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ABSTRACT

This document provides specifications of software units for the evaluation of measurement
uncertainty. It is intended to align with and support established guides and extend their func-
tionality in a consistent manner. It is also intended to complement the best-practice guide to
uncertainty evaluation that has been produced as part of the UK Department of Industry’s
National Measurement System Software Support for Metrology (SSfM) programme. The
target audience is those who in their work wish to use software to assist in the evaluation of
uncertainty.
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best-practice guide to uncertainty evaluation and the preparation of the first Supplement to
the “Guide to the expression of uncertainty in measurement” (GUM).
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1 Introduction

The purpose of this document is to provide specifications for software that is relevant to un-
certainty evaluation and associated statistical analyses. The specifications relate to software
units that are useful in this area, rather than packages or systems for uncertainty evaluation.
The user or supplier that is implementing software for uncertainty evaluation would need to
consider software units of the types covered here. The document is intended to align with
and support established guides and extend their functionality in a consistent manner. It is
also intended to complement the best-practice guide [12] to uncertainty evaluation that has
been produced as part of the UK Department of Industry’s National Measurement System
Software Support for Metrology (SSfM) programme. The target audience is those who in
their work wish to use software to assist in the evaluation of uncertainty. This document is a
revised edition of a previous report [11], accounting for revision of the SSfM best-practice
guide to uncertainty evaluation and the preparation of the first Supplement [2] to the “Guide
to the expression of uncertainty in measurement” (GUM) [3].

The software specifications are not intended to be mandatory. They typify constituent parts
of uncertainty evaluation. In particular, they indicate the inputs and outputs of the software
units and the purpose of each unit, viz., a statement of the computational aim of the unit. The
units are presented in the context of the more complete calculations in which they would be
used.

The specifications generally have a minimal number of input and output parameters. Com-
putational control parameters, such as those relating to the convergence criteria of iterative
techniques, are indicated only broadly. Diagnostic parameters, such as those that indicate
failure or degree of success of the computation, are not included.

The scope of the specifications is those that relate to

1. The GUM uncertainty framework as summarised in Clause 8 of the “Guide to the
expression of uncertainty in measurement” (GUM) [3]1

2. More general calculations, consistent with the GUM, for the propagation of distribu-
tions based on the use of a Monte Carlo method [2, 12]

3. The validation of (the use of) the GUM uncertainty framework using a Monte Carlo
method [2, 12].

It is emphasised that the primary concern is the specification of relevant software. Algo-
rithms and software per se are not the main consideration: the provision of such material
is the responsibility of the user or supplier that is implementing software for uncertainty
evaluation. However, two departures from this stance are made:

1In this document the term “GUM uncertainty framework” will apply to the use of a first-order Taylor series
approximation to the measurement model.

Page 1 of 60



NPL Report DEM-ES-010 (CMSC 40/04 revised) Uncertainty evaluation

1. Because of the importance of being able to generate random numbers from a rectan-
gular distribution that (a) have sound statistical properties in their own right, (b) can
be used as a basis for the many generators that make use of a rectangular random
number generator for their function, and (c) in certain circumstances can be re-
generated exactly, a specific rectangular random number generator is recommended
(Section 5.3). In addition, generators for Gaussian, t– and multivariate Gaussian dis-
tributions are regarded as so fundamental that algorithmic statements for them are
included (also in Section 5.3).

2. Some numerical considerations accompany the specifications, especially related to
the numerical stability of the underlying algorithms. Such considerations are regarded
as an important adjunct to the specification: users need to be able to rely on software
written in accordance with the specifications to perform reliably in a numerical way
as well as in a functional manner.2

The specifications relate to the following combinations of measurement model types, there
being 2× 2× 2 = 8 model types in all:

• Models with univariate and multivariate output quantities, i.e., a single (scalar) output
quantity and more than one (vector) output quantity

• Explicit and implicit models, i.e., models that define the output quantity directly, viz.,
as formulae, and models in the form of equations that need to be solved for the output
quantities given the input quantities (e.g., non-linear least-squares adjustment)

• Real and complex models, i.e., models in which all the quantities are real and those
in which one or more of the quantities are complex.

The coverage of the software specifications is divided according to whether they relate to the
formulation or calculation stages of the process of uncertainty evaluation (Section 1.1), or
whether the procedure followed is in accordance with the GUM uncertainty framework [3,
Clause 8], a Monte Carlo method [2, 12] or the validation of the GUM uncertainty frame-
work using a Monte Carlo method [2, 12].

Where a vector of values, e.g., the estimates x = (x1, . . . , xN )T of the N input quantities
X = (X1, . . . , XN )T is needed, it is used in the specifications here as a column vector or
a row vector, as appropriate, for consistency with calculations expressed in linear algebra
terms [21]. It is not necessary that the physical means of data storage adopted in software
implementations accords with these representations.

The bulk of this document is concerned with coverage intervals corresponding to a coverage
probability of 95 % and is couched this way. It is generally extensible to other coverage
probabilities.

2Related aspects are treated in the Software Support for Metrology programme as part of the software testing
project [10].
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The report is organised as follows. In the remainder of this section the above stages of
uncertainty evaluation are discussed. In Section 2 the formulation stage and its outputs
are described in terms of the information required for implementing the GUM uncertainty
framework and a Monte Carlo method. Section 3 covers the numerical evaluation of the
measurement model according to the eight categories indicated earlier. In Sections 4, 5
and 6 specifications of software units are provided for the three aspects of uncertainty eval-
uation considered: the GUM uncertainty framework, a Monte Carlo method and the vali-
dation of the GUM uncertainty framework using a Monte Carlo method. Conclusions are
given in Section 7.

1.1 The stages of uncertainty evaluation

The software specifications are divided according to whether they relate to the formulation
or calculation stages of the process of uncertainty evaluation.

In the formulation stage a measurement model is derived and the model inputs are quanti-
fied. Each model input quantity is characterized by a probability density function (PDF).
Each such PDF arises from assigning a particular distributional form (rectangular, Gaussian,
etc.). According to the GUM, PDFs are obtained from an analysis of series of indications [3,
Clauses 2.3.2, 3.3.5] or are based on scientific judgement using all the relevant information
available [3, Clauses 2.3.3, 3.3.5]. A PDF may also be “defined” by the output from a previ-
ous uncertainty evaluation, as part of a multi-stage uncertainty evaluation process [12]. The
distribution may be available analytically in a recognised form (rectangular, Gaussian, etc.)
or as an approximation obtained from a previous application of a Monte Carlo method, for
example. A means for determining such an approximation is given in Section 5.6.

In the calculation stage the PDFs are propagated through the measurement model to obtain
the PDF for the model output quantity. This PDF is used to obtain the expectation of the
output quantity, taken as an estimate of the output quantity, the standard deviation of the
quantity, taken as the standard uncertainty associated with the estimate, and a coverage in-
terval corresponding to a specified coverage probability. The GUM uncertainty framework
and a Monte Carlo method both provide approaches to undertaking the calculation stage of
the process of uncertainty evaluation.

For an input quantity that is independent of the other input quantities, the GUM uncertainty
framework requires for its operation only three parameters that summarize the information
about the quantity represented by its PDF:

• The expectation, taken as an estimate of the input quantity

• The standard deviation, taken as the standard uncertainty associated with the estimate

• The corresponding degrees of freedom.
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If there are dependencies, the procedure will also require the covariances associated with
estimates of the mutually dependent quantities.3

Software can support the formulation stage by providing estimates of location and disper-
sion and degrees of freedom from which a PDF can be constructed after making appropriate
assumptions. In the case of a sufficiently large number of repeated indications of a set of the
input quantities, the data can be used to define an uncertainty matrix4 or a multivariate Gaus-
sian distribution, as appropriate. The specifications below relate to the (arithmetic) mean as
a measure of location, and its associated standard deviation as a measure of dispersion. In
addition, the determination of an uncertainty matrix is covered.

The output of the formulation stage is required to be in a form to act as inputs either to
the GUM uncertainty framework or to a Monte Carlo procedure. For the GUM uncertainty
framework, the inputs are the outputs of the formulation stage identified above. For a Monte
Carlo method, the inputs are PDFs or, where appropriate, joint PDFs (where there are mu-
tual dependencies) for the input quantities.

The basis of the GUM uncertainty framework is to “propagate the uncertainties” associ-
ated with estimates of the input quantities through the model to provide the uncertainties
associated with estimates of the model output quantities. For this purpose it is required to

• Evaluate the model at the estimates of the input quantities to obtain estimates of the
output quantities

• Determine sensitivity coefficients

• Propogate the uncertainty matrix associated with estimates of the input quantities
through (a linearization of) the model to yield the uncertainty matrix associated with
estimates of the output quantities

• Apply the Welch-Satterthwaite formula for effective degrees of freedom

• Determine percentage points of a Gaussian or a t–distribution in order to provide a
coverage interval for the output quantity.

These calculations would apply, as appropriate, for each of the model types, and software
can assist with the calculations.

For the Monte Carlo procedure it is necessary to “propagate (discrete representations of) the
distributions” for the input quantities through the model. For this purpose it is required to

• Sample from the PDFs assigned to the input quantities
3The degree of mutual dependence associated with the estimates xi and xj of the input quantities Xi and

Xj is sometimes characterized by the correlation coefficient r(xi, xj). The covariance and correlation coeffi-
cient are related by u(xi, xj) = r(xi, xj)u(xi)u(xj), where u(xi) and u(xj) are, respectively, the standard
uncertainties associated with the estimates xi and xj .

4An uncertainty matrix is also known as a covariance or variance-covariance matrix [2].
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• Evaluate the model for each sample of values for the input quantities to obtain a set
of values for the output quantities

• Use the set of values for the output quantities to form a discrete representation of the
distribution for the output quantities

• Determine from the discrete representation estimates of the output quantities and the
associated uncertainty matrix

• Determine from the discrete representation a coverage interval for the output quantity.

Again, these calculations would apply, as appropriate, for each of the model types, and
software can assist with their implementation.

The remaining software specifications are intended to support a recommended procedure
for validating the GUM uncertainty framework using a Monte Carlo method [2, 12]. This
procedure constitutes operating both the GUM uncertainty framework and a Monte Carlo
method for an uncertainty evaluation of concern, and carrying out an appropriate compari-
son of the results obtained.

1.2 Document history

This document is intended to align with and help support established guides [3, 15, 41,
42] on uncertainty evaluation and extend their functionality in a consistent manner. It is
complementary to the best-practice guide [12] on uncertainty evaluation, produced as part of
the UK’s Software Support for Metrology (SSfM) programme. The first edition of this best-
practice guide was published in March 2001, having been developed during the first SSfM
programme covering the period April 1998 – March 2001. During that period Working
Group 1, “Expression of Uncertainty in Measurement”, of the Joint Committee for Guides
in Metrology (JCGM) started work, following its first meeting in March 2000, on the first
Supplement [2] to the “Guide to the expression of uncertainty in measurement” (GUM) [3]
concerned with numerical methods for the propagation of distributions. Material from the
evolving best-practice guide was used in various parts of the Supplement and subsequently
refined appropriately for consistency with the remainder of the latter document. This revised
report, produced during the third SSfM programme, April 2004 – March 2007, takes account
of the revision of the best-practice guide (now in its third edition) and the preparation of the
Supplement. In particular, material from the drafts of the Supplement prepared during the
second and third programmes that had an origin in the first edition of the best-practice guide
has been re-used.
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2 Formulation

In the formulation stage of uncertainty evaluation, it is necessary to carry out various assign-
ments of probability density functions (PDFs) to the input quantities of the measurement
model. In the GUM uncertainty framework only the expectations and standard deviations
of the quantities characterized by these PDFs, and covariances where appropriate, are used.
For a Monte Carlo method the PDFs themselves are used. The way these assignments are
undertaken depends on the information that is available about the input quantities. Two
cases are considered.

If a set of q indications, obtained independently, of the input quantity Xi is available, a sta-
tistical analysis of the indications is undertaken to determine an estimate xi of Xi together
with the associated standard uncertainty ui = u(xi) and corresponding degrees of freedom
νi. These are the quantities used in the GUM uncertainty framework (Section 4). To apply
a Monte Carlo method these parameters are used to assign a PDF to Xi. The assignment
of PDFs to the input quantities based on the analysis of repeated indications is described in
Section 2.1. In the GUM the assignment is referred to as “a Type A evaluation of standard
uncertainty”.

If repeated indications are not available a PDF for the input quantity Xi is assigned on the
basis of, for example, prior knowledge, experience or as the result of a previous uncertainty
evaluation. The PDF is used directly in a Monte Carlo method (Section 5). To apply the
GUM uncertainty framework parameters xi, ui and νi are determined from the PDF. Results
of the evaluation for a number of common PDFs are given in Section 2.2. In the GUM the
assignment is referred to as “a Type B evaluation of standard uncertainty”.

A variant of these analyses applies if some or all of the input quantities are mutually de-
pendent. For the GUM uncertainty framework an uncertainty matrix associated with the
estimates of the relevant input quantities is evaluated. For a Monte Carlo method a joint
(multivariate) PDF would be assigned to these input quantities.

In practice both types of assignment will be required, each applying to a subset of the input
quantities. For the GUM uncertainty framework an uncertainty matrix would be constructed
from those uncertainty matrices arising from the two types of analysis. For a Monte Carlo
method a joint PDF would be constructed from those PDFs arising from the two types of
analysis.

2.1 Formulation based on analysing repeated indications

The statistical analysis of repeated indications can be approached in two parts.

Given a set of indications of an input quantity Xi, determine an estimate xi of Xi together
with the standard uncertainty ui associated with that estimate and the corresponding degrees
of freedom νi (Section 2.1.1).
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Given a set of indications for a pair of input quantities that are mutually dependent, deter-
mine the covariance associated with estimates of these quantities (Section 2.1.2).

These calculations are the basis for determining an uncertainty matrix associated with the
estimates of a number of input quantities (Section 2.1.3).

2.1.1 Sample mean and its standard deviation

Suppose (xi,1, xi,2, . . . , xi,q) are q indications, obtained independently, of the input quan-
tity Xi. The estimate xi of Xi and the associated standard uncertainty ui are determined,
respectively, as x̄i, the arithmetic mean of the indications, and si, the standard deviation
associated with x̄i. The corresponding degrees of freedom νi is q − 1. Table 1 defines
the sample mean of a set of indications, the standard deviation associated with this mean
and the degrees of freedom, and specifies the input and output parameters associated with
their determination. This is the information required for the GUM uncertainty framework
(Section 4).

Given the estimate x̄i and the associated standard uncertainty si so obtained, a PDF for Xi

is assigned as follows [12]:

• If the distribution underlying the indications is unknown, assign a Gaussian PDF
N(x̄i, s

2
i )

• If the distribution underlying the indications is known to be Gaussian, assign a scaled
and shifted t–distribution tνi(x̄i, s

2
i ) with νi = q − 1 degrees of freedom.

This is the information required for a Monte Carlo method (Section 5).

2.1.2 Covariance associated with two sample means

Suppose (xi,k, xj,k)T, k = 1, . . . , q, are q pairs of indications, each pair obtained inde-
pendently of the remaining pairs, of the input quantities Xi and Xj . An estimate xi of Xi,
together with the associated standard uncertainty ui, may be determined as the mean and the
standard deviation associated with the mean for the set of indications (xi,1, xi,2, . . . , xi,q)
as in Section 2.1.1, and similarly for Xj . The covariance of Xi and Xj is taken as the
covariance ui,j = u(xi, xj) associated with the sample means xi and xj . Table 2 defines
this covariance in terms of repeated indications of the two input quantities, and specifies the
input and output parameters associated with its determination.
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Input parameters
q Number of indications of the ith input quantity
xi Indications (xi,1, xi,2, . . . , xi,q), obtained independently, of Xi

Output parameters
x̄i Sample mean, defined by

x̄i =
1
q

q∑
k=1

xi,k

si Standard deviation associated with the sample mean, defined by

s2i =
1

q(q − 1)

q∑
k=1

(xi,k − x̄i)2

νi Degrees of freedom, defined by

νi = q − 1

Numerical analysis
It is important to use the above formula for si rather than the mathemati-
cally equivalent formula

s2i =
1

q − 1

(
1
q

q∑
k=1

x2
i,k − x̄2

i

)
.

For cases in which si is very much smaller than |x̄i| (in which case the
xi,k, k = 1, . . . , q, have a number of leading digits in common) the latter
formula suffers from subtractive cancellation (involving a mean square
less a squared mean). The cancellation effects can be so severe that the
resulting value of si may have too few correct significant figures for the
uncertainty evaluation to be valid [8]

Table 1: Sample mean, associated standard deviation and corresponding degrees of freedom
from repeated indications of the ith input quantity.
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Input parameters
q Number of indications of the ith and of the jth input quantities
xi Indications (xi,1, xi,2, . . . , xi,q) of Xi

xj Indications (xj,1, xj,2, . . . , xj,q) of Xj paired with those of Xi. Each pair
(xi,k, xj,k)T is obtained independently of the remaining pairs

Output parameter
ui,j Covariance associated with the sample means for the ith and jth input

quantities, defined by

ui,j =
1

q(q − 1)

q∑
k=1

(xi,k − x̄i)(xj,k − x̄j),

where x̄i and x̄j are the sample means of the sets of indications xi and
xj , respectively

Numerical analysis
It is important to use the above formula for u(xi, xj) rather than the math-
ematically equivalent formula

ui,j =
1

q − 1

(
1
q

q∑
k=1

xi,kxj,k − x̄ix̄j

)
.

The latter formula can suffer from subtractive cancellation as in the stan-
dard deviation calculation (Table 1) and the resulting value of u(xi, xj)
may have too few correct figures for the uncertainty evaluation to be valid

Table 2: Covariance associated with the sample means from repeated indications of the ith
and jth input quantities.
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2.1.3 Uncertainty matrix for input quantities

Suppose (x1,k, x2,k, . . . , xN,k)T, k = 1, . . . , q, are q N -tuples of indications, each N -tuple
obtained independently of the remainingN -tuples, of the input quantitiesXi, i = 1, . . . , N ,
and that these are assembled into the N × q matrix Φ.5 Let Φ′ be obtained from Φ by
correcting for the sample means, i.e., the mean x̄i of the elements in the ith row is subtracted
from all elements xi,j , j = 1, . . . , q, in that row. Then, the uncertainty matrix Vx of
covariances ui,j associated with the sample means x̄1, x̄2, . . . , x̄N , of the input quantities
X = (X1, X2, . . . , XN )T is given by

1
q(q − 1)

Φ′(Φ′)T.

Table 3 defines the uncertainty matrix associated with the sample means of the input quanti-
ties X in terms of repeated indications of X , and specifies the input and output parameters
associated with its determination.

Input parameters
N Number of input quantities
q Number of indications of each of the input quantities
Φ N × q matrix containing the indications xi,j , where xi,j is the

jth measured value of the ith input quantity. Each N -tuple
(x1,k, x2,k, . . . , xN,k)T is obtained independently of the remaining N -
tuples

Output parameter
Vx Uncertainty matrix of order N associated with the sample means for the

input quantities X , defined by

1
q(q − 1)

Φ′(Φ′)T,

where Φ′ is Φ corrected for the sample means

Table 3: Uncertainty matrix associated with the sample means from repeated indications of
input quantities.

Given the estimates xi (= x̄i), i = 1, . . . , N , for the input quantities X and the associated
uncertainty matrix Vx, a multivariate Gaussian distribution is assigned for the purpose of a
Monte Carlo method. This multivariate distribution is discussed in Section 5.3.5.

In practice there may be “simultaneous” indications (xi,1, xi,2, . . . , xi,q) for some of theXi,
e.g, for i = 2, 4 and 5. In this case the above covariance considerations would apply to this
“group”. Any other such groups would be handled similarly, and the complete uncertainty

5The symbol Φ is (reluctantly) used to denote the matrix of indications xi,j , since X is used to denote a
scalar input quantity and X a vector input quantity.
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matrix of order N constructed from these groups, together with the variances associated
with estimates of those input quantities that are mutually independent.

2.2 Formulation based on assigning probability distributions

If knowledge of an input quantity is based on non-statistical information, a PDF such as a
rectangular distribution would be assigned. For the Monte Carlo method this PDF is used
directly. For the GUM uncertainty framework the expectation and the standard uncertainty
of the input quantity would be evaluated in terms of the PDF and used. Table 4 gives the
estimate xi, the associated standard uncertainty ui and the corresponding degrees of free-
dom νi for an input quantity characterized by some common distributions, viz., Gaussian,
rectangular, triangular and U-shaped [16, 24].

Distribution PDF xi ui νi

Gaussian
N(µ, σ2)

1
σ
√

2π
exp

{
− (x−µ)2

2σ2

}
µ σ ∞

Rectangular
R(a, b)


0, x < a,
1

2w , a ≤ x ≤ b,
0, b < x.

h w√
3

∞

Triangular
T(a, b)


0, x < a
x−a
w2 , a ≤ x ≤ h,

b−x
w2 , h ≤ x ≤ b,
0, b < x.

h w√
6

∞

U-shaped
U(a, b)


0, x ≤ a

1

π
√

w2−(x−h)2
, a < x < b,

0, b ≤ x.

h w√
2

∞

Table 4: Expectation, standard uncertainty and degrees of freedom for an input quantity
characterized by some common probability distributions, where w denotes (b− a)/2 and h
denotes (b+ a)/2.

For example, suppose the input quantityXi is assigned a rectangular distribution with limits
a and b. Information on how to generate pseudo-random numbers from this distribution for
the purpose of a Monte Carlo method is given in Section 5.3.1. For this distribution

xi =
b+ a

2
, ui =

b− a

2
√

3
, νi = ∞

(Table 4), and this is the information required for the GUM uncertainty framework. For
other PDFs assigned to Xi, Table 4 would be used in a similar way.
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3 Numerical evaluation of the measurement model

The classification of models in Section 1 covers eight types of measurement model. In
principle, any model will naturally fall into one, and only one, of these categories. Some
models can be converted from one type to another. Whether doing so is desirable depends
on circumstances. For instance, it may not be numerically stable to do so. A complex model
can always be converted into a real model, by replacing each complex quantity by two real
quantities, its real and imaginary parts. Again, doing so is not necessarily desirable for
purposes of model evaluation (but see the end of this section regarding uncertainties).

For the categories of explicit models, Y = f(X) (univariate) and Y = f(X) (multivari-
ate), the calculation of the model value y or y requires the evaluation of the formula f or f .
Tables 5 and 6 specify the evaluation of these models, and the input and output parameters
required.

The calculation of the model value y or y for the corresponding categories of implicit mod-
els, h(Y,X) = 0 and h(Y ,X) = 0, requires the solution of an equation or a system of
equations. For a univariate model, it is necessary to solve a single equation. For a multi-
variate model, a system of equations is to be solved. Tables 7 and 8 specify the evaluation
of these models, and the input and output parameters required.

The numerical evaluation of complex models need be no more complicated than for the cat-
egories of real models considered above. Many software packages and languages provide a
complex type for complex quantities together with functions for performing complex arith-
metic. An alternative to using such facilities is to store explicitly each complex quantity in
terms of its real and imaginary parts, and to undertake all numerical operations in terms of
these two (real) parts.

An issue that requires consideration as part of any implementation for these categories of
complex models is the way the “(standard) uncertainty” associated with an estimate of a
complex quantity is stored. If Xi is complex with real and imaginary parts XR

i and XI
i , the

“squared (standard) uncertainty” associated with an estimate xi of Xi is described by the
uncertainty matrix

V i =

[
u2(xR

i ) u(xR
i , x

I
i)

u(xR
i , x

I
i) u2(xI

i)

]

of order 2, where u2(xR
i ) and u2(xI

i) are, respectively, the variances associated with the
estimates xR

i and xI
i of the real and imaginary parts, and u(xR

i , x
I
i) is the covariance asso-

ciated with these estimates. Furthermore, the uncertainty matrix Vx for the complete set
of input quantities Xi, i = 1, . . . , N , is a matrix of order 2N . Consequently, although the
quantities themselves may be regarded as complex, it is necessary to store the corresponding
uncertainty information using real matrices, and operate on them using real arithmetic.
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Input parameters
N Number of input quantities
f Function specifying the model Y = f(X) in terms of the input quantities

X = (X1, . . . , XN )T

x Column vector (x1, . . . , xN )T of estimates of the input quantities X

Output parameter
y Value obtained by evaluating the formula

y = f(x)

Table 5: Evaluation of a univariate, explicit, real model.

Input parameters
N Number of input quantities
m Number of output quantities
f Function with m components specifying the model Y = f(X) in terms

of the input quantities X = (X1, . . . , XN )T

x Column vector (x1, . . . , xN )T of estimates of the input quantities X

Output parameter
y Column vector of values (y1, . . . , ym)T obtained by evaluating the for-

mula
y = f(x)

Table 6: Evaluation of a multivariate, explicit, real model.
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Input parameters
N Number of input quantities
h Function specifying the model h(Y,X) = 0 in terms of the input quanti-

ties X = (X1, . . . , XN )T and the output quantity Y
x Column vector (x1, . . . , xN )T of estimates of the input quantities X
t Computational control parameters such as an initial approximation to y

and technical parameters relating to the equation-solving software
Output parameter

y Value obtained by solving the equation

h(y,x) = 0

Numerical analysis
A zero-finding algorithm [13, 20], such as the bisection algorithm in
cases where suitable lower and upper bounds are known for y, can be
used to solve the equation

Table 7: Evaluation of a univariate, implicit, real model.

Input parameters
N Number of input quantities
m Number of output quantities
h Function with m components specifying the model h(Y ,X) = 0 in

terms of the input quantities X = (X1, . . . , XN )T and the output quan-
tities Y = (Y1, . . . , Ym)T

x Column vector (x1, . . . , xN )T of estimates of the input quantities X
t Computational control parameters such as an initial approximation to y

and technical parameters relating to the equation-solving software
Output parameter

y Column vector of values (y1, . . . , ym)T obtained by solving the equations

h(y,x) = 0

Numerical analysis
An iterative algorithm such as Newton’s method [20], starting from a
suitable approximation to y, can be used to solve the system of equations

Table 8: Evaluation of a multivariate, implicit, real model.
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4 GUM uncertainty framework

4.1 Procedure

For the application of the GUM uncertainty framework, the outputs of the formulation stage
are (Section 2):

• Estimates x = (x1, . . . , xN )T of the input quantities X = (X1, . . . , XN )T

• Standard uncertainties u = (u1, . . . , uN )T associated with these estimates

• Corresponding degrees of freedom ν = (ν1, . . . , νN )T

• Where appropriate, covariances associated with estimates of the input quantities that
are mutually dependent.

This information is conveniently represented using the three quantities x, ν and Vx, where Vx

is an uncertainty matrix that holds the standard uncertainties associated with the estimates x
and the covariances associated with these estimates. Vx is a matrix of order N , whose
(i, j)th element contains the covariance u(xi, xj) associated with xi and xj , with u(xi, xi) =
u2

i .

x, ν and Vx, together with the measurement model and the required coverage probability p
(e.g., 0.95), constitute the inputs to the calculation stage of the GUM uncertainty framework.

For univariate measurement models, the procedure is as follows:

1. Calculate the estimate of the output quantity by evaluating the model at the estimates
of the input quantities.

See Section 3.

2. Form the partial derivatives of first order of the measurement model with respect
to the input quantities, and calculate the sensitivity coefficients by evaluating these
partial derivatives at the estimates of the input quantities.6

See Section 4.2.

3. Calculate the standard uncertainty associated with the estimate of the model output
quantity by combining the standard uncertainties associated with the estimates of the
input quantities, the covariances associated with these estimates and the sensitivity
coefficients.

See Section 4.3.
6For an implicit model, the partial derivative of first order of the measurement model with respect to the

output quantity is also required to determine the sensitivity coefficients: see Section 4.2.
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4. For the case that the input quantities X are mutually independent, use the Welch-
Satterthwaite formula to calculate νeff , the effective degrees of freedom associated
with the standard uncertainty, from the standard uncertainties associated with the
estimates of the input quantities, the corresponding degrees of freedom, the sensitivity
coefficients and the standard uncertainty associated with the estimate of the output
quantity. The GUM uncertainty framework does not state how νeff is to be calculated
for the case that the input quantities are correlated.

See Section 4.4.

5. Calculate the coverage factor corresponding to νeff and the required coverage prob-
ability p as a percentage point of the (standard) Gaussian distribution (νeff = ∞)
or a t–distribution (νeff < ∞). Hence, calculate the expanded uncertainty, and thus
an interval containing the output quantity with a stipulated coverage probability, by
forming the product of this coverage factor and the standard uncertainty associated
with the estimate of the output quantity.

See Section 4.5.

The computational flow of the calculation stage for the GUM uncertainty framework, indi-
cating the inputs and the outputs, an estimate of the output quantity, the standard uncertainty
associated with this estimate and a coverage interval, is given in Figure 1. This figure ap-
plies in the case of a univariate, explicit, real model with no covariance effects. Other model
types would give diagrams that constitute a variant of Figure 1.

For multivariate measurement models, Steps 1, 2 and 3 would be performed as above.
However, no information is given here regarding steps 4 and 5 for such models. The ex-
tension of steps 4 and 5 to the evaluation of coverage regions for the values of multivariate
output quantities is not straightforward. Consideration of this matter, which is a topic for
research [12], will be given in a future version of this report.

Implementation of the above procedure would be achieved in terms of software “units” as
described in Sections 3, 4.2, 4.3, 4.4, and 4.5. For example, for a univariate, explicit, real
measurement model, these units are specified in Tables 5, 9, 13, 14 and 15.

4.2 Sensitivity coefficients

The procedure for the GUM uncertainty framework (Section 4.1) covers the univariate,
explicit, real model of measurement Y = f(X). The sensitivity coefficients used by that
procedure are denoted here by the (row) vector7 C = (c1, . . . , cN ), whose jth element
cj is the partial derivative ∂f/∂Xj of f(X) evaluated at X = x. Table 9 specifies the

7The symbol C rather than the “more natural” c for this vector is used to denote this set of coefficients.
The reason for this choice is that for multivariate models C is used to hold an array (matrix) of sensitivity
coefficients, and that it is appropriate to use the same symbol throughout.
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Coverage interval
y ± U(y) for Y

Section 4.5

Expanded
uncertainty U(y)

Section 4.5

?

Coverage
factor kp

Section 4.5
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Section 4.4

?

Estimate y = f(x)
of Y

Section 3

?

Standard
uncertainty u(y)

Section 4.3

?

?

Sensitivity
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Section 4.2

?

?

Partial derivatives
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Section 4.2

?

Model
Y = f(X)

?

?
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x of X
Section 2

?

?

Standard
uncertainties u

Section 2

?

?

Degrees of
freedom ν

Section 2

?

Coverage
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?

Inputs

Outputs

Output

Figure 1: Uncertainty evaluation using the GUM uncertainty framework for a univariate,
explicit, real model with mutually independent input quantities.
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evaluation of sensitivity coefficients for this category of measurement model, and indicates
the input and output parameters necessary for their determination.

Input parameters
N Number of input quantities
f Function specifying the model Y = f(X) in terms of the input quantities

X = (X1, . . . , XN )T

x Column vector (x1, . . . , xN )T of estimates of the input quantities X

Output parameter
C 1 ×N vector of sensitivity coefficients, whose jth element is the partial

derivative ∂f/∂Xj of f(X) evaluated at X = x

Table 9: Sensitivity coefficients for a univariate, explicit, real model.

Table 10 specifies the counterpart for a multivariate, explicit, real model Y = f(X). In this
case C takes the form of a matrix of sensitivity coefficients, whose (i, j)th element is the
partial derivative of the ith output quantity with respect to the jth input quantity evaluated
at X = x.

Input parameters
N Number of input quantities
m Number of output quantities
f Function specifying the model Y = f(X) in terms of the input quanti-

ties X = (X1, . . . , XN )T

x Column vector (x1, . . . , xN )T of estimates of the input quantities X

Output parameter
C m × N matrix of sensitivity coefficients, whose (i, j)th element is the

partial derivative ∂fi/∂Xj of f(X) evaluated at X = x

Table 10: Sensitivity coefficients for a multivariate, explicit, real model.

The univariate, implicit, real model of measurement is h(Y,X) = 0. The sensitivity coef-
ficients C = (c1, . . . , cN ) are determined from the partial derivatives of h with respect to
both the input quantities X and the output quantity Y . The jth sensitivity coefficient cj is
given by

−
(
∂h

∂Y

)−1
(
∂h

∂Xj

)
,

where the partial derivatives are evaluated at X = x and Y = y, with y satisfying
h(y,x) = 0. Table 11 specifies the evaluation of sensitivity coefficients for this category
of measurement model, and indicates the input and output parameters necessary for their
determination.

The multivariate, implicit, real model of measurement is h(Y ,X) = 0. The matrix C of
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sensitivity coefficients is determined as the solution to the linear system of equations

HyC = −Hx,

where the matrices Hx and Hy contain, respectively, the partial derivatives of the compo-
nents hi of h with respect to the input quantities Xj and output quantities Yj , evaluated at
X = x and Y = y, with y satisfying h(y,x) = 0. Table 12 specifies the evaluation of
sensitivity coefficients for this category of measurement model, and indicates the input and
output parameters necessary for their determination.

Counterparts would apply for complex models. It is necessary to form partial derivatives of
the real and imaginary parts of the (components of the) measurement model with respect to
the real and imaginary parts of the input quantities (and the output quantities for implicit
models).

Input parameters
N Number of input quantities
h Function specifying the model h(Y,X) = 0 in terms of the input quanti-

ties X = (X1, . . . , XN )T and the output quantity Y
x Column vector (x1, . . . , xN )T of estimates of the input quantities X
y Estimate of the output quantity Y that satisfies h(y,x) = 0

Output parameter
C 1×N vector of sensitivity coefficients, whose jth element is

−
(
∂h

∂Y

)−1
(
∂h

∂Xj

)
,

where the partial derivatives are evaluated at X = x and Y = y

Table 11: Sensitivity coefficients for a univariate, implicit, real model.

The sensitivity coefficients can be formed [6]

1. Manually, by the algebraic differentiation of, e.g., f(X) with respect to each compo-
nent Xi, i = 1, . . . , N , of X , followed by setting X = x

2. As 1, except by the use of a computer package for algebraic differentiation or a
symbolic-algebra package that provides this capability

3. By the use of finite-difference formulae

4. By the use of program differentiation techniques, including forward automatic dif-
ferentiation and reverse automatic differentiation (which are examples of operator
overloading), and source to source transformation.

The manner in which the partial derivatives required in forming the sensitivity coefficients C
in Tables 9–12 are obtained requires careful consideration. These derivatives and hence the
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Input parameters
N Number of input quantities
m Number of output quantities
h Function specifying the model h(Y ,X) = 0 in terms of the in-

put quantities X = (X1, . . . , XN )T and the output quantities Y =
(Y1, . . . , Ym)T

x Column vector (x1, . . . , xN )T of estimates of the input quantities X
y Column vector (y1, . . . , ym)T of estimates of the output quantities Y that

satisfy h(y,x) = 0
Output parameter

C m×N matrix of sensitivity coefficients that solves

HyC = −Hx,

where the matrices Hx and Hy contain, respectively, the partial deriva-
tives of the components hi of h with respect to the input quantities Xj

and output quantities Yj , evaluated at X = x and Y = y.
Numerical analysis

It is important to solve the above system of equations using a numerically
stable procedure, such as Gaussian elimination with a pivoting strategy
[21]

Table 12: Sensitivity coefficients for a multivariate, implicit, real model.
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sensitivity coefficients can be difficult to determine by hand for models that are complicated.
The above options of using a symbolic-algebra package, finite-difference formulae or pro-
gram differentiation techniques can be attractive in such circumstances. There are learning
overheads associated with the use of a symbolic-algebra package and program differentia-
tion techniques: their use can be justified if the user needs to address a sufficient number of
complicated models. Finite-difference formulae may provide inadequate accuracy if used
inappropriately. These alternatives to the manual determination of sensitivity coefficients
are addressed in Appendices A, B and C.

4.3 Uncertainty associated with the estimate of the output quantity

For a univariate, explicit, real measurement model, the standard uncertainty u(y) associated
with the estimate y of Y is obtained from the formula [3]

u2(y) =
N∑

i=1

N∑
j=1

cicju(xi, xj),

where ci is the sensitivity coefficient for the ith input quantity, and u(xi, xj) the covariance
associated with the estimates xi and xj , with u(xi, xi) = u2

i , the variance (squared standard
uncertainty) associated with the ith estimate. A compact way of representing the above
expression is

Vy = CVxCT, (1)

where Vy = u2(y), C = (c1, . . . , cN ), and Vx is the uncertainty matrix of order N associ-
ated with the estimates x of the input quantities X .

Using this notation, Formula (1) for Vy applies for all categories of measurement model.
For univariate, real models, Vy is the variance associated with the estimate y of the output
quantity Y ; for other measurement models, it is the uncertainty matrix associated with the
estimates of the output quantities. Table 13 specifies the evaluation of the uncertainty asso-
ciated with the estimate of the output quantity, and indicates the input and output parameters
necessary for its determination.

4.4 Effective degrees of freedom

Table 14 specifies the Welch-Satterthwaite formula for evaluating the effective degrees of
freedom νeff for a univariate, real output quantity Y when the input quantities X are mutu-
ally independent. The GUM uncertainty framework does not state how νeff is to be calcu-
lated when the input quantities are correlated.
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Input parameters
N Number of input quantities
m Number of output quantities
Vx Uncertainty matrix of order N associated with the estimates x of the

input quantities X
C m×N matrix of sensitivity coefficients

Output parameter
Vy Uncertainty matrix of order m associated with the estimate y (or y) of

the output quantity Y (or Y ) obtained by evaluating

Vy = CVxCT

Table 13: Standard uncertainty associated with the estimate y of Y for a univariate (m = 1)
model or the uncertainty matrix associated with the estimate y of Y for a multivariate
(general m) model.

4.5 Expanded uncertainty

Table 15 specifies the calculation of expanded uncertaintyU(y) associated with the estimate
y of a univariate, real output quantity Y when the input quantities X are mutually indepen-
dent. The expanded uncertainty is evaluated as the product of the standard uncertainty u(y)
(Section 4.3) and a coverage factor kp that depends on the required coverage probability p
and the effective degrees of freedom νeff (Section 4.4).

The calculation of expanded uncertainty depends on knowledge of the distribution that char-
acterizes the output quantity Y . In the GUM uncertainty framework, a t–distribution with
νeff degrees of freedom is assigned to the random variable

T =
Y − y

u(y)
.

It follows that kp is the percentage point tp(νeff) of the t–distribution such that the proba-
bility that |t| is no greater than tp(νeff) is equal to p. Values of kp for various choices of
coverage probability p and degrees of freedom νeff may be obtained from statistical tables
and implemented as a “look-up” table. Many mathematical and statistical software libraries
provide an implementation and can be used. For νeff ≥ 473, kp = 1.96, correct to two
decimal places, the corresponding value for the standard Gaussian distribution N(0, 1).
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Input parameters
N Number of input quantities
u Column vector (u1, . . . , uN )T ≡ (u(x1), . . . , u(xN ))T of standard un-

certainties associated with the estimates x = (x1, . . . , xN )T of the input
quantities X

C 1 × N (row) vector of sensitivity coefficients, whose jth element is the
partial derivative ∂f/∂Xj of f(X) evaluated at X = x

ν Column vector (ν1, . . . , νN )T of degrees of freedom. If the estimate xi

of Xi is taken as the mean of a set of q repeated indications, νi is taken as
q−1. If a rectangular distribution with accurately known endpoints is as-
signed to Xi, νi is taken as infinite (∞). (Since ∞ cannot be represented
as such as an input parameter, a convention may be adopted. For instance
such a value can be “coded” as 0 (zero), and the procedure would be de-
signed to interpret this value, which cannot occur otherwise, as infinite.)
These are two important cases. There are other possibilities [3] for as-
signing the degrees of freedom to the standard uncertainties associated
with estimates of the input quantities. Each case has to be treated on its
own merits

u(y) Standard uncertainty associated with the estimate y of the output quantity
Output parameter

νeff Effective degrees of freedom determined from the Welch-Satterthwaite
formula

u4(y)
νeff

=
N∑

i=1

c4iu
4(xi)
νi

Table 14: Effective degrees of freedom according to the Welch-Satterthwaite formula.

Input parameters
u(y) Standard uncertainty associated with the estimate y of the output quantity
νeff Effective degrees of freedom determined from the Welch-Satterthwaite

formula
p Coverage probability (typically 0.95)

Output parameter
U(y) Expanded uncertainty, defined by

U(y) = kpu(y),

where kp is a coverage factor, depending on the stipulated coverage prob-
ability p, that is obtained from tables of percentage points of the Gaussian
distribution (νeff = ∞) or a t–distribution (νeff <∞)

Table 15: Expanded uncertainty for a univariate, real model.
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5 Monte Carlo method

5.1 Procedure

For the application of a Monte Carlo method, the outputs of the formulation stage are (Sec-
tion 2) the PDFs8 g(ξ) = (g1(ξ1), . . . , gn(ξN ))T for the input quantities X = (X1, . . . , XN )T.9

The PDFs, together with the measurement model and the required coverage probability p
(e.g., 0.95), constitute the inputs to the calculation stage of the Monte Carlo procedure.

For univariate measurement models, the procedure is as follows:

1. Select the number M of Monte Carlo trials to be made.

See Section 5.2.

2. Generate M vectors by sampling from the PDFs for the (set of N ) input quantities.

See Section 5.3.

3. For each vector, evaluate the model to give the corresponding value of the output
quantity.

See Section 5.4.

4. Calculate the estimate of the output quantity and the associated standard uncertainty
as the (arithmetic) mean and standard deviation of the model values. Optionally, use
the model values to form an approximation to the PDF for the output quantity.

See Section 5.5.

5. Sort the model values into non-decreasing order, and use the sorted values to provide
a discrete representation of the distribution function for the output quantity. Op-
tionally, use the discrete representation to form a (continuous) approximation to the
distribution function for the output quantity.

See Section 5.6.

6. Use the discrete representation of the distribution function to calculate a 95 % cover-
age interval for the output quantity.

See Section 5.7

Figure 2 shows the procedure diagrammatically.

8A joint (multivariate) PDF for (a subset of) the input quantities is also possible (Section 2.1.3).
9The following notation is used: Xi to denote the ith input quantity, xi an estimate of Xi, and ξi a (general)

value of Xi. Hence, the PDF for Xi is written as a function of ξi. Similarly, Y , y and η are used for a
(univariate) output quantity.
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Figure 2: Uncertainty evaluation using a Monte Carlo method for a univariate, explicit, real
model.
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Section 5.8 describes how a Monte Carlo method may be used to undertake a sensitivity
analysis for the measurement model with respect to each input quantity, yielding “non-
linear” sensitivity coefficients that are the counterpart of (linear) sensitivity coefficients
necessary for the implementation of the GUM uncertainty framework.

Section 5.9 indicates a basic implementation of an adaptive Monte Carlo procedure that
removes the need to make an a priori choice of the number of Monte Carlo trials.

The modifications to the procedure illustrated in Figure 2 for other types of univariate model
are straightforward. Multivariate models are considered in Section 5.10.

5.2 The number of Monte Carlo trials

A value of M , the number of Monte Carlo trials to be made, needs to be selected. It
can be chosen a priori, in which case there will be no direct control over the degree of
approximation delivered by the Monte Carlo procedure. The reason is that the number
needed to provide a prescribed degree of approximation will depend on the “shape” of the
PDF for the output quantity and the coverage probability required. Also, the calculations
are stochastic in nature, being based on random sampling. However, a value of M = 106

can often be expected to deliver a 95 % coverage interval, having a length with a degree of
approximation of one or two significant decimal digits, for the output quantity.

Because there is no guarantee that this or any specific number will suffice, it is recom-
mended to use a process that selects M adaptively, i.e., as the trials progress. A property
of such a process is that it takes a number of trials that is economically consistent with the
achievement of the required degree of approximation [1, 2, 12]. A basic implementation of
an adaptive Monte Carlo procedure is described in Section 5.9.

5.3 Sampling from the probability density functions

In an implementation of the Monte Carlo procedureM vectors xi, i = 1, . . . ,M , are drawn
from the PDFs for the input quantities X . Draws are made from a joint (multivariate)
Gaussian PDF when appropriate (Section 2.1.3).

Recommendations concerning the manner in which this sampling should be carried out
are given here for the commonest distributions, viz., the rectangular, the Gaussian, the t–
distribution and the multivariate Gaussian. It is possible to prepare software for sampling
from almost any distribution, and indeed to develop a general framework for doing so (Sec-
tion 5.3.4).

Tests of randomness of the numbers produced by a generator are indicated.
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5.3.1 Rectangular distribution

The ability to generate pseudo-random numbers from a rectangular distribution is funda-
mental in its own right, and also as the basis for generating numbers from any distribution
(Section 5.3.4) using an appropriate algorithm or formula. In the latter regard, the quality of
the numbers generated from a non-rectangular distribution depends on that of the numbers
generated from the rectangular distribution and on the properties of the algorithm employed.
The quality of the non-rectangular generator can therefore be expected to be correlated with
that of the rectangular generator. A good rectangular generator and a good algorithm can
be expected to provide a good non-rectangular generator. A poor rectangular generator and
a good or bad algorithm can be expected to provide a poor non-rectangular generator. It
is thus especially important that the underlying rectangular generator is sound (cf. [30]).
Unless the user is sure of the pedigree of a rectangular generator it should not be used until
adequate testing has been carried out. Invalid results can otherwise be obtained. Some of
the “tests for randomness” that should be undertaken are indicated below. A recommended
rectangular pseudo-random number generator, that has been shown to perform well in these
tests and that is straightforward to implement, is given in this section.

Table 16 defines relevant aspects of the functioning of a procedure for generating rectan-
gular pseudo-random numbers in the interval (0, 1), specifying the input, input-output and
output parameters associated with their determination.

Input parameter
q Number of rectangular pseudo-random numbers to be generated

Input-output parameter
t Column vector of parameters required as input quantities and that may

be changed as part of the computation. The subsequent values of these
quantities are not usually of immediate concern to the user. The parame-
ters are needed to help control the process by which the pseudo-random
numbers are produced. The parameters may be realized as global vari-
ables and thus not explitly appear as parameters of the procedure. One or
more of these parameters may be a seed, used to initiate the sequence of
random numbers produced by successive calls of the procedure. By set-
ting the seed(s) to values previously used, the same sequence of random
numbers can be produced. Doing so is important as part of software re-
gression testing, used to verify the consistency of results produced using
the software with those from previous versions

Output parameter
r q draws from a rectangular distribution between zero and one

Table 16: Pseudo-random number generation.

A draw from the rectangular distribution on the interval (a, b) can be formed from a+(b−
a)r, where r is a draw from the rectangular distribution on the interval (0, 1).
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Randomness tests A review [33] has been carried out on the use of random numbers in
solving problems using a Monte Carlo procedure. It draws conclusions concerning, in par-
ticular, the best methods to employ for generating rectangular pseudo-random numbers. The
so-called “combination generators” are recommended and are reported as being favoured by
experts as fulfilling the requirements of possessing the longest periods10 and passing a set
of statistical tests for randomness.11

A combination generator simultaneously uses more than one generator. Each such generator
is typically a member of the class of congruential generators or the class of shift register
generators, both of which are widely discussed in the literature [19, 28, 34, 36].

The KISS12 generator [32] is a combination of a congruential generator and two shift reg-
ister generators. A version in the C programming language is available [35, p42] and in
Fortran [32].

The test suite TestU01 [29] may be used to carry out an extensive test of the statistical
properties of any generator submitted to it. The suite is very detailed, with many individual
tests, including the so-called “Big Crush”. Several generators that pass the suite of tests are
listed by Wichmann and Hill [43]. An enhanced Wichmann-Hill generator also passes the
test and is recommended [2].

A recommended rectangular random number generator Table 17 defines the enhanced
Wichmann-Hill generator for generating rectangular pseudo-random numbers in the interval
(0, 1).

5.3.2 Gaussian distribution

The procedure in Table 18 provides a straightforwardly implementable approach [7] to gen-
erate draws from the standard Gaussian distribution N(0, 1) using the Box-Muller trans-
form.

A draw from the Gaussian distribution N(µ, σ2) can be formed from µ + σz, where z is a
draw from the standard Gaussian distribution N(0, 1).

10A pseudo-random number generator provides a sequence of numbers. The period of the sequence is the
number of consecutive values in the sequence before they are repeated.

11The tests include the so-called standard tests [28], viz., the χ2 test, the Kolmogorov-Smirnov test, the
frequency test, the serial test, the gap test, the poker test, the coupon collector’s test and the more stringent Die
Hard tests [31], that include the overlapping M-tuple test, the overlapping permutation test, the parking lot and
lattice test and the birthday-spacing test.

12Keep It Simple, Stupid!
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Input parameter
None

Input-output parameters
ix, iy, iz, it Integer parameters required as input parameters and that are changed by

the procedure. Set to integers between 1 and 2 147 483 647 before the
first call. Do not disturb between calls. Subsequent values of these pa-
rameters are not usually of concern to the user. The parameters provide
the basis by which the pseudo-random numbers are generated. They may
be realized as global variables and thus not appear explicitly as parame-
ters of the procedure

Output parameter
r A draw from a rectangular distribution between zero and one

Computation

1. Form ix = 11 600× (ix mod 185 127)−10 379×bix÷185 127c

2. Form iy = 47 003× (iy mod 45 688)− 10 479× biy ÷ 45 688c

3. Form iz = 23 000× (iz mod 93 368)− 19 423× biz ÷ 93 368c

4. Form it = 33 000× (it mod 65 075)− 8 123× bit÷ 65 075c

5. If ix < 0, then form ix = ix+ 2 147 483 579

6. If iy < 0, then form iy = iy + 2 147 483 543

7. If iz < 0, then form iz = iz + 2 147 483 423

8. If it < 0, then form it = it+ 2 147 483 123

9. Form w = wx+ wy + wz + wt, where

wx = ix/2 147 483 579.0,
wy = iy/2 147 483 543.0,
wz = iz/2 147 483 423.0,
wt = it/2 147 483 123.0.

10. Form r = w − bwc

Table 17: Enhanced Wichmann-Hill pseudo-random number generator for the rectangular
distribution. ix mod n denotes the modulus (or remainder) after division by n, and bwc
denotes the integer part of w.
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Input parameter
None

Output parameters
z1, z2 Two draws from a Gaussian distribution with zero expectation and unit

standard deviation
Computation

1. Generate draws r1 and r2 independently from the rectangular dis-
tribution between zero and one

2. Form z1 =
√
−2 log r1 cos 2πr2 and z2 =

√
−2 log r1 sin 2πr2

Table 18: Box-Muller pseudo-random number generator for the Gaussian distribution.

5.3.3 t–distribution

The procedure in Table 19 provides an approach [27], [35, p63] to generate draws from the
t–distribution tν with ν degrees of freedom, that is also straightforward to implement.

Input parameter
ν Degrees of freedom

Output parameter
t A draw from a t–distribution with ν degrees of freedom

Computation

1. Generate draws r1 and r2 independently from the rectangular dis-
tribution between zero and one

2. If r1 < 1/2, form t = 1/(4r1 − 1) and v = r2/t
2; otherwise set

t = 4r1 − 3 and v = r2

3. If v < 1−|t|/2 or v < (1+t2/ν)−(ν+1)/2, accept t as a draw from
the t–distribution; otherwise repeat from Step 1

Table 19: Pseudo-random number generator for the t–distribution.

A draw from the t–distribution tν(µ, σ2) with shift parameter µ and scale parameter σ can
be formed from µ+ σt, where t is a draw from the t–distribution tν .
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5.3.4 General distributions

Sections 5.3.1–5.3.3 presented procedures for sampling from the PDFs relating to common
distributions, viz., rectangular, Gaussian and the t–distribution, respectively. Consideration
is given here to the task of sampling from a general distribution defined by its distribution
function G(ξ).

A draw z from this distribution is obtained as follows:

1. Generate a draw ψ from a rectangular distribution between zero and one (Section
5.3.1)

2. Find the value z satisfying G(z) = ψ.

The “inversion” step (in 2 above) of forming z = G−1(ψ) may be possible analytically or,
otherwise, performed numerically. In the latter case, z is evaluated by solving the equation

G(z)− ψ = 0.

Upper and lower bounds for z are generally easily found, in which case a “bracketing”
algorithm such as bisection can be used to determine z [13, 20].

5.3.5 Multivariate Gaussian distribution

The most important multivariate distribution is the multivariate Gaussian distribution. An
n× 1 vector of expectations µ and a covariance matrix V of order n define the parameters
of the n-dimensional Gaussian distribution. Draws can be made from this multivariate (or
joint) Gaussian distribution [37, 40] using the procedure in Table 20.

Figure 3 shows three examples of 1000 points generated from bivariate Gaussian distribu-
tions using the MULTNORM generator [37]. In all three cases the distributions characterize
a quantity with expectation µ = (2, 3)T. In the top graph, the quantity has covariance ma-
trix

V =

[
2.0 0.0
0.0 2.0

]
,

i.e., the components of the quantity are independent and have the same standard deviation,
and the cloud of points resembles a disk with centre at the expectation µ. In the middle
graph, the quantity has covariance matrix

V =

[
1.0 0.0
0.0 4.0

]
,

i.e., the components are independent and have different standard deviations, and the cloud
of points resembles an ellipse with major and minor axes parallel to the co-ordinate axes.
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Input parameters
n Dimension of the multivariate Gaussian distribution
µ n× 1 vector of expectations
V Covariance matrix of order n× n
q Number of draws from the multivariate Gaussian distribution

Output parameter
Φ n × q matrix, the jth column of which is a draw from the multivariate

Gaussian distribution
Computation

1. Form the Cholesky factor R of V , i.e., the upper triangular matrix
satisfying V = RTR. (To generate q pseudo-random numbers it
is necessary to perform this matrix factorization only once.)

2. Generate q draws from the n-dimensional standard Gaussian distri-
bution N(0, 1)× · · · ×N(0, 1). Doing so simply means generating
an n× q array Z of draws from the standard Gaussian distribution

3. Provide the required draw (the Cholesky factor acts as a transfor-
mation from the uncorrelated standardized space to that required):

Φ = µ1T + RTZ,

where 1 denotes a q × 1 vector of ones

Table 20: Pseudo-random number generator for the multivariate Gaussian distribution.
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In the bottom graph, the quantity has covariance matrix

V =

[
2.0 1.9
1.9 2.0

]
,

i.e., the components are correlated, and the cloud of points resembles an ellipse with axes
oriented to the co-ordinate axes by an angle that is determined by the covariance of the
components.

Similar generators are available elsewhere [14].

In this figure the points “span” an elongated angled ellipse. Were the off-diagonal elements
of V to be replaced by zero, the points would span a circle. Were the diagonal elements
made unequal, and the off-diagonal elements kept at zero, the points would span an ellipse
whose axes were parallel to the axes of the graph.

5.4 Numerical evaluation of the model

The model is evaluated for each of the M draws from each of the PDFs for the N input
quantities. Specifically, denote the M draws by x1, . . . ,xM , where the rth draw xr con-
tains values x1,r, . . . , xN,r, with xi,r a draw from the PDF for Xi. Then, for a univariate,
explicit, real model, the model values are

yr = f(xr), r = 1, . . . ,M.

For a univariate, implicit, real model, the rth model value yr is determined as the solution
to the equation

h(yr,xr) = 0.

The model values y1, . . . , yM are used in the evaluation of the estimate y of Y and the
associated standard uncertainty u(y) (Section 5.5), and as the basis for calculating an ap-
proximation to the PDF for Y (Section 5.5.1). The model values are also used to provide
a discrete representation of the distribution function for Y (Section 5.6) in terms of which
are obtained a (continuous) approximation to the distribution function (Section 5.6.1) and a
coverage interval for Y (Section 5.7). The case of a univariate, explicit, real measurement
model is covered below, although the presentation would apply similarly for the correspond-
ing implicit model. Multivariate models are considered in Section 5.10.

An “updating” procedure for forming y, u(y) and approximations to the PDF and distribu-
tion function for the output quantity, which avoids the need to store and sort the complete
set of model values, is described in Appendix E.

The information in Section 3 provides advice on model evaluation. Note that in the Monte
Carlo procedure the model is evaluated for each draw of the input quantities and hence
for values (that may be distanced by “several standard deviations” from the estimates of
the input quantities). This is in contrast to the GUM uncertainty framework in which the
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Figure 3: Points drawn from bivariate Gaussian distributions used to characterize quantities
that are independent with the same standard deviation (top), independent having different
standard deviations (middle), and correlated (bottom).
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measurement model is evaluated only at the estimates of the input quantities and, if finite
difference approximations are used [3, Clause 5.1.3], also at points perturbed from these
estimates by± one standard deviation for each quantity in turn. For this reason some issues
may arise regarding the numerical procedure used to evaluate the model, e.g., ensuring its
convergence (where iterative schemes are used) and numerical stability. The user should
ensure that, where appropriate, the numerical methods used to evaluate the measurement
model are valid for a sufficiently large region centred on the estimates of the input quantities.

5.5 Estimate of the output quantity and the associated standard uncertainty

The average ŷ of the values yr, r = 1, . . . ,M , of the output quantity is taken as the esti-
mate y of the output quantity, and the standard deviation u(ŷ) of the values is taken as the
standard uncertainty u(y) associated with y. ŷ is evaluated from

ŷ =
1
M

M∑
r=1

yr, (2)

and the standard deviation u(ŷ) from

u2(ŷ) =
1

M − 1

M∑
r=1

(yr − ŷ)2. (3)

Table 21 specifies the evaluation of the estimate y of Y and the associated standard un-
certainty u(y) using Formulae (2) and (3), respectively, and indicates the input and output
parameters necessary for their determination.

The evaluations of y and u(y) (Table 21) require the summation of M numbers with M
large (typically of the order of 105 or 106: Section 5.2). A procedure for undertaking these
summations, designed to reduce the effect of rounding errors associated with the floating-
point operations (of which there are many), is described in Appendix D. An “updating”
procedure for evaluating the estimate of the output quantity and the associated standard
uncertainty that avoids the need to store the complete set of model values is described in
Appendix E.

The value of y so obtained yields the smallest mean squared deviation over all possible
choices of the estimate of the output quantity. However, the value will not in general agree
with the model evaluated at the estimates of the input quantities [3, Clause 4.1.4]. Agree-
ment (in a practical sense) will be achieved for a large value of M when the model is linear
in the input quantities. Whether this general lack of agreement is important depends on the
application. The value of y, even in the limit as M → ∞, is not in general equal to the
model evaluated at the expectation values of the input quantities, unless the model is linear
[3, Clause 4.1.4].
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Input parameters
M Number of draws (equal to the number of Monte Carlo trials)
y Model values (y1, . . . , yM ) obtained by evaluating the measurement

model for each of the M draws xr from each of the PDFs for the N
input quantities, i.e., yr = f(xr)

Output parameters
y Estimate of the output quantity: the arithmetic mean of the model values,

defined by

y =
1
M

M∑
r=1

yr

u(y) Standard uncertainty: the standard deviation of the model values, defined
by

u2(y) =
1

M − 1

M∑
r=1

(yr − y)2

Numerical analysis
It is important to use the above formula for u(y) rather than the mathe-
matically equivalent formula

u2(y) =
M

M − 1

(
1
M

M∑
r=1

y2
r − y2

)
.

For cases in which u(y) is very much smaller than |y| (in which case the
yr, r = 1, . . . ,M , have a number of leading digits in common) the latter
formula suffers from subtractive cancellation (involving a mean square
less a squared mean). The cancellation effects can be so severe that the
resulting value of u(y) may have too few correct significant figures for
the uncertainty evaluation to be valid [8]

Table 21: Estimate of the output quantity and the associated standard uncertainty.
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5.5.1 Approximation to the probability density function

The values yr, r = 1, . . . ,M , when assembled into a histogram (with suitable bin widths)
form a frequency distribution that, when normalised to have unit area, can be taken as an
approximation ĝ(η) to the PDF g(η) for the output quantity. Calculations are not generally
carried out in terms of this histogram, the resolution of which depends on the choice of bin
size. The histogram can, however, be useful as an aid to understanding the nature of the
PDF, e.g., the extent of its asymmetry.

An approximation ĝ(η) to the PDF g(η) for the output quantity is obtained as follows.
Let [η0, ηb] be an interval of values of the output quantity partitioned into b subintervals
{Bk : k = 1, . . . , b}, where

Bk =

{
[ηk−1, ηk), k = 1, . . . , b− 1,
[ηk−1, ηk], k = b,

and
η0 ≤ min{yr : r = 1, . . . ,M}, max{yr : r = 1, . . . ,M} ≤ ηb,

i.e., each of the values yr of the output quantity lies in exactly one of the intervals Bk.13

Define14

hk =
card({yr ∈ Bk : r = 1, . . . ,M})

ηk − ηk−1
, k = 1, . . . , b,

and

gk =
hk

M
, k = 1, . . . , b.

hk is the height of the kth bar corresponding to the bin Bk in a histogram of the values yr.
The height is chosen so that the area of the bar is proportional to the number of values of
the output quantity contained in the bin. gk is a probability density obtained by scaling the
heights of the bars so that the total area of the bars is unity. The scaled histogram defined
by the bins Bk and probability densities gk, k = 1, . . . , b, defines an approximation to the
PDF for the output quantity. Table 22 specifies the evaluation of an approximation to the
PDF for the output quantity, and indicates the input and output parameters necessary for its
determination.

The approximation ĝ(η) may alternatively be defined as the piecewise-linear function join-
ing the b points (η̂k, gk), k = 1, . . . , b, where η̂k is the midpoint of the interval defining the
kth bin, i.e.,

η̂k =
ηk−1 + ηk

2
, k = 1, . . . , b,

and gk is the probability density defined above.

13Often the bins will be chosen to have equal width, δη say, where δη = ηk − ηk−1, k = 1, . . . , b.
14card(A) is used to denote the cardinality of the set A, i.e., the number of elements in the set.
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Input parameters
M Number of draws (equal to the number of Monte Carlo trials)
y Model values (y1, . . . , yM ) obtained by evaluating the measurement

model for each of the M draws xr from each of the PDFs for the N
input quantities, i.e., yr = f(xr)

b Number of bins in approximation to PDF for the output quantity
η Values (η0, . . . , ηb), with η0 ≤ min{yr : r = 1, . . . ,M} and max{yr :

r = 1, . . . ,M} ≤ ηb, that define bins Bk, k = 1, . . . , b, where

Bk =

{
[ηk−1, ηk), k = 1, . . . , b− 1,
[ηk−1, ηk], k = b.

Output parameter
g Probability densities (g1, . . . , gb), defined by

gk =
hk

M
, k = 1, . . . , b,

where

hk =
card({yr ∈ Bk : r = 1, . . . ,M})

ηk − ηk−1
.

The scaled histogram defined by bins Bk and probability densities gk

defines an approximation to the PDF for the output quantity

Table 22: Approximation to the probability density function for the output quantity.
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5.6 Discrete representation of the distribution function

A discrete representation G of the distribution function for the output quantity is obtained
by sorting the values yr, r = 1, . . . ,M , provided in Section 5.4 into non-decreasing order.
Denoting the sorted values by y(r), r = 1, . . . ,M , the discrete representation is given by
G = (y(1), . . . , y(M)). Table 23 specifies the evaluation of a discrete representation of the
distribution function for the output quantity, and indicates the input and output parameters
necessary for its determination.

The discrete representation is used as the basis for calculating a coverage interval for the
output quantity (Section 5.7). It is also used as the basis for obtaining a (continuous) ap-
proximation to the distribution function for the output quantity (Section 5.6.1) that may
used, for example, to obtain random draws from the distribution for the output quantity (in
the manner described in Section 5.3.4).

Input parameters
M Number of draws (equal to the number of Monte Carlo trials)
y Model values (y1, . . . , yM ) obtained by evaluating the measurement

model for each of the M draws xr from each of the PDFs for the N
input quantities, i.e., yr = f(xr)

Output parameter
G Discrete representation of the distribution function for the output quan-

tity, where G = (y(1), . . . , y(M)), the model values sorted into non-
decreasing order

Numerical analysis
It is recommended that a sorting algorithm that takes a number of oper-
ations proportional to M logM be used (e.g., [38]). A naive algorithm
would take a time proportional to M2 and may make the computation
time unacceptable

Table 23: Discrete representation of the distribution function for the output quantity.

5.6.1 Approximation to the distribution function

An approximation Ĝ(η) to the distribution function G(η) for the output quantity is ob-
tained as follows. Assign uniformly spaced cumulative probabilities pr = (r − 1/2)/M ,
r = 1, . . . ,M , to the ordered values y(r) in the discrete representation G of the distribu-
tion function for the output quantity.15 Form Ĝ(η) as the piecewise-linear function joining

15The values pr , r = 1, . . . , M , are the midpoints of M contiguous probability intervals of width 1/M
between zero and one.
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the M points (y(r), pr), r = 1, . . . ,M :

Ĝ(η) =
r − 1/2
M

+
η − y(r)

M(y(r+1) − y(r))
, y(r) ≤ η ≤ y(r+1), (4)

for r = 1, . . . ,M − 1. Table 24 specifies the evaluation of an approximation to the dis-
tribution function for the output quantity, and indicates the input and output parameters
necessary for its determination.

Input parameters
M Number of draws (equal to the number of Monte Carlo trials)
G Discrete representation of the distribution function for the output quan-

tity, where G = (y(1), . . . , y(M)), the model values sorted into non-
decreasing order

Output parameter
p Probabilities (p1, . . . , pM ), defined by

pr = (r − 1/2)/M.

The function Ĝ(η) determined as the piecewise-linear function joining
the points (y(r), pr), r = 1, . . . ,M , provides an approximation to the
distribution function for the output quantity. (Ĝ(η) is defined only for
values of η corresponding to values of probability p in the intervalM/2 ≤
p ≤ 1 −M/2. Indeed, it should not be used near the endpoints of this
interval, because it is less reliable there.)

Table 24: Approximation to the distribution function for the output quantity.

Formulae (2) and (3) for the estimate of the output quantity and the associated standard
uncertainty do not in general provide values that are identical to the expectation and standard
deviation of the quantity characterized by the distribution function Ĝ(η). The latter values
are given by

ŷ =
1
M

M∑
r=1

′′y(r) (5)

and

u2(ŷ) =
1
M

(
M∑

r=1

′′(y(r) − ŷ)2 − 1
6

M−1∑
r=1

(y(r+1) − y(r))
2

)
, (6)

where the double prime on the summation in Expression (5) and on the first summation in
Expression (6) indicates that the first and the last terms are to be taken with weight one half.
However, for a sufficiently large value of M , the values obtained using Expressions (2) and
(3) are generally indistinguishable for practical purposes from those given by Expressions
(5) and (6).
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5.7 Coverage interval

Let α denote any value between zero and 1−p, where p is the required coverage probability
(e.g., 0.95). The endpoints of a 100p% coverage interval for the value of the output quantity
areG−1(α) andG−1(p+α), i.e., the α– and (p+α)–quantiles ofG(η). Here, the β–quantile
is the value of η for which G(η) = β.

The choice α = 0.025 gives the coverage interval defined by the 0.025– and 0.975–
quantiles. This choice provides a 95 % coverage interval that is probabilistically symmetric.
The probability is 2.5 % that the value of the output quantity is smaller than the left-hand
endpoint of the interval and 2.5 % that it is larger than the right-hand endpoint. If g(η) is
symmetric about its expectation, this coverage interval is symmetric about the estimate y of
the output quantity, and the left-hand and right-hand endpoints of the coverage interval are
equidistant from y.

A value of α different from 0.025 would generally be appropriate were the PDF asymmetric.
Usually the shortest coverage interval is required, because it corresponds to the best possible
location of the output quantity for a specified probability. It is given by the value of α
satisfying g(G−1(α)) = g(G−1(p + α)), if g(η) is single-peaked, and in general by the
value of α such thatG−1(p+α)−G−1(α) is a minimum. If g(η) is symmetric, the shortest
coverage interval is given by taking α = (1 − p)/2, corresponding to the probabilistically
symmetric interval.

The endpoints of a coverage interval can be obtained from the discrete representation of the
distribution function for the output quantity (Section 5.6) as follows. Let q = pM , if pM is
an integer, or the integer part of pM + 1/2, otherwise. Then, [ylow, yhigh] = [y(r), y(r+q)]
for any r = 1, . . . ,M − q, is a 100p % coverage interval. The probabilistically symmetric
100p % coverage interval is given by r = (M − q)/2 if (M − q)/2 is an integer, or the
integer part of (M − q + 1)/2, otherwise. The shortest 100p % coverage interval is given
by determining r = r∗ such that, for r = 1, . . . ,M − q, y(r∗+q) − y(r∗) ≤ y(r+q) −
y(r). Table 25 specifies the determination of the shortest coverage interval from a discrete
representation of the distribution function for the output quantity, and indicates the input
and output parameters necessary for their determination.

The endpoints of a coverage interval can also be obtained from the approximation Ĝ(η)
to G(η) obtained in Section 5.6.1 or Appendix E. For a sufficiently large value of M , the
coverage interval obtained using the discrete representation G of G(η) can be expected to
be indistinguishable for practical purposes from those obtained using the approximation
Ĝ(η). To find the left-hand endpoint ylow such that α = Ĝ(ylow), identify the index r for
which the points (y(r), pr) and (y(r+1), pr+1) satisfy

pr ≤ α < pr+1.

Then, by inverse linear interpolation,

ylow = y(r) +
(
y(r+1) − y(r)

) α− pr

pr+1 − pr
.
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Input parameters
M Number of draws (equal to the number of Monte Carlo trials)
G Discrete representation of the distribution function for the output quan-

tity, where G = (y(1), . . . , y(M)), the model values sorted into non-
decreasing order

p Coverage probability (e.g., 0.95)
Output parameters

ylow, yhigh Endpoints of the shortest 100p % coverage interval for the output quan-
tity, given by [y(r∗), y(r∗+q)], where q = pM , if pM is an integer, or
the integer part of pM + 1/2, otherwise, and r∗, an integer between 1
and M − q, is chosen so that for r = 1, . . . ,M − q, y(r∗+q) − y(r∗) ≤
y(r+q) − y(r)

Table 25: Shortest coverage interval obtained from a discrete representation of the distribu-
tion function for the output quantity.

Similarly, the upper endpoint yhigh is calculated from

yhigh = y(s) +
(
y(s+1) − y(s)

) p+ α− ps

ps+1 − ps
,

where the index s is identified to satisfy

ps ≤ p+ α < ps+1.

The shortest coverage interval can generally be obtained computationally from Ĝ(η) by
determining α such that Ĝ−1(p+α)− Ĝ−1(α) is a minimum. A straightforward approach
to determining the minimum is to evaluate Ĝ−1(p+ α)− Ĝ−1(α) for a sufficient number
of choices {αk} of α between zero and 1−p, and to choose that value α` from the set {αk}
yielding the minimum value from the set {Ĝ−1(p+ αk)− Ĝ−1(αk)}.

5.8 Sensitivity analysis

In the application of a Monte Carlo method there is no immediate counterpart of a sensitiv-
ity coefficient (Section 4.2) since the Monte Carlo procedure operates in terms of the actual
non-linear model rather than a linearized counterpart. Recall that with a linear model the
sensitivity coefficients “reproduce” linear effects, and for a non-linear model the sensitivity
coefficients provide first-order information. Therefore, those practitioners accustomed to
the GUM uncertainty framework may find the absence of sensitivity coefficients discon-
certing.

It is possible and very straightforward, however, to adapt the Monte Carlo procedure such
that it provides information that in a sense constitutes a non-linear counterpart of a sensi-
tivity coefficient. Consider holding all input quantities but one, say Xk, at their nominal
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values. In this setting the model effectively becomes one having a single input quantity,
viz., Xk. Sample values randomly from the PDF for this input quantity and determine a
discrete representation for the distribution function of the output quantity with respect to
Xk. The standard deviation ûk(y) evaluated in terms of this discrete representation is taken
as an approximation to the component of the standard uncertainty u(y) corresponding to
Xk.

The use of “non-linear” sensitivity coefficients in place of “linear” sensitivity coefficients
permits individual non-linear effects to be taken into account. A “non-linear” sensitivity
coefficient ĉk is defined by

ĉk =
û(yk)
u(xk)

.

It will be equal to the magnitude |ck| of the “linear” sensitivity coefficient ck in a case
where the model is linear in Xk, and be close to its value when the non-linearity with
respect to Xk is negligible. When ĉk is appreciably different from ck the non-linearity
effect may noticeably influence the standard uncertainty u(y). Thus, the deviation of û(yk)
from u(yk) = cku(xk) can be used as an approximate measure of the influence of model
non-linearity with regards to Xk alone.

The sensitivity coefficients so obtained are not generally to be taken in conjunction with
the standard uncertainties associated with the estimates of the input quantities as the only
contributions to the standard uncertainty associated with the estimate of the output quantity.
There will be further contributions arising from any interaction (i.e., non-additive) terms in
the model.

Table 26 specifies the calculation of a non-linear sensitivity coeficient relating to the input
quantity Xk using the Monte Carlo procedure.

5.9 Adaptive Monte Carlo procedure

A basic implementation of an adaptive Monte Carlo procedure is described as follows. It is
based on carrying out an increasing number of Monte Carlo trials until the various quantities
of interest have stabilised in a statistical sense. A quantity is deemed to have stabilised if
twice the standard deviation associated with the estimate of the quantity is less than the
degree of approximation required in the standard uncertainty u(y).

A practical approach consists of carrying out a sequence of Monte Carlo calculations, each
containing a relatively small number, say Madap = 104, trials.16 For each Monte Carlo
calculation in the sequence, y, u(y) and the endpoints of a 95 % coverage interval are

16It is recommended that each sequence of calculations be performed using the same random number gen-
erator (albeit using a different part of the generated sequence) or two or more independent generators. This is
because the statistical properties of a random number generator are defined “within” sequences and not “be-
tween” sequences (as, for example, two sequences obtained from the same number generator may overlap even
if initialised with different seeds).
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Input parameters
M Number of draws (equal to the number of Monte Carlo trials)
yk Model values (yk

1 , . . . , y
k
M ) obtained by evaluating the measurement

model for each of the M draws xk
r obtained by holding all input quan-

tities but one, Xk, at their nominal values and sampling from the PDF
gk(ξk) for Xk

u(xk) Standard uncertainty associated with the estimate xk of Xk

Output parameters
ûk(y) Component of the standard uncertainty u(y): the standard deviation of

the model values, defined by

û2
k(y) =

1
M − 1

M∑
r=1

(yk
r − yk)2

where

yk =
1
M

M∑
r=1

yk
r .

ĉk Non-linear sensitivity coefficient, defined by

ĉk =
û(yk)
u(xk)

.

Table 26: Sensitivity analysis using a Monte Carlo procedure.
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formed from the results obtained, as in Sections 5.5 and 5.7. Denote by y(h), u(y(h)), y(h)
low

and y(h)
high the values of y, u(y) and the left- and right-hand endpoints of the 95 % coverage

interval for the hth member of the sequence.

After the hth Monte Carlo calculation (apart from the first) in the sequence, the arith-
metic mean of the values y(1), . . . , y(h) and the standard deviation sy associated with this
arithmetic mean are formed. The counterparts of these statistics for y are determined
for u(y), ylow and yhigh. If the largest of 2sy, 2su(y), 2sylow

and 2syhigh
does not exceed

the degree of approximation required in u(y), the overall computation is regarded as hav-
ing stabilised. The results from the total number of Monte Carlo trials taken are then used
to provide the estimate of the output quantity, the associated standard uncertainty and the
coverage interval for the output quantity.

5.10 Multivariate Monte Carlo procedure

The treatment described in Sections 5.4–5.9 applies to univariate real models. It can
straightforwardly be adapted to apply to multivariate or complex models. There is not,
however, a ready counterpart of a coverage interval.

The multivariate model is
Y = f(X).

M draws xr of the input quantities X are taken as before. For each xr, evaluate the model
as previously, except now the output values yr = f(xr) are m× 1 vectors.

Assemble these output vectors into an m×M matrix:17

Ψ = (y1, . . . ,yM ).

From this matrix the uncertainty matrix Vy associated with estimates y of the output quan-
tities Y is calculated from

Vy =
1

M − 1
Ψ ′(Ψ ′)T,

where Ψ ′ is Ψ corrected for the sample means over all M trials, i.e., with the arithmetic
mean of the jth row subtracted from all elements in that row, for j = 1, . . . ,M . Table 27
specifies the evaluation of the uncertainty matrix Vy in terms of the vectors yr, and indicates
the input and output parameters necessary for its determination.

This uncertainty matrix contains (generally a more reliable estimate of) the information
that would be delivered by a linear analysis such as the GUM uncertainty framework. (In
fact, it provides more than the GUM uncertainty framework, since that procedure does not
in general cover multivariate models.) The matrix Ψ provides much richer information,
however, in the following sense. Any column of Ψ corresponds to the values of the output

17The symbol Ψ is (reluctantly) used to denote the matrix of y-vectors, since Y is used to denote a scalar
output quantity and Y a vector output quantity.
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Input parameters
m Number of output quantities
M Number of draws (equal to the number of Monte Carlo trials)
Ψ m×M matrix containing the model output values yr, i.e.,

Ψ = (y1, . . . ,yM ).

Output parameter
Vy Uncertainty matrix associated with estimates y of the output quantities

Y , defined by
1

M − 1
Ψ ′(Ψ ′)T,

where Ψ ′ is Ψ corrected for the sample means

Table 27: Uncertainty matrix associated with estimates of a multivariate output quantity.

quantities for one choice (draw) of the input quantities. Any (scalar) derived quantity can
be determined from this single set of output values. This quantity can be calculated for all
columns, the resulting 1 ×M row vector being used to provide a discrete representation
of the distribution function for that quantity (as in Section 5.6). In particular, the discrete
representation can be used to provide a coverage interval for the derived quantity (as in
Section 5.7). Another quantity could be so introduced and the two row vectors used to
compute any statistics required (mean, median, etc.) and the pair of vectors used to estimate
correlation effects. Thus, the matrix Ψ is a very valuable array, being the basis of almost
unlimited statistical information.18

6 Validation of the GUM uncertainty framework

The GUM unceertainty framework has some limitations [3, 12]. Although the procedure
can be expected to work well in many circumstances, it is generally difficult to quantify the
effects of the approximations involved, viz., linearization, the Welch-Satterthwaite formula
for the effective degrees of freedom and the assumption that the output quantity is Gaussian
(i.e., that the Central Limit Theorem is applicable). Indeed, the degree of difficulty of
doing so would typically be considerably greater than that required to apply a Monte Carlo
method. Therefore, since these circumstances cannot readily be tested, any cases of doubt
should be validated. To this end, since the propagation of distributions is more general, it
is recommended that both the GUM uncertainty framework and the Monte Carlo approach
are applied and the results compared. If the comparison is favourable, the GUM uncertainty

18Note, however, that consideration is not given to using the matrix Ψ to obtain a discrete representation
of the (joint) distribution function for the (multivariate) output quantity Y . This is in contrast to the case of a
univariate output quantity Y (Section 5.6).
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framework can be used on this occasion and for sufficiently similar problems in the future.
Otherwise, consideration can be given to using a Monte Carlo method instead.

Specifically, it is recommended that the two steps below and the following comparison
process are carried out.

1. Apply the GUM uncertainty framework to yield a 95 % coverage interval y ± U(y)
for the output quantity.

2. Apply a Monte Carlo method to yield the standard uncertainty u(y) associated with an
estimate of the output quantity and the endpoints ylow and yhigh of a 95 % coverage
interval for the output quantity.

A comparison procedure is based on the following objective: determine whether the cover-
age intervals obtained by the GUM uncertainty framework and a Monte Carlo method agree
to a stipulated degree of approximation. This degree of approximation is assessed in terms
of the endpoints of the coverage intervals and corresponds to that given by expressing the
standard uncertainty u(y) to what is regarded as a meaningful number of significant decimal
digits.

The procedure is as follows:

1. Let nndig denote the number of significant decimal digits regarded as meaningful in
the numerical value of u(y). Usually, nndig = 1 or nndig = 2. Express the value
of u(y) in the form a × 10r, where a is an nndig–digit integer and r an integer. The
comparison accuracy is

δ =
1
2
10r.

2. Compare the coverage intervals obtained by the GUM uncertainty framework and a
Monte Carlo method to determine whether the required number of correct digits in
the coverage interval provided by the GUM uncertainty framework has been obtained.
Specifically, determine the quantities

|y − U(y)− ylow|

and
|y + U(y)− yhigh|,

viz., the absolute values of the differences of the respective endpoints of the two
coverage intervals. Then, if both these quantities are no larger than δ the comparison
is favourable and the GUM uncertainty framework has been validated in this instance.

Example. The estimate of the output quantity for a nominally 100 g standard of mass [3,
Clause 7.2.2] is y = 100.021 47 g. The standard uncertainty u(y) = 0.000 35 g. Thus,
nndig = 2 and u(y) is expressed as 35 × 10−5 g, and so a = 35 and r = −5. Take
δ = 1

2 × 10−5 g = 0.000 005 g.
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7 Conclusions

Software specifications have been proposed for three aspects of uncertainty evaluation, viz.,

1. The GUM uncertainty framework [3]

2. A Monte Carlo method [2, 12] as an implementation of the propagation of distribu-
tions

3. Validation of the GUM uncertainty framework using a Monte Carlo method [2, 12].

The specifications are not intended to be mandatory but indicative of the software units that
are required for implementation of the above aspects.

The third edition of this document has been produced in the Software Support for Metrology
(SSfM) programme 2004–2007. It is anticipated that future editions, extending and revising
the document further and keeping it in line with the evolving SSfM best-practice guide [12],
will be produced in subsequent SSfM programmes.
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A Use of symbolic-algebra packages

This appendix is concerned with the use of a symbolic-algebra package to provide partial
derivatives of a model, from which sensitivity coefficients can be determined (Section 4.2).

Table 28 specifies for a univariate, explicit, real model, the use of a symbolic-algebra pack-
age to obtain sensitivity coefficients and indicates the input and output parameters associ-
ated with their determination. The input parameter f is used to specify the measurement
model.

Counterparts would apply for the other categories of measurement model.

Input parameters
N Number of input quantities
f Function specifying the model Y = f(X) in terms of the input quantities

X = (X1, . . . , XN )T

x Column vector (x1, . . . , xN )T of estimates of the input quantities X .
Some packages may not be able to make use of x in that they return
algebraic expressions for (∂f/∂X1, . . . , ∂f/∂XN ) rather than these ex-
pressions evaluated at X = x

Output parameters
f ′ Functions (f ′1, . . . , f

′
N ) representing algebraic expressions for

(∂f/∂X1, . . . , ∂f/∂XN ), the partial derivatives of first order of
the function f

C 1 × N vector of sensitivity coefficients, whose jth element is the par-
tial derivative ∂f/∂Xj of f(X) evaluated at X = x. Some symbolic-
algebra packages may produce just f ′ and it will be the user’s responsi-
bility to evaluate f ′ at X = x

Table 28: Sensitivity coefficients obtained using a symbolic-algebra package.

When a symbolic-algebra package system is used, care needs to be taken that the mathe-
matical expressions generated are stable with respect to their evaluation at the estimates of
the input quantities. For instance, suppose that (part of) a model is

Y = (X1 −K0)4,

where K0 is a specified constant. An automatic system might involve expansions such as
Taylor series to generate the partial derivative of Y in the form

∂Y

∂X1
= 4X3

1 − 12X2
1K0 + 12X1K

2
0 − 4K3

0 , (7)

and perhaps not contain a facility to generate directly or simplify this expression to the
mathematically equivalent form

∂Y

∂X1
= 4(X1 −K0)3, (8)
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that would typically be obtained manually.

Suppose the estimate of X1 is x1 = 10.1 and K0 = 9.9. The value c1 of the resulting
sensitivity coefficient is 4(x1 − K0)3 = 0.032, correct to two significant figures. Both
Formulae (7) and (8) deliver this value to this number of figures. The second, more compact,
form is, however, much to be preferred. The reason is that Formula (8) suffers negligible
loss of numerical precision when it is used to evaluate c1, whereas, in contrast, Formula (7)
loses figures in forming this value. To see why this is the case, consider the contributions
to the expression, evaluated and displayed here to a constant number of decimal places
(corresponding to seven significant figures in the contribution of greatest magnitude):

4x3
1 = 4121.204,

−12x2
1K0 = −12118.79,

12x1K
2
0 = 11878.81,

−4K3
0 = −3881.196.

The sum of these values constitutes the value of c1. To the numerical accuracy held, this
value is 0.028, compared with the correct value of 0.032. The important point is that a value
of order 10−2 has been obtained by the sum of positive and negative values of magnitude
up to order 104. Almost inevitably, a loss of some six figures of numerical precision has
resulted, as a consequence of subtractive cancellation.

For different values of x1 and K0 or in other situations the loss of figures could be greater
or less. The concerning matter is that this loss has resulted from such a simple model.
The effects in the case of a sophisticated model or a multi-stage model [12] could well be
compounded, with the consequence that there are dangers that the sensitivity coefficients
formed in this way will be insufficiently accurate. Therefore, care must be taken in using
sensitivity coefficients that are evaluated from the expressions provided by some software
for algebraic differentiation. Such a system, if used, should evidently be chosen with care.
One criterion in making a choice is whether the system offers comprehensive facilities for
carrying out algebraic simplification, thus ameliorating the danger of loss of figures. Even
then, some form of validation should be applied to the numerical values so obtained.19

19Numerical analysis issues such as that discussed are addressed as part of the numerical analysis project of
the SSfM programme [9].
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B Use of finite-difference formulae

This appendix is concerned with the use of a finite-difference formula to provide partial
derivatives of a model, from which sensitivity coefficients can be determined (Section 4.2).

Numerical approximations to the values of derivatives can be obtained using finite-differences
techniques. Given a value i (1 ≤ i ≤ N ), set all Xk = xk, apart from Xi, i.e., hold all input
quantities, apart from the ith, at their nominal values. Denote the resulting function of Xi

by fi(Xi).

A typical finite difference approximation to ∂Y/∂Xi evaluated at x is

∂Y

∂Xi

∣∣∣∣
X=x

≈ fi(xi + δi)− fi(xi)
δi

,

where δi is a “suitably small” increment in xi (see below). Note that fi(xi) ≡ f(x) will
already have been formed in evaluating the model at the estimates x of the input quantities.

The approximation can be perceived as follows. Consider the graph of fi(Xi). The formula
gives the gradient of the chord joining the points (xi, fi(xi)) and (xi + δi, fi(xi + δi)).
This gradient approximates the gradient of the tangent at (xi, fi(xi)) to the graph of the
function, which is of course the required derivative.

The choice of δi is important. If it is too great, the formula gives a large approximation
error, i.e., the tangent and the chord point in appreciably different directions. If it is too
small, the formula gives a large subtractive cancellation error, since the values of fi(xi) and
fi(xi + δi) will have many common leading figures.

A generally more accurate form, requiring an additional function evaluation, is

∂Y

∂Xi

∣∣∣∣
X=x

≈ fi(xi + δi)− fi(xi − δi)
2δi

.

For a given value of δi, the magnitude of the approximation error is generally reduced
using this form. Thus the value of δi can be larger, affording a better balance between
approximation and cancellation errors.

The GUM, in Clause 5.1.3, suggests the use of the second formula with δi = u(xi). This
choice can generally be expected to be acceptable, although there may be circumstances
when it is not.20

Table 29 specifies, for a univariate, explicit, real model, the use of a finite-difference formula
to obtain sensitivity coefficients, and indicates the input and output parameters associated
with their determination. The input parameter f is used to provide information about the
measurement model, and may take the form of a function for evaluating the model as in
Section 3, Table 5.

Counterparts would apply for the other categories of measurement model.
20For example, in cases where u(xi) is large and the non-linearity of f as a function of Xi is appreciable.

Page 54 of 60



Uncertainty evaluation NPL Report DEM-ES-010 (CMSC 40/04 revised)

Input parameters
N Number of input quantities
f Function specifying the model Y = f(X) in terms of the input quantities

X = (X1, . . . , XN )T

x Column vector (x1, . . . , xN )T of estimates of the input quantities X
u Column vector (u1, . . . , uN )T ≡ (u(x1), . . . , u(xN )T of standard uncer-

tainties associated with the estimates of the input quantities. This param-
eter would be used if the GUM recommendation for estimating the sensi-
tivity coefficients were adopted. It would not be used if a finite-difference
formula were used that attempted to provide a sensible compromise be-
tween the loss of accuracy due to truncation (approximation) error and
that due to subtractive cancellation

Output parameter
C 1 × N vector of sensitivity coefficients, whose jth element is an esti-

mate obtained using finite differences of the partial derivative ∂f/∂Xj

of f(X) evaluated at X = x

Table 29: Sensitivity coefficients obtained using a finite-difference formula.
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C Use of program differentiation techniques

Automatic differentiation (AD) is a set of techniques aimed at “differentiating the program”
that computes a function value [6, 17]. AD is an accurate method in the sense that AD
applies the rules of calculus in a repetitive way to an algorithmic specification of a function
and, in exact arithmetic, will produce the exact answer. Like symbolic algebra, AD relies
on the fact that any program, no matter how complex, can be broken down into a finite com-
bination of elementary operators such as arithmetic operations (e.g., +, −) and elementary
functions (e.g., sinx, cosx, ex) [5, 22].

There are two different approaches to differentiating program code: operator overloading
and source-to-source transformation. In the operator overloading approach, the basic arith-
metic operations and intrinsic functions are assigned routines that calculate the derivatives
of the operator output in addition to the calculation of the function value. The source code
of the function is progressively differentiated by calling these routines at the same time
as each operation is performed in the evaluation of the function. Operator overloading is
only allowed by a limited number of programing languages such as Fortran 90, ADA, C++
and Matlab. Examples of software packages that use this approach are ADOL-C [23] and
ADOL-F [39].

The source-to-source approach defines a new source code for calculating the derivatives
explicitly obtained from the program function evaluation source code. However, the imple-
mentation of this method requires considerable programming effort. Examples of software
packages that use this approach are ADIFOR [4] and ODYSSEE [18].
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D Use of Kahan summation

The natural way to evaluate, for example, the summation

S =
M∑

r=1

yr

is recursively, i.e., by the following procedure:

S = 0
for r = 1 : M

S = S + yr

end

When implemented using floating-point arithmetic the computed result Ŝ will differ from
the mathematical result S by an amount E that is the result of rounding errors associated
with each floating-point operation (of which there will be many if M is large). Alternative
procedures for undertaking the summation are available and have been designed with the
aim of reducing the magnitude of E [25]. One such procedure is Kahan summation [26].

Suppose a and b are floating-point numbers with |a| ≥ |b|, and let ŝ denote the floating-point
sum of a and b:

ŝ = fl(a+ b).

Then, the floating-point value ê:

ê = fl(−(((a+ b)− a)− b)) = fl((a− ŝ) + b)

is an estimate of the error (a + b) − ŝ. Kahan’s summation procedure uses this result to
apply a correction ê at every step of a recursive summation procedure for evaluating S. The
procedure takes the following form:

S = 0
e = 0
for r = 1 : M

a = S
b = yr + e
S = a+ b
e = (a− S) + b

end

The method has two weaknesses: ê is not necessarily the exact correction and the addition
b = yr + e is not performed exactly. Nevertheless, the use of the procedure brings a benefit
in the form of an improved error bound compared with that for the (basic) recursive scheme
for evaluating S [25].
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E Updating procedure in an implementation of a Monte Carlo
method

A consideration for an implementation of a Monte Carlo method, as described in Section
5, is the need to store large quantities of data and to perform numerical operations on that
data. For a univariate, real model, an implementation of the method requires

• evaluating M model values and storing those values (Section 5.4)

• evaluating the arithmetic mean and standard deviation of the M values to provide the
estimate of the output quantity and the associated standard uncertainty (Section 5.5)

• sorting the M values, and storing the sorted values, to provide a discrete representa-
tion of the distribution function for the output quantity (Section 5.6)

• evaluating a coverage interval in terms of the discrete representation (Section 5.7).

An approach is described here that does not require all M model values to be stored at the
same time. The approach is based on expressing the results (including the estimate of the
output quantity, associated standard uncertainty, etc.) for M0 +Mseq Monte Carlo trials in
terms of the results forM0 trials andMseq additional model values. The procedure is applied
iteratively starting with M0 = 0. The approach only requires that the Mseq model values
are stored, where Mseq will generally be small compared to the total number M required,
and avoids the need to sort the complete set of M model values. It is also straightforward
to integrate the approach with the adaptive Monte Carlo procedure described in Section 5.9
by taking Mseq = Madap.

Suppose M0 Monte Carlo trials have been undertaken, and the corresponding model values
y0,r, r = 1, . . . ,M0, are summarised by the arithmetic mean

y0 =
1
M0

M0∑
r=1

y0,r,

the variance

u2(y0) =
1

M0 − 1

M0∑
r=1

(y0,r − y0)2,

and the histogram {Bk, h0,k : k = 1, . . . , b} (see Tables 21 and 22).

Suppose a further Mseq Monte Carlo trials are undertaken giving model values yr, r =
1, . . . ,Mseq. Then, the arithmetic mean of the combined set of M0 +Mseq model values is

y = y0 +
1

M0 +Mseq

Mseq∑
r=0

(yr − y0), (9)
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and the variance is

u2(y) =
1

M0 +Mseq − 1

(M0 − 1)u2(y0) +M0(y − y0)2 +
Mseq∑
r=0

(yr − y)2
 . (10)

For the evaluation of y and u2(y) using Formulae (9) and (10) it is not necessary to store the
model values from the first M0 trials, but only the arithmetic mean y0 and variance u2(y0)
evaluated in terms of those values.

The histogram for the combined set of model values can similarly be updated. The new
“heights” of the bars of the histogram corresponding to the bins Bk, k = 1, . . . , b, are
given by

hk = h0,k +
card({yr ∈ Bk : r = 1, . . . ,Mseq})

ηk − ηk−1
, k = 1, . . . , b. (11)

In cases where there are model values yr satisfying yr < η0 or yr > ηb, those values do not
lie in any of the bins Bk and are, consequently, not counted in the application of Formula
(11). It is necessary to store separately those values in order to determine a histogram for
the complete set of model values.

Let yL
r , r = 1, . . . ,ML, denote the values to the left of η0 and yR

r , r = 1, . . . ,MR, those to
the right of ηb. Then, additional bars in the histogram for the complete set of model values
are defined by the bins

B0 = [min{yL
r , r = 1, . . . ,ML}, η0)

with height

h0 =
ML

η0 −min{yL
r , r = 1, . . . ,ML}

,

and
Bb+1 = (ηb,max{yR

r , r = 1, . . . ,MR}]

with height

hb+1 =
MR

max{yR
r , r = 1, . . . ,MR} − ηb

.

Provided a “sensible” (initial) choice of bins Bk, k = 1, . . . , b, is made, it can generally be
expected that the numbers ML and MR of model values not contained in (one of) the bins
are small. An approximation to the PDF for the output quantity is then given by the scaled
histogram defined by {Bk, gk : k = 0, . . . , b+ 1}, where

gk =
hk

M
, k = 0, . . . , b+ 1.

Let yL
(r), r = 1, . . . ,ML, and yR

(r), r = 1, . . . ,MR, denote the values yL
r and yR

r sorted into
non-decreasing order. For the values

G =
(
yL
(1), . . . , y

L
ML
, η0, . . . , ηb, y

R
(1), . . . , y

R
MR

)
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of the output quantity, assign cumulative probabilities

p =

(
1/2
M

, . . . ,
ML − 1/2

M
, g0, . . . ,

b∑
k=1

gk,
M −MR + 1/2

M
, . . . ,

M − 1/2
M

)
.

An approximation to the distribution function for the output quantity is then given by the
piecewise-linear function joining the points (Gk, pk), k = 1, . . . ,ML + (b + 1) + MR.
A coverage interval for the output quantity can be formed from this approximation to the
distribution function in the manner described in Section 5.7.
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