

NPL REPORT
DEM-ES 023

Best Practice in
Software Development -
A Case Study in
LabView illustrated by
the UHTBB Safety
System Monitor Project

J Mountford and G I Parkin

Not restricted

March 2007

National Physical Laboratory | Hampton Road | Teddington | Middlesex | United Kingdom | TW11 0LW

Switchboard 020 8977 3222 | NPL Helpline 020 8943 6880 | Fax 020 8943 6458 | www.npl.co.uk

Best Practice in Software Development - A Case
Study in LabView illustrated by the UHTBB

Safety System Monitor Project

J Mountford and G I Parkin
Mathematics and Scientific Computing Group

March 2007

ABSTRACT

This report outlines a case study in the application of SSfM Best Practice Guide
No. 1, “Validation of Software in Measurement Systems”. The guide provides
recommended techniques for those developing software for measurement systems
to ensure the software is fit-for-purpose, and to meet the requirements of ISO
9000. The case study shows the practical application of the guide to the “UHTBB”
project, a project to monitor various parameters indicating the state of the system.

The report also shows how the same project adheres to the NPL software
procedure, NPLQP/M13, which is part of the NPL quality system. The procedure
assures that software development at NPL meets the requirements of ISO 9000.
This report provides an illustrated use of the guide and the NPL procedures, to
assist those who plan to use them as part of their software development.

The report also indicates problems in validating LabView programs for systems
requiring a Measurement Software Level of 2 or above.

© Crown Copyright 2007

Reproduced with Permission of the Controller of HMSO
and Queen’s Printer for Scotland

ISSN 1744-0475

National Physical Laboratory
Hampton Road, Teddington, Middlesex, United Kingdom. TW11 0LW

Extracts from this report may be reproduced provided the source is
acknowledged and the extract is not taken out of context.

We gratefully acknowledge the financial support of the UK Department
of Trade and Industry (National Measurement System Policy Unit)

Approved on behalf of the Managing Director, NPL
by Jonathan Williams, Knowledge Leader of the Electrical and Software team

UHTBB Project Case Study NPL Report DEM-ES 023

Contents

1. AIMS ...1

2. DESCRIPTION OF THE UHTBB PROJECT AND ITS PURPOSE1

3. APPLICATION OF BEST PRACTICE GUIDE NO. 1...................................1

3.1 UHTBB RISK ANALYSIS ..2
3.1.1 Criticality of usage...2
3.1.2 Legal requirements ..2
3.1.3 Complexity of control...2
3.1.4 Complexity of data processing...2

3.2 CALCULATING THE MEASUREMENT SOFTWARE LEVEL3
3.3 SELECTION OF SOFTWARE VALIDATION TECHNIQUES AND TOOLS3

4. ISSUES..5

5. THE SOFTWARE DEVELOPMENT LIFE-CYCLE5

5.1.1 Software Quality Plan..6
5.1.2 Requirements Specification..6
5.1.3 Functional Specification ..6
5.1.4 Design ..7
5.1.5 Implementation ..7
5.1.6 Module Testing...8
5.1.7 Functional Testing ...8
5.1.8 Delivery..8
5.1.9 Maintenance...9

6. CONCLUSION ..9

7. REFERENCES...9

List of Tables
Table 1: Measurement Software Level ..3
Table 2: Software Validation Techniques..4
Table 3: Techniques and Tools ..4

List of Figures
Figure 1 'V' model for software development..5

i

NPL Report DEM-ES 023 UHTBB Project Case Study

ii

UHTBB Project Case Study NPL Report DEM-ES 023

1. Aims
This report outlines a case study in the application of SSfM Best Practice Guide No. 1,
“Validation of Software in Measurement Systems” (BPG1) [1]. The BPG1 provides
recommended techniques for those developing software for measurement systems to
ensure the software is fit-for-purpose, and to meet the requirements of ISO 9000. The
case study shows the practical application of the BPG1 to the UHTBB project, a
project to monitor various parameters indicating the state of the system. The aim of
the case study is to assist those developing software, explaining how the software can
be made fit-for-purpose.

The report also shows how the same project adheres to the NPL software procedure,
NPLQP/M13, which is part of the NPL quality system. The procedure assures that
software development at NPL meets the requirements of ISO 9000. This report
provides an illustrated use of the BPG1 and/or the NPL procedures, to assist those
who plan to use them as part of their software development.

The report describes the UHTBB project in section 2, and describes the Best Practice
Guide No.1 methodology in section 3. Section 0 describes how the validation
techniques were applied. Section 4 explains the issues in using LabView for some
types of systems. Section 5 describes the application of the NPL quality system.

2. Description of the UHTBB project and its purpose
The UTTBB software will be used to display concurrently the parameters that are
monitored by the Ultra-High Temperature Blackbody (UHTBB) Safety System
electronics. This information, which is collected and reported via a data logger unit,
includes cooling water flow rates, surface temperatures and argon gas flow rate. The
data displayed will provide the operators of the UHTBB with clear, unambiguous and
concurrent information regarding the performance of the safety system.

3. Application of Best Practice Guide No. 1
This BPG1 concerns the best practices to be followed when producing software that
forms part of a measurement system. It advocates a risk-based approach to software
validation described by the following steps:

1. A risk assessment, the purpose of which is to make, an objective assessment of
the likely risks associated with a software error. The assessment considers the
risk factors (a) criticality of usage, (b) legal requirements, (c) the impact of
complexity of control, and (d) the complexity of data processing.

2. Assigning a measurement software level indicated by the results of the above
risk assessment.

3. Applying software validation techniques indicated by the assigned
measurement software level.

Page 1 of 9

NPL Report DEM-ES 023 UHTBB Project Case Study

3.1 UHTBB Risk Analysis

3.1.1 Criticality of usage
The BPG1 gives a choice of four categories on an increasing scale of criticality. These
are:

1. Critical – if correct operation of the measurement system software is
considered sufficiently important that appropriate software validation should
be undertaken, without being in any of the higher categories below.

2. Business critical – if failure could cause serious financial loss, either directly
or indirectly

3. Potentially Life-Critical – if failure indirectly puts human life at risk or
directly puts human health at risk. Such software is considered safety-critical
in the context of IEC 61508

4. Life Critical – if a failure directly puts human life at risk, and hence is safety-
critical

The UHTBB software is used to monitor a system it is not part of the safety
functionality of the system. The criticality of usage of the UHTBB software is
therefore Business critical.

3.1.2 Legal requirements
Many measurement systems are used in contexts for which there are specific legal
requirements, and where a system malfunction could have serious legal consequences.
The UHTBB software is not used in such a context, and so does not have any legal
requirements.

3.1.3 Complexity of control
This is classified in four categories of increasing complexity. The BPG1 provides
examples to assist the user in selecting the appropriate category:

1. Very simple – e.g. when the system detects if a specimen is in place, either by
means of a separate detector, or from the basic data measurement reading. The
result of the detection is to produce a more helpful display read-out.

2. Simple – e.g. temperature control undertaken so that temperature variation
cannot affect the basic measurement data.

3. Modest – e.g. if the system takes the operator through a number of stages,
ensuring that each stage is satisfactorily complete before the next is started.
This control can have an indirect effect upon the basic test/measurement data,
or a software error could have a significant effect upon that data.

4. Complex – (This has nothing to do with complex arithmetic!) e.g. the software
contributes directly to the functionality of the measurement system. For
instance, if the system moves the specimen, and these movements are software
controlled and have a direct bearing upon the measurement/test results.

The complexity of control of the UHTBB software is Simple.

3.1.4 Complexity of data processing
The BPG1 provides four categories of increasing complexity with helpful notes to
enable the user to select the right one:

1. Very Simple – The processing is a linear transformation of the raw data only,
with no adjustable calibration taking place.

2. Simple – simple non-linear correction terms can be applied here, together with
the application of calibration data. A typical example is the application of a

Page 2 of 9

UHTBB Project Case Study NPL Report DEM-ES 023

small quadratic correction term to a nearly linear instrument which is
undertaken to obtain a higher accuracy of measurement.

3. Modest – well-known published algorithms are applied to the raw data. It is
assumed that the algorithms are numerically stable and there is evidence to
support this.

4. Complex – anything else
The UHTBB software falls into the Simple category.

3.2 Calculating the Measurement Software Level
The Measurement Software Level, or MSL for short, is an integer in the range 0 to 4,
and is calculated from the criticality of usage, the complexity of control, and the
complexity of data processing. The BPG1 provides a simple table [1, Table 5.1]
showing the level for each possible value of the three risk factors. Table 1 is an extract
of the relevant section of that table, and clearly shows that the UHTBB software has
an MSL of 1.

Criticality
of Usage

Complexity
of
Processing

Impact of
Complexity
of control –
Simple

Very Simple 1
Simple 1
Moderate 2

Business
Critical

Complex 2
Table 1: Measurement Software Level

3.3 Selection of Software Validation Techniques and Tools
The purpose of using software validation techniques is to mitigate the risks. The
BPG1 says: “If the supplier can assure the user that appropriate techniques have been
applied, then the use of the measurement system in the agreed role can be justified.”

While ISO 9001 has general requirements, the BPG1 [1] recommends specific
techniques. In all, twenty techniques are discussed, with advice given on their scope,
and examples of their application. A simple selection table is provided in the BPG1,
in the form of a table [1, Table 11.2]. It is a simple matter to select the required
techniques and read up on them. Table 2 shows all the techniques, with ticks against
those relevant for MSL 1:

Page 3 of 9

NPL Report DEM-ES 023 UHTBB Project Case Study

Guide
reference

Recommended Technique MSL 1

12.2 Review of informal specification a
12.3 Software inspection of specification
12.4 Mathematical specification a
12.5 Formal specification
12.6 Static analysis
12.6 BoundaryValue Analysis
12.7 Defensive programming a
12.8 Code review a
12.9 Numerical stability
12.10 Microprocessor qualification
12.11 Verification testing
12.12 Statistical testing
12.13 Structural testing a
12.13 Statement testing
12.13 Branch testing
12.13 Boundary value testing
12.13 Modified Condition/Decision testing
12.15 Accredited testing
12.16 System-level testing a
12.17 Stress testing
12.18 Numerical reference results a
12.19 Back-to-back testing
12.20 Comparison of the source and executable

Table 2: Software Validation Techniques

Seven software validation tools are recommended for software with an MSL of 1.

Five (set in bold in Table 2) were chosen to apply to the UHTBB software. These are
shown in Table 3, together (where appropriate) with the tool used to apply the
technique. As can be seen no tools were applied.

A mathematical specification [1, section 12.4] was not required as no mathematics of
any significance was used. This also means that numerical reference results [1,
section 12.18] was not required. An independent review of the specification [1, section
12.2] was performed.

Technique Tool applied
Review of informal specification -
Mathematical specification Not applicable since only reading values.
Defensive programming -
Code review LabView guidelines but no tool [2].
Structural testing -
System level testing -
Numerical reference results Not applicable since no numerical analysis.

Table 3: Techniques and Tools

Page 4 of 9

UHTBB Project Case Study NPL Report DEM-ES 023

Defensive programming [1, section 12.7] was used throughout the software coding.
Although essentially a design technique, defensive programming has an impact on the
validation of software. The technique involves including code to check explicitly (and
dynamically) whether a pre-condition on, e.g., a program unit, is satisfied.

The developed code was subject to an independent code review [1, section 12.8].
Code review is applied to ensure the readability and maintainability of the source
code, as well as potentially to identify software errors. Code review followed
guidelines available from National Instruments [2].

Testing involved using UHTBB as a “black-box” known as system testing [11] and
testing of the VIs, known as structural testing [1, section 12.13].

4. Issues
For UHTBB the MSL of 1 (see section 3) means that the code only really has to meet
ISO 9000 requirements, see section 5. It is difficult to see how LabView can be used
to develop systems cost effectively to a MSL of 2 or higher for the following reasons:

• Currently there are no effective tools to support testing e.g. JUnit like tools
[3]. This obviously can be overcome by writing your own test harnesses.

• No means to measure the effectiveness of testing e.g. the equivalent of code
coverage tools [1, section 12.3]. It is not easy to see how this might be
overcome.

5. The Software Development Life-cycle
The NPL M13 procedure uses the ‘V’ model for software life-cycle this is illustrated
in Figure 1.

REQUIREMENTS
SPECIFICATION

FUNCTIONAL
SPECIFICATION

DESIGN
SPECIFICATION

CODING

MODULE
TESTING

INTEGRATION
TESTING

OPERATIONAL
TESTING

MODULE TEST
PLAN

FUNCTIONAL TEST PLAN

INSTALLATION AND BUG REPORTING

TIME

GREATER
DETAIL

Figure 1 'V' model for software development

Page 5 of 9

NPL Report DEM-ES 023 UHTBB Project Case Study

The UHTBB project is an application developed using LabView to which the full
documented lifecycle has been applied.

5.1

5.2

5.3

Software Quality Plan
Before the software project is undertaken a Software Quality Plan is established, this
outlines the requirements for the rest of the software life cycle. The quality plan is
written using the NPL software quality plan generator application. The user answers
some simple questions regarding the software to be developed then the software
calculates the Software Integrity Level (SIL) and generates an electronic copy of the
NPL QF59 form with most of the fields populated. The originator of the form must
complete section 5 of this form describing configuration management, archiving
regime, release rules and maintenance plan.
The QF59 generated for the UHTBB is available for examination see reference [4].

Requirements Specification
The requirements specification is the input to the design process; it must describe
what the customer requires the software to do and what limitations are imposed on the
developer by the target hardware and budget. It is desirable that the customer writes
this document, however in practice the developer may assist in the editing of the
document, guiding the customer to a practical set of requirements. This may avoid
excessive revisions to the specification as the project evolves.

Some useful sections for the document are:

• why the system is needed
• problems to be solved
• an outline of functions it will carry out
• intended environment – (Target hardware and operating system)
• acceptance criteria
• estimated effort required – (For budget purposes)
• maintenance of software, including bug reporting

This document forms a contract between the customer and the developer and must be
agreed by both parties before progressing with the project. The closer the match, the
final product is to the requirements, the greater the success.

For the UHTBB system, the user requirements specification document was written by
the customer see document [5].

Functional Specification
The functional specification is the developer’s reply to the customer’s requirements, it
is more detailed than the requirements document and must contain enough
information for a competent person to implement the project in software.
It describes how each requirement is to be met and should highlight any variance if
full compliance is not practical. This can be agreed with the customer at this stage and
is formalised when the document is signed.
This specification will cover details of how the end-user is to interact with the system,
and therefore it is desirable that the customer is involved at this stage.

Page 6 of 9

UHTBB Project Case Study NPL Report DEM-ES 023

The specification is a working document and will evolve with each cycle of the
development until eventually the customer agrees that all requirements are met. It is
therefore very important that strict document control is applied to this document and
that the customer, developer and project leader all agree on the changes made.
Typically, the document would cover:

• The software and hardware environment
• A description of the functions the software is to perform
• The data the system will use and generate
• File formats
• How the user will interface to the application
• Special constraints that apply to the system
• Software management

This document will be used as the input to the functional test plan; each function
described will require a test to be written to prove compliance with the specification.
This is useful to bear in mind when writing the specification.

The UHTBB system functional requirements specification document is shown in
reference [6].

5.4 Design

5.5 Implementation

The software design document is a record of how the requirements stated in the
functional requirements will be implemented in software. The design document may
use state diagrams, flowcharts or formal methods to describe the software design.
Data structures should be defined, and input and outputs formally described. This
document does describe explicitly how the software functions. Code segments and
user interface prototypes may be used to further define the design.
Typically, the document would cover:

• program structure
• data structure
• mapping to functional requirements
• coding conventions
• software tools used

This document will form the input to the module test plan; each routine defined in this
design will require a test written to verify compliance with the requirements.

In this example LabView is used as the development language. LabView is a rapid
development system and provides useful documentation tools that were used in the
development of the design document for the UHTBB system [7]

When the software design is completed and agreed the coding can commence. The
prototypes used in the software design can now be fully implemented and made
functional. The coding conventions stated in the design must be adhered to. Constant
reference to the software design during coding is desirable and will help avoid
variation from the agreed design.

Page 7 of 9

NPL Report DEM-ES 023 UHTBB Project Case Study

5.6

5.7

5.8

Module Testing
The module test plan takes the routines defined in the software design document and
defines a set of tests required to demonstrate that the routine satisfies the design
criteria.

Each test should include the following sections:

• Checkers Identity
• Module unique name and version
• Test Purpose
• Test Method
• Pre-Conditions
• Expected Result
• Actual Result
• Pass or Fail statement.

A good test will demonstrate that the module performs the designed function and how
it deals with errors and negative results. Where available test data sets should be run
through the module.

An index or test summary form is also helpful when a large amount of modules are
being tested; it allows an overview of the test status to be easily seen.

Extracts from the UHTBB module test document can be seen in reference [8].

Functional Testing
The functional test plan takes the functions defined in the functional design
specification and tests that the software satisfies the requirement. These tests are at a
higher level than the module tests and will test how the modules work together. It will
also test the user interfaces and output data for stability and accuracy.

The test plan format can follow the module test plan except that the functional test
should reference the functions described in the functional design document.

Taking screen shots with the [Alt] + [Prnt Scrn] keys can be a good way of
documenting the test output.

Delivery
After successful module and functional testing the system is built and an installation
image created for distributing the software.

The installer will require checking so it is recommended that some or all the
functional tests be executed again on the final installed version of the software.

The released version of the software is documented on the QF 59 in section 6 For
First Release [5].

Page 8 of 9

UHTBB Project Case Study NPL Report DEM-ES 023

5.9 Maintenance
Bug reporting is performed by using a standard NPLs QF-14 form [9]1, when a bug is
discovered the finder of the problem fills in the required fields on the form and
forwards the report to the software development team. The subsequent releases of the
software are tracked on the QF 59 in section 7 Subsequent releases [5]. This enables
control of the software after release.

6. Conclusion
The BPG1 provides straightforward instructions for conducting an objective risk
analysis of measurement software. This analysis results in a single number, known as
the “Measurement Software Level” or “MSL” for short. The BPG1 shows, in table
format, the validation techniques and tools that are required for each MSL, so it is
quite clear how to tackle software development for measurement systems in order that
it will be fit-for-purpose, and that the process will conform to ISO 9000. Similarly this
case study shows how ISO 9000 procedures can be applied.

The study also shows that to use LabView at an MSL of 2 or higher requires a means
to overcome the issues related to test harnesses and a method to measure the
effectiveness of the testing that has taken place.

7. References
1. Wichmann, B.A., R.M. Barker, and G.I. Parkin, Validation of Software in

Measurement Systems. 2004, NPL.

2. National Instruments. LabVIEW Development Guidelines. 2003; Available
from: http://www.ni.com/pdf/manuals/321393d.pdf#labview_style_guide.

3. XProgramming.com. Unit testing. (2004); Available from:
http://www.xprogramming.com/software.htm.

4. Mountford, J., UHTBB Safety System Monitor Software: National Physical
Labaratory Quality Plan, QF-59. 2005, National Physical Laboratory.

5. Gibbs, D., User Requirements Specification for the UHTBB Safety System
Monitor Software. 2005, National Physical Laboratory.

6. Mountford, J., UHTBB Safety System Monitor Software Functional
Requirements Specification. 2005, National Physical Laboratory.

7. Mountford, J., UHTBB Safety system monitor Software Design Specification.
2006, National Physical Laboratory.

8. Mountford, J., UHTBB Safety system monitor Module Test Plan. 2006,
National Physical Laboratory.

9. NPL, NPLQF 49: Complaints and Errors database proforma. 2005, National
Physical Laboratory.

1 Proquis is a database system used to record all complaints.

Page 9 of 9

http://www.xprogramming.com/software.htm

	Aims
	Description of the UHTBB project and its purpose
	Application of Best Practice Guide No. 1
	UHTBB Risk Analysis
	Criticality of usage
	Legal requirements
	Complexity of control
	Complexity of data processing

	Calculating the Measurement Software Level
	Selection of Software Validation Techniques and Tools

	Issues
	The Software Development Life-cycle
	Software Quality Plan
	Requirements Specification
	Functional Specification
	Design
	Implementation
	Module Testing
	Functional Testing
	Delivery
	Maintenance

	Conclusion
	References

