
Software Support for Metrology
Best Practice Guide No. 11

Numerical analysis for algorithm
design in metrology

M G Cox and P M Harris

April 2004

Software Support for Metrology

Best Practice Guide No. 11

Numerical analysis for algorithm design in

metrology

M G Cox and P M Harris
Centre for Mathematics and Scientific Computing

April 2004

ABSTRACT
When a metrology problem is formulated for computer solution, it is necessary
to use, or design and use, a suitable solution algorithm. This best-practice
guide is concerned with the numerical analysis of such algorithms. In particular,
guidance is provided on avoiding the unnecessary and damaging loss of numerical
precision that accompanies some computations.

Much of the advice is provided through the presentation of case studies. Such
studies are in the areas of hardness measurement, interlaboratory comparisons,
extraction of mass of material, DNA measurement and climate change. Each
starts with an indication of the numerical aspects illustrated by the study and
concludes with the lessons learnt.

The companion Software Support for Metrology Best-Practice Guide No. 4,
Discrete Modelling and Experimental Data Analysis, contains valuable mate-
rial concerned with linear and non-linear approximation, especially the use of
least-squares methods, relevant model parametrization and the supporting lin-
ear algebra. In addition, for these areas it provides information on numerical
methods and statements concerning numerical stability, etc. The current best-
practice guide therefore concentrates on other aspects of numerical analysis that
are also relevant to metrology, viz., formula evaluation, differentiation and inte-
gration. Some aspects that overlap with the scope of the companion guide are
indicated. Although the current guide does not deal explicitly with large-scale
computations such as partial differential equations or non-linear optimization
with many variables, some of the messages given are also relevant to these prob-
lems.

c© Crown copyright 2004
Reproduced by permission of the Controller of HMSO

ISSN 1471–4124

Extracts from this guide may be reproduced provided the source is
acknowledged and the extract is not taken out of context

Authorised by Dr Dave Rayner,
Head of the Centre for Mathematics and Scientific Computing

National Physical Laboratory,
Queens Road, Teddington, Middlesex, United Kingdom TW11 0LW

Contents

1 Introduction and objectives 1
1.1 Why should the metrologist be concerned with numerical analysis? 2
1.2 Objectives of this guide . 4

2 Fundamentals 8
2.1 Mathematical, statistical and numerical propagation 8

2.1.1 Error analysis . 9
2.1.2 Forward error analysis . 9
2.1.3 Backward error analysis 10

2.2 The role of numerical software libraries 10
2.3 Do-it-yourself sensitivity analysis 11
2.4 Condition of function evaluation 12
2.5 Floating-point arithmetic . 14

2.5.1 Arithmetic mean of two numbers 14
2.5.2 The bisection algorithm 17

2.6 Floating-point error analysis . 17

3 Formula evaluation 20
3.1 Subtractive cancellation, growth in intermediate quantities, etc. . 22

3.1.1 Variable normalization . 22
3.1.2 Polynomial evaluation . 23
3.1.3 Angle between two vectors 25

3.2 CASE STUDY. Hardness measurement 26
3.2.1 Objective . 26
3.2.2 What this case study illustrates 26
3.2.3 The Brinell hardness test and the formula for the Brinell

hardness number . 26
3.2.4 Considerations regarding numerical evaluation 27
3.2.5 An alternative formula and its use 28
3.2.6 Floating-point error analysis 28
3.2.7 Lessons learnt . 30

3.3 CASE STUDY. Interlaboratory comparisons 31
3.3.1 Objective . 31
3.3.2 What this case study illustrates 31
3.3.3 The practical problem and requirements 31
3.3.4 The total median . 32
3.3.5 Full enumeration to calculate the probabilities 32
3.3.6 The use of an explicit formula 33

i

3.3.7 The use of a recurrence relation and symmetry 33
3.3.8 Lessons learnt . 34

3.4 CASE STUDY. Extraction of mass of material 34
3.4.1 Objective . 34
3.4.2 What this case study illustrates 34
3.4.3 The practical problem and requirements 34
3.4.4 The diffusion model and data 35
3.4.5 Evaluating the model . 35
3.4.6 Fitting the model . 36
3.4.7 Accounting for problem structure 37
3.4.8 Lessons learnt . 40

4 Differentiation 42
4.1 Finite differences and related approaches 43
4.2 CASE STUDY. Determination of DNA concentration 45

4.2.1 Objective . 45
4.2.2 What this case study illustrates 45
4.2.3 The practical problem . 45
4.2.4 Formulating the problem mathematically 46
4.2.5 Obtaining the calibration curve 47
4.2.6 Propagating the uncertainties 47
4.2.7 Numerical validation of the results 51
4.2.8 Lessons learnt . 51

5 Integration 53
5.1 Motivation . 54
5.2 Outline design . 56

5.2.1 Curve defined by measurement 56
5.2.2 Representation by polynomial pieces 56

5.3 Integration of the polynomial pieces 57
5.4 Approximation errors . 58
5.5 Uncertainties . 58
5.6 Other remarks . 58
5.7 CASE STUDY. Climate change 58

5.7.1 Objective . 58
5.7.2 What this case study illustrates 58
5.7.3 The practical problem . 59
5.7.4 Newton representation by polynomial pieces 60
5.7.5 Integrating the polynomial pieces 60
5.7.6 Evaluation of the uncertainty 60
5.7.7 Results . 61
5.7.8 Lessons learnt . 61

Bibliography 63

ii

A Floating-point error analysis of the Brinell hardness test for-
mulae 69

B Summing the series for the hot-ball diffusion model 71

C Uncertainty evaluation for quadrature rules 73
C.1 Speeding up the calculation . 74

iii

iv

Numerical analysis for algorithm design in metrology

Chapter 1

Introduction and objectives

I have little doubt that about 80 per cent of all the results printed
from the computer are in error to a much greater extent than the
user would believe . . . [40].

So said Leslie Fox, an eminent UK numerical analyst, in a 1971 paper enti-
tled ‘How to get meaningless answers in scientific computation (and what to
do about it)’. All the messages of that paper, which constitutes highly recom-
mended reading, remain relevant today. This best-practice guide is concerned
with obtaining reliable numerical solutions to scientific problems, and discusses
in the context of metrology some of the issues considered by Fox.

Numerical analysis is defined here as ‘the design and analysis of mathemat-
ical algorithms and their implementation on a computer’.

There are many extensive treatises on numerical analysis. Here parts of nu-
merical analysis are covered that in the authors’ experience are important in
solving classes of problems in metrology. However, mainly areas are covered
that in some sense are fundamental and small-scale, because to do otherwise
would have meant the production of a much larger document. The areas ad-
dressed are formula evaluation, differentiation and integration. Thus, there is
no coverage here, for example, of topics such as large-scale modelling and opti-
mization problems, partial differential equations and integral equations. Certain
fundamental numerical aspects of model fitting and function minimization are,
however, addressed. It is believed that some of the messages relating to the
areas covered can be interpreted by the reader in the context of these larger
problems. Moreover, topics that are well-covered by the companion Software
Support for Metrology Best-Practice Guide No. 4, Discrete Modelling and Ex-
perimental Data Analysis [2], are generally not addressed here, although there is
inevitably some overlap. That guide contains valuable material concerned with
linear and non-linear approximation, especially the use of least-squares methods,
relevant model parametrization and the supporting linear algebra. In addition,
for these areas it provides information on numerical methods and statements
concerning numerical stability, etc.

1

Software Support for Metrology Best Practice Guide No. 11

1.1 Why should the metrologist be concerned
with numerical analysis?

The intended audience of this guide consists of metrologists and others involved
in metrology who need to carry out numerical and statistical calculations in
order to provide all types of measurement results. By its nature, much of the
material will also be relevant to other scientific disciplines. However, the exam-
ples and case studies relate to metrology.

Why should the metrologist be concerned with numerical analysis? Surely,
(a) most of the fundamental aspects of numerical analysis are understood and
(b) reliable mathematical software libraries exist to assist? The answer is ‘yes’ to
both questions. There are problems, however. Regarding (a), although these as-
pects are indeed understood by numerical analysis practitioners, not all metrol-
ogists may feel sufficiently confident to design algorithmic solutions for even
simple problems. Unfortunately, in solving such problems, aspects frequently
arise that endanger the provision of reliable answers. Further, a piece of software
that has been well used on modest problems may not deliver reliable solutions
for larger problems or for somewhat different values for one or more of its input
parameters or data items. Regarding (b), inadequate attention to the input
quantities to a library routine or to the way library routines are combined to
provide an overall solution can again cause problems with furnishing acceptable
results. Most importantly, attention to some numerical analysis principles can
save considerable time and effort later. The authors have seen many instances
relating to this point. The overriding influence is the fact that computers oper-
ate to a (relatively) limited numerical precision that can distort the results of a
computation at the practical level, unless the computation is carried out with
care.

The numerical precision (of the order of 16 decimal digits) to which most
floating-point chips operate can be inadequate when a poor algorithm is used.
In contrast, this precision is such that the results obtained using a good-quality
algorithm will almost always be fit for purpose, even for the most demanding
metrology applications (under the sometimes strong assumption that the input
data is valid for the problem). In some cases the situation can be rescued
by using extended-precision arithmetic. Doing so should not be regarded as a
general remedy. It may perhaps extend the set of problems that can be solved
with a certain algorithm, but does not address the fundamental limitations of
the algorithm.

The reader is invited to take a forward look at the case study in section 3.2
concerned with measurement of the hardness of a material using an indenter.
There, the formula (3.5), viz.,

B =
0.204F

πD(D −
√

D2 − d2)

is given for the Brinell hardness B in N/mm2 as a function of the test force F
in N, the diameter D in mm of the indenter and the mean diameter d in mm
of the indentation. For some values of the quantities on the right-hand side of
the formula, considerable numerical accuracy can be lost in forming B. On the

2

Numerical analysis for algorithm design in metrology

other hand, the use of the mathematically equivalent formula

B =
0.204F (D +

√
D2 − d2)

πDd2

behaves numerically very differently, not suffering accuracy problems.
As another instance [43], to give the flavour of ‘what can go wrong’, consider

the evaluation of the integral

yr =
1
e

∫ 1

0

xrexdx, (1.1)

where r is a positive whole number. Integrals of such type arise when determin-
ing the moments of probability density functions, of importance in uncertainty
evaluation [7]. yr satisfies the recurrence relation1

y0 = 1− 1/e, yr = 1− ryr−1, r = 1, 2, . . . (1.2)

the use of which gives the values in the second row of table 1.1.

r 0 1 2 · · · 17 18 19 20 21
yfwd

r 0.632 0.368 0.264 · · · 0.057 −0.030 1.560 −30.192 635.040
ybck

r 0.632 0.368 0.264 · · · 0.053 0.050 0.048 0.046 0.044

Table 1.1: The use of recurrence relations (1.2) and (1.3) to evaluate the inte-
gral (1.1).

The early values in the table are correct numerically, at least to the number
of digits quoted, but matters go badly wrong subsequently. A simple analysis
can be used to understand the reason for this behaviour. Since y0 = 1 − 1/e
cannot be held exactly on the computer, because e is an irrational number (cf.
section 2.1.1), the recurrence is started with a slightly perturbed value ỹ0, say.
Let ỹr denote the computed value of yr and

δyr = ỹr − yr.

Then, the values ỹr delivered by the recurrence relation (1.2) satisfy

yr + δyr = 1− r(yr−1 + δyr−1),

from which
δyr = −rδyr−1.

Letting
ỹ0 = y0 + ε

to start the recurrence gives
δy0 = ε

1The recurrence is derived by integrating by parts the expression for yr in formula (1.1):

yr =
1

e

(
[xrex]10 −

∫ 1

0

rxr−1exdx

)
=

1

e
(e− reyr−1) = 1− ryr−1.

3

Software Support for Metrology Best Practice Guide No. 11

and hence

δy1 = −ε, δy2 = 2ε, δy3 = −6ε, δy4 = 24ε, etc.,

i.e.,
δyr = (−)rr!ε.

When r = 18, r! is of the order of 1016. Thus, if y0 is held on the computer to
an accuracy of approximately 10−16 (which would be the case for a 16-decimal
computer—section 2.6), all accuracy has been lost in the value of y18 and hence
in subsequent values of yr.

Because of the exceedingly rapid rise in the magnitude of the error, the use
of extended precision would only postpone the onset of instability.

The recurrence relation amplifies errors, as a consequence of the multiplica-
tion by r when forming yr from yr−1. However, if yr−1 is formed from yr using
the simple rearrangement

yr−1 = (1− yr)/r (1.3)

of the recurrence (1.2), involving a division by r, it can be expected that the
errors will be attenuated.

Suppose accurate values of y0, . . . , y20 are required. Start with the (very
poor) approximation y30 = 0. The use of the backward recurrence relation (1.3)
gives the values in the third row of table 1.1, which are all correct to the digits
shown (and many more beyond). The reason why such a poor starting approx-
imation is adequate is due to the extreme error damping effect. By starting at
a suitable point (or beyond), any initial approximation can be used.

Various reports on activity in the UK Software Support for Metrology pro-
gramme (SSfM) that relate to the quality of numerical solutions to metrology
problems are available. They cover areas such as geometric form assessment,
data fusion, experimental data analysis, calibration and regression [1, 2, 12, 26,
27], and many more. The more recent reports are obtainable from the SSf M
website.2

1.2 Objectives of this guide

There are three main stages in developing numerical software for use in metrol-
ogy [3]:

1. Draw up a specification of the problem to be solved

2. Design an algorithm to solve the problem defined by the specification

3. Implement the algorithm as software.3

The concern of this best-practice guide is predominantly the second stage,
one that has too often been ignored or where the difficulties have been under-
estimated, judging by some of the products used by metrologists worldwide, a

2http://www.npl.co.uk/ssfm/download/nplreports.html
3The term ‘algorithm’ is used to denote a prescription or recipe relating to a particular task

to produce some results (output data) given some input data. An algorithm often constitutes
an English-language step-by-step procedure that typically includes mathematics. The term
‘software’ is used to denote a computer implementation of an algorithm. The user provides
the input data and expects to receive the corresponding results for the task.

4

Numerical analysis for algorithm design in metrology

number of which have been tested in the SSfM programme [4, 17, 24, 25, 33]. It
is an area where attention to detail can make the difference between obtaining
valid and invalid results.

An issue is that defects exposed by software testing may be wrongly associ-
ated with the software implementation when in fact the implementation of the
specified algorithm is valid: the defects are inherent in the underlying algorithm.

There are three major considerations concerning algorithm design: accuracy,
robustness, and efficiency.

Accuracy relates to how well a problem is solved according to some appro-
priate measure by (a sound software implementation of) an algorithm. An ap-
propriate stance to take in designing an algorithm is that the solution provided
should be at least adequate or provide relevant information if it encountered
difficulty. An algorithm can be near perfect for relatively innocuous input data,
but degrade seriously when it is ‘stretched’, e.g., for ‘real-life’ data. An example
is the evaluation [29],[44, p12] of the standard deviation s of a sample x1, . . . , xN ,
viz.,

s2 =
1

N − 1

N∑
i=1

x2
i −Nx̄2 =

1
N − 1

N∑
i=1

(xi − x̄)2, x̄ =
1
N

N∑
i=1

xi. (1.4)

The Microsoft Excel standard deviation function, for instance, has been tested [25]
and demonstrated to work satisfactorily for some data sets and not for others.
It would appear to use the left-most expression for s.4 The instances where it
fails to deliver an accurate solution are for high-accuracy metrology data. It
has the unhelpful property that the more accurate the data, measured by the
standard deviation, the less accurate is the result (in terms of its relative error).
The second of the two formulae is stable [25],[44, p12].

The issue of determining the influence of perturbations in the data on the
solution provided is another important issue. That consideration comes under
the banner of sensitivity or perturbation analysis. It has much in common
with the law of propagation of uncertainty in uncertainty evaluation, which
makes use of sensitivity coefficients formed from partial derivatives to scale the
standard uncertainties associated with the input quantities to a model [7, 32].
See section 2.1.

Robustness relates to the ability of the algorithm to operate correctly within
and near the boundary of its domain of application. An ideal algorithm would
not provide an erroneous solution. For instance, as part of an uncertainty eval-
uation, it might be required to form the triangular factor R in the Cholesky
factorization V = RTR [44, chapter 10] of an uncertainty matrix (covariance
matrix) V . If V is not positive definite, the calculation cannot proceed, but it
might be possible to repair the matrix [56, p322] and factorize the repaired form.
Perhaps V failed to be positive definite because of rounding errors in forming
its elements from other quantities. The user could benefit from being informed
of this possibility. The ‘repair’ process would consist of making ‘smallest pos-
sible’ changes to V such that it becomes positive definite. If the magnitudes
of these changes are consistent with the rounding errors incurred in forming V ,
the repair process can be considered reasonable.

4This conclusion was drawn on the basis that when that formula was implemented it gave
exactly the same results as those from Excel on the data sets used.

5

Software Support for Metrology Best Practice Guide No. 11

Efficiency relates to the amount of computation (and sometimes the memory
requirements) needed to deliver the solution (sometimes to a stipulated numer-
ical accuracy). With GHz-speed PCs on metrologists’ desks, this might not be
seen as a major problem. However, metrologists are constructing and analyz-
ing ever more sophisticated models of sensors, electric fields, and so forth, and
waiting an excessive time for a solution to be returned inhibits human efficiency.

Also, accuracy and efficiency are intimately linked in the many iterative
and recursive processes used in metrology computation. Algorithms for such
processes use tests for convergence of a numerical algorithm; at one extreme an
inadequate convergence criterion can prevent the delivered result from meeting
the stipulated accuracy, and at the other unnecessarily long computation times
will result.

This guide is concerned with the elaboration of algorithm-design principles
that are capable of application to a range of metrology problems. They are
applied, through examples and case studies, to several areas to illustrate the
main issues. Some of the considerations relate to

• The use of sensible scaling, normalization and other data transformations

• The avoidance of loss of information, e.g., deleterious arithmetic opera-
tions such as damaging subtractive cancellation, and adding a small num-
ber to a large number

• The advantages of stable problem parametrization and formulae.

These considerations arise in many of the problems encountered by metrol-
ogists, including calibration curve fitting, the solution of measurement mod-
els, uncertainty evaluation, experimental design, instrument-design optimiza-
tion and chemometrics.

It is always important that an algorithm is seen in the context of being fit
for purpose. In many circumstances it will not be necessary that it provides the
maximum accuracy possible, but an accuracy that meets a metrological require-
ment and ideally somewhat beyond that in order to retain a degree of ‘numerical
safety’. Although this attitude is sound for a well-defined set of problems within
one metrology area, an important consideration is that many algorithms have
broad applicability in several areas of metrology including those above. The
purpose to which these generic algorithms will be put is not known a priori; it
might range from low-accuracy applications in biometrology to high-accuracy
nanotechnology work. As a consequence, such an algorithm should be capa-
ble, when implemented, of delivering as much accuracy as possible, unless of
course, this objective resulted in unacceptable development effort or excessive
computation times. Thus, the attitude taken to algorithm design for metrology
is that where sensibly possible the maximum accuracy attainable is provided.
If, however, there is a penalty for doing so, for example in terms of a significant
increase in processing time, variants should be considered that return a solu-
tion that meets a stipulated task-related accuracy. This last-mentioned point
relates to the ‘natural requirement’ that the algorithm (and its software imple-
mentation) contribute an effect that is negligible compared to other sources of
uncertainty. Otherwise, the effect needs to be quantified.

It is emphasized that even with GHz-speed PCs and the availability of high-
precision arithmetic capabilities, these advances in hardware and software are

6

Numerical analysis for algorithm design in metrology

far from adequately addressing the above accuracy and efficiency considerations.
However much accuracy is used, an unstable algorithm will break down or deliver
unreliable results for some problems. With regard to efficiency, the gains from
exploiting structure are typically a factor of order n or even n2, where n is the
problem size (for example the number of parameters in a model), sometimes of
the order or hundreds or thousands [12]. The resulting speed-up by a factor of
tens of thousands to millions cannot be matched by improvements in processor
speed. These gains apply across all computer hardware. Such speed-ups are
necessary to realize the full potential of sophisticated metrology systems such
as multilateration co-ordinate measuring machines.

The emphasis of this best-practice guide is more on accuracy and robustness
rather than efficiency, the former being the more fundamental consideration.

Acknowledgments

The UK Department of Trade and Industry is responsible for the UK National
Measurement System (NMS). Four of the five case studies relate to collabo-
rative work undertaken within various programmes of the NMS. The study
concerning interlaboratory comparisons (section 3.3) was carried out with Eu-
logio Pardo (now at the University of Granada) as part of the Software Support
for Metrology programme. The study concerning extraction of mass of mate-
rial (section 3.4) was undertaken jointly with Steve Ellison and Mike Griffiths
(Laboratory of the Government Chemist) as part of the Valid Analytical Mea-
surement programme. The study concerning the determination of DNA concen-
tration (section 4.2) was carried out with Sarantis Kamvissis (NPL) and Michael
Burns, Steve Ellison, Mike Griffiths and Jacquie Keer (Laboratory of the Gov-
ernment Chemist) as part of the Biotechnology programme. The study relating
to climate change (section 5.7) was carried out jointly with Nigel Fox and Emma
Woolliams (NPL) as part of the Optical Radiation Metrology programme.

Sven Hammarling and David Sayers of NAG Ltd. reviewed an advanced draft
of this guide, and Sven Hammarling provided material on error analysis.

7

Software Support for Metrology Best Practice Guide No. 11

Chapter 2

Fundamentals

Software is widely used in metrology to assist with the solution of measurement
problems formulated in mathematical terms. That software will constitute an
implementation of an algorithm. There will be a set of ‘inputs’ to the algorithm
and a set of ‘outputs’ from it. Although the concern here is with numerical ef-
fects, there will be inevitable overlap with mathematical and statistical aspects.
The concepts here are discussed in greater detail in recommended texts [43, 44].

2.1 Mathematical, statistical and numerical prop-
agation

For any item of numerical software that implements a mathematical algorithm
(in the NAG Library1, eurometros2, etc.), three types of ‘propagation of
effects’ can be considered when proceeding from generic input quantities X to
the corresponding output quantities Y , formally specified as Y = f(X), say, of
the computation:

1. Mathematical propagation

2. Statistical propagation

3. Numerical propagation.

Mathematical propagation constitutes perturbation theory, the influence of
changes ∆x in a realization (input data) x of X to effect a change ∆y in the
corresponding instance (result or solution) y of Y .3 It gives the sensitivity of
the solution to the input data. Mathematical propagation is largely an exer-
cise in differentiation, in that an indication of the sensitivity of the solution
to the data is ‖∆y‖/‖∆x‖, where ‖z‖ is a measure of the ‘size’ of z, which
can be obtained, at least approximately, in terms of derivatives.4 Automatic
differentiation (AD) [11] is a valuable tool here (section 4).

1http://www.nag.co.uk
2http://www.eurometros.org
3X denotes a scalar quantity or (more commonly) a set of quantities, and similarly for Y .
4‖z‖ denotes the absolute value of z if z is a scalar (single-valued) quantity or some norm,

e.g., the 2-norm (square root of the sum of the squares of the components) if z has a number
of components.

8

Numerical analysis for algorithm design in metrology

A problem is said to be ill-conditioned if ‖∆y‖/‖∆x‖ is large.
Statistical propagation constitutes the propagation of uncertainties or the

propagation of distributions through the algorithm to provide, e.g., the uncer-
tainty matrix (uncertainty matrix) V (y) associated with y given the uncertainty
matrix V (x) associated with x. There is much current activity in this area [32].

Numerical propagation relates to the numerical stability of an algorithm.
Given data x, an algorithm (operating in terms of finite precision) produces a
solution y + δy, say, that will differ from the exact solution y (which would be
obtained using infinite precision) by the amount δy. Alternatively, y+δy can be
regarded as the exact solution to the problem with certain data x+δx. How big
is δy? How big is δx? These are questions that numerical propagation, especially
the associated error analysis (section 2.1.1) sets out to answer. The topics of
forward error analysis (section 2.1.2) and backward error analysis (section 2.1.3)
are used to address these questions.

An algorithm is ill-conditioned if ‖δy‖ is large compared with ‖∆y‖ (when δx =
∆x).

2.1.1 Error analysis

To understand properly the effect of computer rounding errors, representation
errors and truncation errors on a computation, it is necessary to perform an
error analysis.

A rounding error generally occurs for each basic arithmetic operation per-
formed. The operations of addition, subtraction, multiplication and division
constitute these basic arithmetic operations. The strictly numerical parts of all
computations can be expressed at the lowest level in terms of these operations.

A representation error occurs when a number is approximated (represented)
on the computer. For instance, in representing e on the computer by 2.718 3,
the magnitude of the representation error is bounded by 0.000 05. This result
is a consequence of 2.718 3 correctly representing e to four decimal places.

A truncation error results from representing a function approximately on
the computer. For instance, if Taylor’s series is used to approximate f(x + h)
as

f(x + h) ≈ f(x) + hf ′(x) + (h2/2)f ′′(x),

the mean value theorem can be used to give the truncation error as (h3/6)f ′′′(x+
θh), θ ∈ (0, 1), from which a bound for the truncation error can often be
determined.

The general aim of an error analysis is to decide whether or not a method
is stable for the problem at hand, through quantifying the size of δx or δy
above. For example, in section 2.5 the computation of the mean of two numbers
is discussed and it is natural to ask under what circumstances a particular
method for computing the mean is satisfactory. Generally, an error analysis
can be considered in terms of the mathematical propagation of errors, as in
section 1.1, where an integral is evaluated by recursion. It can also be considered,
as predominantly in this guide, in the presence of floating-point arithmetic.

2.1.2 Forward error analysis

Strictly, numerical propagation involves tracking the effects of floating-point op-
erations on every intermediate quantity formed during the entire computational

9

Software Support for Metrology Best Practice Guide No. 11

algorithm in order to assess their impact on the result. This process is termed
forward error analysis. In practice, there is often a critical part of the algorithm
at which ‘accuracy is lost’, the remainder of the algorithm being relatively in-
nocuous in this regard. This guide is generally concerned with such aspects
rather than complete, formal error analysis.

When undertaking an error analysis it is natural to try to obtain a bound
for the error in the computed solution to the problem to be solved. The
bound would relate to ‖δy‖ (in an absolute sense) or ‖δy‖/‖y‖ (in a relative
sense). For example, if the requirement is to solve the system of linear equa-
tions Ay = x and the computed solution is denoted by ŷ, a bound for the
relative error ‖ŷ − y‖2/‖y‖2 might be sought. Such a bound is called a forward
error bound. For some problems it is quite reasonable and feasible to try to
determine such a bound, but in other cases the analysis may lead to pessimistic
results, or may even be inappropriate.

Consider the analysis of the method of Gaussian elimination [44, chapter 9]
for the solution of the linear equations Ay = x. Linear equations can be very
ill-conditioned, or indeed even singular, and an error analysis to obtain a for-
ward error bound would have to reflect both the sensitivity of the problem to
perturbations in the data, and the effect of the rounding errors. Thus, typi-
cally, a forward error analysis of a system of linear equations would be unduly
pessimistic.

An algorithm is forward stable (for x) if the result it produces has an error of
similar magnitude to that produced by a backward stable algorithm [44, p10].

2.1.3 Backward error analysis

With a forward error analysis the objective is to track the errors at the various
stages of a calculation, and bound the error associated with the results. With
a backward error analysis, the results obtained are in a sense ‘accepted’ and
the question asked, ‘To what set of data do the results correspond?’ A bound
for ‖δx‖ is sought.

This consideration is highly relevant to the metrologist. Typically his prob-
lems are such that he will provide estimates of the values of the input quan-
tities and he will have standard uncertainties associated with these estimates
that quantify their reliability. If the magnitudes of the above perturbations are
negligible compared with (or at worst comparable to) the corresponding uncer-
tainties, it can be concluded that the problem actually solved corresponds to a
problem within the set of problems represented by the above estimates and the
associated uncertainties.

An algorithm is backward stable (for x) if ‖δx‖ is small, the definition of
‘small’ being context-dependent [44, p8].

2.2 The role of numerical software libraries

Enormous investment has been committed in producing high-quality numerical
software libraries, such as the NAG Library [39]. The formulation of a solution
to a problem in a way that maximizes the use of library routines, for which
it can generally be assumed they represent the state-of-the-art in numerical
software solutions, is often the most economical and potentially the most reliable

10

Numerical analysis for algorithm design in metrology

approach. The metrologist can then concentrate on the parts of the software
that call and interconnect these routines.

It is at this level where failure to pay attention to detail can destroy the
gains achieved by using the library components. The benefit (over the use of less
reliable software) achieved by using quality library components can be sacrificed
by employing a version of just one formula that has undesirable properties [30].

Sometimes the ‘interconnecting’ software appears to be innocuous. Instances
include the normalization and scaling of variables, and the provision of the
normal matrix XTX rather than the design matrix X to a ‘least-squares solver’.
The use of the algorithm can induce ill-conditioning.

The art of problem-solving in metrology and other disciplines is to subdivide
the problem, particular if it is of appropriate magnitude, into a set of interrelated
functional modules, where as many as possible of the modules correspond to a
‘standard mathematical computation’: least-squares polynomial regression, zero
of a function, solution of a constant-coefficient ordinary differential equation,
etc.

Also, in general, metrologists would benefit from the use of software that
gives an indication of the quality of the solution [43, 47].

2.3 Do-it-yourself sensitivity analysis

Carrying out a sensitivity analysis of a problem can be very revealing. If the
solution is an explicit formula containing the key parameters of the problem,
the effect of particular values for these parameters can be quantified, perhaps
analytically. More generally, an explicit formula is not available. Rather, a
software implementation of an algorithm exists. A ‘do-it-yourself’ sensitivity
analysis can be considered in this case.

First, use the software implementation to provide the solution correspond-
ing to some required or representative input data. Then, make small random
perturbations to the values of the input quantities, perhaps those that mimic
measurement uncertainties when appropriate, or based on probabilistic infor-
mation concerning the values of the input quantities, and compute the corre-
sponding solution. Compare the two solutions or, better, several solutions based
on random perturbations.

One advantage of this approach is that it applies to the specific software
implementation of an algorithm, i.e., the total solution, and not just to the
(mathematical) algorithm. Thus, it is relevant to the software actually used for
the computation. This point is, however, a disadvantage if an understanding of
the properties of the algorithm alone is required.

For some problems, all the results might be perturbed to a comparable ex-
tent. For others, some of the results might be perturbed more than others, thus
indicating the relative sensitivity of the specific results.

The sensitivity of the results with respect to particular items of input data
can be studied by perturbing only some of the input data (e.g., one at a time).

It is essential that the perturbations are made in the correct context. For
instance suppose the elements of a matrix are function of a parameter λ. It
would be misleading to perturb the elements of the matrix individually. λ
should be perturbed and the elements evaluated as functions of this perturbed
value.

11

Software Support for Metrology Best Practice Guide No. 11

Some tools are available to assist with perturbation analysis [13, 57]. These
tools implement facilities to assess the impact of rounding on a computation,
by treating the roundings as a sample drawn randomly from a set of possible
similar computations differing only in one of two ways:

1. In the input data, which is randomly perturbed slightly from the given
data [13].

2. In the arithmetic operations, which are randomly perturbed slightly [57].

For either approach the computation is carried out a number of times, each
time with different randomized perturbations. The consequent set of results, in
the case of a scalar result, is regarded as a sample whose mean estimates the
required result and standard deviation a measure of the spread of the results.
If there is more than one output quantity (a vector), it can be used to provide
estimates of these results and the associated uncertainty matrix. For the case
of randomly perturbed data, there is a similarity with the propagation of dis-
tributions [23], certainly if the random perturbations respect the distributions
that are appropriate for the values of the problem input quantities of which the
prescribed data are realizations.

Both approaches have been criticized by Kahan5 on several grounds:

1. Rounding errors are not random (nor are their accumulated effect on a
computation [44]). Neither are they uncorrelated.

2. The approaches fail to mimic important properties that actual rounding
errors possess.6

3. The approaches usually work but, when they fail, they do so in just those
situations when a warning is needed that the computation has gone astray.

Even if these criticisms do not deter the use of the tools, there will an
inevitable learning curve associated with their use, as well as the logistical con-
siderations in integrating the tool with the user’s computational environment.
Users may well wish to carry out their own sensitivity analysis, since this can
often be done easily.

For an example, see the case study on climate change (section 5.7).
Automatic differentiation (AD) can provide a means to determine problem

sensitivity (section 2.4).

2.4 Condition of function evaluation

Formula or function evaluation is considered in detail in chapter 3. Here the
condition of function evaluation is considered. The treatment uses automatic
differentiation, covered more fully in chapter 4.

5www.cs.berkeley.edu/ wkahan/improber.pdf
6For instance, the difference a− b between two floating-point numbers a and b of the same

sign is computed exactly if 1/2 ≤ a/b ≤ 2 [55], whereas a probabilistic approach would assign
an error in all cases. Thus, in forming a difference table, for example, many of the entries will
be determined exactly in terms of the relevant values in the previous column.

12

Numerical analysis for algorithm design in metrology

Consider a function f(x) to be evaluated at the point x = x0. The relative
condition number [44, p9],[52] is7

k =
∣∣∣∣x0

f ′(x0)
f(x0)

∣∣∣∣ .
If this expression is considered in the light of a scaled problem for which x0

and f(x0) are of the order of unity, |f ′(x0)| is essentially the condition num-
ber. This quantity constitutes a sensitivity coefficient within uncertainty evalu-
ation [7].

Making early use of a simple automatic differentiation (AD) facility [11]
(section 4.1), the determination of k can be illustrated using a MATLAB script:

h = 1e-100;
z = f(x0 + sqrt(-1)*h);
f0 = real(z)
g0 = imag(z/h)
k = abs(x0*g0/f0)

In this script,
√
−1h denotes the (imaginary) finite-difference step, z the func-

tion f evaluated at x0 perturbed by the imaginary quantity ih, where i =√
−1, f0 the function value at x0, g0 the value of f ′(x0), and k the required

relative condition number.
That this (AD) process works, to within a numerical error that is negligible

for almost all practical purposes, follows from the Taylor series approximation

f(x0 + ih) = f(x0) + ihf ′(x0) + O(h2),

to f(x) at x = x0, and taking real and imaginary parts.
To illustrate, consider the function f(x) = x1/10 with x0 = 2. The use of

the MATLAB inline function

f = inline(’x^(1/10)’);

followed by the execution of the above script gives

f0 =
1.0718

g0 =
0.0536

k =
0.1000

Thus the relative condition number is 0.1, implying that a gain in numerical
accuracy of one significant decimal digit is achieved by the operation. This result
means that x0 need be known to an accuracy that is somewhat less than that
required for the corresponding function value f(x0). To demonstrate this aspect,
suppose x0 has a value of 2.00 and the associated standard uncertainty u(x0)

7In a backward error sense, let the approximate solution ŷ satisfy f(x + δx). Then, if f is
twice continuously differentiable, ŷ − y = f(x + δx) − f(x) = f ′(x)δx + f ′′(x + ξδx)(δx)2/2,
0 < ξ < 1. Since (ŷ − y)/y = (xf ′(x)/f(x))(δx/x) + O((δx)2), the quantity |xf ′(x)/f(x)|
measures, for small x, the relative change in the output for a given relative change in the
input.

13

Software Support for Metrology Best Practice Guide No. 11

is 0.02. According to the above result, a relative perturbation of 1 % in x0

(equal to the standard uncertainty u(x0)) would perturb f(x0) by of the order
of 0.1 %. In fact, f(1.98) = 1.070 7 and f(2.02) = 1.072 8, confirming the
prediction.

The practical significance of this result is as follows. Suppose the target
standard uncertainty associated with y = f(x) = x1/10 were 0.1 %. Then, x
needs to be measured with an associated standard uncertainty of 1 %. An
awareness of such issues is valuable because of its usefulness in designing a
measurement.

On the other hand, were f(x) = x10, the condition number would be 10
rather than 0.1. In consequence, to achieve a target standard uncertainty as-
sociated with y of 0.1 % would require x to be measured with an associated
standard uncertainty of 0.01 %, one hundredth of the value in the first example.

Results of this type can also be obtained approximately using the do-it-
yourself sensitivity analysis of section 2.3.

2.5 Floating-point arithmetic

Two simple illustrations of floating-point arithmetic are given. The first is the
arithmetic mean of two numbers. The second is the bisection algorithm, which
has the arithmetic mean of two numbers at its core.

2.5.1 Arithmetic mean of two numbers

Taking the arithmetic mean of two numbers may superficially be viewed as an
innocent operation that is free from surprises. However, it is possible that in
floating-point arithmetic the arithmetic mean of two numbers is not contained
within the (closed) interval (i.e., the interval between the two numbers including
the numbers themselves).

If it is invalid to make such a monotonicity assumption within a piece of
software that has to make certain decisions, the flow of control could be routed
along an incorrect path with damaging results. The function sinx is strictly
increasing in the interval 0 ≤ x < π/2, but is it safe to assume that the computed
values of this function are also strictly increasing within this interval? Again,
such an assumption embodied in software could have unexpected and potentially
dangerous consequences.

Decimal arithmetic, operating to two significant decimal digits (2S arith-
metic), is used to illustrate the point. The arithmetic mean y of two numbers a
and b is

y = (a + b)/2, (2.1)

and is conventionally computed in the sequence

1. t = a + b.

2. y = t/2.

The floating-point counterpart of this sequence (where fl(x) denotes the value
of x computed using floating-point arithmetic) is

1. t̂ = fl(a + b).

14

Numerical analysis for algorithm design in metrology

2. ŷ = fl(t̂/2).

For a = 37 and b = 86,

1. t̂ = fl(37 + 86) = fl(123) = 120 (rounding to 2S).

2. ŷ = fl(120/2) = 60.

The exact mean is y = 61.5. ŷ lies in the interval [a, b] and hence satisfies
the monotonicity property, although it is not equal to the closest representable
number to the exact mean, viz., 61 or 62 (which are equally close).

For a = 52 and b = 54,

1. t̂ = fl(52 + 54) = fl(106) = 110.

2. ŷ = fl(110/2) = 55.

ŷ does not lie in the interval [a, b] ≡ [52, 54] and hence does not satisfy the
monotonicity property. The exact mean is y = 53.

Now consider a = 0.999 9 and b = 0.999 7, using 4S arithmetic:

1. t̂ = fl(0.999 9 + 0.999 7) = fl(1.999 6) = 2.000.

2. ŷ = fl(2.000/2) = 1.000.

The exact mean is y = 0.999 8. Again, ŷ does not lie in the interval [a, b]
and hence does not satisfy the monotonicity property and, as before, is different
from the closest representable number, viz., 0.999 8, the exact answer.

Intermediate (and final) floating-point values are not necessarily exactly rep-
resentable, which means that an error is committed, the error being propagated
into the next step in the sequence. For the arithmetic mean computation, growth
has occurred, viz., at the first step where, if a and b take the same sign, t will
be larger in magnitude than the magnitude of either of them. If they were of
different sign, t would be smaller in magnitude than the magnitude of either of
them, and growth would not occur. This simple observation provides a clue to
a method of computation that does not suffer this way.8

Express y in the mathematically identical form

y = a + (b− a)/2, (2.2)

i.e., as one of the numbers (a), plus a correction ((b− a)/2) to it, and use this
form as a basis for the computation. When a and b are ‘close’, no ‘growth’ as
such will arise with the use of this form.

The computational sequence is

1. t1 = b− a.

2. t2 = t1/2.

3. y = a + t2.

8When implemented in IEEE arithmetic (binary as oppose to decimal arithmetic), the
computation is both forward and backward stable: the calculated value of (a + b)/2 has a
small error, and is the exact result for slightly perturbed values of a and b.

15

Software Support for Metrology Best Practice Guide No. 11

The sequence now contains three steps instead of two. That is the price to pay
(in this case) for numerical stability (here monotonicity).9

The (obvious) floating-point counterpart of the sequence is

1. t̂1 = fl(b− a).

2. t̂2 = fl(t̂1/2).

3. ŷ = fl(a + t̂2).

For the first example,

1. t̂1 = fl(86− 37) = 49 (representable exactly in 2S).

2. t̂2 = fl(49/2) = fl(24.5) = 24 (rounding to 2S).

3. ŷ = fl(37 + 24) = 61 (representable exactly in 2S).

In the above, fl(49/2) was taken as 24. Equally, it could have been taken
as 25, since both these values for ŷ are ‘equidistant’ from the exact value of
y = 24.5. The use of 25 would deliver ŷ = 62. The two possible results, 61
and 62, are the closest numbers (one each side) in the arithmetic used (2S) to
the exact value of 61.5.

For the second example,

1. t̂1 = fl(54− 52) = 2.

2. t̂2 = fl(2/2) = 1.

3. ŷ = fl(52 + 1) = 53,

yielding the exact result.
For the third example,

1. t̂1 = fl(0.999 7− 0.999 9) = −0.000 200 0.

2. t̂2 = fl(−0.000 200 0/2) = −0.000 100 0.

3. ŷ = fl(0.999 9− 0.000 100 0) = fl(0.999 8) = 0.999 8,

again an exact result.
Although the loss of monotonicity in forming the arithmetic mean using

formula (2.1) can occur in decimal arithmetic, as demonstrated above, it cannot
occur in binary arithmetic, as implemented on most computers, and especially
on most PCs. However, the general principle of representing a result as a value

9How far should one go with such detailed considerations? Does it matter? In some
situations, the answer is ‘yes’ (e.g., in health-critical and safety-critical areas). Perhaps a
result that failed a monotonicity assumption could take a program along a different path,
which led to a bad decision (or perhaps, worse, along a path that had not been encountered
previously and insufficiently tested) [58]. Fitness-for-purpose is the issue. There is an even
better form for the formula (2.2), which as it stands is appropriate for values of the same
numerical sign. If, however, a and b take opposite signs, the formula is worse than the
original! Thus, a better form is

y =

{
a + (b− a)/2, sign(a) = sign(b),
(a + b)/2, otherwise.

.

16

Numerical analysis for algorithm design in metrology

plus an increment, as in expression (2.2), is generally sound in the design of
numerical algorithms: doing so avoids unnecessary ‘growth’. In a case where
the input data and the results are of comparable size, as here, it is generally
better from the viewpoint of numerical errors to use an algorithm for which the
intermediate quantities are also of that magnitude. For a and b of the same
sign, the straight mean has some growth; the incremental form does not.

2.5.2 The bisection algorithm

The bisection algorithm is commonly used to determine a zero of a continuous
function f(x) given an interval [a, b] that definitely contains a zero, i.e., when the
signs of f(a) and f(b) are different. f is evaluated at the midpoint c = (a+b)/2
of the interval. An interval of one half the length is given by replacing the
endpoint whose function values has the same sign as f(c) by c. The process is
repeated until the length of the interval is no greater than a prescribed threshold.

This basic idea can be improved in two ways. First, the incremental form c =
a + (b − a)/2 should be used when a and b have the same sign. Second, the
stopping rule is flawed. The threshold might not be attainable, if too small
a value were stipulated. The process should be terminated if the threshold is
achieved or the calculated midpoint of the current interval is not strictly interior
to the interval. As a consequence, either the requested threshold is met or the
best-possible accuracy for the arithmetic employed is attained.

When an interval contains a zero, the bisection method will not fail to find
it (assuming the above considerations concerning termination are taken into
account). However, on the average it is among the slowest of all methods for
determining zeros. When an interval contains an odd number of zeros, the
bisection method will find one of them.

The worst-case performance of the bisection algorithm is optimal. For a
given length of interval and a specified (attainable) accuracy, the algorithm will
always take the same number of function evaluations (or a smaller number on
those relatively few occasions when (the computed value of) the function is
zero at one of the points of evaluation). This number of function evaluations
is approximately log2 |b − a|/t, where a and b are the interval endpoints and t
is an attainable positive absolute tolerance. On average the performance is not
striking. At NPL the bisection algorithm has been used in many applications
where reliability rather than speed is the dominant consideration.

2.6 Floating-point error analysis

The considerations of section 2.5 provide a lead-in to simple floating-point error
analysis. The few basic concepts in floating-point error analysis can be stated
informally as follows:

Floating-point representation. Let F denote the set of floating-point num-
bers that can be held on the computer concerned. For IEEE arithmetic
the range of F is approximately from 10−308 to 10308, together with their
negative counterparts.

For any x in the range of F , let fl(x) denote the closest floating-point
number to x ∈ F (or one of the closest if x is halfway between two floating-

17

Software Support for Metrology Best Practice Guide No. 11

point numbers). Then

fl(x) = x(1 + e), |e| < η.

In words, the relative error in holding x on the computer is smaller than η
(η ≈ 10−16 for IEEE arithmetic): see computational precision below. e is
the representation error (section 2.1.1).10

Computational precision. The computational precision can be characterized
by the machine epsilon, defined to be the distance from 1.0 to the next
floating-point number [45, p41]. In MATLAB it is known as eps and
takes the value 2.2 × 1016, approximately. Somewhat more useful for
stating the results of floating-point error analyses is the unit roundoff,
the distance from 1.0 to the closest floating-point number below 1.0. It
takes the value 1.1× 1016, approximately, half the machine epsilon, and is
denoted in this guide by η.11

Model for floating-point arithmetic. For any x, y ∈ F , the results of the
basic arithmetic operations +, −, ×, / satisfy

fl(x o y) = (x o y)(1 + e), |e| ≤ η, o = +, −, ×, /.

Also, the square-root function satisfies

fl(
√

x) = (
√

x)(1 + e), |e| ≤ η.

The symbol ej , j = 1, 2, . . ., is used to denote a quantity satisfying |ej | ≤ η.
It will be used generically in that, for instance, e1 in one example will be different
from e1 in another example. To simplify the algebra, without making other
than an academic sacrifice, terms of O(ejek) are ignored and thus products
such as (1+ e1)(1+ e2)(1+ e3) are replaced by 1+3e4, say. Such products arise
frequently in floating-point error analysis.

Three basic rules resulting from the above considerations can be expressed:

1. The result of a single floating-point operation satisfies

fl(x o y) = (x o y)(1 + e), |e| ≤ η, o = +, −, ×, /.

2. The approximation

(1 + k1e1)±1 . . . (1 + kqeq)±1 ≈ 1 +

 q∑
j=1

kj

 eq+1,

where the kj are positive or negative numbers of O(1), holds. This rule
corresponds to neglecting products of the ej .

3. Each ej is such that |ej | ≤ η, the unit roundoff.

10e denoted the base of natural logarithms in sections 1.1 and 2.1.1.
11The symbol u is often used for the unit roundoff in modern numerical analysis texts [45].

However, since u is used extensively by metrologists to denote uncertainty, it is not used here
to denote computational precision.

18

Numerical analysis for algorithm design in metrology

One aim of floating-point error analysis is to provide a bound for the forward
error in the result of a floating-point computation. Thus, if y denotes the exact
result and fl(y) the result obtained using floating-point arithmetic, an absolute
error bound would take the form

|fl(y)− y| ≤ Cη

and a relative error bound the form (with a different C)∣∣∣∣fl(y)− y

y

∣∣∣∣ ≤ Cη.

Another aim is to provide a bound in a backward-error sense (section 2.1.3).
C denotes a factor that depends on the inputs to the computation, e.g., the
parameters that enter a formula or the elements of a matrix or vector. y may
be a vector-valued quantity or a matrix, in which case matrix or vector norms
would be used in place of absolute value.

Wilkinson, an eminent numerical analyst of the Fox era, has stated [59, p26]
that, if the magnitude of the error is bounded by Cη, the error is typically of
order C1/2η. He accepted this as a rule of thumb, which has today become
well known as such. The rule can be supported by assuming that the rounding
errors are realizations of independent random variables and applying the central
limit theorem. Rounding errors are not, however, random. See figure 3.4 in
section 3.2.5 and the views of Kahan (section 2.3). Several eminent numerical
analysts [44, p52] have modelled rounding errors in a statistical or probabilistic
way. The situation is placated somewhat by the statement, ‘There is no claim
that ordinary rounding and chopping are random processes, or that successive
errors are independent. The question to be decided is whether or not these
particular probabilistic models of the processes will adequately describe what
actually happens.’ [46].

19

Software Support for Metrology Best Practice Guide No. 11

Chapter 3

Formula evaluation

The need to evaluate formulae is widespread in metrology. Formulae are pro-
vided in papers, reports, data sheets, procedures, specifications, national and
international guides and standards, and elsewhere. They are used to represent
both physical and empirical relationships between metrological quantities, e.g.,
the density of mercury as a function of temperature [5], the refractive index of
air as a function of air density [8], and the amount of material extracted as a
function of time (section 3.4).

Metrologists arguably have the right to expect that a formula provided in a
standard or a scientific journal or some other reputable source is fit for purpose
as it stands. In other words, the formula can be applied directly for manual
computation with a hand-held calculator or implemented on a computer through
the use of a spreadsheet or other software application. This is not always the
case, however. Such use, even if implemented soundly, may yield a result having
less numerical accuracy than might be expected, especially compared with those
that would be obtained from the use of alternative mathematically equivalent
formulae. In some instances the loss of numerical accuracy may be such that
the results would need to be examined carefully to ensure they are adequate for
the task in hand. It is not always obvious when such loss has occurred.

Reasons for loss of accuracy, illustrated in this best-practice guide, include

Damaging subtractive cancellation. An example is the evaluation of the
sum of the geometric series having first term A, positive common ratio r
and n terms from the formula S = A(1 − rn)/(1 − r), when r is close to
unity [28]. In this case, the subtraction of the computed value of rn from
one usually results in a large relative error.1

Inadequate parametrization. Inherent ill-conditioning in a problem (which
might not be great) is worsened by a poor parametrization An exam-
ple is the monomial representation of a polynomial p(x), i.e., as a linear
combination of powers of x, the ‘raw’ variable, as might be provided by
least-squares regression, say. The products of the monomial coefficients
and the corresponding powers of x can be extremely large compared with

1The less economical formula S = A(1 + r + r2 + · · · + rn−1), particularly if evaluated
using A(1 + r(1 + r(1 + · · ·))), involves no subtraction and yields a very small relative error
for all positive values of r.

20

Numerical analysis for algorithm design in metrology

the value of p, and thus much accuracy is lost when evaluating p for various
values of x.2

Poor normalization or scaling. Consider the normalization, i.e., transfor-
mation of an arbitrary interval a ≤ x ≤ b to the standardized inter-
val −1 ≤ y ≤ 1. Such a transformation is used in a number of areas of
relevance to metrology, one of the commonest being in normalizing the
range of the independent variable in data approximation by polynomi-
als [15, 20]. For instance, the original interval might be [273, 300] K in
temperature measurement. The transformation is needed to reduce the
ill-conditioning of the monomial form of a polynomial if that form is to
be used, or the Chebyshev form for which the interval [−1, 1] is almost
invariably used.3 The normalization formula is

y =
2x− a− b

b− a
=

(x− a)− (b− x)
b− a

, (3.1)

where [a, b] is the interval in the original variable over which the approx-
imation is required.

It is shown in section 3.1.1 that one of these forms is stable and the other
unstable [18].

Error build-up. An example is the sum x1+ · · ·+xn of a very large number of
values xi (as would arise, for instance, in forming the expectation (mean)
of an approximation to a probability density function obtained from a
Monte Carlo implementation of the propagation of distributions [23]). An
accurate sum is important when calculating the standard deviation of
a large number of comparable values (cf. section 1.2), in order that the
determination of the differences of the individual items in the sample from
the calculated mean have sufficiently small error. Methods other than
‘conventional addition’ are available for this purpose [31],[44, chapter 4].

Underflow. An example is the evaluation of the geometric mean y [21] of n
positive numbers x1, . . . , xn from the formula y = (x1×· · ·×xn)1/n when
each xi is smaller than unity and n is large. For instance, if each xi is
approximately 0.5 and n is 400, say, then in IEEE arithmetic, the answer is
computed as zero, even though the correct result is approximately 0.5. The
difficulty can be overcome by scaling the numbers or by forming loge y =
(1/n)

∑n
i=1 loge xi and exponentiating the result. Approaches for dealing

with an arithmetic mean can then be applied to the loge xi.

Overflow. The same example as for underflow applies, where each xi is now
greater than unity, approximately 2.0, say.4

2The use of a Chebyshev-series representation, in a normalized variable, of p avoids this
difficulty [18]. The contributions to the sum are then generally such that their magnitudes
are comparable to or smaller than the absolute value of p.

3The Chebyshev form of a polynomial is a0 + a1T1(y) + . . . + an−1Tn−1(y), where Tr(y)
is the Chebyshev polynomial of the first kind of degree r in y. The Chebyshev polynomials
can be evaluated using the three-point recurrence relation T0(t) = 1, T1(t) = t, Tr(t) =
2tTr−1(t)− Tr−2(t), r = 2, 3,

4If overflow occurs, it is not strictly correct to say the result is inaccurate, but unavailable
by this means.

21

Software Support for Metrology Best Practice Guide No. 11

There are many forms of computation that include such loss of accuracy in
a more concealed form, e.g., changing the order of some arithmetic operations
may influence substantially the effects of subtractive cancellation.

3.1 Subtractive cancellation, growth in interme-
diate quantities, etc.

Those familiar with the principles of uncertainty evaluation may recognize be-
haviour in the examples below that are reminiscent of the consequences of ran-
dom and systematic effects that arise in determining a measurement result for
a given model of measurement.

3.1.1 Variable normalization

Consider the first formula in expression (3.1). The application of the basic rules
of floating-point arithmetic, with the indices of the error terms ej indicating the
order of operation, and since 2x is formed exactly in IEEE arithmetic,

ŷ = fl(y) =
((2x− a)(1 + e1)− b)(1 + e2)

(b− a)(1 + e3)
(1 + e4)

=
(2x− a)(1 + e1)− b

b− a
(1 + 3e5).

Thus,

ŷ − y =
2x− a

b− a
e1 +

2x− a− b

b− a
(3e5)

and so

|ŷ − y| ≤
(
|2x− a|
b− a

+ 3|y|
)

η ≤
(
|2x− a|
b− a

+ 3
)

.

It is appropriate here to use the absolute error |ŷ − y| rather than the relative
error |ŷ − y|/y, since y can lie anywhere in the interval [−1, 1].

Possible alternative orders of operation give factors |2x− b|/(b− a) or |a +
b|/(b − a) in place of |2x − a|/(b − a). All these forms are unstable in that
for cases in which a � 0 or b � 0, the bound could be of arbitrary size. For
instance, when a = 1000 and b = 1001, all these bounds are approximately 1000,
implying a loss of up to three decimal digits for this ‘simple’ computation alone.

Consider the second formula in expression (3.1). Then, in terms of differ-
ent ej in general,

ŷ =
((x− a)(1 + e1)− (b− x)(1 + e2))(1 + e3)

(b− a)(1 + e4)
(1 + e5)

and hence

ŷ − y =
x− a

b− a
e1 −

b− x

b− a
e2 +

2x− a− b

b− a
(e3 − e4 + e5),

giving

|ŷ − y| ≤
(

x− a

b− a
+

b− x

b− a
+ 3|y|

)
η = (1 + 3|y|)η ≤ 4η.

This bound does not depend on a, b or x and is very small, and thus the second
formula is highly stable regardless of the original interval.

22

Numerical analysis for algorithm design in metrology

3.1.2 Polynomial evaluation

Consider the evaluation of a polynomial of degree six [52, p125] in the region of
a minimum of that polynomial. 201 uniformly spaced points of evaluation in the
interval [0.992, 1.008] were used. Figure 3.1 shows a plot of the results obtained.
The function is convex in shape, with essentially flat behaviour in the middle.
There is irregular behaviour with a small amplitude, more apparent in the flatter
part of the curve, which might be dismissed as of minor consequence, possibly
on the basis of ‘an inadequacy in the graphics software’. A closer inspection of
this region indicates more than minor irregularities.

Figure 3.1: A polynomial of degree six evaluated over a specified interval.

The function was evaluated once more, but now over a reduced interval
[0.995, 1.005] covering the ‘flat region’. The result obtained is shown in fig-
ure 3.2. The behaviour of the function is without doubt highly erratic, and
nothing like the smooth behaviour expected of a (low degree) polynomial. The
irregularities correspond to large relative errors in the computed values of the
polynomial. Superimposed on this figure is the polynomial evaluated in a stable
manner (below).

In fact, the polynomial in monomial form is

p(x) = 1− 6x + 15x2 − 20x3 + 15x4 − 6x5 + x6. (3.2)

This was the form that was evaluated in creating the ‘jagged’ figures. The eval-
uation of the form (3.2) near x = 1 suffers appreciable subtractive cancellation:
individual terms in the polynomial (e.g., 15x2 and −20x3) have magnitudes be-
tween one and twenty, yet the value of p is very much smaller, e.g., of the order
of 10−8 at x = 0.95. So some nine significant decimal digits are lost for this
value of x. For x = 0.99, some 13 digits are lost.

p(x) above is in fact the expansion of (x − 1)6, a form that is perfectly
stable for evaluation. The smooth curve in figure 3.2 was formed using this
representation.

23

Software Support for Metrology Best Practice Guide No. 11

Figure 3.2: As figure 3.1, but evaluated over the central portion of the interval.

Imagine using the form (3.2) as input to (e.g., library) software for deter-
mining the minimum of a function. The noise induced into the values of the
function by the use of representation (3.2) would cause a poor estimate of the
minimum to be returned. It would also be likely to introduce difficulties for
the minimization routine, which is probably designed to operate effectively for
smooth continuously differentiable functions. This function has all these proper-
ties mathematically, but not numerically in the field of floating-point arithmetic.

Further imagine the determination of a zero of this function. According to
the graph there are many ‘zeros’ induced by the noisy function values. More
strictly, there are many pairs of adjacent points when the computed value of
the function takes opposite signs.

There are several messages:

1. The jagged behaviour in the curve is a consequence of the finite arithmetic
used. Greater numerical precision would have been needed to produce a
smooth curve from the form (3.2) for the polynomial.

2. A stable representation of the function, a polynomial in this case, would
have given the expected smooth curve, with no need to work with extended
precision.

3. A false conclusion could be drawn from inspecting results such as these,
e.g., that a metrological relationship was more complicated than it actually
was. The results are contaminated by use of an unstable form for the
function.

4. The use of this form of the function in conjunction with software to carry
out certain computations, such as determining a zero or a minimum, may
cause numerical difficulties.

24

Numerical analysis for algorithm design in metrology

3.1.3 Angle between two vectors

A further example [16] is the calculation of the angle θ between two unit vectors.
Given vectors a and b, each of unit length, mathematically equivalent formulae
for evaluating θ (cf. figure 3.3) are

θ = cos−1(aTb) (3.3)

and

θ = 2 sin−1

∥∥∥∥b− a
2

∥∥∥∥ . (3.4)

θ a

b

b−a
2

Figure 3.3: The angle between two unit vectors.

Which formula should be used? Formula (3.3) looks simpler and, on the face
of it, might be appropriate. The difference in the behaviour of the formulae,
especially for a very practical application in dimensional metrology (below), is,
however, appreciable.

For vectors that are very nearly parallel, i.e.,

aTb = 1− δ, 0 < δ � 1,

the form (3.3) gives, approximately,

cos θ = 1− θ2

2
= aTb = 1− δ,

i.e.,
θ =

√
2δ.

Since the smallest non-zero δ for which 1− δ is representable is η/2, the small-
est θ computable from formula (3.3) is

√
η, i.e., approximately 10−8 radians

for IEEE arithmetic. Thus, formula (3.3) is unable to detect an angle smaller
than 10−8 radians unless it is computed as zero, whereas the alternative for-
mula (3.4) can be expected to return accurate values.

This example has serious consequences for those concerned with implement-
ing the procedures described in the ISO International Standard [49]. This Stan-
dard is concerned with testing software for computing Gaussian best-fit geomet-
ric features to measured data that is used in industrial inspection and geometric

25

Software Support for Metrology Best Practice Guide No. 11

tolerancing applications. The Standard requires that the unit direction vector
used in the parametrization of such geometric features as planes, cylinders and
cones and returned by test software is compared with a reference solution by
computing the angle between the test and reference vectors. The Standard de-
fines acceptance of the test vector if this angle is smaller than 10−8 radians. It is
clear from the above analysis that if formula (3.3) is used to evaluate the angle,
this acceptance criterion can never be satisfied no matter how close are the test
and reference vectors, unless the angle is computed as zero. On the other hand,
there is no problem with undertaking the comparison if formula (3.4) is used.

The importance of using a stable formula is recognized in the standard,
which includes information to the implementor to this effect.

3.2 CASE STUDY. Hardness measurement

3.2.1 Objective

The determination of the Brinell hardness number as part of the application of
the Brinell hardness test.

3.2.2 What this case study illustrates

• The evaluation of a formula given in an international standard as part of
a hardness test

• Subtractive cancellation associated with the use of this formula (chapter 3)

• An alternative, equivalent numerically stable formula

• Floating-point error analysis of the formulae.

3.2.3 The Brinell hardness test and the formula for the
Brinell hardness number

The Brinell hardness test method consists of indenting the test material with a
10 mm diameter hardened steel or carbide ball subjected to a load of 3 000 kg.
For softer materials the load is sometimes reduced to 1 500 kg or 500 kg to avoid
excessive indentation. The full load is normally applied for 10 to 15 seconds in
the case of iron and steel and for at least 30 seconds in the case of other metals.
The diameter of the indentation left in the test material is measured with a low-
powered microscope. The Brinell hardness number is calculated by dividing the
load applied by the surface area of the indentation.

The Brinell Hardness Test [48] utilises the formula

B =
0.204F

πD(D −
√

D2 − d2)
(3.5)

for the Brinell hardness B in N/mm2 as a function of the test force F in N,
the diameter D in mm of the indenter and the mean diameter d in mm of the
indentation.

26

Numerical analysis for algorithm design in metrology

3.2.4 Considerations regarding numerical evaluation

Suppose F = 1 500 kg. Consider the numerical evaluation of the term T =
D−

√
D2 − d2 in the denominator of formula (3.5) for the values D = 10.00 mm

and d = 0.84 mm. To four significant decimal digits (4S), using guard digits be-
fore each intermediate result is rounded as in IEEE arithmetic (and suppressing
the cumbersome ‘fl’ notation used in section 2.5):

D2 − d2 = 10.002 − 0.842 = 100.0− 0.705 6 = 99.294 4 ≈ 99.29 mm2,√
D2 − d2 =

√
99.29 ≈ 9.964 mm

and hence

T = D −
√

D2 − d2 = 10.00− 9.964 = 0.036 00 mm, (3.6)

the trailing zeros being spurious (used purely to provide 4S) as a consequence
of subtractive cancellation. Finally,

B = 270.6 N/mm2
, (3.7)

only the first two digits of which would be meaningful because, evidently, there
is a loss of (some two) significant digits as a consequence of the subtractive
cancellation in forming T at stage (3.6). The loss is not too damaging here,
since, for the number of digits used, two significant digits remain in the value
of D−

√
D2 − d2, although it might be damaging if fewer digits were recorded at

the intermediate stages of a hand calculation. The remainder of the calculation
presents no problem, since only multiplications and divisions are required, each
of which introduces only a small relative error in the final result.

Repeating the calculations with enough digits to deliver 4S in the result gives

B = 275.6 N/mm2
, (3.8)

confirming the loss of two digits in the result (3.7).
Suppose a smaller force were applied or the material under test were harder.

Then, d would be very much smaller than D, with the consequence that the
formula (3.5) would fare worse. For instance, for D = 10.00 mm and d =
0.05 mm, in 4S,

D2 − d2 = 10.002 − 0.052 = 100.0− 0.002 500 ≈ 100.0 mm2, (3.9)√
D2 − d2 =

√
100.0 = 10.00 mm

and hence
D −

√
D2 − d2 = 10.00− 10.00 = 0 mm.

The resulting value of B would be infinite! Such an absurd result would be
spotted during a hand calculation at the stage (3.9) and the number of digits
increased accordingly to compensate. Indeed, working to 6S,

D2 − d2 = 10.002 − 0.052 = 100.000− 0.002 500 00 = 99.997 5 mm2,√
D2 − d2 =

√
99.997 5 = 9.999 87 mm

27

Software Support for Metrology Best Practice Guide No. 11

and hence

D −
√

D2 − d2 = 10.00− 9.999 87 = 0.000 130 000 mm.

The resulting value, to four digits, is

B = 7.493× 104 N/mm2
. (3.10)

To four digits, obtained by holding more digits throughout the computation,

B = 7.792× 104 N/mm2
. (3.11)

Thus, even working to 6S, only one digit is correct in the above result.

3.2.5 An alternative formula and its use

To avoid having to use additional precision as in section 3.2.4 and record inter-
mediate results to more digits, formula (3.5) can be recast to avoid damaging
subtractive cancellation. By multiplying the numerator and denominator of ex-
pression (3.5) by D +

√
D2 − d2 and simplifying, the following mathematically

equivalent formula is obtained:

B =
0.204F (D +

√
D2 − d2)

πDd2
(3.12)

The only term now involving subtractive cancellation is D2 − d2, which would
not be damaging even if d was only just smaller than D, since the result, after
square-rooting, is added to D, both terms being positive.

The above calculations are now repeated, but for the alternative formula (3.12).
For the values D = 10.00 mm and d = 0.84 mm, working to 4S, B = 275.6 N/mm2,
and, for the values D = 10.00 mm and d = 0.05 mm, working to 4S, B =
7.792 × 104 N/mm2, both of which agree with the values (3.8) and (3.11) ob-
tained using a sufficient number of intermediate digits to permit the result to
be rounded correctly to 4S.

Formulae (3.5) and (3.12) contains two main features for numerical consid-
eration: the evaluation of D2−d2 and that of D−(D2−d2)1/2 when 0 ≤ d ≤ D.
The other aspects are numerically innocuous. Section 3.2.6 provides floating-
point error analyses of these formulae and a related formula.

3.2.6 Floating-point error analysis

This section provides support for the results observed in section 3.2.4 using
floating-point error analysis. In particular, such an analysis quantifies the man-
ner in which the error bounds for the formulae depend on the quantities that
are ‘input’ to the formulae. Computed values are denoted by hats.

First, the formula
S = D2 − d2 (3.13)

and the alternative form
S = (D − d)(D + d) (3.14)

are analyzed using the concepts of section 2.6.

28

Numerical analysis for algorithm design in metrology

Now,
fl(D2) = D2(1 + e1), fl(d2) = d2(1 + e2),

Ŝ = fl(S) = (D2(1 + e1)− d2(1 + e2))(1 + e3).

So the relative error in Ŝ is

Ŝ − S

S
=

(D2(1 + e1)− d2(1 + e2))(1 + e3)− S

S
=

D2e1 − d2e2 + (D2 − d2)e3

S
.

Hence, ∣∣∣∣∣ Ŝ − S

S

∣∣∣∣∣ ≤
(

D2 + d2 + (D2 − d2)
D2 − d2

)
η =

2D2

D2 − d2
η, (3.15)

which can be arbitrarily large, depending on the closeness of d to D.5

Now consider the formula (3.14):

fl(D − d) = (D − d)(1 + e4), fl(D + d) = (D + d)(1 + e5),

Ŝ = (D − d)(D + d)(1 + e4)(1 + e5)(1 + e6) = S(1 + 3e7). (3.16)

Thus,
Ŝ − S

S
= 3e7

and ∣∣∣∣∣ Ŝ − S

S

∣∣∣∣∣ ≤ 3η,

a very small relative error, regardless of the values of D and d. Thus, for-
mula (3.14) is unconditionally stable, whereas the degree of stability of for-
mula (3.13) depends on the values of D and d.

A floating-point error analysis (appendix A) of the remainder of the compu-
tation of B using formula (3.5) gives

|B̂ −B|
B

≤ (D + T)(D + 1.5T)
d2

η ≤ 5
(

D

d

)2

η, T =
√

D2 − d2. (3.17)

This result means that the relative error in the computed value B̂ does not
exceed 5(D/d)2η.

In contrast, a floating-point error analysis in appendix A of formula (3.12)
gives

|B̂ −B|
B

≤ 9.5η.

This bound is independent of D and d. Moreover, it means that at most one
decimal digit is lost in the calculation.

For each of 100 values of the quotient d/D, viz., d/D = i/100, i = 1, . . . , 100,
the Brinell hardness was calculated using the unstable and stable formulae, and
the relative error (3.17) formed regarding the stable formula as providing the
correct result. Figure 3.4 shows these values of the relative error divided by η.

5For the cases of concern here, in which d � D, the right-most part of expression (3.15) is
essentially equal to 2η, marginally superior to the formula below (with 3η), which applies for
all D and d.

29

Software Support for Metrology Best Practice Guide No. 11

It also shows as solid curves the relative error bounds, also divided by η, in the
basic formula (3.5). The bounds are pessimistic quantitatively, but qualitatively
have the ‘shape’ of the observed errors. The broken curve is the rule-of-thumb
estimate of the floating-point error (section 2.6), i.e., corresponding to {(D +
T)(D + 1.5T)}1/2η/d. It is not an unreasonable estimate of the floating-point
errors that occurred, although these errors have structure and are evidently not
‘random’.

Figure 3.4: The relative error, normalized by the unit roundoff, in the basic for-
mula (3.5) for Brinell hardness B as a function of the quotient of the indentation
diameter d and the indenter diameter D. The dots show the relative error, using the
stable formula as a reference, for 100 values of the quotient. The solid curves corre-
spond to the bounds (3.17) for this relative error obtained using floating-point error
analysis. The broken curve corresponds to the ‘rule of thumb’ estimate.

3.2.7 Lessons learnt

• Formulae can suffer subtractive cancellation that can compromise the re-
sults delivered (also see chapter 3)

• The advantage of a mathematically equivalent formula with superior nu-
merical properties

• The use of floating-point error analysis to expose the difficulty and to
provide error bounds for the use of the formulae that involve the problem
parameters

• The extent to which the error bounds are realistic

• For almost any of the values of d and D likely to arise in practice, any of
the above formulae should be adequate for practical purposes when the
calculation is carried out using IEEE arithmetic or something comparable.

30

Numerical analysis for algorithm design in metrology

This is the case because the arithmetic operates with a sufficient number of
significant digits for this particular computation. If, however, intermediate
results are recorded to a limited number of significant digits, and then
subsequently used for the remainder of the calculation, the result may not
have the numerical accuracy expected. In any case it is good practice to
use a stable formula. Then it can be used for all feasible values of its
‘parameters’ without undue concern. Moreover, recording intermediate
results to limited precision would be less dangerous.

3.3 CASE STUDY. Interlaboratory comparisons

3.3.1 Objective

The determination of the total median as a location parameter for key compar-
ison measurements.

3.3.2 What this case study illustrates

• The computational inefficiency arising from the use of full enumeration to
provide the probabilities in a formula defining the total median

• The dangers of overflow and underflow in the direct use of published for-
mulae for these probabilities

• The dangers of subtractive cancellation in forming these probabilities from
these formulae

• The use of a recurrence relation and symmetry to overcome these three
difficulties

3.3.3 The practical problem and requirements

In an interlaboratory key comparison of measurement standards it is required [6]
to provide a key comparison reference value (KCRV) and unilateral and bilateral
degrees of equivalence based on the measurements and the associated uncertain-
ties provided by the participating national measurement institutes (NMIs). In
the simplest type of key comparison [22] a single artefact, regarded as having
temporal stability, is measured by the NMIs, and the measurements they pro-
vide are taken as statistically mutually independent. For a consistent set of
measurements and associated standard uncertainties, a classical location pa-
rameter (the weighted mean has been recommended [22]) is used as the KCRV.
When a test for consistency of the data and the estimated location parameter
fails, other location parameters that are less influenced by discrepant data can
be considered [22]. Among such estimators are the median and the total median.
Neither of these uses the provided uncertainties, and thus may be more appro-
priate when those uncertainties are not all credible. The provided uncertainties
are, however, used in forming the required degrees of equivalence.

31

Software Support for Metrology Best Practice Guide No. 11

3.3.4 The total median

Let x(1), . . . , x(n) denote a sample x1, . . . , xn arranged in non-decreasing order.
The median is given by

θ = (x(b(n+1)/2c) + x(b(n+2)/2c))/2,

where brc is the largest integer no smaller than r.
The total median is

θ =
n∑

i=1

pix(i), (3.18)

where the probabilities pi are derived from properties required of the estimator.
It is an estimator of the population mean that retains the robustness property
of the median, but has a smaller mean-squared error [35].

The total median θ is defined [35] as the mathematical expectation of the
median according to the bootstrap. A bootstrap sample is xi1 , . . . , xin

, where
the ij are uniformly random integers between 1 and n. Thus, the mathemat-
ical expectation is the arithmetic mean of all nn distinct such samples, there
being n possible values for each of the n indices ij . Although the bootstrap
is generally regarded as an infinite algorithm, terminated to provide results to
some (stochastic) degree of accuracy, it has an exact finite interpretation for the
median (and for certain other order statistics).

The total bootstrap is defined as drawing, with replacement, all these nn

essentially distinct bootstrap samples from the given sample. Consider a small
sample, viz., of size n = 3. There are 33 = 27 such samples, viz., items (1, 1, 1),
(2, 1, 1), (3, 1, 1), (1, 2, 1), (2, 2, 1), . . . , (3, 3, 3), the probability of occurrence
of each of which is identical (= 1/27). Consider calculating the median of each
of these samples. From these 27 median values, each of which coincides with
one of the xi, x(1) is selected 7 times, x(2) 13 times and x(3) 7 times. Since
the expectation is the sum of products of outcome and the probability of that
outcome, the probabilities in this case are taken as 7/27, 13/27 and 7/27, and
the total median is

θ =
3∑

i=1

pix(i) =
7
27

x(1) +
13
27

x(2) +
7
27

x(3).

In general, the probabilities pi in expression (3.18) can be formed by full enu-
meration.6

3.3.5 Full enumeration to calculate the probabilities

The probabilities can in principle be calculated by counting for small values of n.
However, the value of nn increases too rapidly with n to permit full enumeration
to be used for n much greater than about 10, for which nn = 1010. Random
re-sampling using a more modest, say 106 samples, can be used to estimate
the probabilities in general. The situation is unsatisfactory. At one extreme, a
prohibitive amount of computation is required. At the other, the probabilities
are calculated only approximately, with no guarantee of their degree of numerical
accuracy.

6For n odd, pi is the probability that x(i) is the median of a bootstrap sample (of size n
with replacement) taken from the given sample, with an analogous statement for n even.

32

Numerical analysis for algorithm design in metrology

3.3.6 The use of an explicit formula

A formula [35],[37, p16],[51] has been provided for the probabilities in expres-
sion (3.18). The probabilities depend (only) on n and are given by

pi =
bn/2c∑
j=0

′{B(j; n, (i− 1)/n)−B(j; n, i/n)}, (3.19)

where
B(j; n, p) = nCjp

j(1− p)n−j (3.20)

is a binomial probability, and the prime on the summation symbol indicates
that the last term is to be taken with weight one-half if n is even. The binomial
probabilities are in principle easily calculated (but see below). The compu-
tational complexity is much improved, however, being O(n2), or even O(n3),
depending on how the binomial probabilities are calculated (rather than O(nn)
for full enumeration).

However, for large values of n, nCj can be very large and pn−j(1− p)j very
small, although their product is of moderate size. There is thus a danger of
overflow or underflow in the direct use of the formula.

For values of n greater than 41, the computed values of some of the probabil-
ities are negative! The use of the formula for combining binomial probabilities
to produce the probabilities in the formula for the total median is such that for
values of i less than n/2, especially those for small i, the magnitudes of some
of the (positive and negative) contributions to the sum can far outweigh the
value of pi. The effect becomes more pronounced as n increases. This effect is
a further instance of damaging subtractive cancellation.

A concern is that if formula (3.19) fails catastrophically for n > 41, how
reliable are the values of the pi computed using it for n ≤ 41? Although they
are positive, to what extent are they accurate?

For larger n, there is the additional problem that overflow can occur when
calculating the binomial coefficients B(j; n, p), and no result is returned. This
may be a good thing of course, being arguably superior to providing an erroneous
result.

3.3.7 The use of a recurrence relation and symmetry

The use of a recurrence relation and symmetry overcomes all three difficulties
(the expense of full enumeration, overflow and underflow dangers, and subtrac-
tive cancellation):

1. Formula (3.19) gives an economical calculation.

2. The simple recursion formula

B(j; r, p) = pB(j − 1; r − 1, p) + (1− p)B(j; r − 1, p) (3.21)

generates binomial probabilities.7 There is no growth: B(j; r, p) is a
convex combination of B(j − 1; r − 1, p) and B(j; r − 1, p), since their
multipliers p and 1− p sum to unity.

7The recursion is proved by substituting the right-hand side of expression (3.20) into the
formula (3.21) and simplifying the result.

33

Software Support for Metrology Best Practice Guide No. 11

3. Since the set of values of pi forms a symmetric sequence, only the lower
‘half’, which can be formed stably, need be evaluated and ‘reflected’ about
the ‘midpoint’.

3.3.8 Lessons learnt

• The use of a calculation method based on full enumeration is tractable
for small problems (small sample sizes in this case), but computationally
prohibitive for large problems.

• The direct use of a formula for the total median probabilities can give rise
to quantities that overflow and others that underflow. In particular, the
products of such quantities can be of modest size, but evaluating these
products needs to be accomplished by other means.

• Subtractive cancellation in the use of the formula can impair the quality
of some of the results obtained using the formula. In particular, spurious
‘negative probabilities’ can be produced.

• The use of a simple recurrence relation avoids the difficulties. Overflow and
underflow will not occur, because intermediate quantities are comparable
in size. The use of symmetry in the required results avoids the cancellation
difficulty.

3.4 CASE STUDY. Extraction of mass of mate-
rial

3.4.1 Objective

The determination of the total mass of extractable material given measurements
of the mass extracted at various times.

3.4.2 What this case study illustrates

• Summation of an infinite series to a required numerical accuracy

• Optimization with respect to linear and non-linear parameters

• Accounting for structure in a non-linear problem

• Finding the globally best solution

• Determination of the parameters of a physical model.

3.4.3 The practical problem and requirements

Heterogeneous phase extraction is critical for many chemical measurements, and
is a common feature of organic and other analyses. A paper on recent activity
in the area is available [38].

The area presents difficulties because of the lack of sufficiently general phys-
ical models of extraction. A simple ‘hot-ball’ diffusion model that assumes
uniform spherical particles of radius r with constant diffusion coefficient D and

34

Numerical analysis for algorithm design in metrology

essentially zero concentration and high solubility in the surrounding fluid is
used as a basis for the study here. The model relates the mass m = m(t) of
the material extracted to time t. By fitting the model to measurements of m
at a sequence of time values, an estimate of m0, the total mass of extractable
material can be obtained.

3.4.4 The diffusion model and data

The hot-ball diffusion model for a uniform sphere of initial mass m0 and radius r
is

m(t) = m0S(µt), S(λ) = 1− 1
π2

∞∑
k=1

1
k2

e−λk2
, (3.22)

where
µ = π2D/r2,

m(t) is the mass extracted after time t, and D is the diffusion coefficient.
The data consists of pairs (ti, mi), i = 1, . . . , N , where mi is a measurement

of the mass extracted up to time ti.

3.4.5 Evaluating the model

In fitting the model (3.22) to such data, and in computing model values at
various times t for given values of µ (or r and D) and m0, it is necessary to
decide how many terms should be included in the sum in formula (3.22) in order
to approximate the infinite series sufficiently well.

One way to ‘sum’ the series would be to add successive terms until a term
was reached that was smaller than a prescribed absolute precision δ. However,
this approach provides no guarantee of delivering a solution to that precision.
To illustrate this point, consider the sum in expression (3.22) evaluated at t = 0,
viz.,

S =
∞∑

k=1

1
k2

. (3.23)

Suppose a result correct to a numerical precision of two decimal places is re-
quired, i.e., the absolute error is to be no greater than δ = 0.005. The smallest
value of k such that 1/k2 ≤ 0.005 is 15, since 1/152 = 0.0044, whereas 1/142 =
0.0051. Thus, the series (3.23) would be replaced by

S =
K∑

k=1

1
k2

(3.24)

with K = 15. The value of this sum is 1.58, to two decimal places, whereas
the correct value is 1.64, and so in error by 0.06, an order of magnitude bigger
than the required precision. The approach is therefore inadequate. A correct
approach would be to sum the series in such a way that the sum of the remaining
terms is no greater than 0.005.

It is shown in appendix B that if an absolute numerical precision of δ is
required in the numerical value of m(t)/m0, expression (3.22) can be replaced
by

m(t) = m0SK(µt), SK(λ) = 1− 1
π2

K∑
k=1

1
k2

e−λk2
, (3.25)

35

Software Support for Metrology Best Practice Guide No. 11

where for any t the number K of terms in the sum is chosen to be the smallest
integer satisfying

1
K + 1/2

e−λ(K+1/2)2 ≤ δ. (3.26)

Thus, the sum in expression (3.25) is calculated by incorporating successive
terms until an index k = K is reached satisfying inequality (3.26).

The result (3.26) reduces to 1/(K +1/2)) ≤ δ when t = 0, giving K = 200 to
ensure that δ ≤ 0.005. Thus, 200 rather than (the inadequately established) 15
terms are needed. Note that t = 0 is the ‘worst case’ in terms of the rate of con-
vergence of the series. This statement is a consequence of the fact that the larger
the value of t the faster the series converges because of the exponential term in
expression (3.22). The sum (3.23) is in fact π2/6 = 1.644 934 066 848. . . [44,
p18]. As pointed out by Higham [44, p19], it is far preferable to sum a con-
vergent series ‘backwards’, because adding smaller and smaller numbers to the
partial sum fails to account for their full numerical precision, many of the digits
‘falling off the end’. He states that summing the series (3.24) in FORTRAN 90 in
single-precision with K = 4096 (the first value of k for which the sum changes
no more when adding successive terms) gives the value 1.644 725 32, which
agrees with the correct value to only four significant digits from a possible nine.
Summing these 4096 terms backwards gives the improved value 1.644 934 06,
correct to eight significant digits.

In the context of this application, a reliable way to proceed is to evaluate
the left-hand side of inequality (3.26) for successive values until a value of K
was reached that satisfied the inequality. Then the series would be summed
backwards from this value of K.8

The approach of appendix B can be followed for certain other series. How-
ever, there is no approach that is generally applicable, a case-specific analysis
generally being required to support the choice of the number of terms to be
included.

3.4.6 Fitting the model

The problem to be solved is formulated as one of least squares:

min
m0,µ

N∑
i=1

(mi −m(ti))2.

There are two adjustable parameters, m0 and µ. The fitting of m(t) to data is
an instance of a non-linear least-squares optimization problem [2].

The hot-ball diffusion model is intrinsically non-linear in (one of) its param-
eters, and consequently some numerical methods may have difficulty in locating
the (globally) best solution. An approach that avoids this difficulty uses the
fact that there is just one non-linear parameter in the model.

Consider first ‘traditional’ methods for solving a non-linear least-squares
problem [2]. Such a problem can be described as follows. Let fi(a), i = 1, . . . , N ,
denote a set of N functions of n (≤ N) parameters a = (a1, . . . , an)T.

8There would be more efficient ways to proceed if computation time was a consideration.
One way would be to replace the inequality sign in expression (3.26) by an equality, regarding
the resulting expression as an equation to be solved for (a generally non-integer value) K′,
say. The smallest integer greater than or equal to K′ is then taken as K.

36

Numerical analysis for algorithm design in metrology

For the current purposes,

fi(a) = wi(yi − f(ti;a)),

i.e., the weighted difference (residual) between a data ordinate value yi and a
model f(t;a) at the corresponding abscissa value t = ti. wi denotes the weight,
which would normally be chosen equal to the reciprocal of the standard uncer-
tainty associated with yi. The ti are taken as accurately known. A modification,
not required here, can be used to handle the case where there is uncertainty as-
sociated with the ti [27].

The problem is to determine values â of a such that the sum-of-squares
function (weighted residual sum of squares)

φ(a) =
N∑

i=1

f2
i (a) (3.27)

is a minimum. A straightforward extension permits an uncertainty matrix as-
sociated with the data values yi to be incorporated [2].

Most numerical approaches for solving this problem start with an initial
approximation a0 to â and determine a sequence of approximations (iterates) ar,
r = 1, 2, . . . to â. A test for convergence is applied to each approximation so
generated, and the process terminated when the test is satisfied.

A basic solution procedure is the Gauss-Newton algorithm. At the (r + 1)st
iteration, r = 0, 1, . . ., this algorithm uses, in place of the fi(a), linear approxi-
mations to these functions. These approximations are given by the Taylor series
expansions of first order of the fi(a) about a = ar. The resulting sub-problem
is one of linear least squares (a sum of squares of linear functions) that can
be solved by standard methods of linear algebra. Full details of recommended
methods are available [2], [44, chapter 19].

An initial approximation to the adjustable parameters is often available from
the physical context of the application. Non-linear least-squares algorithms typ-
ically require the user to specify the partial derivative of first order of the model
function, i.e., with respect to the adjustable parameters. These algorithms solve
a sequence of linearized problems until (generally) the solution is obtained [2].

3.4.7 Accounting for problem structure

Consider a model containing one non-linear parameter and n− 1 linear param-
eters. An example of such a model, in which n = 3, is

a1 + a2e
−a3x. (3.28)

The parameters a1 and a2 occur linearly and a3 non-linearly.
Problems involving such a model can be solved more readily than when

more general models are involved. A reason is that they can be reduced to
problems involving just the non-linear parameter. A consequence is that a
detailed examination of the space of that parameter will permit the globally
best solution to be found. Generally, the Gauss-Newton and the Levenberg-
Marquardt algorithms applied to the n-parameter problem will provide a local
solution. If the initial approximation to the parameter values is sufficiently
close to the solution values, the required solution will be obtained. Details of

37

Software Support for Metrology Best Practice Guide No. 11

these and other procedures for linear and non-linear least-squares modelling
problems are available [2]. For numerical stability these procedures work with
the Jacobian matrix9J at each iteration, solving the resulting linear system
using the QR or SVD algorithm [44].

The approach is discussed through the use of extraction information typified
by the data [38] of figure 3.5. Consider a particular numerical value for the non-
linear parameter an. Because all the remaining parameters occur linearly, the
problem can be solved for them using linear least squares. This linear problem
generally has a unique solution. This solution yields the smallest value of the
residual sum of squares φ given the chosen value of an. Since in this setting the
linear parameters depend on an, they can be written as functions of an, viz., as
aj(an), j = 1, . . . , n − 1. Hence, the weighted residual sum of squares φ (3.27)
can be (re-)expressed (not necessarily explicitly) as a formula in terms of the
single parameter an.10

Figure 3.5: Extraction data.

Suppose a different choice were made for an, and the values of the linear
parameters and the residual sum of squares formed for this choice. Consider
this process performed for a large number of choices of an. In particular, suppose
an interval for an were chosen in which it was expected that its optimal value
would lie. Partition this interval into a large number M of points (1000, say)
and carry out the process for all such values. Express the result as M pairs of
values of an and the corresponding residual sum of squares. A graph of these M
points would show the residual sum of squares as a function of an. In particular,
if the interval chosen contained the optimal value of an, the function underlying
these points would have a minimum within the interval. Figure 3.6 shows the

9J is the matrix of partial derivatives of the model with respect to the model parameters,
evaluated at the current approximation to the values of these parameters.

10Generally, φ is a function of (or formula involving) the n model parameters.

38

Numerical analysis for algorithm design in metrology

graph of the residual sum of squares as a function of a3 for the exponential
model (3.28) applied to the data of figure 3.5. (The use of the actual physical
model is considered below.)

Figure 3.6: Residual sum of squares as a function of the (non-linear) rate con-
stant for the extraction data of figure 3.5.

There may be more than one minimum, as can arise for a non-linear problem,
in which case the minimum of concern would be the global minimum, i.e., that
corresponding to the smallest residual sum of squares in the interval.

If the interval contained no minimum, i.e., the residual sum of squares was
increasing or decreasing throughout the region, the selected interval is clearly
inappropriate and another should be chosen. Even if the selected interval con-
tained one or more minimum, there remains a possibility that the global min-
imum lay outside the interval. The choice of the interval should be made by
a practitioner with knowledge of the area. The choice could perhaps be auto-
mated, should sufficient information be made available to an algorithm. In any
case, it is desirable for the practitioner to be ‘in the loop’, especially to examine
a graph of the behaviour of the residual sum of squares as a function of the
non-linear parameter. Such knowledge can be informative in the context of the
application.

Once an interval containing a minimum had been identified, the pair of
points from the M are selected that are as close as possible to each other and
that bracket the minimum. These points lie immediately to the left and the right
of the point for which the residual sum of squares is smallest among the M val-
ues. Then, a ‘bracketing’ algorithm can be applied to minimise to the required
numerical precision the residual sum of squares as a function of an. High-quality
algorithms are available [36] for this purpose.

The commonest and arguably the most reliable bracketing algorithm is the
bisection algorithm. See section 2.5.

39

Software Support for Metrology Best Practice Guide No. 11

It would be unnecessary to apply this bracketing algorithm if the length of
the sub-interval defined by the chosen pair of points was less than the numer-
ical precision required in an. Such an occurrence would be the consequence of
selecting an initial interval that contained the minimum sought. For any ini-
tial interval, there would be a value of M such that the resulting sub-interval
(which would have length a factor 2/M of the original interval) was less than
any required numerical accuracy.

Once the minimum had been obtained to the required numerical precision,
the resulting value of an and the corresponding values of the linear parameters
represent the required set of parameter values. Figure 3.7 shows the exponential
model (3.28) obtained this way for the data of figure 3.5.

Figure 3.7: The exponential model with optimised rate constant for the extrac-
tion data of figure 3.5.

3.4.8 Lessons learnt

• The ‘natural’ way to sum a series may not yield a stipulated accuracy.
An example that makes the point very clearly [40] is as follows. In the
summation of the series

S = 1− 1
2

+
1
3
− 1

4
+ · · · ,

it is perfectly correct to stop when the next term is smaller than the toler-
able error, because the truncation error is smaller than the first neglected
term. This stopping rule would fail catastrophically for the apparently
similar series

S = 1 +
1
2

+
1
3

+
1
4

+ · · · ,

whose sum is infinite!

40

Numerical analysis for algorithm design in metrology

• Providing a bound for the remaining terms in a series and using this bound
to decide when to terminate the summation provides a basis for summing
the series to a prescribed numerical precision. Values of this sum can be
used in various ways, e.g., as here, as part of the iterative solution (the
problem Jacobian matrix depends on such values, and the accuracy of the
elements of this matrix will influence the convergence of the iteration).

• Conventional algorithms for non-linear least-squares problems may not
yield global solutions

• Accounting for problem structure can provide robust, global solutions. It
also shows how the quality of the solution (in terms of residual sum of
squares) depends on the value of the non-linear parameter of the problem.
Generally, taking such account can be valuable in terms of efficiency of
solution and, more importantly, often reducing the dimensionality and
hence improving the understanding of a problem.

41

Software Support for Metrology Best Practice Guide No. 11

Chapter 4

Differentiation

The need for derivatives (this section) and integrals (section 5) arise frequently
in metrology.

The modelling and analysis of non-linear problems usually requires the cal-
culation of the partial derivatives of the component functions with respect to
the problem variables. For all but the simplest models, these calculations are
time-consuming and error-prone. Automatic differentiation (AD) techniques
aim to provide efficient numerical evaluation of the derivatives of the component
functions solely on the basis of software to evaluate the component functions.
Descriptions of the main AD techniques and a summary of their advantages and
disadvantages are available [10, 11]. Of particular interest is the complex-step
method (applied indicatively in section 2.4), which uses complex arithmetic to
evaluate derivatives. It is particularly simple to implement in software languages
such as FORTRAN 90 and MATLAB that support complex arithmetic. Also of
value is finite-difference formulae, because of their relative ease of implementa-
tion, but there are risks associated with their use.

Consider the evaluation at a point x0 of the derivative with respect to x
of an analytic function f(x). Such derivatives are required in many contexts.
One of the most important is in scientific computation when it is required to
form the m× n Jacobian matrix J having ∂fj/∂xk as element j, k. J arises for
example in non-linear least-squares regression in minimizing a residual sum of
squares. Then, fj(x) is the jth of m residuals, and xk is the kth of n variables
or parameters x = (x1, . . . , xn)T on which the residuals depend. The need for
J also arises in sensitivity analyses, uncertainty evaluation and simulation.

Such an evaluation can be carried out in several ways, including

1. Coding by hand the analytic derivative f ′(x) and evaluating it at x0,

2. Using a symbolic differentiation package (such as Maple [14]) to form the
analytic derivative f ′(x) and evaluating it at x0,

3. Using a numerical differentiation package (such as ADIFOR [9]) to provide
f ′(x0),

4. Applying an appropriate finite-difference approximation (see, e.g., [42,
p339]) to estimate f ′(x0) using values of f(x) in the neighbourhood of
x = x0.

42

Numerical analysis for algorithm design in metrology

With the exception of the last approach all these approaches will if correctly
used provide the required value f ′(x0) to good accuracy. The term ‘good accu-
racy’ is deliberate. There is no guarantee that the representation of the deriva-
tive will be such that its evaluation will not cause problems such as damaging
subtractive cancellation. However, the evaluation is essentially of an analytic
form rather than involving a numerical approximation, and is thus potentially
capable of providing a good result. The hand-coding approach is of course error-
prone (and for this reason often checked using finite differences). In a number
of circumstances it is not convenient to utilize a symbolic or a numerical dif-
ferentiation package, particularly because a compact and self-contained code is
desired. Therefore, the concentration here is on the use of finite differences and
approaches related to them.

4.1 Finite differences and related approaches

Typical of finite-difference formulae are the forward-difference formula [42, p339]

f ′(x0) ≈
f(x0 + h)− f(x0)

h
(4.1)

and the central-difference formula [42, p340]

f ′(x0) ≈
f(x0 + h)− f(x0 − h)

2h
. (4.2)

Here h is a ‘step’ selected in an appropriate way. It is typically chosen to
balance truncation error (the error given by ignoring higher-order terms in the
Taylor-series expansion from which the formula is derived—cf. section 2.1.1)
and subtractive-cancellation error (the error incurred when forming differences
between function values at closely-neighbouring points). The truncation error in
(4.1) is h|f ′′(ξ1)|/2, where ξ1 ∈ [x0, x0 + h], and that in (4.2) is h2|f ′′′(ξ2)|/6,
where ξ2 ∈ [x0 − h, x0 + h]. For appropriately scaled problems [42, p341],
an optimal choice of h would be proportional to η1/2 for (4.1) and for (4.2)
proportional to η1/3. Here, η is the unit roundoff defined in section 2.6. For
such problems, the use of (4.1) can be expected at best to lose ‘half a wordlength
of accuracy’ and the use of (4.2) to lose one-third of the available figures. Not
only can this loss of accuracy prove troublesome, particularly in its influence on
the convergence rates of iterative methods for solving non-linear least-squares
regression problems, e.g., but determining a value of h in order to achieve the
above ‘best accuracies’ is not trivial.

Recently, Squire and Trapp [54] have revisited work by Lyness and Moler
[50] in which a result from complex-variable theory is used to approximate
derivative values. The requirement is that the programming system in which
the derivatives are to be computed supports complex types, and in particular
the basic functions such as square root, sine and exponential are available for
complex as well as real arguments. FORTRAN 77, FORTRAN 90 and MATLAB
are examples of such programming systems.

Consider the evaluation of f(x + iy), where i =
√
−1. Suppose that this

function is evaluated at a point where x = x0 and y is small. It is to be
expected that as y → 0, <f(x0 + iy) → f(x) and =f(x0 + iy) → 0, and indeed

43

Software Support for Metrology Best Practice Guide No. 11

this is the case. However, the manner in which =f(x0+iy) → 0 is very pertinent
to this discussion. Replace y by h and consider

lim
h→0

=f(x0 + ih)
h

. (4.3)

It is straightforward to show by Taylor-series expansion that, after taking imag-
inary parts,

=f(x0 + ih)
h

= f ′(x0)−
h2

6
f ′′′(x0) + O(h4) (4.4)

and hence that

f ′(x0) =
=f(x0 + ih)

h
+

h2

6
f ′′′(x0) + O(h4). (4.5)

It therefore follows that f ′(x0) can be estimated by choosing a ‘sufficiently small’
value of h and forming

f ′(x0) ≈
=f(x0 + ih)

h
(4.6)

(also see section 2.4). Unlike the use of a finite-difference formula, h can be
chosen to be very small with no concern about the loss of significant figures.
The only restriction is that h must not be chosen so small that it (or the terms
involving it) underflows, i.e., in floating-point arithmetic is replaced by zero.
The value h = 10−100 is used in NPL software, which is suitable for all but
pathologically scaled problems.

The result (4.6) should be compared with the Taylor-series expansion from
which approximation (4.2) is derived, viz.,

f ′(x0) =
f(x0 + h)− f(x0 − h)

2h
− h2

6
f ′′′(x0) + O(h4). (4.7)

In place of the central difference, =f(x0 + ih)/h, a quantity involving no sub-
tractive cancellation, is used. Moreover, the dominant error term, that involving
h2, is equal and opposite in the two cases. An interesting observation therefore
is that in exact arithmetic the arithmetic mean of the formulae (4.2) and (4.6)
is accurate to O(h4).

The success of this approach, i.e., the use of approximation (4.6), depends
on the integrity of the built-in complex-valued functions. Many scientific com-
putations rely on their integrity for real arguments and a significant number,
particularly in electrical science, on the same for complex-valued arguments.

To summarise, if a scientific computation requires the value of f ′(x0), it can
be obtained by

1. Setting h to be a small number (10−100 is suggested), but this value could
be taken as a default that can be overridden if necessary),

2. Forming f(x0 + ih),

3. Taking f(x0) = <f(x0 + ih),

4. Taking f ′(x0) = =f(x0 + ih)/h.

Step 3 can of course be omitted, but provides f(x0) at little extra cost.
A simple illustration of the use of this approach was given in section 2.4. It

and classical finite differences are used in the case study in section 4.2.

44

Numerical analysis for algorithm design in metrology

4.2 CASE STUDY. Determination of DNA con-
centration

4.2.1 Objective

The calibration of a measurement system for determining DNA concentration
and its use to provide the concentrations of DNA for a number of samples.

4.2.2 What this case study illustrates

• The determination of a calibration curve from response measurements for
a set of standards

• The mathematical representation of the calibration curve

• The use of the calibration curve to provide concentrations from response
measurements for a set of samples

• The numerical propagation of uncertainties through the calibration curve
model

• The development of algebraic expressions for the various uncertainty com-
ponents as part of a formal ‘uncertainty budget’

• The use of finite differences and automatic differentiation to validate the
results.

4.2.3 The practical problem

PCR (Polymerase Chain Reaction) has the ability to replicate large quantities
of a specific DNA species from a small starting amount. Fluorescence probes are
used to monitor the accumulation of PCR products in real time. Two probes
are used: one probe is labelled with a fluorescent dye that hybridises to the
endogenous gene, and the other with a fluorescent dye that hybridises to the
transgene.

A fluorescence baseline is established above which DNA amplification is re-
garded as taking place. Instrument-based software assigns a Ct (Cycle Thresh-
old) value, the cycle number where the amplification curve and fluorescence
baseline meet.

The response is the ∆Ct value,1 the difference between the Ct values of the
transgene and the endogenous gene.

Further steps in the analysis that are carried out by instrument-based soft-
ware involve

1. Formulation of a calibration curve, obtained by applying straight-line re-
gression to the logarithm of the specified DNA concentrations of the stan-
dards and the corresponding mean ∆Ct values.

2. Calculation of the unknown DNA sample concentrations from the calibra-
tion curve based on given mean ∆Ct values.

1Strictly, the ∆Ct value is a mean ∆Ct value, because of the repeated measurements on
which it is based.

45

Software Support for Metrology Best Practice Guide No. 11

The instrument-based software may not evaluate valid uncertainties. In
particular, it may not make use of all the available uncertainty information.
Consideration may not be given to uncertainties associated with measurement
data when establishing the calibration curve. The curve would typically be
obtained simply by minimizing the sum of squared differences between the mea-
surement and corresponding fitted model response values (ordinary least-squares
regression), even though both the response and stimulus values in general have
different associated uncertainties.

The uncertainties so obtained would be valid for the manner in which the
model parameters were obtained. A solution that respected the actual uncer-
tainty structure of the data should ideally be used [27], but such a solution is
not implemented in the instrument manufacturer’s software.

The problem is to propagate uncertainties that have been obtained from
the supplier of the DNA standards and from replicate response measurements
through the calibration curve-fitting process. The result will be uncertainties
associated with the calibration curve parameters that can subsequently be used
as a basis for evaluating the uncertainties associated with the concentrations of
unknown samples when the calibration curve is subsequently used to estimate
these concentrations.

4.2.4 Formulating the problem mathematically

The data consists of points (ti, yi), i = 1, . . . ,m, where ti and yi denote respec-
tively estimates (measurements) of the values of the concentration of the ith
DNA standard and the corresponding cycle number (the mean ∆Ct value cor-
responding to ti). Associated with the ti and the yi are standard uncertain-
ties u(ti) and u(yi). A typical data set is shown in table 4.1 and figure 4.1.

DNA concentration Response
standard to standard

i ti u(ti) yi u(yi)
1 0.100 0.025 10.58 0.11
2 0.500 0.050 8.19 0.11
3 1.000 0.100 6.74 0.11
4 2.000 0.150 5.63 0.11
5 5.000 0.300 4.38 0.11

Table 4.1: DNA concentration standards, the corresponding responses yi ≡
(mean ∆Ct)i, and the associated standard uncertainties.

The instrumental response y to DNA concentration t is observed to be a
straight line in log10 t. Thus, the calibration curve can be expressed as

y − ȳ = b(x− x̄), x = log10 t, (4.8)

where (x̄, ȳ) denotes a point on the curve and b the gradient of the curve. This
form is just one of several parametrizations of the curve. It is a sound one
because it avoids unnecessary damaging cancellation effects that could occur
from the use of a form such as that involving an intercept and a gradient.2

2A form such as the representation (4.8) is good numerical practice, but for the particular
data in table 4.1 this is issue is of little concern.

46

Numerical analysis for algorithm design in metrology

Figure 4.1: Measurements of mean ∆Ct for five DNA concentration standards
and the associated standard uncertainties. The centre of each cross indicates
a data point (ti, yi), the length of the horizontal arm of the cross is 2u(ti) and
that of the vertical arm 2u(yi).

4.2.5 Obtaining the calibration curve

Let b̂ denote the unweighted least-squares estimate of b. The unweighted least-
squares solution [53, p 514] is

x̄ =
1
m

m∑
i=1

xi, ȳ =
1
m

m∑
i=1

yi, (4.9)

identical to the Cartesian co-ordinates of the centroid of the data, and

b̂ =
∑m

i=1(xi − x̄)(yi − ȳ)∑m
i=1(xi − x̄)2

, (4.10)

giving, for the above data, the calibration curve shown in figure 4.2.

4.2.6 Propagating the uncertainties

Since for this study a ‘formal uncertainty budget’ was required, algebraic ex-
pressions were derived for the standard uncertainties and covariances associated
with estimates of the values of the model parameters. Generically, let u(α) de-
note the standard uncertainty associated with α and u(α, β) the covariance
associated with α and β. The following expressions were obtained from the
application of the law of propagation of uncertainty [7] (only the non-zero co-
variances are stated):

u(xi) =
u(ti)

ti log10 e
, u2(x̄) =

1
m2

m∑
i=1

u2(xi), u2(ȳ) =
1

m2

m∑
i=1

u2(yi),

47

Software Support for Metrology Best Practice Guide No. 11

Figure 4.2: The calibration curve for the measurements of mean ∆Ct for
five DNA concentration standards, using ordinary least squares.

u2(̂b) =
1

S4
xx

m∑
i=1

{
T 2

i u2(xi) + (xi − x̄)2S2
xxu2(yi)

}
, (4.11)

u(x̄, b̂) =
1

mS2
xx

m∑
i=1

Tiu
2(xi), u(ȳ, b̂) =

1
mSxx

m∑
i=1

(xi − x̄)u2(yi), (4.12)

where

Sxx =
m∑

i=1

(xi−x̄)2, Sxy =
m∑

i=1

(xi−x̄)(yi−ȳ), Syy =
m∑

i=1

(yi−ȳ)2, (4.13)

Ti = (yi − ȳ)Sxx − 2(xi − x̄)Sxy. (4.14)

These uncertainties are needed when the calibration curve is used to evaluate
the standard uncertainties associated with estimates of the values of the DNA
concentration of unknown samples.

Table 4.2 shows the values produced using these formulae for the above data.
u(ȳ, b) is zero because, for u(yi) that are all equal, as here, the right-hand sum
in expression (4.12) becomes

u2(y1)
m∑

i=1

(xi − x̄),

which vanishes because of the definition (4.9) of x̄.
Given (a) the estimates x̄, ȳ and b̂ of the values of the calibration curve

parameters and the associated uncertainties and (b) a response y0 and an asso-

48

Numerical analysis for algorithm design in metrology

x̄ u(x̄) ȳ u(ȳ) b̂ u(̂b) u(x̄, b̂) u(ȳ, b̂)
–0.060 0.026 7.105 0.048 –3.73 0.25 –0.0048 0

Table 4.2: Estimates of the values of the calibration curve parameters x̄, ȳ
and b̂ and the standard uncertainties and the (generally) non-zero covariances
associated with these estimates.

ciated uncertainty u(y0) for an unknown sample, the estimated logged concen-
tration corresponding to y0 from the calibration curve is

x0 = x̄ +
y0 − ȳ

b̂
(4.15)

and the corresponding concentration is

t0 = 10x0 . (4.16)

The standard uncertainty u(x0) associated with x0 can be obtained by applying
the law of propagation of uncertainty [7, Clause 5.2.2]:

u2(x0) = u2
1(x0) + u2

2(x0) + u2
3(x0),

where

u2
1(x0) =

m∑
i=1

{
1
m
− (x0 − x̄)Ti

b̂S2
xx

}2

u2(xi),

u2
2(x0) =

m∑
i=1

{
1
m

+
(x0 − x̄)(xi − x̄)

Sxx

}2
u2(yi)

b̂2
,

u2
3(x0) =

1

b̂2
u2(y) (4.17)

are the variances (squared standard uncertainties) associated with the contri-
butions to u2(x0) resulting, respectively, from the concentration standards, the
system responses to those standards, and the system response to the sample.

Finally, the standard uncertainty associated with the sample concentration t0
is

u(t0) = u(x0)10x0 loge 10 = t0u(x0)/ log10 e. (4.18)

Table 4.3 shows the results obtained. The mean ∆Ct values for the samples and
the associated standard uncertainties are shown in columns 2 and 3 and the
required sample DNA concentrations and the associated standard uncertainties
determined from the calibration curve in columns 4 and 5.

Figure 4.3 shows the sample concentrations determined from the calibration
curve. In that figure, the semi-widths of the shaded regions are equal to the
standard uncertainties associated with the estimated sample DNA concentra-
tions. The gradient of the curve is a major factor influencing these uncertainties.
The decreasing gradient of the calibration curve with increasing DNA concentra-
tion yields increasingly greater uncertainties. Were the uncertainties associated
with the mean ∆Ct values for the samples not identical, there would be a further
effect from that source.

49

Software Support for Metrology Best Practice Guide No. 11

DNA sample
Response concentration

i yi u(yi) ti u(ti)
6 9.05 0.11 0.262 0.039
7 7.09 0.11 0.878 0.083
8 6.32 0.11 1.411 0.119
9 5.66 0.11 2.130 0.182

10 4.38 0.11 4.676 0.511

Table 4.3: The mean measurement responses yi ≡ (mean ∆Ct)i, and the re-
quired DNA concentration values for the samples obtained from the calibration
curve, and the associated standard uncertainties. The indices i = 6, . . . , 10
are used to distinguish values from those related to the standards, with in-
dices i = 1, . . . , 5 in table 4.1.

Figure 4.3: Sample concentrations determined from the calibration curve, and
the associated standard uncertainties.

50

Numerical analysis for algorithm design in metrology

4.2.7 Numerical validation of the results

It requires care to produce formulae such as those in section 4.2.6 for the un-
certainties associated with estimates of the values of the calibration parameters
and the required DNA concentrations. There is a distinct possibility of an al-
gebraic error in deriving such formulae. To validate these particular formulae,
the uncertainty matrix

V
b̂

=

 u2(x̄) 0 u(x̄, b̂)
0 u2(ȳ) u(ȳ, b̂)

u(x̄, b̂) u(ȳ, b̂) u2(̂b)

associated with the calibration curve parameters b̂ = (x̄, ȳ, b̂)T was evaluated
numerically for choices of values of the input data, including those in table 4.1.
Specifically, if

Vd = diag(u2(t1), . . . , u2(tm), u2(y1), . . . , u2(ym))

denotes the uncertainty matrix associated with the input data

d = (t1, . . . , tm, y1, . . . , ym)T,

then
V
b̂

= JVdJT,

where J is the (Jacobian) matrix containing the partial derivatives of first order
of expressions (4.9) and (4.10) with respect to d evaluated for the data [32].

J was evaluated using finite-difference approximations (4.1) and (4.2). Care
was taken to select sensible step sizes to ensure that the resulting approximations
were adequate. The Jacobian matrix was consequently confirmed correct to ap-
proximately half of the available digits when the forward-difference formula (4.1)
was used and two thirds of the available digits when the central-difference for-
mula (4.2) was used, as predicted by the theory (section 4.1). The complex-step
method of section 4.1 was also used for this purpose. Its use confirmed that J
was correct in all its elements to all digits or all but one digit. The use of this
method required only a fraction of the (human) time compared with the use of
the finite-difference formulae, primarily because the ‘default’ step size of 10−100

(section 4.1) proved, as expected, to be perfectly adequate.
The uncertainties associated with estimates of the values of the sample DNA

concentrations were confirmed similarly. In that case the standard uncertainty u(t0)
associated with the estimate t0 of the sample concentration is given by

u2(t0) = cTV
b̂
c,

where c is the vector of partial derivatives of first order with respect to b of
expression 4.16, making use of expressions 4.9, 4.10 and 4.15, evaluated at b = b̂.

The complex-step method of AD cannot provide higher-order derivatives,
were they required. In such cases, some of the other methods [10] can be used.

4.2.8 Lessons learnt

• A sound parametrization of the calibration curve confers advantages

51

Software Support for Metrology Best Practice Guide No. 11

• Formal uncertainty evaluation can be difficult algebraically

• The use of finite differences or automatic differentiation can be directly
helpful in validating algebraic results

• The complex-step method is readily programmed in-line (cf. section 4.1)
and can therefore be used without having to integrate the user’s software
with AD software

• When algebraic derivatives of first order are not specifically required, the
complex-step method offers a viable alternative that is efficient and less
error-prone.

52

Numerical analysis for algorithm design in metrology

Chapter 5

Integration

Integration (in one variable) is concerned with the evaluation of the definite
integral

I =
∫ b

a

f(x) dx

or the determination of the indefinite integral

F (x) =
∫ x

a

f(t) dt, a ≤ x ≤ b,

given values a and b and information about f(x).1

Three types of information about f(x) can be considered:

1. f(x) specified mathematically or at least in the form of a procedure for
returning the value of f given a value for x in the interval [a, b]

2. f(x) specified exactly at prescribed points x1, . . . , xm, where a ≤ x1 <
· · · < xm ≤ b

3. As type 2, but f(x) specified inexactly as measurements yi at the points xi,
i = 1, . . . ,m.

Most of the literature is concerned with type 1 or 2, the second often cor-
responding to uniformly spaced points in the interval a ≤ x ≤ b. Integration
problems that fall into these categories can be solved accordingly. The in-
troduction to Chapter D01—Quadrature in the NAG Library provides useful
background.2

The concentration here is on type 3. It is commonplace in metrology to
provide measurements of a function and their associated uncertainties, and it
is required to analyse them in a manner required by the application. One such
analysis is the determination of I or F (x). There is much less literature on this
problem.

Some general remarks are made on determining I or F (x) and on the effects
of uncertainties associated with the measurements. Then, specific solutions are
provided as part of a case study.

1Integration involving more than one variable is not considered here.
2www.nag.co.uk

53

Software Support for Metrology Best Practice Guide No. 11

5.1 Motivation

Consider the determination of I when measurements yi, i = 1, . . . ,m, of f(x)
are made at a uniform spacing h = (b−a)/(m−1) in [a, b], i.e., at abscissae xi =
a + (i− 1)h. I may be approximated by the formula

Ĩ = h
m−1∑
i=1

yi + yi+1

2
, (5.1)

known as the trapezoidal rule. This rule corresponds to determining the piecewise-
linear function joining the points (x1, y1), . . . , (xm, ym) and then forming the
area under this function. The partial sum, given by replacing m by r, where 2 ≤
r ≤ m, gives an approximation to F (xr). How good are these approximations?
What are the advantage and the effect of using a more sophisticated rule? Two
main influences can be considered. One is the use of the approximation Ĩ rather
than the exact integral. The other is the effect of uncertainties associated with
the yi. Approaches for general functions of the yi for handling the second in-
fluence are available [7, 32], but are treated specifically here, because there is
little point in attempting to evaluate the integral much more accurately than is
warranted by the associated uncertainties.

A simple means for validating the use of the trapezoidal rule (and some other
rules) is to obtain a further approximation based on the use of every other data
point (with appropriate modifications for m even).3 If the difference is judged
negligible compared with the uncertainty associated with Ĩ, the trapezoidal rule
can be regarded as adequate.4

Figure 5.1 shows an example of the application of the trapezoidal rule to
a spectral peak. The solid curve depicts the underlying function. The points
joined by straight-line segments represent 11 specified values yi at a spacing
of 10 nm in the interval 600 nm to 700 nm. The areas of the ten trapezoids
represent the contributions from the trapezoidal rule to the approximation Ĩ to
the integral I representing the area under the curve over this interval.

3This is a weak form of validation, in that it would be more meaningful to consider the
rule for the original spacing as being used to validate the rule applied to half the spacing.

4Take the simplest case where the yi are mutually independent and the standard uncer-
tainty associated with yi is denoted by u(yi). The application of the law of propagation of

uncertainty [7] to expression (5.1) yields a standard uncertainty u(Ĩ) associated with Ĩ given
by

u2(Ĩ) = h2

(
1

4
u2(y1) +

m−1∑
i=2

u2(yi) +
1

4
u2(ym)

)
,

which, in the case where the uncertainties u(yi) are identical, becomes

u2(Ĩ) = (m− 3/2)h2u2(y1).

This expression becomes more meaningful by setting h = (b− a)/(m− 1), whence

u(Ĩ) = (b− a)
(m− 3/2)1/2

m− 1
u(y1) ≈

b− a
√

m
u(y1)

for large m. Since the length b − a of the interval of integration is fixed, the uncertainty
decreases with the number m of measurements as 1/

√
m. Such behaviour is similar to that

for the mean of a set of m mutually independent measurements having the same associated
uncertainty.

54

Numerical analysis for algorithm design in metrology

Figure 5.1: The trapezoidal rule for approximate integration applied to a spectral
peak.

If the measurements are provided at non-uniformly spaced values of x,
viz., x1, . . . , xm (assumed increasing), a slight generalization of the trapezoidal
rule is

Ĩ =
m−1∑
i=1

(xi+1 − xi)(yi + yi+1)/2.

The term xi − xi−1 is the width of the ith trapezoid and (yi + yi+1)/2 its mean
height. Thus, the formula represents the sum of the areas of the trapezoids
constituting the area of the piecewise-linear approximation to the function.

More sophisticated rules are possible. For instance, rather than approximat-
ing the underlying function by a straight line over each interval, a polynomial of
higher order can be used. Once these polynomial pieces have been constructed,
their integration over each interval and their summation provides the required
approximation to the definite integral of the function. Again, values of the
indefinite integral correspond to partial sums.

There are various choices of order for the polynomial pieces and various
ways of constructing them. A class of approaches is discussed in a general
setting below.

The requirement is to design an algorithm to determine (an approximation
to) the area under a curve or function ‘defined’ by measurement data. Unless
further information is available, such as the asymptotic behaviour of the function
underlying the data, this requirement will be interpreted as the area under the
curve defined by the span of the data, i.e., between the smallest and largest
abscissa values. Thus, any approach will be more suited for functions that
decay to zero for small and large values of the abscissa and for which data
representative of all but the insignificant tails is available. Spectral data, which
is widespread in metrology, often has this characteristic.

Further requirements are:

55

Software Support for Metrology Best Practice Guide No. 11

1. Estimate the numerical accuracy of the approximation to the area returned
by the algorithm.

2. Evaluate the uncertainty associated with the approximation to the area.

3. Compare the numerical accuracy and the associated uncertainty in the
context of fitness for purpose of the result.

5.2 Outline design

1. Regard the measurements as representing a curve, the area under which
is sought.

2. Represent each interval between adjacent measurements by a polynomial
piece.

3. Form the definite integral of each polynomial piece over the interval to
which it applies to provide an approximation to the area under the part
of the curve relating to that interval.

4. Sum these definite integrals to obtain an approximation to the area under
the complete curve. Use partial sums if values of the indefinite integral
are required.

5. Compare the results obtained using different approaches to obtaining the
polynomial pieces and using polynomials of different orders.

6. Apply the law of propagation of uncertainty to evaluate the uncertainty
due to measurement associated with the approximations obtained.

5.2.1 Curve defined by measurement

Data points (xi, yi), i = 1, . . . ,m, with x1 < · · · < xm, are provided. The xi are
regarded as exact. The yi are regarded as measurements of a smooth unknown
function f(x) at the abscissae xi. The measurements yi are regarded as inex-
act, to be statistically mutually independent and to have associated standard
uncertainties u(yi). (It is possible to extend the treatment here to cases where
mutual dependencies exist among the yi.) If the u(yi) are provided, as assumed
here, the standard uncertainty in the determined area can be evaluated.

5.2.2 Representation by polynomial pieces

The function underlying the data is represented over each interval (xi, xi+1),
i = 1, . . . ,m − 1, between adjacent abscissae by a polynomial. One of the
simplest cases is the use of an interpolating polynomial of order two (degree
one), i.e., the straight line joining the points (xi, yi) and (xi+1, yi+1).

If a polynomial of higher degree is used to represent the function over the
interval (xi, xi+1), additional information is required to define it. For instance,
for a cubic polynomial, two further piece of information are required. Unless the
interval of concern is the first or the last, it is appropriate to use also the points
either side, viz., (xi−1, yi−1) and (xi+2, yi+2). For the first interval, since no
point ‘to the left’ of x1 is available, two points to the right are used, i.e., the

56

Numerical analysis for algorithm design in metrology

cubic polynomial interpolating points 1 to 4 is formed and used to represent the
function over the interval from x1 to x2. An analogous statement applies to the
last ((m− 1)st) interval.

Polynomials of odd degree use information symmetrically, i.e., except pos-
sibly for intervals near the ends of the range, the same number of additional
points each side of the interval of concern.

Polynomials of even degree cannot by their nature use information symmet-
rically, so it is used in as balanced a way as possible. For instance, to provide
an interpolating quartic polynomial for the interval (xi, xi+1), points with in-
dices i− 2, . . . , i+2 or with indices i− 1, . . . , i+3 could be used. Both quartics
are ‘equally good’ in the absence of further information, and their mean over
the interval may be taken to induce some symmetry into the calculation.

In the end intervals or intervals close to the range endpoints, information
can be used ‘as symmetrically as possible’. Thus, an equal number of points
either side of the interval of concern can be used (with an adaptation as above
for polynomials of even order), unless some of these points are ‘unavailable’ on
one side, in which case as many points as needed are taken from the other side.

Table 5.1 shows the points used by some of the integration rules (in fact
those used in the case study below).

Rule Points used to construct the polynomial
piece over interval (xi, xi+1)

Trapezoidal i, i + 1, 1 ≤ i < m− 1
Cubic 1, . . . , 4, i = 1,

i− 1, . . . , i + 2, 2 ≤ i ≤ m− 2,
m− 3, . . . ,m, i = m− 1

Quartic I 1, . . . , 5, 1 ≤ i ≤ 2,
i− 2, . . . , i + 2, 3 ≤ i ≤ m− 2,
m− 4, . . . ,m, i = m− 1

Quartic II 1, . . . , 5, i = 1,
i− 1, . . . , i + 3, 2 ≤ i ≤ m− 3,
m− 4, . . . ,m, m− 2 ≤ i ≤ m− 1

Quintic 1, . . . , 6, 1 ≤ i ≤ 2,
i− 2, . . . , i + 3, 3 ≤ i ≤ m− 3,
m− 5, . . . ,m, m− 2 ≤ i ≤ m− 1

Table 5.1: The points used to construct the polynomial pieces over each interval
when using an integration rule based on polynomials.

5.3 Integration of the polynomial pieces

For each of the m − 1 intervals the integral of the constructed polynomial is
formed and used as a contribution to I or to F (xi), i = 1, . . . ,m. (The ap-
proaches considered here can be extended to cases where F (x) is to be evaluated
at points that do not coincide with the xi.) Let Ii denote the integral over the
interval xi ≤ x ≤ xi+1 of the polynomial piece for that interval. Then

I =
∫ b

a

f(x) dx ≈
m−1∑
i=1

Ii, F (xj) =
∫ xj

a

f(t) dt ≈
j−1∑
i=1

Ii.

57

Software Support for Metrology Best Practice Guide No. 11

The approach is quite general. Many existing rules constitute special cases.
If the xi are uniformly spaced the use of polynomial pieces of order two gives the
trapezoidal rule, while order three gives Simpson’s rule. If the xi are generally
spaced, polynomial pieces of order two gives the generalized trapezoidal rule,
whereas order four gives the Gill-Miller rule [41].

5.4 Approximation errors

Interpolating polynomials of some order can be used to provide an approxima-
tion Ĩ ′ to I and then higher order used to provide a second approximation Ĩ ′′.
The difference between these approximations is an indication of the error in Ĩ ′.
Ideally, further orders should also be used.

5.5 Uncertainties

All the rules considered are linear in the ordinates yi. Thus, the law of propa-
gation of uncertainty [7] based on a first-order Taylor series expansion can be
applied, making no further approximation, to evaluate the uncertainty associ-
ated with the results.

5.6 Other remarks

More sophisticated approaches embody modelling the data [2, 34]. The data is
‘replaced’ by a mathematical model that adequately explains the data and has a
degree of smoothness that ideally is consistent with the underlying function and
the uncertainties associated with the data. Tests of conformity of the model and
data are carried out to give a degree of assurance regarding these issues. The
model is integrated over the range of the data, the value obtained used as an
approximation to the required integral. If the model is linear in its parameters,
the uncertainty associated with the approximate integral can be established as
above.

5.7 CASE STUDY. Climate change

5.7.1 Objective

The determination of integrated radiance (total energy) across the spectrum
from radiance measurements at a set of wavelengths.

5.7.2 What this case study illustrates

1. The approximation of the area under a curve defined by measurement data

2. The use of different integration methods to obtain such approximations

3. Estimation of the numerical accuracy of the approximations obtained

4. Evaluation of the uncertainties associated with the approximations

58

Numerical analysis for algorithm design in metrology

5. Analysis of linear models not specified explicitly

6. The use of problem structure to avoid long computer times

5.7.3 The practical problem

The Earth’s Radiation Budget (ERB) is the difference between (a) the incom-
ing radiation from the sun and (b) the outgoing reflected and scattered solar
radiation plus the thermal infrared emission to space. Measurements relating
to ERB are made from satellites and help to provide better understanding of
climate change, including gobal warming.

The total radiant energy associated with ERB is the difference between
the total energies associated with (a) and (b). A difference that is significant
compared with the uncertainty associated with the difference can be regarded
as evidence for climate change.

The total radiant energy associated with (a) is the energy given by integrat-
ing across the relevant spectral region (the wavelength-dependent) incoming
radiation from the sun. A similar statement applies to (b).

The task of determining the contributory integrals and the associated un-
certainties is that addressed generically in this section. The data considered
here relates to check measurements using a source provided by NPL of the
on-board instrumentation used for measuring the incoming radiation from the
sun. Figure 5.2 shows the spectral radiance measurements obtained. They cor-
respond to 151 non-uniformly spaced wavelength values spanning the spectral
range 350 nm to 3 000 nm. It is more complicated than the single smooth peak
above, but has the property that it exhibits a strong decay to zero for small and
large wavelengths.

Figure 5.2: Data for the spectral irradiance of a lamp and the piecewise-linear function
joining the data points. The vertical lines delineate the panels used in the application
of the integration rules.

59

Software Support for Metrology Best Practice Guide No. 11

5.7.4 Newton representation by polynomial pieces

Polynomials can conveniently be represented in their Newton form [19]. The
straight line over (xi, xi+1) is expressed as

y = yi + yi,i+1(x− xi), (5.2)

where yi,i+1 denotes the divided difference of first order defined by

yi,i+1 =
yi+1 − yi

xi+1 − xi
.

It is immediately verified that expression (5.2) returns the values yi when x = xi

and yi+1 when x = xi+1. The form (5.2) is the Newton form of a polynomial of
order two (degree one).

A cubic polynomial, applying to an interval (xi, xi+1) other than the first
and the last can be expressed in the Newton form

y = yi−1 + yi−1,i(x− xi−1) + yi−1,i,i+1(x− xi−1)(x− xi)
+ yi−1,i,i+1,i+2(x− xi−1)(x− xi)(x− xi+1), (5.3)

where yi−1,i,i+1 and yi−1,i,i+1,i+2 are divided differences of orders two and three,
respectively, defined recursively from those of lower orders using

yj,...,k =
yj+1,...,k − yj,...,k−1

xk − xj
.

5.7.5 Integrating the polynomial pieces

There are several ways to determine the integral of each polynomial piece over
the interval to which it applies. A poor way, in general, would be to construct
the Taylor form of the polynomial, e.g., its expansion in powers of x about the
left-hand endpoint of the interval, and to integrate that form. The coefficients in
this form can indeed be obtained from the divided differences, but subtractive
cancellation tends to reduce their accuracy. A good way is to evaluate the
polynomial piece from its Newton representation at the n Chebyshev points in
the interval, after normalizing the latter to the range [−1, 1], and to form the
Chebyshev-series representation from those values [19]. Another way, used here,
is to evaluate the Newton form at n uniformly spaced points in the interval.5

Then an integration rule that is exact for polynomials of order n can be applied
to those values. These rules are known as Newton-Coates’ rules.

5.7.6 Evaluation of the uncertainty

Appendix C provides an approach to evaluating the standard uncertainty as-
sociated with the approximation to the integral. It exploits the fact that the
integration rule is linear in the ordinates, the quantities that are subject to un-
certainty. By perturbing each ordinate in turn (by an arbitrary amount) and
re-applying the rule, the sensitivity coefficients required by an application of
the law of propagation of uncertainty can be computed essentially exactly. The
appendix also shows how this laborious calculation can be made efficient.

5The endpoints are already known, so only n − 2 ‘internal’ evaluations are needed. The
same statement applies to the Chebyshev form.

60

Numerical analysis for algorithm design in metrology

5.7.7 Results

The various rules indicated were applied to the full set of 151 points illustrated in
figure 5.2. In addition, the trapezoidal rule was applied to every other point (76
points). Appendix C describes the manner in which the uncertainties associated
with these results were evaluated. The results, together with the associated
standard uncertainties, are given in table 5.2, from which it is seen that, for
instance, the trapezoidal rule (based on 151 points) and the Gill-Miller rule
give values of 515.29 and 515.28 Wm−2, agreeing closely compared with the
associated standard uncertainties. In the absence of standard uncertainties there
would not be a direct means of stating whether such closeness is adequate.
The trapezoidal rule with half the number of points gives 515.78 Wm−2 with
an associated standard uncertainty of 1.02 Wm−2. The use of higher-order
rules also gave good consistency with the trapezoidal rule and the Gill-Miller
rule. ‘Quartic 1’ in the table refers to the use of quartic interpolation with two
points to the left and one to the right of ‘sufficiently interior’ intervals, and
‘Quartic 2’ with one to the left and two to the right. All the rules based on the
full set of points delivered approximations between 515.27 and 515.30 Wm−2,
with associated standard uncertainties between 0.74 and 0.76 Wm−2. In terms
of the climate change work, it would be possible to state with a high degree
of assurance that the value of the integral is 515.3 Wm−2 with an associated
standard uncertainty of 0.8 Wm−2 (or a relative standard uncertainty of 0.2 %).

Number Rule Approximate Standard
of points integral /Wm−2 uncertainty /Wm−2

151 Trapezoidal 515.290 7 0.740 1
76 Trapezoidal 515.783 4 1.020 1

151 Cubic (Gill-Miller) 515.280 7 0.745 1
151 Quartic I 515.292 3 0.753 8
151 Quartic II 515.269 7 0.746 7
151 Quintic 515.303 7 0.757 7

Table 5.2: The application of various quadrature rules to the data of figure 5.2.
More digits are quoted than justified in terms of the standard uncertainty for
purposes of numerical comparison only.

5.7.8 Lessons learnt

1. The problem can be decomposed into the sum of a number of simpler
problems. Each sub-problem relates to an interval between points and its
‘solution’ forms a contributory part to the required solution. It involves
forming an interpolating polynomial and integrating it, taking advantage
at this stage of integration rules for uniformly spaced points.

2. The Newton form of a polynomial is easy to construct, and for this prob-
lem has advantages over some other forms. In particular, it avoids the
subtractive cancellation that can arise when forming the Taylor coeffi-
cients.

61

Software Support for Metrology Best Practice Guide No. 11

3. The use of alternative integration rules, viz., rules using different polyno-
mial orders, provide a means of validating the results.

4. The evaluation of the standard uncertainties, when possible, associated
with the delivered approximations to the integral provides a powerful
means of confirming whether the closeness of the approximations is ade-
quate.

5. The law of propagation of uncertainty applies exactly to the integration
rules considered, since the approximation to the integral is a linear func-
tion of them.

6. The linear function is not available explicitly, but the required standard
uncertainty can be obtained by reusing the integration rule.

7. Exploiting the structure of the problem, viz., that each polynomial piece
depends only on ‘local’ ordinates can be used to provide the required
standard uncertainty in a time O(m) rather than O(m2), where m is the
number of measurements.

62

Numerical analysis for algorithm design in metrology

Bibliography

[1] G. T. Anthony, H. M. Anthony, B. Bittner, B. P. Butler, M. G. Cox,
R. Drieschner, R. Elligsen, A. B. Forbes, H. Gross, S. A. Hannaby, P. M.
Harris, and J. Kok. Chebyshev best-fit geometric elements. Technical
Report DITC 221/93, National Physical Laboratory, Teddington, UK,
1993.

[2] R. M. Barker, M. G. Cox, A. B. Forbes, and P. M. Harris. SSfM Best
Practice Guide No. 4. Discrete modelling and experimental data analysis.
Technical report, National Physical Laboratory, Teddington, UK, 2004.
www.npl.co.uk/ssfm/download/bpg.html#ssfmbpg4.

[3] R. M. Barker, M. G. Cox, P. M. Harris, and I. M. Smith. Testing
algorithms in standards and MetroS. Technical Report CMSC 18/03,
National Physical Laboratory, Teddington, UK, 2003.

[4] R. E. Beckett, M. G. Cox, M. P. Dainton, P. M. Harris, E. G. Johnson,
and G. I. Parkin. Testing methods of Java libraries. Technical Report
CMSC 35/04, National Physical Laboratory, Teddington, UK, 2004.

[5] H. Bettin and H. Fehlauer. Density of mercury—measurements and
reference values. Metrologia, 41:S16–S23, 2004.

[6] BIPM. Mutual recognition of national measurement standards and of
calibration and measurement certificates issued by national metrology
institutes. Technical report, Bureau International des Poids et Mesures,
Sèvres, France, 1999.

[7] BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, and OIML. Guide to the
Expression of Uncertainty in Measurement, 1995. ISBN 92-67-10188-9,
Second Edition.

[8] K. P. Birch and M. J. Downs. An updated Edlén equation for the
refractive index of air. Metrologia, 30:155–162, 1993.

[9] C. Bischof, A. Carle, P. Khademi, and A. Mauer. The ADIFOR 2.0
system for the automatic differentiation of Fortran 77 programs.
Technical Report ANL/MCS-P481-1194, Argonne National Laboratory,
Argonne, Illinois, USA, 1994.

[10] R. Boudjemaa, M. G. Cox, A. B. Forbes, and P. M. Harris. Automatic
differentiation and its applications to metrology. In Patrizia Ciarlini,
M. G. Cox, F. Pavese, D. Richter, and G. B. Rossi, editors, International

63

Software Support for Metrology Best Practice Guide No. 11

Conference on Advanced Mathematical and Computational Tools in
Metrology VI, Torino, September, 2003. In press.

[11] R. Boudjemaa, M. G. Cox, A. B. Forbes, and P. M. Harris. Automatic
differentiation techniques and their application in metrology. Technical
Report CMSC 26/03, National Physical Laboratory, Teddington, UK,
2003.

[12] R. Boudjemaa and A. B. Forbes. Parameter estimation methods for data
fusion. Technical Report CMSC 38/04, National Physical Laboratory,
Teddington, UK, 2004.

[13] Françoise Chaitin-Chatelin and Valérie Frayssé. Lectures on finite
precision computations. SIAM, Philadelphia, 1996.

[14] B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan,
and S. M. Watt. Maple V Library Reference Manual. Technical report,
University of Waterloo, Waterloo, Ontario, Canada, 1991.

[15] C. W. Clenshaw and J. G. Hayes. Curve and surface fitting. J. Inst.
Math. Appl., 1:164–183, 1965.

[16] H. R. Cook, M. G. Cox, M. P. Dainton, and P. M. Harris. A methodology
for testing spreadsheets and other packages used in metrology. Technical
Report CMSC 25/99, National Physical Laboratory, Teddington, UK,
1999.

[17] H. R. Cook, M. G. Cox, M. P. Dainton, and P. M. Harris. Testing
spreadsheets and other packages used in metrology. A case study.
Technical Report CMSC 26/99, National Physical Laboratory,
Teddington, UK, 1999.

[18] M. G. Cox. Piecewise Chebyshev series. Bull. Inst. Math. Appl.,
22:163–166, 1986.

[19] M. G. Cox. Reliable determination of interpolating polynomials.
Numerical Algorithms, 5:133–154, 1993.

[20] M. G. Cox. Constructing and solving mathematical models of
measurement. In P. Ciarlini, M. G. Cox, F. Pavese, and D. Richter,
editors, Advanced Mathematical Tools in Metrology II, pages 7–21,
Singapore, 1996. World Scientific.

[21] M. G. Cox. Graded reference data sets and performance profiles for
testing software used in metrology. In P. Ciarlini, M. G. Cox, F. Pavese,
and D. Richter, editors, Advanced Mathematical Tools in Metrology III,
pages 43–55, Singapore, 1997. World Scientific.

[22] M. G. Cox. The evaluation of key comparison data. Metrologia,
39:589–595, 2002.

[23] M. G. Cox, M. P. Dainton, A. B. Forbes, P. M. Harris, P. M. Schwenke,
B. R. L Siebert, and W. Wöger. Use of Monte Carlo simulation for
uncertainty evaluation in metrology. In P. Ciarlini, M. G. Cox, E. Filipe,

64

Numerical analysis for algorithm design in metrology

F. Pavese, and D. Richter, editors, Advanced Mathematical Tools in
Metrology V. Series on Advances in Mathematics for Applied Sciences
Vol. 57, pages 93–104, Singapore, 2001. World Scientific.

[24] M. G. Cox, M. P. Dainton, and P. M. Harris. Testing spreadsheets and
other packages used in metrology. Testing functions for linear regression.
Technical Report CMSC 08/00, National Physical Laboratory,
Teddington, UK, 2000.

[25] M. G. Cox, M. P. Dainton, and P. M. Harris. Testing spreadsheets and
other packages used in metrology. Testing functions for the calculation of
standard deviation. Technical Report CMSC 07/00, National Physical
Laboratory, Teddington, UK, 2000.

[26] M. G. Cox, A. B. Forbes, P. M. Fossati, P. M. Harris, and I. M. Smith.
Techniques for the efficient solution of large scale calibration problems.
Technical Report CMSC 25/03, National Physical Laboratory,
Teddington, UK, 2003.

[27] M. G. Cox, A. B. Forbes, P. M. Harris, and I. M. Smith. The classification
and solution of regression problems for calibration. Technical Report
CMSC 24/03, National Physical Laboratory, Teddington, UK, 2003.

[28] M. G. Cox and P. M. Harris. Overcoming an instability arising in a spline
approximation algorithm by using an alternative form of a simple rational
function. Bull. Inst. Math. Appl., 25:228–232, 1989.

[29] M. G. Cox and P. M. Harris. Design and use of reference data sets for
testing scientific software. Analytica Chimica Acta, 380:339–351, 1999.

[30] M. G. Cox and P. M. Harris. Guidelines to help users select and use
software for their metrology applications. Technical Report CMSC 04/00,
National Physical Laboratory, Teddington, UK, 2000.

[31] M. G. Cox and P. M. Harris. Software specifications for uncertainty
evaluation. Technical Report CMSC 40/04, National Physical Laboratory,
Teddington, UK, 2004. CMSC 10/01 revised.

[32] M. G. Cox and P. M. Harris. SSfM Best Practice Guide No. 6.
Uncertainty evaluation. Technical report, National Physical Laboratory,
Teddington, UK, 2004.
www.npl.co.uk/ssfm/download/bpg.html#ssfmbpg6.

[33] M. G. Cox, P. M. Harris, E. G. Johnson, P. D. Kenward, and G. I.
Parkin. Testing the numerical correctness of software. Technical Report
CMSC 34/04, National Physical Laboratory, Teddington, UK, 2004.

[34] M. G. Cox, P. M. Harris, P. D. Kenward, and Emma Woolliams. Spectral
characteristic modelling. Technical Report CMSC 27/03, National
Physical Laboratory, Teddington, UK, 2003.

[35] M. G. Cox and E. Pardo. The total median and its uncertainty. In
P. Ciarlini, M. G. Cox, E. Filipe, F. Pavese, and D. Richter, editors,
Advanced Mathematical Tools in Metrology V. Series on Advances in

65

Software Support for Metrology Best Practice Guide No. 11

Mathematics for Applied Sciences Vol. 57, pages 106–117, Singapore,
2001. World Scientific.

[36] T. J. Dekker. Finding a zero by means of successive linear interpolation.
In B. Dejon and P. Henrici, editors, Constructive Aspects of the
Fundamental Theorem of Algebra, London, 1969. Wiley Interscience.

[37] B. Efron and R. Tibshirani. An Introduction to the Bootstrap.
Monographs on Statistics and Applied Probability 57. Chapman and Hall,
New York, 1993.

[38] S. L. R. Ellison, V. J. Barwick, P. Norris, and M. Griffiths. Complete
curve fitting of extraction profiles for estimating uncertainties in recovery
estimates. Analyst, 128:493–498, 2003.

[39] B. Ford, J. Bentley, J. J. du Croz, and S. J. Hague. The NAG Library
‘machine’. Software – Practice and Experience, 9:56–72, 1979.

[40] L. Fox. How to get meaningless answers in scientific computation (and
what to do about it). IMA Bull., 7:296–302, 1971.

[41] P. E. Gill and G. F. Miller. An algorithm for the integration of unequally
spaced data. Comput. J., 15:80–83, 1972.

[42] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization.
Academic Press, London, 1981.

[43] S. J. Hammarling. An introduction to the quality of computed solutions.
Technical report, Numerical Algorithms Group Ltd., 2004. To appear.

[44] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
Philadelphia, 1996.

[45] N. J. Higham. Testing linear algebra software. In R. F. Boisvert, editor,
The Quality of Numerical Software: Assessment and Enhancement, pages
109–124, London, 1997. Chapman and Hall.

[46] T. E. Hull and J. R. Swenson. Tests of probabilistic models for
propagation of rounding errors. Comm. ACM, 9:108–113, 1966.

[47] IFIP. Accuracy and reliability in scientific computing. SIAM, Philadephia,
2004. IFIP WG 2.5, Project 68.

[48] ISO. ISO 6506-1. Metallic materials—Brinell hardness test—Part 1: Test
method, 1999.

[49] ISO. ISO 10360-6. Geometrical product specifications (GPS) – acceptance
test and reverification test for coordinate measuring machines (CMM).
Part 6: Computation of Gaussian associated features, 2002. International
Standards Organization, Geneva.

[50] J. N. Lyness and C. B. Moler. Numerical differentiation of analytic
functions. SIAM J. Numer. Anal., 4:202–210, 1967.

[51] J. S. Maritz and R. G. Jarrett. A note on estimating the variance of the
sample median. J. Amer. Statist. Assoc., 73:194–196, 1978.

66

Numerical analysis for algorithm design in metrology

[52] J. R. Rice. Matrix Computations and Mathematical Software.
McGraw-Hill, New York, 1981.

[53] J. R. Rice. Mathematical Statistics and Data Analysis. Duxbury Press,
Belmont, Ca., USA, second edition, 1995.

[54] W. Squire and G. Trapp. Using complex variables to estimate derivatives
of real functions. SIAM Rev., 40:110–112, 1998.

[55] P. H. Sterbenz. Floating-Point Computation. Prentice-Hall, Englewood
Cliffs, NJ, 1974.

[56] G. Strang and K. Borre. Linear Algebra, Geodesy and GPS. Wiley,
Wellesley-Cambridge Press, 1997.

[57] J. Vignes and R. Alt. An efficient stochastic method for round-off error
analysis. In W. L. Miranker and R. A. Toupin, editors, Accurate Scientific
Computations 1985, pages 183–205, Berlin, 1985. Springer-Verlag.

[58] B. Wichmann, G. Parkin, and R. Barker. SSfM Best Practice Guide No.
1. Validation of software in measurement systems. Technical report,
National Physical Laboratory, Teddington, UK, 2004.
www.npl.co.uk/ssfm/download/bpg.html#ssfmbpg1.

[59] J. H. Wilkinson. Notes in Applied Science No. 32. Rounding Errors in
Algebraic Processes. Her Majesty’s Stationery Office, London, 1963.

67

Software Support for Metrology Best Practice Guide No. 11

68

Numerical analysis for algorithm design in metrology

Appendix A

Floating-point error
analysis of the Brinell
hardness test formulae

Consider the floating-point error analysis of the Brinell hardness test formu-
lae (3.5) and (3.12), applying the rules of section 2.6.

The critical part of formulae (3.5) is the expression

E = D − T, T =
√

D2 − d2.

Using the stable form (D − d)(D + d) for D2 − d2, and expression (3.16),

E = D − T, T = ((D − d)(D + d))1/2,

Ŝ = (D2 − d2)(1 + 3e7),

T̂ = fl(Ŝ1/2) = T (1 + 3e7)1/2(1 + e8) = T (1 + 2.5e9), (A.1)

Ê = (D − T (1 + 2.5e9))(1 + e10).

Hence,
Ê − E

E
=

(D − T)e10 − 2.5Te9

D − T
,

and so
|Ê − E|

E
≤ D + 1.5T

D − T
η.

The remainder of the computation to form B involves just multiplications and
divisions, five in all, and thus

B̂ = fl
(

0.204F

πDÊ

)
=

0.204F

πDÊ
(1 + 5e11).

So B̂ has the same relative error bound as Ê, inflated by the factor 1+5η, which
can safely be ignored. Thus,

|B̂ −B|
B

≤ D + 1.5T

D − T
η =

(D + T)(D + 1.5T)
d2

η, T =
√

D2 − d2.

69

Software Support for Metrology Best Practice Guide No. 11

Since T ≤ D, this bound can be expressed as

|B̂ −B|
B

≤ 5
D2

d2
η.

For the alternative formula (3.12), using expression (A.1)

fl(D + T̂) = T (1 + 3.5e12).

Hence, since the remaining operations to form B involve purely multiplications
and divisions, six in all,

B̂ = B(1 + 9.5e13),

and so
|B̂ −B|

B
≤ 9.5η.

70

Numerical analysis for algorithm design in metrology

Appendix B

Summing the series for the
hot-ball diffusion model

The inequality (3.26) relating to the number of terms K = K(λ) in the finite
series (3.25) for SK(λ) is derived. Its use ensures that the approximation of S(λ),
defined by the infinite series (3.22), by SK(λ) has an absolute error no greater
than δ. Then K is to be chosen such that

S(λ)− SK(λ) ≤ δ,

i.e., such that
∞∑

k=K+1

1
k2

e−λk2
≤ δ. (B.1)

An upper bound Bλ for the left-hand side of this inequality is now established.
Thus, if a number K of terms in the series is taken such that

Bλ ≤ δ,

then a fortiori inequality (B.1) will be satisfied.
Let k > 1/2, λ > 0 and F (x) be a twice continuously differentiable function

with F ′′(x) > 0. Then ∫ k+1/2

k−1/2

F (x)dx > F (k). (B.2)

To prove this result, first expand F (x) about x = k:

F (x) = F (k) + (x− k)F ′(k) +
1
2
(x− k)2F ′′(ξx)dx,

for some ξx depending on x. Thus,∫ k+1/2

k−1/2

F (x)dx =
[
(x− k)F (k) +

1
2
(x− k)2F ′(k)

]k+1/2

k−1/2

+
∫ k+1/2

k−1/2

1
2
(x− k)2F ′′(ξx)dx

= F (k) +
1
2
(x− k)2F ′′(ξx)dx.

71

Software Support for Metrology Best Practice Guide No. 11

But the integrand in the right-hand integral is positive throughout the inter-
val [k− 1/2, k +1/2], except at x = k, where it is zero. Hence, the value of this
integral is positive, and thus the inequality (B.2) indeed holds.

Now, since exp(−λx2) is a decreasing function of x for x > 0 and λ > 0,∫ ∞

K+1/2

1
x2

eλx2
dx ≤

∫ ∞

K+1/2

1
x2

eλ(K+1/2)2dx

= eλ(K+1/2)2
∫ ∞

K+1/2

1
x2

dx =
1

K + 1/2
e−λ(K+1/2)2 .

So, in order to establish how many terms should be taken in the sum, carry out
the summation process until the current number K of terms satisfies

1
K + 1/2

e−λ(K+1/2)2 ≤ δ.

Similar concepts would apply to a range of other summation formulae. A certain
amount of analysis, as above, would be required in any one instance. However,
once the result has been implemented faithfully, the software will provide the
sum to the prescribed accuracy.

72

Numerical analysis for algorithm design in metrology

Appendix C

Uncertainty evaluation for
quadrature rules

Consider input quantities Y = (Y1, . . . , YN)T, an output quantity Z and a linear
model

Z = aTY =
N∑

i=1

aiYi (C.1)

relating these quantities. Let y = (y1, . . . , yN)T denote best estimates of Y
and u(y) = (u(y1), . . . , u(yN))T the associated standard uncertainties. The
measurement result is

z = aTy =
N∑

i=1

aiyi.

The law of propagation of uncertainty [7] states that the standard uncertainty u(z)
associated with z is given by

u(z) = ‖aTu(y)‖ =

(
N∑

i=1

a2
i u

2(yi)

)1/2

.

The yi will denote the measurements (ordinates) at xi of a function whose def-
inite integral z over the span of the xi is required. A simple quadrature rule
can readily be expressed explicitly in the form (C.1). For example, the trape-
zoidal rule for ordinates at a uniform spacing h has a = h(1/2, 1, . . . , 1, 1/2)T

(section 5.1). Further, the trapezoidal rule for general spacing, with abscis-
sae x1, . . . , xm has

a = (h1, h1 + h2, . . . , hm−2 + hm−1, hm−1)T,

where hi = xi+1 − xi, i = 1, . . . ,m− 1, are the interval lengths. Other rules for
uniform spacing can also generally be cast in this way. However, the determi-
nation of a for a general rule is not straightforward.

An approach is given that can readily be applied in such circumstances. In
terms of its computational complexity, it is not efficient, taking a number of
arithmetic operations that is proportional to m2. However, this aspect should

73

Software Support for Metrology Best Practice Guide No. 11

not be a drawback for many problems. For instance, for the data of figure 5.2,
the computational time is less than 1 second on a 1 GHz PC.

Since the sensitivity coefficients are equal to the weights it is preferable to
use a quadrature rule whose weights are as close to being equal as possible.

Define
Zr = Ir(Yr) = I((y1, . . . , yr−1, Yr, yr+1, . . . , ym)T).

Then,
Ir(yr) = I(y) = aTy

and, for any non-zero δyr,

Ir(yr + δyr) = aTy + arδyr.

It follows that

ar =
Ir(yr + δyr)− I(y)

δyr
.

C.1 Speeding up the calculation

The whole process takes a time proportional to m2 (m applications of a rule
requiring a time proportional to m), which can be prohibitive. However, the
problem has structure in the sense that each contribution Ii to the integral I
depends only on y-values having indices ‘close to i’. Thus, perturbations can
be made simultaneously to a number of the yi and the consequent changes in
the Ii used to form the corresponding sensitivity coefficients. For instance,
suppose cubic interpolating polynomials are used, and consider a simple case
with m = 10 ordinates. Table C.1 shows the indices j of the sub-integrals Ij

that are affected by changes in the indices i of the yi.

Index of Indices of affected sub-integrals
y-value changed 1 2 3 4 5 6 7 8 9

1 † †
2 † † †
3 † † † †
4 † † † †
5 † † † †
6 † † † †
7 † † † †
8 † † † †
9 † † †

10 † †

Table C.1: Indices j of the sub-integrals Ij affected by changes in the indices i
of the yi

Simultaneous changes are therefore possible to the ordinates in each of the
following rows:

y1, y5, y9

y2, y6, y10

y3, y7,
y4, y8,

74

Numerical analysis for algorithm design in metrology

Thus, only four rather than m = 10 ‘re-integrations’ are required. By a sim-
ple extension of this approach, for cubics, only four re-integrations are required
for any value of m, and, for interpolating polynomials of order n, only n re-
integrations are required for any value of m. Thus, the overall cost is propor-
tional to nm rather than m2, or simply m for a fixed-order rule.

75

