Progress Report from the HDR Brachytherapy Working Party

Margaret Bidmead

- HDR Ir-192 calibration service provided NPL since May 2004
- Primary standard irradiated with a Nucletron "classic" HDR IR-192 source
- Farmer thimble chambers and associated jigs
- Well chambers

- Working Party set up with representation from NPL/RT SIG/IPEM/BIR
- To provide a consistent implementation method to radiotherapy departments using a
- Code of Practice

- Edwin AIRD (Mount Vernon)
- Margaret BIDMEAD (Royal Marsden) Chair
- Chris LEE (Clatterbridge)
- Steve LOCKS (Newcastle General)
- Rebecca NUTBROWN (NPL)
- Thorsten SANDER (NPL)
- (Tony FLYNN (Cookridge))

REMIT

- Produce a Code of Practice for the dosimetry of an HDR Ir-192 source using an Ir-192 NPL-calibrated ionisation chamber
- Ensure the NPL standard can be disseminated in a consistent way to UK RT departments
- Consideration given to instrumentation and geometry to be used

How do we do it now?

Background

- Original/current recommendations published in a joint BIR/IPSM report in Dec 1992
- Used to enable the measurement of RAKR of an HDR Ir-192 source
- RAKR traceable to NPL via the heavily filtered 280kV xray quality factor
- Measurements carried out using a 0.6cc Farmer type chamber in a relatively scatter free jig
- BU cap used to exclude Auger electrons produced in source

3-4 readings 5 minutes each with source in 2 catheters either side of the chamber

• Check for correct source positioning prior to measurement

Primary calibration (Method A):

RAKR initially calculated from the following

RAKR (cGyh⁻¹) = Rdg x F_c x F_{ic} x F_{tp} x F_s x F_g x F_e x F_{is} x 3600/t

• Allow at least 20mins for temperature equilibration

2nd check (Method B)

Calculate a time to deliver a dose of 0.3Gy using measured RAKR Time set in treatment console

Different experienced physicist and different equipment

2. Calculation Of Equivalent Activity

 $A_e = \frac{RAKR}{\Gamma}$

where: -

A_e is the equivalentactivity(GBq) RAKR is the referenceair kerma rate (Gy h⁻¹ @ 1m) Γ is the specificair kerma rate constant (110µGy m² h⁻¹ GBq⁻¹) equivalent exposure constant 0.466 R m² h⁻¹ Ci⁻¹) **Problems/Dislikes with existing system**

- Time consuming measurement method
- Introduction of uncertainties
- Calculation of activity is prone to error

Problems/Dislikes with existing system

2° std calibration factor not specific to radiation source

Chamber dose gradient effect

Auger electron exclusion method

TABLE XVII. TYPE AND FREQUENCY FOR ACCIDENTS REPORTED IN BRACHYTHERAPY TREATMENTS

Accident caused by	Number of cases	
Dose calculation error	б	
Error in quantities and units	2	
Incorrect source strength	7	
Equipment failure	4	
Other	13	
Total	32	

Survey results from NPL/Working party Compiled by Steve Locks

Number and type of treatment unit:

Hospitals with HDR in UK and Ireland **Nucletron Classic** 14 Nucletron V2 11 Gammamed plus 2 Varisource 2 Beibig 9 Flexitron /Isodose control Several Nucletron V3's around now

30

Brachytherapy equipment used in the UK 2004

Site	Number of Centres	HDR	Remote afterloading LDR	Iridiu m	Iodine Seeds
Gynaecological	40	19	25	3	
Bronchus	10	10			
Head and Neck	10	2	1	7	
Prostate	16	2			15
Breast	5	3		2	

Calibration equipment (details from 20 centres):

Number of centres with Well chambers	
Standard Imaging 1000+	5
Nucletron SDS	3
PTW Freiburg 077091	1
PTW 33004	1

Other chamber possibilities:

PTW Sourcecheck

IVB1000

Types of Well Chamber: Standard Imaging HDR 1000+, Nucletron, PTW

Calibration equipment contd..

- Jigs for Farmer measurement:
- Nucletron jig 12
- In House jig 5
- Gammamed original 1
- Varian in-air jig
- Varian track stand

All centres use Farmer as 1° calibration Some use well chamber for stability checks

Calibrations at NPL

Farmer Chamber

- More time consuming
 More expensive!
- Jigs to be transported
- More correction factors required, more error possibility
- Low ionisation current

•Uncertainties 1.8%

• Greater positional uncertainty

Well Chamber

- Quicker and simpler
- Easy to transport
- High ionisation current

• However most centres only have one

•Uncertainties 1.3%

Recommend Well Chamber calibration

Issues with well chambers

- Effect of source type used for standard calibration
- Method of constancy check
- Saturation effects of well chambers at high currents
- Sweet spot of chamber
- Second, independent check of source
 Second independent check of source

Stability measurements

- Measured 5 sources
- Calibration using new factor as well as existing Farmer method
- Measurement corrected back to a reference date and time
- Repeatability measurements carried out on some sources
- Comparisons made between RAKRs

RAKR Stability analysis

Variation in Farmer chamber RAKR wrt manufacturer's RAKR for 5 different sources over a 14 month period Aug 2004 - Oct 2005

Variation in US Well Chamber RAKR wrt UK Well Chamber RAKR for 5 different sources over a 14 month period Aug 2004 - Oct 2005

Work in progress

Correction factor for different source construction

- Simpler to do for a Farmer calibration than well chamber
- Use MC simulation for both source types
- Calculate, from MC, calibration coefficients for NPL source and hospital source:

 $N_{K,2(Farmer)}$, $N_{K,1(Farmer)}$

Correction factors contd...

Could use similar MC simulation for well chambers

BUT

Need accurate information from manufacturers perhaps at first look at the Classic and the most different source:

Rebecca Nutbrown working on this

Correction factors contd...

Alternatively carry out a series of measurements at hospitals to determine the well chamber correction factor for the different source i.e

- Obtain RAKR for the different source using Farmer set up and method described on previous slide
- use RAKR to calculate a correction factor to correct the NPL well chamber calibration coefficient

Different sources

 Steve Locks and Thorsten Sander to tour the North East!

Newcastle: Nucletron V2

Middlesbrough: Varisource 2000

Carlisle: Gammamed 12i

Constancy checks of wellchambers

- Cs 137 source, available but custom made jig for well chamber required.
- Investigations ongoing at RMH and CCO
- Activity and associated current to be selected

HTSL

Currents from HDR sources

- The BS EN 60731:1997 standard sets a "maximum" input current"
- for a secondary standard dosemeter at 5 nanoamp
- currents of 10-30nA per Ci therefore possibly 500nA from a very hot HDR source
- Electrometer manufacturer: PTW allow currents upto 1 micro-amp

Sweet Spot of chamber

- Each centre must find its own sweet spot for a particular transfer tube
- NPL will also test for sweet spot location
- "Peak" is broad (15-20mm) so any positional error (<+-1mm) in source is OK

Ion Recombination

 Recommend Attix two voltage method for determination of recombination factor within the COP for users to determine their own factor, using the two-voltage method

F H Attix, AAPM radiotherapy dosimetry protocol, Med. Phys. 11, 714 (1984)).

Second "independent" check

• Is the AKR from the source certificate a second check?

 Yes in Austria, the Netherlands and Norway! (unless the measurement is >5% different from the certificate)

- Recommended monthly calibration check
- 3 yearly calibration at NPL of chamber and electrometer
- Final code of practice to be published in PMB by end 2008

Is it worth it????

New areas of Brachytherapy 2004 (RCR report):

25 LDR centres have to decide PDR or HDR

8 new centres hope to implement HDR prostate brachytherapy. (3 centres already doing it)

9 centres are interested in commencing lung/oesophageal HDR brachytherapy (4 centres already doing significant numbers)

5 centres are considering HDR breast brachytherapy.(3 centres already doing it)