

# The importance and significance of phase

#### **Pierre Gélat and David Humphreys**

Second Signal Processing Awareness Seminar Developing Good Practice in Metrology Applications 23<sup>rd</sup> June 2006 – NPL, Teddington, UK



 Consider linear, causal, time-invariant system with transfer characteristics H(ω) and impulse response h(t).

$$x(t) \longrightarrow h(t) \longrightarrow y(t)$$



# Phase and group delay

- The signal at the output of the system has a spectrum: Y(ω)=X(ω)H(ω)=X(ω)|H(ω)|e<sup>jφ(ω)</sup>
- In the time domain, each frequency component of the output y(t) is simply a delayed and amplitude-scaled version of the corresponding input signal frequency component.
- The group delay or envelope delay of the system is:  $\tau(\omega)=-d\phi(\omega)/d\omega$
- τ(ω) is the time delay that a signal component of frequency ω undergoes as it passes through the system



# The significance of phase

- Linear phase  $\rightarrow$  Pure delay
- Nonlinear phase → Each frequency component of the signal is delayed by a different amount as it passes through the system





 Hydrophone/amplifier magnitude and phase response requirements when estimating acoustic waveform pressure parameters



Hydrophone/amplifier magnitude and phase response

 Ultrasonic imaging remains the most rapidly growing medical imaging modality

- The main method of measurement and characterisation of medical ultrasonic fields propagating in water is through the use of calibrated hydrophones
- NPL provides a calibration of the magnitude response over the frequency range 1-20 MHz

How important is hydrophone phase information when estimating acoustic waveform parameter?





- Provide guidelines on importance of the hydrophone phase response when estimating key acoustic waveform parameters (p<sup>+</sup>, p<sup>-</sup>, t<sub>d</sub> and p<sub>i</sub>) which will feed into international standards
- Does data have to be corrected for phase?
- If not, what uncertainty does this give rise to?



Key acoustic pressure parameters

- Peak-positive acoustic pressure p<sup>+</sup>
- Peak-negative acoustic pressure p<sup>-</sup>
- Pulse-pressure-squared integral p<sub>i</sub>: time integral of the square of the instantaneous acoustic pressure in the pulse, integrated over the whole of the pulse
- Pulse duration  $t_d$ : 1.25 times the interval between the time when the time integral of the instantaneous acoustic pressure squared reaches 10% and 90% of its final value



Commercially available hydrophone investigated

- Marconi 25 μm film thickness, 0.5 mm element diameter bilaminar membrane hydrophone; response obtained from NPL hydrophone model [1].
- Account for uncertainties in magnitude and phase using a Monte Carlo simulation [2].
- Obtain uncertainties in acoustic pressure parameters for specified uncertainties in phase response.
  - [1]: Gélat PN, Preston RC and Hurrell A, "A theoretical model describing the transfer characteristics of a membrane hydrophone and validation", Ultrasonics, article in press.
  - [2]: M.G. Cox and P.M. Harris. The GUM and its planned supplemental guides. Accreditation and Quality Assurance, 8, 375-379, 2003.



# Membrane hydrophone response





#### Hydrophone output voltage waveform





### Schematic of deconvolution procedures





Procedure for evaluating effect of phase response on deconvolution

 Obtain Fourier transform of output voltage of hydrophone by knowledge of input pressure *p*(*t*) and hydrophone/amplifier transfer characteristics *H*(ω):

 $V(\omega) = H(\omega)P(\omega)$ 

• Pressure waveform can be estimated as follows:

$$\widetilde{p}_{1}(t) = F^{-1}\left(\frac{V(\omega)}{H(\omega)}\right)$$
$$\widetilde{p}_{3}(t) = F^{-1}\left(\frac{V(\omega)}{|H(\omega)|}\right)$$



$$\widetilde{p}_2(t) = F^{-1}\left(\frac{V(\omega)}{|H(\omega_0)|}\right)$$

#### Sample result of Monte Carlo simulation



