y, nyY)
End |f

If (UBound(myY, 1) <> n) Then

“Array di mensioning error
ReDi m nyY(1)

nmyY(1l) = CVErr(xl ErrVal ue)
NAGDgenv = nyY

Exit Function

El se

Call DGEMV(myTrans, 1, m n, nyAl pha, nmyA(l, 1), m
nyX(1l), 1, nyBeta, nyY(1l), 1)

NAGDgenv = nyY
Exit Function

End | f
Case El se

‘I nput argunent error

Best Practice Guide on the Development of Test and Measurement Software

Page 132 of 133

nmyY(1l) = CVErr(xl ErrVal ue)
NAGDgenv = nyY

Exit Function

End Sel ect

End Function

E.5 Calling Fortran Subroutines from LabVIEW

The following exampleis based on an earlier release of LabVIEW.

* Sdecttheiconfor the“CALL LIBRARY FUNCTION” VI from the appropriate
menu.

* FllintheVI
Library Name
Function Name, which is the Fortran subroutine name

Calling Conventions, eg. “C”

* Match the parameters appropriately as follows:
return typeis“void” for subroutines
each arguments has
type: numeric/array
Datatype: Signed 32-bit Integer/8-byte double Pointer to value

E.6 Incorporation of a Fortran Subroutine into MATLAB

The following example shows a Fortran gateway to call the subroutine CUBE. Cube takes two
arguments; X istheinput and Y the output:

SUBROUTI NE CUBE(X, Y)

C.. Scalar Argunents..
DOUBLE PRECI SION X, Y

C.. Executable Statenents..
Y = X*X*X

END

The gateway first checks that the right number of input and output arguments has been passed
and that these are compatible with the routine. MATLAB storage is then allocated for the output
argument. Theinput argument is copied from MATLAB storage to the Fortran scalar X. CUBE
isthen called with its output being stored in Fortran scalar Y which is copied back to MATLAB
storage.

C Exanple of a Fortran gateway to call the above subrouti ne CUBE
SUBROUTI NE MEXFUNCTI ON(NLHS, PLHS, NRHS, PRHS)

C.. Scalar Argunents..

I NTEGER NLHS, NRHS

C.. Array Argunents..

3 October, 2002

Page 133 of 133

C This assunes 32 bit pointers

I NTEGER PLHS(*), PRHS(*)

C.. Local Scalars..

DOUBLE PRECI SION X, Y

I NTEGER M N, SI ZE, X_PR, Y_PR

C.. External Functions..

| NTEGER MXCREATEFULL, MXGETM MXGETN, MXGETPR, MXI SCOVPLEX,

+ MXI SNUMERI C

EXTERNAL MXCREATEFULL, MXGETM MXGETN, MXGETPR, MXI SCOVPLEX,

+ MXI SNUMERI C

C.. External Subroutines..

EXTERNAL CUBE, MEXERRMSGTXT, MXCOPYPTRTOREAL 8, MXCOPYREALBTOPTR
C.. Executable Statenents..

C Check correct number, structure and type of input and out put
C argunents

C Note: MEXERRMSGTXT does not return

I F (NRHS. NE. 1) THEN

CALL MEXERRMSGTXT(‘ One input argunment required.’)

ELSE | F (NLHS. NE. 1) THEN

CALL MEXERRMSGTXT(‘ One out put argunment required.’)

END | F

M = MXGETM PRHS(1))

N = MXGETN(PRHS(1))

SI ZE = MFN

IF (SIZE. NE. 1)

+ CALL MEXERRMSGTXT(‘ | nput argument must be scalar.’)

I F (MXI SNUMERI C(PRHS(1)) . EQ 0)

+ CALL MEXERRMSGTXT(‘ | nput argunent nust be a nunber.’)

I F (MXI SCOVPLEX(PRHS(1)) . EQ 1)

+ CALL MEXERRMSGTXT(‘ | nput argument nmust not be COWPLEX. ')

C All ocate space for the output argunent.

PLHS(1) = MXCREATEFULL(M N, 0)

C Get pointers to the LHS and RHS argunents real parts
X_PR = MXGETPR(PRHS(1))

Y_PR = MXGETPR(PLHS(1))

C Copy input argunent from MATLAB to Fortran storage
CALL MXCOPYPTRTOREALS8(X_PR, X, SI ZE)

C Finally call our Fortran routine.
CALL CUBE(X, Y)

C And copy the output argunent from Fortran storage back to MATLAB

CALL MXCOPYREALSTOPTR(Y, Y_PR, Sl ZE)
END

This gateway can then be compiled and linked using the “fmex” script, the directory containing
the gateway added to the MATLAB path and the function cube can be called directly from
MATLAB, eg.:

>> a=cube(7)
a =

343

Best Practice Guide on the Development of Test and Measurement Software

	P
	Part 1 Overview
	1.1 Scope of the guidance
	1.2 Users and audience
	1.3 Other documents and resources
	1.4 Worked example
	1.5 Glossary

	Part 2 General guidance
	2.1 Introduction
	2.2 Lifecycle of test and measurement software development
	2.3 Requirements description
	2.4 Design
	2.5 Coding
	2.6 Verification and validation (V&V)
	2.7 Maintenance
	2.8 Configuration management
	2.9 Metrics
	2.10 Software and component reuse
	2.11€€Mixed language programming
	2.12 T&M software assurance
	2.13 Human factors in T&M software development
	2.14 Organisational support and leverage
	2.15 Operation

	Part 3 Technology-specific guidance
	3.1 Introduction
	3.2 How to select appropriate tools
	3.3 LabVIEW
	3.4 Visual Basic
	3.5 C/C++
	3.6€€Java
	3.7€€Delphi
	3.8€€MATLAB

	Appendix A Internet resources
	A.1 User interface design
	A.2 Component libraries on the Internet
	A.3 C/C++ resources
	A.4 Visual Basic resources
	A.5 LabVIEW resources
	A.6€€Java resources
	A.7€€Delphi resources
	A.8 Other T&M software technologies
	A.9 General resources

	Appendix B Books and references
	B.1 Books
	B.2 Other references

	Appendix C Visual Basic example
	Appendix D LabVIEW example
	Appendix E Examples of mixed language programming
	E.1€€Calling a Fortran DLL from Microsoft Visual C++
	E.2€€Calling a Fortran Subroutine from Delphi
	E.3€€Calling C procedures from Visual Basic
	E.4€€Visual Basic calling Fortran components
	E.5€€Calling Fortran Subroutines from LabVIEW
	E.6€€Incorporation of a Fortran Subroutine into MATLAB

