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The advantage of being correct is that you do not need to change your
mind.J K Galbraith, BBC Interview, 10th January 1996.

1 Introduction

The original introduction of Interim Defence Standard 00-55 [13] created a controversy
concerning the industrial application of Formal Methods which does not seem to have
been resolved. Here, I am not concerned with the specifics of 00-55, but with the
application of ‘Formal Methods’ in critical systems.

The IEE and BCS have a common working group on the issue of Formal Methods
with the aim of attempting to obtain a better consensus. Without such a consensus,
discussions on the issue seem to be inconclusive and lack focus. The starting point
for the IEE/BCS working party was an IEE brief [8], which was felt by BCS to be
inadequate. Rather than make such a negative comment, the desire was to produce
something which would be more incisive — but this has not yet happened, although
a serious attempt has been made. This paper is a personal contribution to the debate
which I hope will eventually allow the Institutions to produce effective guidance on
this topic, that is when and to what extent, ‘Formal Methods’ should be used.

This paper is concerned with using methods like VDM-SL and Z to specify discrete
systems of a general nature. More specialized methods which are formal but have
a smaller range of application have often been more successful in their application.
For instance, the use of SDL in the specification of network protocols has resulted in
techniques for the automatic generation of test cases which has been very successful in
the quality assurance of network software. These more specialised applications are not
considered here.

If I am asked for a single phrase to encapsulate my views on Formal Methods,
I would quote John McDermid’s remark: ‘Oversold and under-used’ [14]. Unfortu-
nately, this remark merely highlights the dilemma: how can formal methods be sold
more effectively so they are not under-used? In this paper, I consider this problem al-
most entirely from the point of view of producing safety systems involving software. I
do not have personal experience in other high integrity areas, such a security, although
I suspect the situation is similar.

As part of the IEE/BCS working group activities, a workshop was arranged at IEE
with participation by invitation. The attendance was good, the discussion lively, but
I did not feel that the resulting write-up [21] did result in the advice which I think
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industry should expect from the Institutions. This isnot a criticism of the organisers,
nor of the excellent write-up by Muffy Thomas, but just the way the event turned out.

All too often, the discussion on Formal Methods seems to be of a method seeking
an application, while in industry the requirement is to produce the most cost-effective
solution to a problem. Hence the key issue is to determine under what circumstances
does the application of Formal Methods provide a cost effective development route.

The confusion about the applicability of Formal Methods is reflected in the stan-
dards on the production of critical systems. This debate started with 00-55, but the
international consensus standards have different views as follows:

00-55. This standard is for the procurement of UK defence software which is safety
critical. It takes a very prescriptive view of applying Formal Methods, with
animation and formal code verification.

DO-178B. This standard [16] is guidance for civil avionics software to enable aircraft
containing safety related software to be certified by the appropriate Government
agencies.

It takes an ambivalent view in which the use of Formal Methods is not required,
but can be applied to gain additional assurance. In the USA, the Formal Meth-
ods expert, John Rushby undertook a study of the implications of DO-178B for
both FAA and NASA. Not surprisingly, John Rushby’s excellent study is more
positive on Formal Methods [19]. DO-178B does call for substantial effort to be
placed in analysis, and it is quite clear that many mathematically-based methods
have a direct bearing on this.

IEC 61508. This generic standard [7] is gaining acceptance in many industries outside
the civil avionics/nuclear sectors which do not have their own standard.

It classifies numerous software engineering methods in an informative annex.
For the more critical systems, Formal Methods are “Highly Recommended”
which requires that the method is used, or a justification made for not doing
so. In essence, the use of Formal Methods is almost entirely in the hands of the
independent assessor.

ITSEC. This security standard [9] is written from a very different perspective than
the above. As the title indicates, the substance is that ofevaluation, rather than
security itself.

For levels above E3, Formal Methods are effectively mandated.

MISRA. These automotive guidelines [15] have been produced recently by an indus-
trial collaborative effort.

In general, the guidelines take the view that Formal Methods is an immature
‘emerging technology’1 which cannot necessarily be applied in the automotive
industry. This, in my view, is unduly negative and some of the specific points
raised in the guidelines are considered later.

Obviously, an international consensus standard requires agreement. There is no
doubt that we do not have a consensus in this area, and therefore no clear advice or
set of requirements can be expected. Indeed, it is hard to justifyrequiring the use of
Formal Methods without a clearer statement of the objectives to be satisfied and the
total development context, which is difficult to specify adequately in a standard.

1See section 5.5.
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2 The traditional view

The traditional means of applying formal methods, at least in the UK, is to start by
producing a formal specification in a suitable mathematical notation, almost always
VMD-SL or Z. This is the approach specified in 00-55, and hence is even taken by
some to provide the definition of Formal Methods. The termtraditional is used in the
note to specify this method of applying Formal Methods.

The immediate problem with this approach is the validation of the formal specifi-
cation2. This is a non-trivial problem and all those that apply this method need to give
very serious attention to the validation and how the validation process can be justified.

We have four potential methods of validation (which are not incompatible) as fol-
lows:

Use of tools.Tools can process a formal specification. However, their ability to detect
subtle errors is often very limited. Tools which check syntax and static semantics
are clearly useful, but the ‘difficult’ bugs tend to arise from deep semantic prop-
erties of the problem domain or the program specification3. It is highly unlikely
that automated tools will ever be able to provide much assistance in this area.

Hence I conclude thatonlyusing tools as a validation method is inappropriate.

Animation. The standard 00-55 calls for an animation of the specification and a pro-
cess of validation via that animation4. There are several problems here.

Firstly, in many cases, the most elegant specification is implicit and cannot be
directly executed. If such a form of specification is used, then another refine-
ment stage is need to produce an executable specification. Incidentally, there is
a danger with animation that developers will choose to produce an executable
specification which is harder to validate by other means, in order to remove the
need for another development step. An executable specification can also suffer
from implementation bias, potentially encouraging an implementation method
which may not be appropriate for the final system. This point is covered well in
Jones’ book [10], but developers need to ensure that their process has a review
step to detect the problem.

Secondly, animation is merely validation by program execution (ie, testing). This
is severely limited in the ability to detect errors unless the specification is very
simple, or tools are used to ensure that all aspects of the specification are ani-
mated. For data-driven systems, it is clearly essential that realistic test data is
constructed, which can be a significant undertaking5.

Proof. In this context, we are seeking confirmation that the specification adheres to
key properties. For instance, if a key safety requirement can be specified using
the entities within the formal specification (of the program), then one can, in

2John Rushby in [19] states: ‘.. the certifier and applicant will need to reach agreement on the technical
basis for validating formal specifications.’

3One bug in the specification of the STV algorithm [22] arose from using a ‘set’ when a ‘bag’ should
have been used — not easy to detect.

4A means of checking software by executing a prototype, which in 00-55, is derived from a formal
specification.

5An interesting error has occurred recently in the STV implementation that was used for the 1995 Synod
elections. The full details are yet to be published, but an ambiguity in the English was not detected during
production of the VDM-SL (can one expect to do this?). The errorwouldhave been detected with test cases
at about the branch level, but in this case, only statement coverage level testing had been undertaken.
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principle, prove that this requirement will be satisfied by an implementation (of
that specification). If this proof cannot be undertaken, then either the problem
is ‘hard’, the proof tools are inadequate, or the specification is inadequate in
not ensuring this key requirement will be satisfied. In general this is necessary,
but not sufficient; there is no guarantee that functional refinement preserves the
safety properties.

In practice, key requirements usually involve part of the external environment to
the program (say, the railway layout for a signalling system), and thus it is not
possible from the program specification alone to ensure the system satisfies these
key requirements.

Software Inspection. By Software Inspection, I mean a controlled manual review pro-
cess, a good example of which is given in [5], and is commonly known as Fagan
inspection. A central problem with a formal specification is that the intended
user community cannot typically review the mathematical part of the specifica-
tion. This implies that their review will depend upon the natural language ex-
planation, with all the attendant ambiguities. One approach to this problem is to
re-write (at least in part) the informal specification from the formal specification.

In some cases, users have taken the trouble to learn VDM or Z in order to be
able to review key specifications in depth. Failing this, there is a need to perform
more detailed validation if high confidence is required in the specification.

Note that the software inspection process compares input and output documents.
In this case, it would be an informal specification against a formal one. One
would expect that defects would be recorded in the informal specification which
should be corrected.

In some contexts, the use of this traditional approach will strengthen the assurance
of the specification-to-code step, but the weakest link is the original specification (of
the software component). Hence the optimal approach would be to put additional ef-
fort into the specification stage (which may involve Formal Methods, but not of the
traditional type).

The training issue of the use of Formal Methods cannot be ignored. Reading a
formal specification is much easier than writing one, and this should be reflected in the
staff profiles.

Any claims made by organisations for the benefits of Formal Methods must be seen
in the context of their staff expertise and development skills. Unfortunately, it is not
easy to understand the approach taken by companies, still less to compare one company
with another.

Some academics maintain (with some justification) that no software engineering
development technique has been justified by suitably controlled statistical testing and
therefore no claims can be made for the use of such methods. This criticism can easily
be made against claims for the use of Formal Methods. I do not think it is reasonable to
expect such controlled testing of software engineering methods, since the cost would be
huge, and no other branch of engineering accepts the need for testing design methods
(as opposed to testing designs which software engineering already involves). In civil
engineering, claims are made that the structure is designed to last for 100 years, even
when the materials used are novel, and I think this entirely reasonable. Of course, the
claims must be treated as such, rather than statements of fact, and must be open to
professional review.
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One of the fundamental problems we have with safety systems is that the reliability
requirements are much higher than can be justified by conventional testing [11]. In this
context, Formal Methods appear to offer a magic wand, since a proof of an algorithm
can verify the absence of some forms of bugs. The over-selling comes in at this point,
which often ignores the following:

• Any proof of the code will assume the specification is flawless.

• Many other requirements must be satisfied before the code proof can be directly
applied to a real system, such as ensuring the compiler, operating system or
processor chip is fault-free.

• The software used to conduct proofs is very complex in itself, which therefore
requires justification (see the topic of ‘Tool qualification’ in [16]).

• There is no need to strengthen the strongest link in the chain. In fact, there is
plenty of evidence that the specification is often the weak link in the chain. (See
below for more on this.)

One underlying principle is that of ‘divide and conquer’. Hence one would like
the production of a formal specification to be a review point of some significance (at
least after its validation). Indeed, an attractive property of 00-55 is that the develop-
ment is naturally divided into two: producing the validated formal specification, and
then producing the final system based upon that. One can therefore reasonably ask if
the customer would be prepared to ‘sign-off’ the Formal Specification to mark a con-
tractual milestone. Unfortunately, there is substantial reluctance to do this, because
typically the customer does not have the expertise necessary to judge the adequacy of
the Formal Specification or its validation. This problem is fundamental: how can a
customer gain confidence in a process that he/she cannot validate?

Another aspect of the ‘divide and conquer’ principle is that one would like the pro-
duction of the formal specification to be a good fraction of the total effort required. If
the Formal Specification is very easy to produce, then all the hard work must come
later. Alternatively, if producing the formal specification is too like the main develop-
ment work, then one has merely moved the effort to another part of the life-cycle (with
perhaps little benefit). Below, we give examples of both extremes:

If one specified the RSA public key encryption algorithm [18] formally, the result
would be trivial and of little interest (it is just one formula) — all the hard work is re-
fining that into an implementation. Indeed, I am not sure that that particular refinement
can be formally verified, since it requires proof of Knuth’s multi-length arithmetic rou-
tines (or similar routines). This issue illustrates another problem. In the area of math-
ematics, including numerical analysis, classical mathematical proofs are used, rather
than the mechanical verifiers used in computing. Reliance is only placed upon such
mathematical proofs after papers have been reviewed in appropriate journals. Review-
ing is a labour-intensive process, and hence mechanical verification seems the obvious
route. Knuth’s book contains mathematical proofs of his algorithms, but I believe that
mechanising these proofs would be a significant undertaking. In any case, many nu-
merical algorithms have not been mechanised, which implies that formal verification
of computer programs using floating point is not currently practical.

As another example, an algorithm to conduct STV elections has been formally
specified [22]. In this case, the specification is virtually identical to an implementa-
tion (it is an implementation in VDM-SL). Hence the refinement is trivial, and all the
implementation would has been transferred to the specification!
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Although these two examples above are extremes, in advocating the use of formal
methods in the traditional manner, I would expect to have a clear understanding of
where in this spectrum the application is supposed to lie.

An impressive traditional application of Formal Methods is that undertaken by
GEC-Alsthom for railway signalling using the B-Method [2]. It is clear that the ap-
proach taken has been to apply the method rigorously due to the criticality of the ap-
plication, in spite of difficulties encountered in undertaking program proof. My view
is that it is difficult to see how this method can be generally recommended due to not
only the problems of proof (which need not be undertaken for less critical applica-
tions), but because the system is designed for proof, and so not undertaking this results
in a less natural development. As an example, the GEC system has to compute the
energy of the train, which due to the nature of the B-Method is done using integers.
This requires an extra refinement step from the application domain, unlike a similar
calculation performed within the Boeing 777 aircraft which uses Ada fixed point.

Another equally impressive example of the use of Formal Methods, but with little
proof, is that of the CDIS project [6]. Proof was used to validate a key local area
network protocol, but this could probably have been undertaken even if the rest of the
system was not formally specified. Superficially, this example is a better indication
of general industrial use, since code proof must be the exception rather than the rule,
even for higher integrity systems. However, I think there are some reasons why Praxis’
experience might not provide the basis of a general recommendation:

1. The initial design was undertaken by staff with good VDM-SL expertise, al-
though initially only a small fraction of the implementation team had reading
knowledge of VDM-SL.

2. The overall structure of the specification was not top-down, which would be hard
to avoid with their design approach.

3. The overall percentages of resources spent on design, code and test seemed little
different from more conventional development.

In my view, significant improvements can be made to the effectiveness of applying
Formal Methods by applying at the right level and with reduced scope. For instance, in
the STV case, Formal Methods were not applied to the input-output or data validation
issues.

My advice on this traditional application of Formal Methods is as follows:

1. If the weakest link in the development is likely to be the quality of the informal
specification, then youshouldeither produce a formal specification of the soft-
ware, or demonstrate by other means, such as an Inspection, that all likely faults
in the specification have been removed.

The important point here is that early on in the project, one should be able to
place substantial reliance upon the informal specification, either by a review, or
by its transliteration into a mathematical form. Obviously, you need confidence
in the mathematical formulation — it is very easy to formally specify the wrong
thing!

2. The specification resolution process should identify key properties of the soft-
ware, and issues which are secondary to the main software. If practical, a formal
specification should be produced of the area involving the key properties, while
leaving the secondary issues.
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3. Any formal refinement of the code should be undertaken on a highly selective ba-
sis. This process can be very expensive, which implies that the developer would
typically need to charge additionally for this, which in turn implies support from
the customer. (An interesting case for the justification of program proof is with
the B-Method for the Paris Metro, which enabled a safety case to be made to
allow the trains to be closer and hence increasing the throughput significantly.)

4. If there is any likely requirement for formal code refinement, then the develop-
ment process must be reviewed in detail against this, to ensure a smooth tran-
sition from the current development strategy. Serious consideration should be
given to developing software within a highly constrained environment, such as
that provided by SPARK [3, 23]. SPARK prohibits aliasing, and thus allows the
use of proof tools which would be impossible in other contexts.

One might add:beware of program proof — it is far too easy to prove the wrong
program correct!

Before leaving this traditional approach to the use of Formal Methods, we must
mention one misconception. It is often stated that Formal Methods cannot handle con-
current systems6, when what is really meant is that neither Z nor VDM-SL can model
concurrent systems7. In fact, LOTOS, Estelle and SDL can all handle concurrent sys-
tems and are widely used for this purpose.

We now turn to other uses of Formal Methods which appears to provide a better
opportunity in terms of the cost-benefit ratio.

3 Analysis versus design

In my view, the key issue for some systems is ‘the provision of strong engineering
arguments that a critical system will behave in an intended manner’ [4]. This situation
can arise for a number of reasons:

• The system is safety-critical, ie, a software failure could cause injury or death.

• The system has a high security rating is evaluated to, say above E3 in ITSEC [9].

• The customer demands high assurance (and one assumes is prepared to pay for
this).

• The system is business-critical in that a serious software fault could put the busi-
ness into liquidation.

• There is a high recall cost in relation to the selling price.

Since I was initially a mathematician, I find it inherently attractive to use mathe-
matics to support the ‘strong engineering arguments’. On the other hand, one needs
to be clear that the mathematical reasoning applied directly supports the arguments,
rather than being peripheral. I have known situations in which Formal Methods have
been applied to the ‘easy bit’ which has few risks, andnot applied to the area having
the highest risk of undetected errors.

6See [15], section 3.3.2.20
7Extensions of some mathematical methods can handle concurrency, such as RAISE which extend VDM-

SL.
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Seen in this light, it is clear that analysis of programs to determine that they will
operate as intended is vital. In consequence, the entire design process must be arranged
to make this feasible. Since one needs to know that the ‘arguments’ hold without
exception, static analysis is the obvious tool for high assurance. Unfortunately, the
form of analysis needed for critical code is almost always ‘deep’ in that it requires
semantic analysis of the program. For a discussion on the forms of static analysis, see
[24].

Two quite different problems arise at this point:

Contracting. As an example here, consider the Sizewell B primary protection sys-
tem. This was written by Westinghouse using a design which was 10 years old
when the system went live. The customer responsible for the system was Nuclear
Electric, but they had to convince the Nuclear Installations Inspectorate that the
100,000 lines of software was ‘safe’. Even though the reliability requirements
for the software were modest, obviously the NII needed some convincing. The
‘strong arguments’ included an analysis using MALPAS [17] of the software,
which was very expensive to undertake. If those requirements had been clear 10
years earlier, and it had been possible to relay those issues through the contrac-
tual chain, then no doubt the design would have been different.

Hence, issues like a long life-cycle, system designers subcontacting to software
experts and the lack of incisive standards in this area, makes it difficult to deliver
convincing ‘strong arguments’ cheaply.

System versus software.Software does not kill, but systems can. Hence the risk anal-
ysis needs to be at the system level. However, in very many systems, the com-
plexity and hence the major risk lies in the software. There is a danger that by
considering the software in isolation, it may not be possible to demonstrate the
acceptability of the system as a whole.

NPL is currently involved in marketing a tool which can be used to directly sup-
port the safety case for some systems [20]. For instance, SAAB have used this
software (Prover) to model part of the system and the control logic to show that
certain unsafe states cannot occur. To achieve this, one needs to identify the
critical parts, and model these in propositional logic. This can be quite demand-
ing, but in cases such as that SAAB aircraft undercarriage, the output directly
supports the safety case. An interesting application of this tool is in the design
validation of PLC systems [1]. Since PLC logic is quite simple, the modelling
of the software in the context of the system using propositional logic is quite
feasible. Proof of properties of this model then becomes a practical approach to
design validation.

Another area of tool support to demonstrate key properties is that of timing analy-
sis. Here, the safety requirement involves a non-functional requirement, i.e, tim-
ing, which should be capable of being traced through to the object and checked
by a suitable tool.

It seems to me that undertaking some forms of analysis can be a much more ef-
fective means of exploiting Formal Methods than the direct application to the software
design process which was considered above. However, retrospective analysis, as with
Sizewell, cannot be recommended.
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We now have a dilemma: given a specific requirement, how can we design the
system to ensure that mathematically-based reasoning can directly support the ‘strong
arguments’?

In the use of mathematical-based reasoning, we need to consider the cost-benefit
analysis and the other means of obtaining the necessary assurance. For instance, part
of the attraction of tools like Prover is that it can be used to show properties hold which
cannot be confirmed by testing, since the input space is too large.

4 Some conclusions

In attempting to arrive at some general conclusions, I re-read John Rushby’s excellent
report [19]. My conclusions are very similar, albeit with a UK slant.

1. I think Software Engineering needs to be using mathematically based methods
(of specification and analysis) much more than it is at the moment. It is hard to
see how high assurance can be provided effectively without this.

2. Due to the lack of skills in the more formal methods, one cannot expect wide-
spread use of Formal Methods throughout the entire life-cycle. This does not
mean that Formal Methods cannot provide substantial benefit to even the major-
ity of projects, since the application can be to critical sub-systems and properties.

3. Formal Methods should be applied to areas where conventional techniques are
inadequate. For instance, a system involving concurrency can easily have a de-
sign fault which would be very difficult indeed to locate by testing — hence
another approach is needed. Modelling systems using a Finite State Machine is
often quite simple, does not involve complex mathematics, and can provide the
basis for an analysis of the delivered software.

4. The attraction of Formal Methods when checked by proof is that informal ‘re-
views’ can be replaced by rigorous analysis. However, this can only apply to
those parts of the process which are formal. Unplanned external factors can
easily undermine the dependability of a system — formal proof of a railway sig-
nalling system comes to nothing if the system is not protected against vandals.

5. The traditional Z/VDM-SL approach seems to have inhibited the use of Formal
Methods in other ways8. Mathematical methods are ideal for the validation of ab-
stract models of systems; but to be effective, the models need to be much simpler
that the ‘code’. Of course, once such a model has been validated, there must be
an argument to show that the ‘code’ does follow that model, thus demonstrating
that the system has the required properties.

8John Rushby says: ‘Rather (than the traditional approach), the goal would be to establish that certain
properties hold, and certain conceptual faults are absent, in formal models of the basic mechanisms necessary
for safe operation of the system.’
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