MCNPX – New Features Demonstrated

G. W. McKinney J. W. Durkee, J. S. Hendricks, M. R. James, D. B. Pelowitz, L. S. Waters Los Alamos National Laboratory Los Alamos, NM

> F. X. Gallmeier Oak Ridge National Laboratory Oak Ridge, TN

International Workshop on Monte Carlo Codes, Teddington, UK March 26-27, 2007

Contributors

Code Development Team

Joe W. Durkee, Harry W. Egdorf, Franz Gallmeier, John S. Hendricks, Gregg W. McKinney, Teresa L. Roberts, Laurie S. Waters, Joshua P. Finch

Library Development Team

Mark B. Chadwick, Stephanie C. Frankle, Gerald M. Hale, Robert C. Little, Robert MacFarlane, Morgan C. White, Phillip G. Young

Physics Development Team

David G. Madland, Stepan Mashnik, Richard E. Prael, Arnold J. Sierk, Jean-Christophe David, Alfredo Ferrari

Outline

- Overview
- Development History
- User Base
- New 2.5.0 Features
- New 2.6.x Features
- Future Development

Overview

- Monte Carlo radiation transport code
 - Extends MCNP 4C to virtually all particles and energies
 - 34 particle types (n,p,e, 5 Leptons, 11 Baryons, 11 Mesons, 4 LI)
 - Continuous energy (roughly 0-100 GeV)
 - Data libraries below ~ 150 MeV (n,p,e,h) and models otherwise
- General 3-D geometry
 - -1^{st} & 2nd degree surfaces, tori, 10 macrobodies, lattices
- General sources and tallies
 - Interdependent source variables, 7 tally types, many modifiers
- Supported on virtually all computer platforms – Unix, Linux, Windows, OS X (parallel with PVM or MPI)

Development History

- MCNP & LAHET Merger Project 1995
- Version 2.1.5 November 14, 1999
 - HISTP/HTAPE3X, Mesh & radiography tallies, CEM
- Version 2.3.0 April 27, 2002
 - Proton libraries
- Version 2.4.0 August 1, 2002
 - Update to MCNP 4C, Fortran 90, Windows PC support
- Version 2.5.0 March 21, 2005

- Twenty-eight features

User Base

• Over 2000 users world wide

- Provide 6-8 workshops per year (4-6 US, ~2 international)
- 150 workshop participants per year
- Access to RSICC/NEA released versions only
 - http://rsicc.ornl.gov
- Limited access to MCNPX web site
 - <u>http://mcnpx.lanl.gov</u> (some documentation)
- Over 1500 registered Beta Testers
 - Full access to MCNPX web site
 - Access to intermediate versions
 - Increased user support

Application	# Groups	Percent
Medical (BNCT, proton therapy, etc.)	50	15
Spacecraft, Cosmic Rays, SEE, propulsion	42	13
Detectors, experiments, Threat Reduction	39	12
ATW, ADS, Energy Amplifiers	37	11
Fuel cycles, beginning to end, including storage	32	10
Accelerator Shielding and Health Physics	28	8
Theoretical Physics	23	7
Neutron Production for Scattering	21	6
Isotope Production	14	4
Radiography	12	4
MCNPX/MCNP code development	11	3
Materials studies (IFMIF)	6	2
Radioactive Ion Beams	5	2
Irradiation Facilities	4	1
Neutrino Targets	4	1
Light Sources, electron machines	3	1

New 2.5.0 Features

• User-interface enhancements (15)

- 5 new source options
- 4 new tally options
- 3 new graphics options
- 3 other miscellaneous improvements

• Physics enhancements (9)

- 4 new model physics features
- 2 new neutron physics features
- 3 new photon physics features

• Infrastructure enhancements (4)

User-Interface Enhancements

• Five new source options

- Positron sources
- Spontaneous fission sources
- Multiple source particles
- Default VEC for cylindrical sources
- Extension of the TR keyword

Positron Sources

1.0 MeV Positron Source on a Disk 0 -1 imp:n=1 1 2 1 0 imp:n=0 1 SPH 0 0 0 100 mode e sdef par=-e erg=1.0 pos=0 0 0 rad=d1 axs=0 0 1 ext=0 si1 0 90 -21 1 sp1 nps 1000000 tmesh cmesh2 e cora2 2 48i 100 corb2 -1 1 corc2 2 178i 360 endmd print

Spontaneous Fission Sources

```
Pu-239 Spontaneous Fission Source in H2C
  1 -1.0
           -1
                 imp:n=1
1
2
   0
            1
                imp:n=0
1 SPH 0 0 0 100
sdef par=sf
     pos=0 0 0 rad=d1 axs=0 0 1 ext=0
si1
     0 90
     -21 1
sp1
m1
     1001 2 8016 1 94239 1.e-4
nps 100000
tmesh
 cmesh2 n
 cora2 2 48i 100
 corb2 -1 1
 corc2 2 178i 360
endmd
print
```


Multiple Source Particles / TR Extension

Distribution for PAR and TR Keyv	vords	
1 0 -1 imp:n=1		
2 0 1 imp:n=0		<u> / / / / / / / / / / / / / / / / / / /</u>
1 SPH 0 0 0 100		
mode n p		
<pre>sdef par=d1 erg=fpar=d2 tr=fpar</pre>	r=d3	
x=d4 y=d5 z=0 cell=1		
sil Ln p		
sp1 1 1		1.0 MeV Neutrons /
ds2 L 1.0 2.0		X
ds3 L1 2		
si4 -50 50		
sp4 0 1		
si5 -50 50		
sp5 0 1	1 0 May Dhotome	
tr1 -50 50 0		
tr2 50-500		
nps 10000		
tmesh		
rmesh2 n p		
cora2 -100 99i 100		
corb2 -100 99i 100		
corc2 -1 1		
endmd		<u>^</u>
		— 💿 🔜 🔜

Default VEC for Cylindrical Sources

Cylindrical Source with Default VEC

```
1
  0
        -1 2
              imp:n=1
2
        -2:1
              imp:n=0
  0
1 SPH 0 0 0 100
2 SPH 0 0 0 1
sdef pos=0 0 0 rad=90 axs=0 0 1 ext=0
     dir=1 nrm=-1
nps 100
tmesh
 cmesh1:n traks
 coral 1 98i 100
 corb1 -1 1
 corc1 1 358i 360
endmd
```


User-Interface Enhancements

• Four new tally options

- Lattice tally speedup
- Anticoincidence pulse-height tally
- Coincidence capture pulse-height tally
- Residual nuclei pulse-height tally

Lattice Tally Speedup

```
5 MeV Photons into a 100x100x100 Water Phantom
1 1 -1.0 -1 u=1 imp:p=1
2 1 -1.0 1 u=1 imp:p=1
         -2 u=2 fill=1 imp:p=1
3 0
         -3 u=3 imp:p=1
4 0
     lat=1 fill=-50:49 -50:49 -50:49 2 999999R
50
         -4 fill=3 imp:p=1
                                                                Startup
60
                   imp:p=0
          4
                                                                  Time
1 sph 0 0 0 .05
                                                                  (m)
2 sph 0 0 0 10
                                                 MCNPX 2.5.0
                                                                   .02
3 rpp -.1 .1 -.1 .1 -.1 .1
4 rpp -10.099 9.899 -10.099 9.899 -10.099 9.899
                                                 MCNPX 2.4.0
                                                                  230
mode
       р
m1
      1000 2 8000 1
                                                 MCNP5 1.20
                                                                  226
sdef erg=5 pos=-10.098 0 0 vec=1 0 0 dir=1
       100000
nps
                                                 MCNP5 1.30
                                                                  220
f4:p (1<3<4[-50:49 -50:49 -50:49]<5)
sd4 1
fm4 1.0
de4 1e-11 100
df4 1
           1
talnp
```


Tracking

Time

(part./m)

23,300

1.35

1.47

Crashed

Speedup

17,260

1

~1

--

Lattice Tally Speedup

Anticoincidence Pulse-Height Tally

Anticoincidence PHT 1 MeV Photons => Plastic/BGO 1 1 - 7.130 - 1imp:p=1 2 2 -1.032 1 -2 3 imp:p=1 1 -2 -3 imp:p=1 3 0 imp:p=0 4 0 2 1 SPH 0 0 0 5.0 2 SPH 0 0 0 6.0 3 RCC -7 0 0 4 0 0 3.0 mode p e sdef sur=2 nrm=-1 par=p erg=1.0 100000 nps 83000 -0.671 32000 -0.175 8000 -0.154 m1 6000 -0.9153 1000 -0.0847 m2 f26:e 2 \$ Plastic energy dep. ft26 GEB 0 0.1098 0 sd26 1 f36:e 1 \$ BGO energy dep. ft36 GEB 0 0.1098 0 sd36 1 f18:e 1 \$ Plastic/BGO PHT e18 0.1.0 ful8 0. 99i 1.0 phl 1 26 1 1 36 1 ft18 fq18 u e

Anticoincidence Pulse-Height Tally

ltally	y 18	np	s = 10	0000						
+					ACS/BGO Puls	se Height	Response - a	all parti	cles	
		tally typ	pe 8 p	ulse heigh	nt distributi	ion.		units	number	
		particle(s): phot	on el	lectron					
		this tall	y is mod	ified by	ft phl					
cell	1									
	ener	rgy:	0.000E	+00	1.0000E+	+00	total	-		Plastic
us	ser bi	in								
0.	.00001	E+00 1.3	0000E-04	0.2773	8.84300E-02	0.0102	8.85600E-02	0.0101	P	
1.	.00001	E-02 6.8	0000E-04	0.1212	4.40000E-04	0.1507	1.12000E-03	0.0944	D	
2.	.00001	E-02 7.9	0000E-04	0.1125	3.70000E-04	0.1644	1.16000E-03	0.0928	C	
3.	.00001	E-02 6.9	0000E-04	0.1203	5.90000E-04	0.1302	1.28000E-03	0.0883	U	
4.	.00001	E-02 8.7	0000E-04	0.1072	4.60000E-04	0.1474	1.33000E-03	0.0867	Ω	
5.	.00001	E-02 7.8	0000E-04	0.1132	3.30000E-04	0.1740	1.11000E-03	0.0949	U	
6.	.00001	E-02 8.4	0000E-04	0.1091	3.20000E-04	0.1767	1.16000E-03	0.0928		
7.	.00001	E-02 9.3	0000E-04	0.1036	3.60000E-04	0.1666	1.29000E-03	0.0880		
8.	.00001	E-02 7.6	0000E-04	0.1147	4.60000E-04	0.1474	1.22000E-03	0.0905		
9.	.00001	E-02 8.0	0000E-04	0.1118	4.30000E-04	0.1525	1.23000E-03	0.0901		
1.	.00001	E-01 9.2	20000E-04	0.1042	4.20000E-04	0.1543	1.34000E-03	0.0863		
1.	.10001	E-01 9.8	0000E-04	0.1010	3.80000E-04	0.1622	1.36000E-03	0.0857		
1.	.20001	E-01 8.6	0000E-04	0.1078	4.60000E-04	0.1474	1.32000E-03	0.0870		
1.	.30001	E-01 8.7	0000E-04	0.1072	4.60000E-04	0.1474	1.33000E-03	0.0867		
1.	.40001	E-01 9.3	0000E-04	0.1036	5.20000E-04	0.1386	1.45000E-03	0.0830		
1.	.50001	E-01 9.3	0000E-04	0.1036	4.30000E-04	0.1525	1.36000E-03	0.0857		
1.	.60001	E-01 8.4	0000E-04	0.1091	5.90000E-04	0.1302	1.43000E-03	0.0836		
1.	.70001	E-01 9.5	0000E-04	0.1025	5.90000E-04	0.1302	1.54000E-03	0.0805	V	
1.	.80001	E-01 1.0	8000E-03	0.0962	6.70000E-04	0.1221	1.75000E-03	0.0755	•	

Anticoincidence Pulse-Height Tally

Coincidence Capture Pulse-Height Tally

Coincidence Capture Tally Pu-239 in H2O/B-10 1 1 -1.0 -1 imp:n=1 2 - 1.01 -2 imp:n=1 2 imp:n=0 3 0 2 1 SPH 0 0 0 10 2 SPH 0 0 0 20 par=sf pos=0 0 0 rad=d1 sdef si1 0 10 -21 2 sp1 1001 2 8016 1 94239 1.e-4 m1 5010 1 m2 100000 nps f8:n 2 ft8 CAP -8 -8 5010 1e2 1e5 1e8 \$ 1us, 1ms, 1s **t8** print

Coincidence Capture Pulse-Height Tally

1 neutron captures, moments and multiplicity distributions. tally 8

weight normalization by source fission neutrons = 215705

print table 118

cell: 2

time bin: 1.0000E+02

neutron captures on 10b

				captures		captures		multiplicit	y fractions	
			histories	by number		by weight		by number	by weight	error
captures	=	0	38079	0	0	.00000E+00	:	3.80790E-01	1.76533E-01	0.0040
captures	=	1	39130	39130	1	.81405E-01		3.91300E-01	1.81405E-01	0.0039
captures	=	2	17769	35538	1	.64753E-01	:	1.77690E-01	8.23764E-02	0.0068
captures	=	3	4429	13287	6	.15980E-02		4.42900E-02	2.05327E-02	0.0147
captures	=	4	555	2220	1	.02918E-02	!	5.55000E-03	2.57296E-03	0.0423
captures	=	5	38	190	8	.80833E-04		3.80000E-04	1.76167E-04	0.1622
total			100000	90365	4	.18929E-01	:	1.00000E+00	4.63596E-01	0.0031
fact	ori	lal	moments		by numl	ber		by weight		
		10	b	9.036	50E-01	0.0031	4.1	8929E-01 0.0031		
10	b(1	L0b	-1)/2!	3.476	60E-01	0.0076	1.6	1174E-01 0.0076		
10b(1	0Ъ-	-1)	(10b-2)/3!	7.029	00E-02	0.0183	3.2	5862E-02 0.0183		
10b(10b-	1)	••	(10b-3)/	4! 7.450	00E-03	0.0520	3.4	5379E-03 0.0520		
10b(10b-	1)	••	(10b-4)/	5! 3.800	00E-04	0.1622	1.7	6167E-04 0.1622		

Coincidence Capture Pulse-Height Tally

cell: 2

time bin: 1.0000E+05

neutron captures on 10b

				captures	captures	multiplicity	fractions	
			histories	by number	by weight	by number	by weight	error
captures	=	0	64457	0	0.00000E+00	6.44570E-01	2.98820E-01	0.0023
captures	=	1	27555	27555	1.27744E-01	2.75550E-01	1.27744E-01	0.0051
captures	=	2	6212	12424	5.75972E-02	6.21200E-02	2.87986E-02	0.0123
captures	=	3	1263	3789	1.75657E-02	1.26300E-02	5.85522E-03	0.0280
captures	=	4	362	1448	6.71287E-03	3.62000E-03	1.67822E-03	0.0525
captures	=	5	86	430	1.99346E-03	8.60000E-04	3.98693E-04	0.1078
captures	=	6	46	276	1.27953E-03	4.60000E-04	2.13254E-04	0.1474
captures	=	7	12	84	3.89421E-04	1.20000E-04	5.56315E-05	0.2887
captures	>	7	7	58	2.68886E-04	7.00000E-05	3.24517E-05	0.3780
total			100000	46064	2.13551E-01	1.00000E+00	4.63596E-01	0.0050
fact	tor	ial	moments	by	number	by weight		
		10	b	4.60640	E-01 0.0050	2.13551E-01 0.0050		
10	0b(10b	-1)/2!	1.41880	E-01 0.0172	6.57750E-02 0.0172		
10b(10b	-1)	(10b-2)/3!	5.36700	E-02 0.0533	2.48812E-02 0.0533		
10b(10b	-1)	••	(10b-3)/	4! 2.53200	E-02 0.1255	1.17383E-02 0.1255		
10b(10b	-1)	••	(10b-4)/	5! 1.20200	E-02 0.2487	5.57243E-03 0.2487		
10b(10b	-1)	••	(10b-5)/	6! 5.08000	E-03 0.4377	2.35507E-03 0.4377		
10b(10b	-1)	••	(10b-6)/	7! 1.80000	E-03 0.6758	8.34473E-04 0.6758		~
10b(10b	-1)		(10b-7)/	8! 5.10000	E-04 0.8837	2.36434E-04 0.8837	- Alexandre - A	

Los Alamos

٠

Residual Nuclei Pulse-Height Tally

Residual Nuclei Pulse-Height Tally

User-Interface Enhancements – 2.5.0

• Three new graphics options

- Lattice index labeling
- WWG superimposed mesh plots
- Color contour and mesh tally plots

Lattice Index Labeling

```
5 MeV Photons => 100x100x100 Water Phantom
1 1 -1.0 -1 u=1 imp:p=1
2 1 -1.0 1 u=1 imp:p=1
       -2 u=2 fill=1 imp:p=1
3 0
        -3 u=3 imp:p=1
4 0
     lat=1 fill=-50:49 -50:49 -50:49 2 999999R
50
         -4 fill=3 imp:p=1
60
                   imp:p=0
          4
1 sph 0 0 0 .05
2 sph 0 0 0 10
3 rpp -.1 .1 -.1 .1 -.1 .1
4 rpp -10.099 9.899 -10.099 9.899 -10.099 9.899
mode
      р
m1
     1000 2 8000 1
sdef erg=5 pos=-10.098 0 0 vec=1 0 0 dir=1
       100000
nps
f4:p (1<3<4[-50:49 -50:49 -50:49]<5)
sd4 1
fm4 1.0
de4 1e-11 100
df4 1
           1
talnp
```


04/12/05 16:44:08 100x100x100 water phantom

probid = 04/12/05 16:42:17
basis: YZ
(0.000000, 1.000000, 0.000000)
(0.000000, 0.000000, 1.000000)
origin:
(0.00, 0.00, 0.00)
extent = (0.70, 0.70)
cell labels are
 lattice indices ijk

٠

Edit	ijk	(0,0,0)		
			Cell	1
xyz =	0.00,	0,00	, 0.0	0
CURSOR	S	CALES 0	CellLir	e
PostScr	ript R	OTATE		
COLOR	ijk		LEV	EL
XY	Y.	z	ZX	
LABEL	o	ff	ijk	
MBODY	on			

Click here or picture or menu

UP	RT	DN	LF	Origin	.1	. 2	Zoom	5.	10
(0,-3,:	3)	(0,-2,:	3)	(0,-1,3)	(0,0,3)	(0,1,3)	(0,2,3)	(0,3,3)	cel imp rho
(0,-3,	2)	(0,-2,:	2)	(0,-1,2)	(0,0,2)	(0,1,2)	(0,2,2)	(0,3,2)	den vol fcl mas
(0,-3,:	D	(0,-2,:	D	(0,-1,1)	(0,0,1)	(0,1,1)	(0,2,1)	(0,3,1)	pwt mat tmp
(0,-3,	0)	(0,-2,0	»)	(0,-1,0)	(0,0,0)	(0,1,0)	(0,2,0)	(0,3,0)	wwn ext pd dxc
(0,-3,-	1)	(0,-2,-	1)	(0,-1,-1)	(0,0,-1)	(0,1,-1)	(0,2,-1)	(0,3,-1)	u lat fill
(0,-3,-	2)	(0,-2,-	2)	(0,-1,-2)	(0,0,-2)	(0,1,-2)	(0,2,-2)	(0,3,-2)	ıjk nonu pac tal
(0,-3,-	3)	(0,-2,-	3)	(0,-1,-3)	(0,0,-3)	(0,1,-3)	(0,2,-3)	(0,3,-3)	PAR N
				Redraw		Plot>		End	

WWG Superimposed Mesh Plots

```
Cylindrical WW Mesh-3 MeV Photons => H2O
1 1 1.0
         -1 imp:p 1
          1 imp:p 0
2 0
1 rcc 0 0 0 0 10 0 5
mode p
sdef sur=1.3 vec=0 1 0 dir=1 erg=3
ml 1001 2 8016 1
nps 1000000
f1:p 1.2
wwg 1 0
mesh geom=cyl origin=0 -1 0 ref=0 .1 0
     axs=0 1 0 vec=1 0 0
     imesh 6 iints 7
     jmesh 12 jints 7
    kmesh 1 kints 3
```

```
Cylindrical WW Mesh-3 MeV Photons => H2O
1 1 1.0
         -1 imp:p 1
2 0
          1 imp:p 0
1 rcc 0 0 0 0 10 0 5
mode p
sdef sur=1.3 vec=0 1 0 dir=1 erg=3
m1 1001 2 8016 1
nps 1000000
f1:p 1.2
wwg 1 0
mesh geom=cyl origin=0 -1 0 ref=0 .1 0
     axs=0 1 0 vec=1 0 0
     imesh 6
              iints 14
     jmesh 12 jints 14
     kmesh 1
              kints 6
wwp:p 4j -1
```


04/13/05 14:32:42 Demonstration of WWG Plot

probid = 04/13/05 14:29:41
basis: XZ
(1.000000, 0.000000, 0.000000)
(0.0000000, 0.0000000, 1.000000)
origin:
(0.01, 3.00, 0.01)
extent = (7.00, 7.00)

٠

Edit	cel		1		
			(Cell	1
xyz =	0.01,	3.	.00,		0,01
CURSOR	9	SCALES	0	ΜМ	MESH
PostSc	ript H	ROTATE			
COLOR	wwn1:p				
XY	,	/Z			ZX
LABEL	(off		of	f
MBODY	on				

Click here or picture or menu

probid = 04/13/05 14:29:41 basis: XY (0.000000, 1.000000, 0.000000) (1.000000, 0.000000)	cel imp rho den vol fcl
	den vol fcl
origin:	vol fcl
(0.01, 5.00, 0.01) extent = (8.00, 8.00)	fcl
	mas
	pwt
	mat
	tmp
	wwn
	ext
	pd
	dxc
Edit cel 1	u
	lat
xyz = 0,01, 5,00, 0,01	+11.
	1 jk
Postscript RUIHIE	nonu
	pac
	tal
LHBEL OTT OTT	
יז עטפויז איז איז איז איז איז איז איז איז איז א	PAR
Click here or picture or menu	N

Rednaw

Plot>

End

Color Contour and Mesh Tally Plots

```
HEU Cans in a Hex Lattice
1 1 - 8.4
                          imp:n=1
             -1
                    11=1
2 0
            -2
                          imp:n=1
                    u=1
            -3 1 2 u=1
3 2 -2.7
                          imp:n=1
4 3 -.001
                          imp:n=1
            3
                    u=1
10 3 -.001
            -6 lat=2 u=2
                          imp:n=1 fill=-2:2 -2:2 0:0
    imp:n=1 fill=2
11 0
             -8
                          imp:n=0
50 0
              8
1 \text{ rcc } 0
        0 0
           0 12 0
                   5
2 rcc 0 12 0
            080
                   5
3 rcc 0 -1 0
            0 22 0
                   6
6 rhp 0 -1 0
            0 22 0
                    900
8 rcc 0 -1 0
            0 22 0
                    30
m1
    1001 5.7058e-2 8016 3.2929e-2 92238 2.0909e-3 92235 1.0889e-4
m2
    13027 1
    7014 .8 8016 .2
m3
kcode 10000 1 10 40
ksrc 0 6 0
           18 6 0
                    -18 6 0 9 6 15 -9 6 15
                                               9 6 -15
                                                        -9 6 -15
tmesh
rmesh12
 cora12 -30, 53i 30.
corb12 0.12.
corc12 -30. 35i 30.
endmd
                                                               LOS AIAMOS
```

Color Contour and Mesh Tally Plots

04/12/05 15:41:44 cylinders containing critical fluid in macrobody hex lattice	UP	RT	DN	LF	Origin	.1	, 2	Zoom	5.	10
										cei
problu - 04/11/05 16:42:05 basis: XZ										imp
(1,000000, 0,000000, 0,000000)		<u>с</u> т								rho
(0.000000, 0.000000, 1.000000)		H	++++		┼ <u></u> ╎┼╆┲╪╪╤╤╕	┼┼┼┼┼┼┼	╄┪┽┽┊┼┼┤	++++++	+++++	den
(0.00. 5.00. 0.00)		Ħ					<u>AUN</u>			uol
extent = (40.00, 40.00)		H	++++	НИЦ	╆┫┼┼┼┡╲┥	HHH			+++++	V01
		Ħ						141N.II		fcl
•		H	ННИ	╞┼┼┼╫┼┼╆				┼╫┼┼┼╲		mas
		III III	ΠДТ		(pwt
		H	┟┟╢┼┼	┝┼┼┼╢┼┼╏				╅╋┼┼┼┼┼	HNH -	
		H	XIIII						ΠNΠ	Mac
		Ľ		┢┦┼┼┝┝				11111	<u> </u>	tmp
		LA I	<u>\</u> 1]			┢╪╧╪╲┓┼Ì			14HN	wwn
		Ш								ext
		⊢⊦	 (<mark> </mark>		DNI I I I I I I I	l l l l l l l l l l l l l l l l l l l	┼╂┼┼╏┫┫		++++	e d
		L L								Pu
		H	₩₩	NU	▞ᡰᡫᢩᡶᡰᡰᢂ					dxc
Edit cel 1		L H			211151					u
Cell 1			╅┼┼┼┼	}}↓#1	┼╆╪╪┑┤┊	ŊŲĮſĮĮ		<u><u></u>}µ//∏</u>	НИ	lat
· · · · · · · · · · · · · · · · · · ·			NIII							
xyz = 0.00, 5.00, 0.00		H	+N++		<u>A I I I I I N</u>	┼┼┼┼╢╢╢		┽╫┼┼┼┼┼	₩₩	+111
CURSOR SCALES 0 MT+Cell							<u> </u>			ijk
PostScript ROTATE		H	\square					/		nonu
		H		HAN	<u>┤</u> ╕ ┥┥┥┥			╢╫╢		
COLOR CALLS LEVEL		H	++++					┟┦┼┼┼┤	++++	pac
XY YZ ZX		H			╘╅╧╎┨					tal
LABEL off off		Π			<u> </u>	╵ <u>╵╵</u> ╵┷┾┥	-+111111			
MBODY on										
										PAR

N

User-Interface Enhancements – 2.5.0

- Three other miscellaneous improvements
 - READ card
 - HISTP card extension
 - DXTRAN/Detector underflow control

User-Interface Enhancements

HEU Cans in a Hex Lattice File "cells" 1 1 - 8.4imp:n=1 READ FILE=cells NOECHO -1 u=1 2 0 -2 imp:n=1 u=1 **READ FILE=surfaces** 3 2 -2.7 -3 1 2 u=1 imp:n=1 3 -.001 imp:n=1 3 u=1 4 1001 5.7058e-2 8016 3.2929e-2 m1 10 3 -.001 -6 lat=2 u=2 imp:n=1 92238 2.0909e-3 92235 1.0889e-4 fill=-2:2 -2:2 0:0 13027 1 m2 2 2 2 2 2 2 7014 .8 8016 .2 m3 2 2 1 1 2 kcode 10000 1 10 40 21112 18 6 0 ksrc 060-18 6 0 9 6 15 2 1 1 2 2 -9 6 15 96-15 -9 6 -15 2 2 2 2 2 2 tmesh imp:n=1 fill=2 11 0 -8 rmesh12 imp:n=0 50 0 8 cora12 -30. 53i 30. corb12 0.12. corc12 -30, 35i 30. endmd

					I	File	э `	`surfaces"
1	rcc	0	0	0	0	12	0	5
2	rcc	0	12	0	0	8	0	5
3	rcc	0	-1	0	0	22	0	6
6	\mathbf{rhp}	0	-1	0	0	22	0	900
8	rcc	0	-1	0	0	22	0	30

Physics Enhancements

- Four model physics improvements
 - Mix & match of libraries and models
 - CEM upgrade to 2K
 - INCL 4/ABLA physics models
 - Secondary-particle production

Mix & Match of Libraries and Models

• Mix and Match

- -5^{th} entry on PHYS:N (3rd on PHYS:H) is superseded.
 - Code will choose cutoff based on individual library's upper energy.
- MX card allows the user to substitute isotopes or specify model physics based on individual M card entries.
 - Isotope substitution can be done for nuclides where no table data is available.
 - No neutron data table exists for Ge. As-75 could be used where the material cards call for Ge (see example).
- Available for neutrons, protons, and photons (photonuclear) only.

Mix & Match of Libraries and Models

```
Mix & Match for 100 MeV Neutrons => BGO Crystal
1 1 -7.130 -1 imp:n=1
2 0
           1 imp:n=0
1 RCC 0 0 0 0 0 8.433 3.932
sdef sur=1.3 vec=0 0 1 dir=1 erg=100
nps 1000
       83209.24c 0.2105 8016.24c 0.6316 32000 0.1579
m1
phys:n 101 3j -1
    mx1:n
C
               ÷.
                               i
                                            33075
  phys:n 101 3j 20 $ Models above 20 MeV
C
  mx1:n
               i.
C
                                            33075
    phys:n 101 3j 150 $ Models above 150 MeV
C
mode n p
f4:n 1
e0 1 100log 100
f21:p 1.2
m1
       1002 1 1003 1
                           6012 1
                                    20040 1
mx1:n i
                 model
                           6000
                                     20000
                1001
mx1:h model
                           j
                                     j
                                     i
mx1:p 6012
                           ÷
                 0
```


Mix & Match of Libraries and Models

CEM Upgrade to 2K (from 95)

- CEM 2k
 - Improvements in elementary cross sections, nuclear masses and pairing energies.
 - Algorithm improvements decrease time required for some problems by a factor of 6.
 - Utilizes measurements from the GSI experiments on isotope production.

CEM Upgrade to 2K (from 95)

```
CEM for 1.2 GeV Protons => Pb
1 1 -11. -1 imp:h 1
2 0
          1 imp:h 0
1 \text{ so } 1.0
mode h n
sdef par h erg=1200 vec 1 0 0 dir 1
m1 82208 1
phys:h 1300 j 1
phys:n 1300 3j 1
nps 100000
lca
       8j 1
f1:n
       1
ft1 frv 1 0 0
*c1 175 34i 0
f11:n 1
e11
      1. 30log 1200.
f21:h 1
ft21 frv 1 0 0
*c21 175 34i 0
f31:h 1
      1. 30log 1200.
e31
```


CEM Upgrade (version 95 to 2K)

CEM Upgrade (version 95 to 2K)

INCL 4/ABLA Physics Models

- INCL 4/ABLA is a combined intranuclear cascade/evaporation model.
 - User can specify combinations of existing models and INCL 4/ABLA (see example).
 - Implemented by agreement with CEA
 - Primarily useful in the 200 MeV 2 GeV range.
 - Somewhat slower than Bertini and CEM2K.

INCL 4/ABLA Physics Models

```
Various Physics Models for 1.2 GeV Protons => Pb
 1 1 -11. -1 imp:h 1
 2 0
           1 imp:h 0
 1 so .01
 mode h n
 sdef par h erg=1200 vec 0 0 1 dir 1
 m1 82208 1
 phys:h 1300 j 0
 phys:n 1300 3j 0
 nps 100000
 f1:n 1
 ft1 frv 0 0 1
 *с1 167.5 9і 17.5 0 т
 e1 1 50log 1300
      7i -2 0
               $ Bertini/Dresner
 LCA
       7j -2 0
                  $ Bertini/ABLA
 LCA
 LEA
       6J 2
       2j 2 4j -2 $ ISABEL/Dresner
 LCA
 LCB
       4j 1300
 LCA
       2j 2 4j -2 $ ISABEL/ABLA
 LCB
       4j 1300
       6Ј 2
 LEA
      7i -2 2
                  $ INCL4/ABLA
 LCA
       6j 2
 LEA
LCA
      7j -2 2
                  $ INCL4/Dresner
```

lamos

Secondary-Particle Production

Los Alamos

Physics Enhancements - 2.5.0

- Two neutron physics improvements
 - Fission multiplicity
 - $S(\alpha, \beta)$ secondary-energy smoothing

Fission Multiplicity

- Implements more precise distribution of neutrons per fission event.
 - Previous method used linear sampling between the two integers that bracket v.
 - New method implements a sampling based on specific nuclei data or a Gaussian sampling on user-specified value.
 - Controlled by 6th entry on PHYS:N card.
 - Specifically will improve sampling for coincidence neutron populations.

Fission Multiplicity

U-235 Fission Multiplicity in H2O 1 1 -1.0 -1 imp:n=1 2 0 1 imp:n=0 1 SPH 0 0 0 0.1 sdef m11001 2 8016 1 92235 1.e-1 c phys:n 5j 0 phys:n 5j -1 print nps 5000000

Fission Multiplicity

14 MeV Neutrons on U-235

Physics Enhancements – 2.5.0

- Three photon physics improvements
 - Photonuclear physics model
 - Photon Doppler broadening
 - Variance reduction with pulse-height tallies

Photonuclear Physics Model

```
Photonuclear 10 MeV Photons => Pb
1 1 -7.86
             -1
                   imp:n=1
2
              1
                   imp:n=0
  0
1 SPH 0 0 0 2
      np
mode
sdef
      par=p erg=10.0
phys:p 3j 1
       82208 1
m1
    mx1:p model
C
       1000000
nps
                                    Photonuclear 10 MeV Photons => U-235
f1:n
       1
                                    1 1 -7.86
                                                 -1
                                                        imp:n=1
      1e-3 50log 10.
e1
                                    2
                                      0
                                                  1
                                                       imp:n=0
                                    1 SPH 0 0 0 2
                                    mode
                                           n p
                                    sdef
                                           par=p erg=10.0
                                    phys:p 3j 1
                                    m1
                                           92235 1
                                    xs1 92235.27u 233.024994 bofod01u 0 1 54868 2946 0 0 0.0
                                         mx1:p model
                                    C
                                           1000000
                                    nps
                                    f1:n
                                           1
                                           1e-3 50log 10.
                                    e1
                                                                       l os Alamos
```

Photonuclear Physics Model

Photonuclear Physics Model

Photonuclear Capabilities

- Libraries available for some nuclides
 - H, C, O, Al, Si, Ca, Fe, Cu, Ta, W, Pb
 - Feature implemented in 2000
- Models available for all nuclides
 - Provided with the CEM2K INC package (April 2003)
 - Actinide GDR parameters recently improved
- User can control use of libraries vs models
 - Default is to use libraries, otherwise models
 - Biasing available to enhance secondary production

ł,

Photon Doppler Broadening

- Pulse-Height tally Variance Reduction has been a goal in Monte-Carlo codes for many years.
 - Implemented in MCNPX v2.5.0 and can result in dramatic speed improvements.
 - Deconvolves the particle "trees" to get correct PHT.
 - Not all variance reduction techniques supported.
 - Unsupported VRTs result in a fatal error.

VRT with PHT 1 MeV Photons Incident

1 MeV Photons Incident From Above

Infrastructure Enhancements -2.5.0

• 8-byte integers

- Users can now run billions of particles
- Often required for parallel calculations
- Runs about 20% slower on most systems

• Support for new compilers

- Mac OS X with IBM compiler
- Windows PC and Linux with Intel compiler
- Parallel processing with MPI
 - PVM option is still available

• MPI speedup for criticality problems

– Eliminates collection of fission source after each cycle

Godiva Run on a Linux Cluster

500K Particles/Cycle for 200 Cycles

New Features - MCNPX Version 2.6.A

- BURN card transmutation using Cinder90

 M. Fensin's paper in session Best of RPSD
- Long file names (40 vs. 8 characters)
- STOP card terminate tallies at desired precision
- Corrections/enhancements/extensions
 - Proton step size control (HSTEP on M card)
 - New S(α , β) scattering law
 - Differential data tallies extended to table physics
 - Separate printout of induced fission multiplicity

BURN Card

Burn 7 fuel pins surrounded by	H2O in a hex lattice					
1 1 -8.3 -1 u=1 imp:n	=1 vol=192.287 \$ Fuel					
2 8 -6.5 1 -2 u=1 imp:	n=1 \$ Clad					
3 9 -0.7 2 u=1 imp:	n=1 \$ Wate:					
100 9 -1.8 -3 u=8 lat=2 im	p:n=1 fill=-2:2 -2:2 0					
88888						
8811	8					
8111	8					
8 1 1	8 8					
888	8 8					
101 0 -4	<pre>imp:n=1 fill=8</pre>					
102 9 -1.8 4 -5	<pre>imp:n=1</pre>					
103 0 5	imp:n=0					
1 rcc 0 0 0 0 0 365 0.4095						
2 rcc 0 0 -1 0 0 367 0.4750						
3 rhp 0 0 -1 0 0 367 0.6565 0	0					
4 rhp 0 0 -1 0 0 367 0 1.895	0					
*5 rhp 0 0 -1.1 0 0 367.2 0 1	.896 0					
BURN TIME=50,500						
POWER=0.000950						
PFRAC=1.0,1.0	018 00234 01232					
PODT-1 0 4	010,90234,91232					
m1 8016 60 a 2 0 92235 60 a	0 01 92238 600 0 9					
m8 40000 60c 1 0	0.01 92230.000 0.9					
m9 1001 60c 2 0 8016 60c	1 0					
mt9 lwtr.01t	2.0					
kcode 100 1.0 10 50						
ksrc 0 0 150 1.313 0 150 -1.31	$0 \ 0 \ 150 \ 1.313 \ 0 \ 150 \ -1.313 \ 0 \ 150 \ 0.6565 \ 1.137 \ 150$					
0.6565 -1.137 150 -0.6565	1.137 150 -0.6565 -1.137 150					

nuclides with atom fractions below 1.000E-10 for a material are zeroed and deleted from print tables after t=0

neutronics and burnup data

••

step	duration	time	power	keff	flux	ave. nu	ave. q	burnup
	(days)	(days)	(MW)					(GWd/MTU)
0	0.000E+00	0.000E+00	6.696E-02	0.99763	3.641E+14	2.449	200.981	0.000E+00
1	5.000E+01	5.000E+01	6.696E-02	1.00012	3.701E+14	2.554	203.154	2.383E+00
2	5.000E+02	5.500E+02	6.696E-02	0.85037	4.638E+14	2.869	209.385	2.621E+01

actinide inventory for sum of materials at end of step 2, time 5.500E+02 (days), power 6.696E-02 (MW)

no	. zaid	mass	activity	sp. act.	atom den.	atom fr.	mass fr.
		(gm)	(Ci)	(Ci/gm)	(a/b-cm)		
1	92234	3.465E-04	2.154E-06	6.217E-03	4.636E-09	2.577E-07	2.533E-07
2	92235	3.935E-01	8.506E-07	2.161E-06	5.244E-06	2.914E-04	2.877E-04
3	92236	1.789E+00	1.157E-04	6.467E-05	2.374E-05	1.319E-03	1.308E-03
4	92237	7.849E-03	6.405E+02	8.160E+04	1.037E-07	5.763E-06	5.739E-06
5	92238	1.355E+03	4.553E-04	3.361E-07	1.782E-02	9.905E-01	9.904E-01
6	92239	1.539E-03	5.158E+04	3.351E+07	2.016E-08	1.121E-06	1.125E-06
•							
14	94242	1.117E+00	4.418E-03	3.954E-03	1.446E-05	8.034E-04	8.169E-04
	totals	1.368E+03	1.041E+05	7.610E+01	1.799E-02	1.000E+00	1.000E+00

nonactinide inventory for sum of materials at end of step 2, time 5.500E+02 (days), power 6.696E-02 (MW)

no	. zaid	mass	activity	sp. act.	atom den.	atom fr.	mass fr.
		(gm)	(Ci)	(Ci/gm)	(a/b-cm)		
1	6012	2.336E-06	0.000E+00	0.000E+00	6.096E-10	1.638E-08	1.186E-08
2	6013	1.057E-02	0.000E+00	0.000E+00	2.545E-06	6.839E-05	5.366E-05
3	8016	1.891E+02	0.000E+00	0.000E+00	3.702E-02	9.946E-01	9.599E-01
4	8017	1.405E-02	0.000E+00	0.000E+00	2.588E-06	6.954E-05	7.132E-05
•							
16	60145	3.469E-01	1.426E-14	4.112E-14	7.497E-06	2.014E-04	1.761E-03
	totals	1.970E+02	8.830E+01	4.483E-01	3.722E-02	1.000E+00	1.000E+00

Long File Names

E:\MCNPX\scratch>.\mcnpx inp=test long names.txt na=test long names. mcnpx ver=26bc1 ld=Sat Jul 01 08:00:00 MST 2006 11/12/06 20:08:04 ... dynamic storage = 0 words, 0 bytes. cp0 = 0.00run terminated when 10 particle histories were done. dump 2 on file test_long_names.r nps = 10 coll =0 ctm = 0.00 nrn = 40 mcrun is done

E:\MCNPX\scratch>dir

Directory of E:\MCNPX\scratch

11/12/2006	08:08 PN	M <dir></dir>	•		
11/12/2006	08:08 PN	A <dir></dir>	••		
09/11/2006	03:23 PN	M 6,57	4,080 mcnpx.exe		
11/12/2006	08:08 PN	M 22,	,513 test_long_names.d		
11/12/2006	08:08 PN	M 25,	,510 test_long_names.o		
11/12/2006	08:08 PN	M 401	1,342 test_long_names.r		
08/04/2006	01:21 PN	M 4	481 test_long_names.txt		
5]	File(s)	7,023,926 b	bytes		
2 Dir(s) 31,759,495,168 bytes free					

STOP Card

14 MeV neutrons in water - test STOP card cell cards С 1 1 -1. -1 IMP:N=1 2 1 IMP:N=00 1 so 30.0 1001.60c 2. 8016.60c 1. m1 mt1 hh20.20t xs1hh20.20t 0.998623 ct00 0 1 1 1237501 0 0 2.530E-08 sdef erg=14.1 1.00000E-11 625log 1.44544E+01 e0 1. vol f44:n 1 f141:n 1 F44 .01 NPS 10000 CTME 10.0 STOP OUTPUT FILE 1tally fluctuation charts tally 44 tally 141 vov slope vov slope fom mean error fom mean error nps 1000 5.6661E+01 0.0144 0.0031 10.0 489705 3.7459E-01 0.0354 0.0003 0.0 81225 2000 5.6824E+01 0.0103 0.0016 10.0 468574 3.7000E-01 0.0254 0.0002 10.0 77294 5.7028E+01 0.0083 0.0010 10.0 477186 3.6737E-01 0.0209 0.0001 10.0 3000 75590

$S(\alpha,\beta)$ Secondary-Energy Smoothing

- Improvement in $S(\alpha,\beta)$ algorithm in code
 - User interface is unchanged but underlying secondary energy treatment is improved.
 - The structure in the $S(\alpha,\beta)$ data is often in discrete energies resulting in non-physical spikes in the thermal neutron spectrum.
 - New algorithm smooths over non-physical structure in data to provide smoother and better low-energy neutron spectra.

$S(\alpha,\beta)$ Secondary-Energy Smoothing

```
S(alpha, beta) Smoothing for HEU Cans in a Hex Lattice
1 1 -8.4
                           imp:n=1
             -1
                    u=1
2 0
                           imp:n=1
             -2
                    u=1
3 2 -2.7
             -3 1 2 u=1
                           imp:n=1
4 3 -.001
                           imp:n=1
              3
                    u=1
10 3 -.001
             -6 lat=2 u=2
                           imp:n=1 fill=-2:2 -2:2 0:0
    imp:n=1 fill=2
11 0
             -8
                           imp:n=0
50 0
              8
1 \text{ rcc } 0
        0 0
            0 12 0
                    5
2 rcc 0 12 0
            080
                    5
3 \text{ rcc } 0 -1 0
            0 22 0
                    6
6 rhp 0 -1 0
            0 22 0
                   900
8 rcc 0 -1 0
            0 22 0
                    30
m1
    1001 5.7058e-2
                    8016 3.2929e-2
    92238 2.0909e-3 92235 1.0889e-4
mt1 lwtr.01t
    13027 1
m2
    7014 .8 8016 .2
m3
kcode 10000 1 10 40
ksrc 0 6 0 18 6 0
                              9615 -9615
                                                9 6 -15
                                                         -9 6 -15
                    -18 6 0
f4:n (1<(10[-2:2 -2:2 0:0])<11)
sd4
    1
    1e-11 50log 1e-6
e4
```


New S(α , β) Treatment

New Features – Version 2.6.B

- Transmutation improvements
 - Predictor/corrector
 - Automatic selection of FP dist. (thermal, fast, high)
- CEM INC model upgrade (from 2K to 03)
- FIELD card-planetary gravity effects for neutrons
- Corrections/enhancements/extensions
 - New photon emission data: PHTLIB
 - Geometry plot basis vectors
 - Extend ZAID identifiers

CEM Upgrade

CEM Upgrade

Light-product yields (A<30)

Heavy-product yields (A>30)

Model	Proton energy (MeV)					
	300	500	750	1000	1500	2600
BERTINI	1035	26.1	50.5	13.8	4.93	3.35
ISABEL		256	49.1	17.0	5.99	4.02
INCL	233	215	51.5	38.1	26.1	12.1
CEM2K		12.6	21.1	7.83	4.87	4.02
CEM03	13.0	2.23	1.32	1.49	1.58	1.72

Mean-squared deviation factors between model predictions and experimental data measured at ITEP.

FIELD Card

5 GeV	protons into M	Martian soi	l with gravity	reflectio	n				
1	1 -1.0	-1	imp:n=1						
100	2 -1.35e-5	-101 +1	imp:n=1						
101	2 -1.28e-5	-102 +101	imp:n=1						
102	2 -1.22e-5	-103 +102	imp:n=1						
103	2 -1.14e-5	-104 +103	imp:n=1						
104	2 -1.08e-5	-105 +104	imp:n=1						
105	2 -1.01e-5	-106 +105	imp:n=1					Q .	
999	0	+106	imp:n=0						
1	so 33900000.0)							
101	so 339060000.0)							
102	so 339110000.0)							
103	so 339180000.0)						Y	
104	so 339240000.0)							
105	so 339310000.0)							
106	so 339380000.0)							
	0016 60 0 0 6	14000 60 -	0 0 00050 000	0.1					
ml	8016.60C -0.6	14000.600	-0.3 26056.600	-0.1					
m2	6000.60c -0.27 7014.60c -0.02 8016.60c -0.70 18000.35c -0.01								
FIELD	GCUT=0.1320 GF	PAR=1 GRAD=	3393.0 GSUR=100	5					
mode	hnpz/dt	sa							
lca	8j 1 Ş Use CEM	4	-						
sdet	par=9 erg=5000) sur=106 n	irm=-1						
nps	10000								
princ	E010	n n							
		5							
e11 fu11	0. 10241 10. 5	9016 000E2	9016 00052 907	16 00102	9016				
LULL	14020 14027 14	0010.00052	14020 12027 14	120.00102	14000				
	14020.1402/ 14	1020.14020	26056 00052 260	DEC 00102	14000.				
611	20030.00031 20	000000000000000000000000000000000000000	20030.00033 200	050.0010Z	20030.				

```
FIELD GCUT=0.1320 GPAR=1 GRAD=3393.0 GSUR=106
```

f11:p 1

ft11 tag 1

e21 1e-10 99log 1e-7

f21:n 105

FIELD Card

New Features – Version 2.6.C

- Eigenfunction convergence improvement
- Transmutation improvements
 - Support for continue-runs
 - Printing of reaction rates sent to Cinder90
 - Reduced memory requirements
- Spherical weight windows
- Delayed neutrons & gammas

 ~1000 nuclides treated with gamma line data
- Photon tally tagging
- Model treatment for library absorption reactions

Eigenfunction Convergence

- ADS / LANL ADS reactor application
- Before eigenfunction exhibits false convergence within fissile regions
 - Fission source produced by power iteration method
 - Can have a significant effect on burnup and shielding results
 - Can only be overcome by running more particles/cycle
- Now fission source distribution is biased to minimize false convergence
 - Fission matrix is tabulated and split into symmetric/asymmetric parts
 - Asymmetric component is dampened to minimize statistical variations
 - Biasing parameters are derived and used in the next cycle
 - Increases eigenfunction convergence by factors of 10-100

7-Can HEU Test Problem

Eigenfunction from the Standard Method

- •1,000 particles/cycle
- 100 active cycles (30 settle)
- Factor 3-4 flux tilt

- •100,000 particles/cycle
- 100 active cycles (30 settle)
- ~10% flux tilt

Eigenfunction from the New Method

- •1,000 particles/cycle
- 100 active cycles (30 settle)
- ~10% flux tilt (converges ~100 faster than SM)

Spherical Weight Windows

Disk of 10 MeV photons into 95cm H2O surrounding 3cm HEU 1 -19.0 -1 imp:p=1 1 2 2 -1.0 +1 -2 imp:p=1 0 +2 -3 imp:p=1 3 4 -3 imp:p=0 0 1 sph 0 0 0 3 2 sph 0 0 0 100 3 sph 0 0 0 200 mode p sdef erg=10 pos -105 0 0 rad=d1 axs=1 0 0 ext=0 vec=1 0 0 dir=d2 Polar axis si1 0 10 sp1 -21 1 si2 0 1 sp2 0 1 m1 92235 .5 92238 .5 m2 1001 2 8016 1 nps 100000 f4:p 1 wwg 4 0 mesh geom rpt origin=0 0 0 ref=-99 1 1 axs 1 0 0 vec 0 1 0 imesh 101. iints 20 jmesh .25 .5 jints 4 8 kmesh 1 kints 1 wwp:p 4j -1 \$ Add this card to use WW С

Delayed Neutrons and Gammas

Delayed gammas from Watt fission in U-235 1 -18.9 -1 IMP:N=1 1 2 0 1 IMP:N=01 so 0.01975 mode n p ml 92235.60c 1. nps 2000000 sdef erg=d1 par=n sp1 -3 phys:p 5j -1 0. 1024i 10.0 e0 t0 .001e8 .01e8 .1e8 1e8 10e8 100e8 f1:p 1

Delayed Neutrons and Gammas

Delayed Neutrons and Gammas

Photon Tally Tagging

5 Gev	protons into l	Martian sol	.1 with photon t	agging				
1	1 -1.0	-1	imp:n=1					
100	2 -1.35e-5	-101 +1	imp:n=1					
101	2 -1.28e-5	-102 +101	imp:n=1					
102	2 -1.22e-5	-103 +102	imp:n=1					
103	2 -1.14e-5	-104 +103	imp:n=1					
104	2 -1.08e-5	-105 +104	imp:n=1					
105	2 -1.01e-5	-106 +105	imp:n=1				Ø	•
999	0	+106	imp:n=0					
1	so 339000000.	0						
101	so 339060000.	0						
102	so 339110000.	0						
103	so 339180000.	0				1	>	
104	so 339240000.	0					•	
105	so 339310000.	0						
106	so 339380000.	0						
ml	8016.60c -0.6	14000.60c	-0.3 26056.60c	-0.1				
m2	6000.60c -0.2	7 7014.60c	-0.02 8016.60c	-0.70 18000	.35c -0.01	•		
FIELD	GCUT=0.1320 G	PAR=1 GRAD=	3393.0 GSUR=106					
mode	hnpz/dt	sa			10			
lca	8j 1 Ş Use CEI	M	_					
sdet	par=9 erg=5000	0 sur=106 r	irm=-1					
nps	10000							
print		•						
pnys:								
ell full	0. 10241 10. 3	5000. 8016 000Ff	0016 00053 001	C 00100 00				
TUII	0. 8016.00051	8016.00052	14000 100053 801	6.00102 80.	10.			
	14028.1402/ 14	4028.14028	14028.1302/ 140	28.13026 140				
£11.m	20050.00051 20	0050.00052	20050.00053 200	20.00102 200	. 00			
rii:p	1							
-21	10 - 10 0010 - 1	0-7						
€41 £21.m	105	e-/					~	
121;II	10J						Summer	
		12						
	Number of Stations Stationary Advantations						LOS Alai	1105

Photon Tally Tagging

1 9 7 m е Ρ а с

Models for Library Interactions

```
2 MeV neutrons into He-3
1
  1 - 5.3540E - 4 - 1
                      imp:n=1
2
                 1 -2 imp:n=1
  0
3
                      imp:n=0
   0
                 2
1
  so 4.0
  so 100.0
2
mode nhdts
sdef par=n erg=2 pos=-5 0 0 rad=d1
     axs=1 0 0 ext=0 vec=1 0 0 dir=1
si1 0 3
sp1 -21 1
cut:n 2i00
cut:h,d,t,s j .001
phys:n 6j 2
m1 2003.60c 1
nps 1000000
f6:h 1
f16:d 1
f26:t 1
f36:s 1
```

```
f8:n 1
e8 0.99i 2.1
ft8 PHL 1 6 1 0
f18:n 1
e18 0.99i 2.1
ft18 PHL 1 16 1 0
f28:n 1
e28 0.99i 2.1
ft28 PHL 1 26 1 0
f38:n 1
e38 0.99i 2.1
ft38 PHL 1 36 1 0
f58:n 1
e58 0.99i 2.1
ft58 PHL 4 6 1 16 1 26 1 36 1 0
```


Models for Library Interactions

Future of MCNPX

- Possible public release of 2.6.0 (Summer 2007)
- Version 2.6.D/2.7.A (April 2007)
 - Transmutation improvements
 - Energy and time weight windows
 - Radioactive source option
 - Photofission and delayed neutron improvements
- MCNPX and MCNP merger
 - Hope to preserve all features of both codes
 - Preliminary version by Summer 2007
 - Public release perhaps by 2008

Future Development

- Heavy-ion tracking and LAQGSM physics model (2.6.?)
- Magnetic fields
- CAD interface (with spline-surface tracking)
- Variance reduction techniques extended to models
- Improve point detectors/DXTRAN for models
- Extend electron data to 100 GeV

Heavy Ion Transport

• Example: U-238 at 400 GeV/nucleon traveling through a Li jet.

Existing Burnup Capabilities

- Numerous "scripts" written to link MC codes to depletion codes
 - MOCUP (MCNP/ORIGEN2, INEL, 1995)
 - MC-REBUS (MCNP/REBUS, ANL, 1998)
 - OCTOPUS (MCNP/FISPACT, ECN NRG Netherlands, 1998)
 - MCB (MCNP/Custom, RIT Sweden, 1999)
 - MonteBurns2 (MCNP/ORIGEN2 or CINDER90, LANL, 1999)
 - MCWO (MCNP/ORIGEN2, INEEL, 2000)
 - BURNCAL (MCNP/Custom, SNL, 2002)
 - MCODE (MCNP/ORIGEN2, MIT, 2002)
- Disadvantages of a "link" approach
 - Several input files to create and understand
 - Numerous input/output files to manage
 - Approximations to convert data from one format/code to another

MCNPX/CINDER90 Interface

• MCNPX provides to CINDER90

- 63-group fluxes in each material to be burned
- Isotopic atom densities and material volumes
- Absorption and fission reaction rates for each nuclide
- Average k_{eff} and fission v, and fission Q
- Power level and burn time

• CINDER90 provides to MCNPX

- Updated isotopic atom densities
- Burnup quantities

• User interface (BURN card)

- BURN card without any entries defaults to 1 MW power for 1 day
- User can specify burn materials, power level, burn times, etc.
- Histories run per burn time are taken from NPS or KCODE card

BURN Card

BURN POWER=2.0 TIME=15,30,30 MAT=3,4 OMIT=3,3,8017,92234,94239,4,1,92234

Specifies a power level of 2 MW for a duration of 75 days (steps of 15, 30, and 30 days). Materials 3 and 4 are included in the burn with isotopes ¹⁷O, ²³⁴U, and ²³⁹Pu excluded from material 3 and isotope ²³⁴U excluded from material 4. Nuclides with an atom fraction less than 1e-10 are also excluded. To force the inclusion of a nuclide, simply list that nuclide on the appropriate material card with an insignificant atom fraction.

7-Can HEU Test Problem

Comparison to MonteBurns

Actinide Inventories

Fission Product Inventories

Can Burnup

Delayed Neutron/Gamma Capability

- Delayed treatment for model and library interactions
 - All events for model interactions
 - Fission events for library interactions
- Delayed distributions provided by CINDER90
 - Uses residual nuclides from model interactions
 - Samples fission products for library fission events
 - Includes virtually all possible decay chains
 - Provides energy distributions in groups (300 n, 25 g)
 - Provides time distributions (continuous => 70 bins)
- Biasing available to enhance delayed production

²³⁵U Library vs Model Delayed Neutron Energy Spectra

²³⁵U Library vs Model Delayed Neutron Time Spectra

²³⁵U Delayed Gamma Production per Fission

²³⁵U Delayed Gamma Production per Fission

