Monte Carlo Simulation for Stripping factors of Airborne Gamma-ray Spectrum

Zhao Jun, Zhu Jinhui, Huang Liuxing, Niu Shengli Northwest Institute of Nuclear Technology, Xi'an, China

Airborne Gamma-ray Spectrometry

Airborne Gamma-ray Spectrometry

- Large Area
- Low Spatial Resolution
- Qualitative or Semi-quantitative
- Usage
 Exploring
 Radiation Survey

Typical Spectrum (Mixed)

Difficulties in Experiment

Cosmic Rays

Rn

Difficulties in Experiment

- Background Rn in Air Cosmic Radiation K, U, and Th from the Ground Strip Them!
- Calibration Source Relatively Infinite Right Isotope
 Right Distribution
 Known Activity

Typical Spectrum (Thorium Pad)

Experiment and Simulation

THEORY

intrition

IMULATION

VCFIFICATION

EXPERIMENT

intuition

analysis

Difficulties in MC Simulation

- Details of the Whole System Detector
 Plane and Facilities
- Low Probability
 Large Space
 Deep Penetration
 Scattered Gamma Ray
 Energy Spectrum

Variance Reduction Techniques

- Bias
 - Biased Sampling Splitting and Russian Roulette
- Semi-analytic Next Estimating
- Geometry Symmetry Equivalence

Distinguished Works from Literature

- K. Saito, P. Jacob, etc. 1985 YURI Code
 1994 Recommended Reference (ICRU 53)
 1995 Air Kerma, Build-up Factor
 1998 Report with Detailed Data Set
 2002 Phantom Considered
- D.N.Matsukevich, A.I.Borodich, etc. 1998 EGS4 Spectrum

Distinguished Works from Literature

- No Detailed Information of Methods
- Geometry Symmetry Reciprocity
- Detector or Phantom Two-step Scheme Fluent

Energy Distribution Angular Distribution

• No Mention of Heterogeneous Source

Our Method

- Geometry Equivalence

 Original
 Difference from the Former Works
 Single Step
 Heterogeneous Source
- Doubted by Experts in Different Fields Verified Again and Again
- No Other VRT Employed

Our Method

Method From Mr. Bielajew's Book

- Fundamentals of the Monte Carlo Method for Neutral and Charged Particle Transport
- 17.3.3 Geometry Equivalence Theorem

$$F(z,\rho_{\rm b},\rho_{\rm d}) = \int^{|\boldsymbol{\rho}'| \le \rho_{\rm b}} d\rho' \int^{|\boldsymbol{\rho}| \le \rho_{\rm d}} d\rho \ f(z,|\boldsymbol{\rho}-\boldsymbol{\rho}'|), \tag{17.17}$$

where $\int |\rho| \leq \rho_d d\rho$ is shorthand for $\int_0^{2\pi} d\phi \int_0^{\rho_d} d\rho$. If we exchange integration indices in eq. 17.17, then we obtain the reciprocity relationship,

$$F(z, \rho_{\rm b}, \rho_{\rm d}) = F(z, \rho_{\rm d}, \rho_{\rm b}).$$
 (17.18)

What eq. 17.18 means is the following: If we have a circular beam of radius ρ_b and a circular detection region of radius ρ_d , then the response we calculate is the same if we had a circular beam of radius ρ_b and a circular detection region of radius ρ_d ! The gain in efficiency comes

Programming

- EGSnrc Free and Open Programs for Implementing the Method
- GEB
 - To Simulate the Statistical Fluctuation
- Box, Plane, and Facilities Slabs of Aluminum and Steel
- Th and U Series

Verification

- ICRU Recommended Reference YURI
- Both the GE Method and Program
- 1072 Figures Compared
- Air Kerma and Fluent of Primary Photons Energy 0.1 - 5MeV Height 0.1 - 300m Depth 0 - 10 cm
- Relative Error < 3%

Simulation

- Source
 Size
 Isotope
 Distribution
- Height
- Wood Slab Scheme Simulate the Air in Experiment To Obtain Striping Factors

Simulation

- Radiation Environment in Air Energy Distribution Angular Distribution
- Efficiency Definition
- Spectrum Stripping Factors Calibration Scheme
- Relative Statistical Error <3%

Thorium Pad

Uranium Pad

Accuracy of Spectrum

- Method
- Gamma Emission From Decay Series U 50 Th 42
- Background Experiment Caused by Known Source Not-known Source Simulation

Background Pad

Thanks for Your Attention!