
Chapter 17

Variance reduction techniques

In this chapter we discuss various techniques which may be used to make calculations more
efficient. In some cases, these techniques require that no further approximations be made
to the transport physics. In other cases, the gains in computing speed come at the cost
of computing results that may be less accurate since approximations are introduced. The
techniques may be divided into 3 categories: those that concern electron transport only, those
that concern photon transport only, and other more general methods. The set of techniques
we discuss does not represent an exhaustive list. There is much reference material available
and we only cite a few of them (refs. [Kah56], [HH64], [MI75], [Car81], [Lun81]). An
especially rich source of references is McGrath’s book [MI75], which contains an annotated
bibliography. Instead we shall concentrate on techniques that have been of considerable use
to the authors and their close colleagues. However, it is appropriate to discuss briefly what
we are trying to accomplish by employing variance reduction techniques.

17.0.1 Variance reduction or efficiency increase?

What we really mean to do when we employ variance reduction techniques is to reduce the
time it takes to calculate a result with a given variance. Analogue Monte Carlo calculations
attempt to simulate the full stochastic development of the electromagnetic cascade. Hence,
with the calculated result is associated an estimated variance, s2. The method by which s2 is
estimated was discussed in Chapter 5 Error estimation. Let us assume that it is calculated
by some consistent method as discussed previously. If the estimated variance is too large
for our purposes we run more histories until our criterion is satisfied. How do we estimate
how many more histories are needed? How do we know that the estimated variance is
meaningful? Assuming we can do this, what do we do if it is too expensive to simulate the
requisite number of histories? We may need a more subtle approach than reducing variance
by “grinding out” more histories.

Let us say we devise some “tricks” that allow us to reduce the variance by, say, a factor of 10
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276 CHAPTER 17. VARIANCE REDUCTION TECHNIQUES

using the same number of histories. Let’s also imagine that this new subtle approach we have
devised takes, say, 20 times longer on average to complete a particle history. (For example,
our variance reduction technique may involve some detailed, expensive calculation executed
every particle step.) Although we have reduced the variance by a factor of 10, we take 20
times longer to calculate each particle history. We have actually reduced the efficiency by a
factor of two! To add to the insult, we have wasted our own time implementing a technique
which reduces efficiency!

We require a measure that we may use to estimate gains in efficiency of a given “variance
reduction” technique. It is common to use the efficiency, ε, defined by:

ε =
1

s2T
, (17.1)

where T is a measure of the computing time used (e.g. CPU seconds). The motivation for
this choice comes from the following: We can safely assume that mean values of quantities
calculated by Monte Carlo methods are distributed normally. This is a consequence of the
the Central Limit Theorem1 as discussed in Chapter 5 Error estimation. It follows then that
for calculations performed using identical methods, the quantities s2N and s2T , where N is
the number of histories, are constant, on average, as long as one is in the region of validity of
the Central Limit Theorem. This is so because N should be directly proportional to T . By
considering the efficiency to be constant, eq. 17.1 may be used to estimate the total computing
time required to reach a given statistical accuracy if a preliminary result has already been
obtained. For example, if one wishes to reduce the uncertainty, s, by a factor of 2, one
needs 4 times as many histories. More importantly, eq. 17.1 allows us to make a quantitative
estimate of the gain (or loss!) in efficiency resulting from the use of a given “variance
reduction” technique since it accounts for not only the reduction in variance but also the
increased computing time it may take to incorporate the technique. In the aforementioned
example, using eq. 17.1 we would obtain ε(with subtlety)/ε(brute force) = 0.5, a reduction
of 1/2. In the following sections we attempt to present more successful variance reduction
techniques!

1Invoking the Central Limit Theorem requires that the population variance of a score or tally exists.
While one can imagine score distributions where the population variance does not exist, they usually appear
under contrived circumstances and rarely physical ones in radiation transport. If a population variance does
not exist then one can always appeal to the Strong Law of Large Numbers [Fel67] which states that as long
as a population mean exists, then repeated simulations should bring one closer to the true population mean.
However, the way that this mean is approached may be much slower than that suggested by the Central
Limit Theorem. If the population mean does not exist, then estimates of the sample mean are guaranteed
not to be meaningful. An example of such a distribution would be

p(x)dx = x−2dx , 1 ≤ x ≤ ∞ , (17.2)

that can be sampled straightforwardly but that does not have a mean!
A careful discussion of a score, especially one that has not been previously studied, ought to include a

study of the underlying distribution or a crude but somehow representative analytic model that may be able
to characterize the distribution.
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17.1 Electron-specific methods

17.1.1 Geometry interrogation reduction

This section might also have been named “Code optimisation” or “Don’t calculate what
you don’t really need”, or something equivalent. We note that there is a fundamental dif-
ference between the transport of photons and electrons in a condensed-history transport
code. Photons travel relatively long distances before interacting and their transport steps
are often interrupted by boundary crossings (i.e. entering a new scoring region or element
of the geometry). The transport of electrons is different, however. In addition to hav-
ing its step interrupted by boundary crossings or the sampling of discrete interactions, the
electron has other constraints on step-size. These constraints may have to do with ensur-
ing that the underlying multiple scattering theories are not being violated in any way (See
Chapter 14 Electron step-size artefacts and PRESTA), or the transport may have to be
interrupted so that the equations of transport in an external electromagnetic field may be
integrated [Bie89]. Therefore, it is often unnecessary to make repeated and expensive checks
with the geometry routines of the transport code because the electron is being transported
in an effectively infinite medium for most of the transport steps. The EGS4 code [NHR85],
has an option that allows the user to avoid these redundant geometry subroutine calls. With
this option switched on, whenever the geometry must be checked for whatever reason, the
closest distance to any boundary is calculated and stored. This variable is then decremented
by the length of each transport step. If this variable is greater than zero, the electron can not
be close enough to a boundary to cross it and the geometry subroutines are not interrogated.
If this variable drops to zero or less, the geometry subroutines are called because a boundary
crossing may occur.

By way of example, consider the transport of an electron between two boundaries as depicted
in figure 17.1. For the sake of argument, each transport step (between either the x’s and
o’s has a distance

√
2 and the transport trajectory is directly diagonal between the two

boundaries. For simplicity, we neglect scattering in this example. When the geometry
routines are interrogated, the start of the step is delineated by an x. When the geometry
routines can be skipped, the start of the step is delineated by an o.

This is the way the algorithm works. The closest distance to any boundary is usually
calculated in EGS4 by SUBROUTINE HOWFAR. This distance is called DNEAR and it is calculated
before the particle is transported. (In EGS4/PRESTA, it is calculated before the call to
SUBROUTINE HOWFAR.) After transport by distance VSTEP in the case of electrons or USTEP

in the case of photons, DNEAR is decremented by VSTEP or USTEP. On the subsequent step,
if the next USTEP is less than DNEAR then is is known that the step will not cause the
particle to escape the current region and so the call to SUBROUTINE HOWFAR is avoided. (The
EGS4/PRESTA scheme is slightly more efficient since it employs a more current version of
DNEAR. However, it also calculates DNEAR for every electron step.)
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Figure 17.1: An electron is transported between two boundaries. The geometry routines are
called only when required.
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There is no approximation involved in this technique. The gain in transport efficiency is
slightly offset by the extra calculation time that is spent calculating the distance to the closest
boundary. (This parameter is not always needed for other aspects of the particle transport.)
As an example, consider the case of a pencil beam of 1 MeV electrons incident normally
on a 0.3 cm slab of carbon divided into twelve 0.025 cm slabs. For this set of simulations,
transport and secondary particle creation thresholds were set at 10 keV kinetic energy and
we used EGS4 [NHR85] setting the energy loss per electron step at 1% for accurate electron
transport [Rog84b] at low energies. The case that interrogates the geometry routines on
every step is called the “base case”. We invoke the trick of interrogating the geometry
routines only when needed and call this the “RIG” (reduced interrogation of geometry) case.
The efficiency ratio, ε(RIG)/ε(base), was found to be 1.34, a significant improvement. (This
was done by calculating DNEAR in the HOWFAR routine of a planar geometry code. A
discussion of DNEAR is given on pages 256–258 of the EGS4 manual [NHR85].)

Strictly speaking, this technique may be used for photons as well. For most practical prob-
lems, however, the mean free path for the photons in the problem is of the order, or greater
than the distance between boundaries. For deep penetration problems or similar problems,
this may not be true. However, this technique is usually more effective at speeding up the
electron transport part of the simulation.

The extra time required to calculate the distance to the closest boundary may be consid-
erable, especially for simulations involving curved surfaces. If this is so then the efficiency
gain may be much less or efficiency may be lost. It is advisable to test this technique before
employing it in “production” runs.

17.1.2 Discard within a zone

In the previous example, we may be just interested in the energy deposited in the planar
zones of the carbon slab. We may, therefore, deposit the energy of an electron entirely within
a zone if that electron’s range is less than the distance to any bounding surface of the zone in
which it is being transported. A depiction of this process can be seen in figure 17.2. We note
that we make an approximation in doing this—we neglect the creation and transport of any
bremsstrahlung γ’s that may otherwise created. For the worst possible case in this particular
example, we will be discarding electrons that have a range that is half of the zone thickness,
i.e. having a kinetic energy of about 110 keV. The radiative yield of these electrons is only
about 0.07%. Therefore, unless we are directly interested in the radiative component of the
electron’s slowing down process in this problem, the approximation is an excellent one. For
the above example, we realise a gain in the efficiency ratio, ε(zonal discard + RIG)/ε(base),
of about 2.3. In this case, the transport cut-off, below which no electron was transported,
was 10 keV. If we had used a higher cut-off the efficiency gain would have been less.

Before adopting this technique, the user should carefully analyze the consequences of the
approximation—the neglect of bremsstrahlung from the low energy electron component.
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Figure 17.2: A depiction of electron zonal discard.
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17.1.3 PRESTA!

In the previous Chapter 14, Electron step-size dependencies and PRESTA, we discussed an
alternative electron transport algorithm, PRESTA. This algorithm, by making improvements
to the physical modeling of electron transport, allows the use of large electron steps when one
is far away from boundaries. This algorithm may, therefore, be considered to be a variance
reduction technique, since it saves computing time by employing small steps only where
needed—in the vicinity of boundaries and interfaces, as depicted in figure 17.3. Continuing
with the present example, we calculate the gain in efficiency ratio, ε(PRESTA)/ε(base), to
be 6.1. RIG is always switched on with PRESTA, so it is actually fairer to calculate the
efficiency ratio, ε(PRESTA)/ε(RIG), which was found to be 4.6. If we allow zonal discard as
well, we calculate the efficiency ratio, ε(zonal discard + PRESTA)/ε(zonal discard + RIG),
to be 3.1. There is a brief discussion in the previous chapter on when PRESTA is expected
to run quickly. Basically, the fewer the boundaries and the higher the transport cutoffs, the
faster PRESTA runs. A detailed discussion is given in the PRESTA documentation [BR87].

17.1.4 Range rejection

As a final example of electron variance reduction, we consider the technique called “range
rejection”. This is similar to the “discard within a zone” except for a few differences. Instead
of discarding (i.e. stopping the transport and depositing the energy “on the spot”) the
electron because it can not reach the boundaries of the geometrical element it is in, the
electron is discarded because it can not reach some region of interest. This is depicted
in figure 17.4. For example, a particle detector may contain a sensitive volume where one
wishes to calculate energy deposit, or some other quantity. Surrounding this sensitive volume
may be shields, converters, walls etc. where one wishes accurate particle transport to be
accomplished but where one does not wish to score quantities directly. Electrons that can
not reach the sensitive volume may be discarded “on the spot”, providing that the neglect
of the bremsstrahlung γ’s causes no great inaccuracy.

As an example of range rejection, we consider the case of an ion chamber [BRN85]. In
this case, a cylindrical air cavity, 2 mm in depth and 1.0 cm in radius is surrounded by 0.5
g/cm2 carbon walls. A flat circular end is irradiated by 1.25 MeV γ-rays incident normally.
This approximates the irradiation from a distant source of 60Co. This is a “thick-walled”
ion chamber, so-called because it’s thickness exceeds the range of the maximum energy
electron that can be set in motion by the incident photons. This sets up a condition of
“near charged particle equilibrium” in the vicinity of the cavity. The potential for significant
saving in computer time is evident, for many electrons could never reach the cavity. We
are interested in calculating the energy deposited to the air in the cavity and we are not
concerned with scoring any quantities in the walls. The range rejection technique involved
calculating the closest distance to the surface of the cavity on every transport step. If this
distance exceeded the CSDA range of the electron, it was discarded. The omission of residual
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Figure 17.3: A depiction of PRESTA-like transport for the diagonal trajectory discussed
previously.
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Figure 17.4: A depiction of range rejection.
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bremsstrahlung photon creation and transport was negligible in this problem. The secondary
particle creation thresholds were set at 10 keV kinetic energy as well as the transport cut-off
energies. (ECUT=AE=0.521 MeV, PCUT=AP=0.01 MeV, and ESTEPE=0.01 for accurate
low energy simulation.) A factor of 4 increase in efficiency was realised in this case.

Range rejection is a relatively crude but effective method. The version described above
neglects residual bremsstrahlung and is applicable when the discard occurs in one medium.
The bremsstrahlung problem could be solved by forcing at least some of the electrons to pro-
duce bremsstrahlung. The amount of energy eventually deposited from these photons would
have to be weighted accordingly to keep the sampling game “fair”. Alternatively, one could
transport fully a fraction, say f , of the electrons and weight any resultant bremsstrahlung
photons by 1/f . The other problem, the one of multi-media discard, is difficult to treat in
complete generality. The difficulty is primarily a geometrical one. The shortest distance to
the scoring region is the shortest geometrical path only when the transport can occur in one
medium. The shortest distance we need to calculate for range rejection is the path along
which the energy loss is a minimum. It is not difficult to imagine that finding the “shortest”
path for transport in more than one medium may be very difficult. For special cases this
may be done or approximations may be made. The “payoff” is worth it as large gains in
efficiency may be realised, as seen in the above example.

17.2 Photon-specific methods

17.2.1 Interaction forcing

In problems where the interaction of photons is of interest, efficiency may be lost because
photons leave the geometry of the simulation without interacting. This is depicted in fig-
ure 17.5 where an optically thin region (one for which µt is small, where t is the thickness of
the slab and µ is the interaction coefficient) allows many photons to penetrate and escape
the region. Efficiency is lost because time is spent tracking photons through a geometry and
they do not contribute to the score. This problem has a simple and elegant solution.

The probability distribution for a photon interaction is:

p(λ)dλ = e−λdλ, (17.3)

where 0 ≤ λ <∞ and λ is the distance measured in mean free paths. It can easily be shown
that sampling λ from this distribution can be accomplished by the following formula2:

λ = − ln(1− ξ), (17.4)

2It is conventional to use the expression, λ = − ln(ξ), since both 1− ξ and ξ are distributed uniformly on
(0,1) but the former expression executes more slowly. However, it has a closer connection to the following
mathematical development.
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Figure 17.5: A depiction of photon interaction forcing.
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where ξ is a random number uniform on the range, 0 ≤ ξ < 1. Since λ extends to infinity
and the number of photon mean free paths across the geometry in any practical problem
is finite, there is a non-zero and often large probability that photons leave the geometry of
interest without interacting. If they don’t interact, we waste computing time tracking these
photons through the geometry.

Fortunately, this waste may be prevented. We can force these photons to interact. The
method by which this can be achieved is remarkably simple. We construct the probability
distribution,

p(λ)dλ =
e−λdλ∫ Λ

0 e−λ′dλ′
, (17.5)

where Λ is the total number of mean free paths along the direction of motion of the photon
to the end of the geometry. (The geometry may be arbitrary.) This λ is restricted to the
range, 0 ≤ λ < Λ, and λ is selected from the equation,

λ = − ln(1− ξ(1− e−Λ)). (17.6)

We see from eq. 17.6 that we recover eq. 17.4 in the limit Λ −→ ∞. Since we have forced
the photon to interact within the geometry of the simulation we must weight the quantities
scored resulting from this interaction. This weighting takes the form,

ω′ = ω(1− e−Λ), (17.7)

where ω′ is the new “weighting” factor and ω is the old weighting factor. When interaction
forcing is used, the weighting factor, 1 − e−Λ, simply multiplies the old one. This factor is
the probability that the photon would have interacted before leaving the geometry of the
simulation. This variance reduction technique may be used repeatedly to force the interaction
of succeeding generations of scattered photons. It may also be used in conjunction with other
variance reduction techniques. Interaction forcing may also be used in electron problems to
force the interaction of bremsstrahlung photons.

On first inspection, one might be tempted to think that the calculation of Λ may be difficult
in general. Indeed, this calculation is quite difficult and involves summing the contributions
to Λ along the photon’s direction through all the geometrical elements and materials along
the way. Fortunately, most of this calculation is present in any Monte Carlo code because
it must possess the capability of transporting the photons through this geometry! This
interaction forcing capability can be included in the EGS code in a completely general,
geometry independent fashion with only about 30 lines of code [RB84]!

The increase in efficiency can be dramatic if one forces the photons to interact. For example,
for ion chamber calculations similar to those described in sec. 17.1.4 and discussed in detail
elsewhere [BRN85], the efficiency improved by the factor 2.3. In this calculation, only about
6% of the photons would have interacted in the chamber. In calculating the dose to skin
from contaminant electrons arising from the interaction of 60Co (i.e. 1.25 MeV γ’s) in 100
cm of air [RB84], the calculation executed 7 times more efficiently after forcing the photons
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to interact. In calculating the dose from 60Co directly in the skin (a 0.001 cm slice of tissue)
where normally only 6× 10−5 of the photons interact, the efficiency improved by a factor of
2600 [RB84, RB85]!

17.2.2 Exponential transform, russian roulette, and particle split-
ting

The exponential transform is a variance reduction technique designed to enhance efficiency
for either deep penetration problems (e.g. shielding calculations) or surface problems (e.g.
build-up in photon beams). It is often used in neutron Monte Carlo work and is directly
applicable to photons as well.

Consider the simple problem where we are interested in the surface or deep penetration in
a simple slab geometry with the planes of the geometry normal to the z-axis. We then scale
the interaction probability making use of the following formula:

λ̃ = λ(1− Cµ), (17.8)

where λ is the distance measured in the number of mean free path’s, λ̃ is the scaled distance,
µ is the cosine of the angle the photon makes with the z-axis, and C is a parameter that
adjusts the magnitude of the scaling. The interaction probability distribution is:

p̃(λ)dλ = (1− Cµ)e−λ(1−Cµ)dλ, (17.9)

where the overall multiplier 1− Cµ is introduced to ensure that the probability is correctly
normalised, i.e.

∫∞
0 p̃(λ)dλ = 1. For C = 0, we have the unbiased probability distribution

e−λdλ. One sees that for 0 < C < 1, the average distance to an interaction is stretched3. For
C < 0, the average distance to the next interaction is shortened. Examples of a stretched
and shortened distribution are given in fig. 17.6. In order to play the game fairly, we must
obtain the appropriate weighting function to apply to all subsequent scoring functions. This
is obtained by requiring that the overall probability be unchanged. That is, we require:

ω′p̃(λ)dλ = ωp(λ)dλ, (17.10)

where ω′ is the new weighting factor and ω is the old weighting factor. Solving eq. 17.10 for
ω′ yields,

ω′ = ωe−λCµ/(1− Cµ). (17.11)

Finally, we require a technique to sample the stretched or shortened number of mean free
paths to the next interaction point from a random number. It is easily shown that λ is
selected using the formula:

λ = − ln(ξ)/(1− Cµ), (17.12)

3Note that the average number of mean free paths to an interaction, 〈λ〉, is given by 〈λ〉 =
∫∞

0 λp̃(λ)dλ =
1

1−Cµ .
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where ξ is a random number chosen uniformly over the range, 0 < ξ ≤ 1.

For complete generality, one must obey the restriction, |C| < 1 since the photon’s direction
is arbitrary (−1 ≤ µ ≤ 1). “Path-length stretching” means that 0 < C < 1, i.e. photons are
made to penetrate deeper. “Path-length shortening” means that −1 < C < 0, i.e. photons
are made to interact closer to the surface. For studies of surface regions, one may use a
stronger biasing, i.e. C ≤ −1. If one used C ≤ −1 indiscriminately, then nonsense would
result for particles going in the backward direction, i.e. µ < 0. Sampled distances and
weighting factors become negative. It is possible to use C ≤ −1 for special, but important
cases. (As we shall see in the next section, it is possible to remove all restrictions on C
in finite geometries by combining exponential transforms and interaction forcing.) If one
restricts the biasing to the incident photons which are directed along the axis of interest
(i.e. µ > 0) then C ≤ −1 may be used. If one uses this severe biasing, then as seen
in eq. 17.11, weighting factors for the occasional photon that penetrates very deeply can
get very large. If this photon backscatters and interacts in the surface region where one
is interested in gaining efficiency, the calculated variance can be undesirably increased. It
is advisable to use a “splitting” technique [Kah56], dividing these large weight particles
into a N smaller ones each with a new weight, ω′ = ω/N if they threaten to enter the
region of interest. Thresholds for activating this splitting technique and splitting fractions
are difficult to specify and choosing them is largely a matter of experience with a given type
of application. The same comment applies when particle weights become vary small. If this
happens and the photon is headed away from the region of interest it is advisable to play
“russian roulette” [Kah56]. This technique works as follows: Select a random number. If
this random number lies above a threshold, say α, the photon is discarded without scoring
any quantity of interest. If the random number turns out to be below α the photon is
allowed to “survive” but with a new weight, ω′ = ω/α, insuring the fairness of the Monte
Carlo “game”. This technique of “weight windowing” is recommended for use with the
exponential transform [HB85] to save computing time and to avoid the unwanted increase
in variance associated with large weight particles.

Russian roulette and splitting4 can be used in conjunction with exponential transform, but
they enjoy much use by themselves in applications where the region of interest of a given
application comprises only a fraction of the geometry of the simulation. Photons are “split”
as they approach a region of interest and made to play “russian roulette” as they recede. The
three techniques, exponential transform, russian roulette and particle splitting are part of the
“black art” of Monte Carlo. It is difficult to specify more than the most general guidelines
on when they would be expected to work well. One should test them before employing them
in large scale production runs.

Finally, we conclude this section with an example of severe exponential transform biasing
with the aim to improve surface dose in the calculation of a photon depth dose curve [RB84].

4According to Kahn [Kah56], both the ideas and terminology for russian roulette and splitting are
attributable to J. von Neumann and S. Ulam.
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In this case, 7 MeV γ’s were incident normally on a 30 cm slab of water. The results are
summarised in Table 17.1. In each case the computing time was the same. Therefore,

Table 17.1: This series of calculations examines a case where a gain in the computational
efficiency at the surface is desired. Each calculation took the same amount of computing
time. In general, efficiency at the surface increases with decreased C while efficiency worsens
at depth.

C Histories Relative efficiency on calculated dose
103 0–0.25 cm 6.0–7.0 cm 10–30 cm

0 100 ≡1 ≡1 ≡1
-1 70 1 1.0 3.5
-3 55 1.5 1.2 0.6
-6 50 3.5 2.8 0.1

the relative efficiency reflects the relative values of 1/s2. As C decreases, the calculational
efficiency for scoring dose at the surface increases while, in general, it decreases for the largest
depth bin. The efficiency was defined to be unity for C = 0 at the for each bin. For the
deepest bin there is an increase initially because the mean free path is 39 cm. At first the
number of interactions in the 10 cm–30 cm bin increases! Note that as C is deceased the
number of histories per given amount of computing time decreases. This is because more
electrons are being set it motion, primarily at the surface. These electrons have smaller
weights, however, to make the “game” fair.

17.2.3 Exponential transform with interaction forcing

If the geometry in which the transport takes place is finite in extent, one may eliminate re-
strictions on the biasing parameter, C, by combining exponential transform with interaction
forcing. By using the results of the previous two sections we find the interaction probability
distribution to be:

p(λ)dλ =
(1− Cµ)e−λ(1−Cµ)

1− e−Λ(1−Cµ)
dλ. (17.13)

The new weighting factor is:

ω′ = ω
(1− e−Λ(1−Cµ))e−λCµ

1− Cµ , (17.14)

and the number of mean free paths is selected according to:

λ = − ln(1− ξ(1− e−Λ(1−Cµ)))

1− Cµ , (17.15)
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where ξ is a random number chosen uniformly over the range, 0 < ξ ≤ 1.

In the case C → 0, eqs. 17.13–17.15 reduce to the equations of simple interaction forcing given
in sec. 17.2.1. In the case Λ → ∞, eqs. 17.13–17.15 reduce to the equations of exponential
transform given in the previous section. However, the equations of this section permit any
value of C to be used irrespective of the photon’s direction as long as the geometry is finite,
i.e. 0 < Λ < ∞. In particular, the strong surface biasing, C < −1 need not be restricted
to forward directed photons (µ > 0), and penetration problems may use C > 1. This latter
choice actually causes the interaction probability to increase with depth for forward directed
photons! Again, as in the previous section, the same comments about particle splitting,
russian roulette, and weight windowing apply.

17.3 General methods

17.3.1 Secondary particle enhancement

In some applications, one wishes to study the behaviour of secondary particles in an en-
ergy regime where they are highly suppressed. For example, X-rays from diagnostic X-
ray tubes arise from bremsstrahlung radiation. The bremsstrahlung cross section is much
smaller than the Møller cross section in the diagnostic regime (≈70 keV). So, calculating
the bremsstrahlung characteristics by Monte Carlo method can be difficult since most of the
effort is spent creating knock-on electrons. Another example would be the calculation of the
effect of pair production in low-Z materials in the radiotherapy regime, below 50 MeV.

One approach is to enhance the number of these secondary particles by creating many of
them, say N , once an interaction takes place and then giving them all a weight of 1/N to
keep the game “fair”. Once the interaction occurs, the secondary energy and directional
probabilities can be sampled to produce distributions in energy and angle of the secondary
particles emanating from a single interaction point. This method is more sophisticated than
“splitting” where N identical particles are produced.

It is important that the stochastic nature of the primary particle be preserved. For this
reason, the energy deducted from the primary particle is not the average of the secondary
particles produced. The proper “straggling” is guaranteed by subtracting the entire energy of
one of the secondary particles. This has the minor disadvantage that energy conservation is
violated for the incident particle history that produces the “spray” of secondaries. However,
over many histories and many interactions, energy conservation is preserved in an average
sense.

The details of the implementation this method for the bremsstrahlung interaction in the
EGS4 code is documented elsewhere [BMC89]. Examples of the use of this method in the
radiotherapy regime [FRR90] and the diagnostic regime [NNS+90] have been published.
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17.3.2 Sectioned problems, use of pre-computed results

One approach to saving computer time is to split the problem into separate, manageable parts
using the results of a previous Monte Carlo simulations as part of another simulation. These
applications tend to be very specialised and unique problems demand unique approaches.
For illustration, we shall present two related examples.

Fluence to dose conversion factors for monoenergetic, infinitely broad electron and photon
beams incident normally on semi-infinite slabs of tissue and water have been calculated
previously [RB85, Rog84a]. These factors, called KE(z), vary with depth, z, and on the
energy of the photon beam, E, at the water surface. Dose due to an arbitrary incident
spectrum as a function of depth, D(z), is calculated from the following relation:

D(z) =
∫ Emax

Emin

Φ(E)KE(z)dE, (17.16)

where Φ(E) is the electron or photon fluence spectrum and it is non-zero between the limits
of Emin and Emax. Each KE array represents a long calculation. If one uses these pre-
calculated factors, one can expect orders of magnitude gains in efficiency. If one is interested
in normally incident broad beams only, the calculated results should be quite accurate.
The only approximations arise from the numerical integration represented by eq. 17.16 and
associated interpolation errors. However, there are two important assumptions buried in
the KE’s—the incident beams are broad and incident normally. For photons, using narrow
beams in this method can cause 10% to 50% overestimates of the peak dose. For narrow
electron beams this method is not recommended at all.

Another example is the study of the effects of scatter in a 60Co therapy unit [REBvD88]. For
the purpose of modeling the therapy unit in a reasonable amount of computing time, it was
divided into two parts. First, the source capsule itself was modeled accurately and the phase
space parameters (energy, direction, position) of those particles leaving the source capsule
and entering the collimator system were stored. About 2× 106 particles were stored in this
fashion taking about 24 hrs of VAX 11/780 CPU time for executing the simulation. This
data was then used repeatedly in modeling the transport of particles through the collimators
and filters of the therapy head. The approximation inherent in this stage of the calculation is
the interaction between the source capsule and the rest of the therapy head. However, since
the capsule is small with respect to the therapy head and we are interested in calculating the
effects of the radiation somewhat downstream from the therapy head, the approximation is
an excellent one. Another aspect of this calculation was that the effect of the contaminant
electrons downstream from the therapy head was studied. Again, this part of the calculation
was “split off” and done by the method described previously. That is, eq. 17.16 was used to
calculate the depth-dose profiles in tissue.

By splitting the problem into 3 parts, the total amount of CPU time used to simulate the
60Co therapy head [REBvD88] required 5–16 hours of CPU time for each geometry. If
we had attempted to simulate the problem entirely without “dividing and conquering”, the
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amount of CPU time required would have been prohibitive.

17.3.3 Geometry equivalence theorem

A special but important subset of Monte Carlo calculations is normal beam incidence on
semi-infinite geometries, with or without infinite planar inhomogeneities. The use of a simple
theorem, called the “geometry equivalence” or “reciprocity” theorem, provides an elegant
technique for calculating some results more quickly. First we prove the theorem.

Imagine that we have a zero radius beam coincident with the z-axis impinging on the geome-
try described above. We “measure” a response that must have the form f(z, |ρ|), where ρ is
the cylindrical radius. This functional form holds true since there is no preferred azimuthal
direction in the problem. If the beam is now shifted off the axis by an amount ρ0, then
the new functional form of the response must have the form, f(z, |ρ− ρ0|), by translational
symmetry. Finally, consider that we have a finite circular beam of radius ρb and we wish
to integrate the response over a finite-size detection region with circular radius ρd. This
integrated response has the form,

F (z, ρb, ρd) =
∫ |ρ0|≤ρb

dρ′
∫ |ρ|≤ρd

dρ f(z, |ρ− ρ0|), (17.17)

where
∫ |ρ|≤ρd dρ is shorthand for

∫ 2π
0 dφ

∫ ρd
0 dρ. If we exchange integration indices in eq. 17.17,

then we obtain the reciprocity relationship,

F (z, ρb, ρd) = F (z, ρd, ρb). (17.18)

What eq. 17.18 means is the following: If we have a circular beam of radius ρb and a circular
detection region of radius ρd, then the response we calculate is the same if we had a circular
beam of radius ρb and a circular detection region of radius ρd! The gain in efficiency comes
when we wish to calculate the response of a small detector in a large area beam. If one does
the calculation directly, then much computer time is squandered tracking particles that may
never reach the detector. By using the reciprocity theorem one calculates the same quantity
faster.

In an extreme form the reciprocity theorem takes the form [ICR84],

lim
ε→0

F (z, ρb, ε) = lim
ε→0

F (z, ε, ρb), (17.19)

which allows one to calculate the “central axis” depth-dose for a finite radius beam by scoring
the dose in a finite region from a zero-area beam. The gain in efficiency in this case is infinite!
The radius, ρb, can even be infinite to simulate a broad beam.

A few remarks about the reciprocity theorem and it’s derivation should be made. If the
response function, f(z, |ρ|), has a finite lateral extent, then the restriction that the geometry
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should be semi-infinite may be relaxed as long as the geometry, including the inhomogeneous
slabs, is big enough to contain all of the incident beam once the detection region radius
and the beam radius are exchanged. Unfortunately, electron-photon beams always produce
infinitely wide response functions owing to radiation scatter and bremsstrahlung photon
creation. In practice, however, the lateral tails often contribute so little that simulation (and
experiments!) in finite geometries is useful. Also, in the above development it was assumed
that the detection region was infinitely thin. This is not a necessary approximation but this
detail was omitted for clarity. The interested reader is encouraged to repeat the derivation
with a detection region of finite extent. The derivation proceeds in the same manner but
with more cumbersome equations.

17.3.4 Use of geometry symmetry

In the previous section, we saw that the use of some of the inherent symmetry of the geometry
realised considerable increase in efficiency. Some uses of symmetry are more obvious, for
example, the use of cylindrical-planar or spherical-conical simulation geometries if both the
source and target configurations contain these symmetries. Other uses of symmetry are less
obvious but still important. These applications involve the use of reflecting planes to mimic
some of the inherent symmetry.

For example, consider the geometry depicted in fig. 17.7. In this case, an infinite square
lattice of cylinders is irradiated uniformly from the top. The cylinders are all uniform and
aligned. How should one approach this problem? Clearly, one can not model an infinite array
of cylinders. If one tried, one would have to pick a finite set and decide somehow that it was
big enough. Instead, it is much more efficient to exploit the symmetry of the problem. It
turns out that in this instance, one needs to transport particles in only 1/8’th of a cylinder!
To see this we find the symmetries in this problem. In fig. 17.7 we have drawn three planes
of symmetry in the problem, planes a, b, and c5. There is reflection symmetry for each of
these planes. Therefore, to mimic the infinite lattice, any particles that strike these reflecting
planes should be reflected. One only needs to transport particles in the region bounded by
the reflecting planes. Because of the highly symmetric nature of the problem, we only need
to perform the simulation in a portion of the cylinder and the “response” functions for the
rest of the lattice is found by reflection.

The rule for particle reflection about a plane of arbitrary orientation is easy to derive. Let ~u
be the unit direction vector of a particle and ~n be the unit direction normal of the reflecting
plane. Now divide the particle’s direction vector into two portions, ~u‖, parallel to ~n, and ~u⊥,
perpendicular to ~n. The parallel part gets reflected, ~u′‖ = −~u‖, and the perpendicular part
remains unchanged, ~u′⊥ = ~u⊥. That is, the new direction vector is ~u′ = −~u‖ + ~u⊥. Another

5Note that this symmetry applies only to a square lattice, where the spacing is the same for the x and
y-axes. For a rectangular symmetry, the planes of reflection would be somewhat different. There would be
no plane c as for the square lattice in fig. 17.7.
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Figure 17.7: Top end view of an infinite square lattice of cylinders. Three planes of symmetry
are drawn, a, b, and c. A complete simulation of the entire lattice may be performed by
restricting the transport to the interior of the three planes. When a particle strikes a plane
it is reflected back in, thereby mimicking the symmetry associated with this plane.
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way of writing this is,
~u′ = ~u− 2(~u · ~n)~n. (17.20)

Applying eq. 17.20 to the problem in fig. 17.7, we have: For reflection at plane a, (u′x, u
′
y, u
′
z) =

(−ux, uy, uz). For reflection at plane b, (u′x, u
′
y, u
′
z) = (ux,−uy, uz). For reflection at plane

c, (u′x, u
′
y, u
′
z) = (−uy,−ux, uz). The use of this reflection technique can result in great gains

in efficiency. Most practical problems will not enjoy such a great amount of symmetry but
one is encouraged to make use of any available symmetry. The saving in computing time is
well worth the extra care and coding.
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