How accurately can we calculate neutrons slowing down in water

J-Ch Sublet, D. E. Cullen*, R. E. MacFarlane**

CEA Cadarache, DEN/DER/SPRC, 13108 Saint Paul Lez Durance, France *Lawrence Livermore National Laboratory **Los Alamos National Laboratory

The Tools

• A 30 cm radius sphere, a cube and a broomstick

- 2 atoms of H1 and one of O16
- ONLY ENDF/B-VI release 8 nuclear data, at 293.6 K to start with
- A time independent, isotropic point source at the centre of the sphere, monoenergetic with an energy of 14.1 Mev
- The today state-of-the-art Monte Carlo codes: COG, MCNP5, MCNPX, MCNP5-Bob, MERCURY, TART and TRIPOLI
- Calculate two separate cases, one using free atom scattering data and the other using bound, thermal scattering law data
- at least 100 Millions (10⁸) source neutrons
- Tally both scalar flux within the source, and leakage from the surface
- Use 616 tally bins, equally spaced in lethargy, 50 per decade from $10^{\text{-5}}\,\text{eV}$ up to 20 MeV

Trivial, everybody thought ... but we started with up to 80% differences in the calculated flux

Is Thermal Scattering Important ? free data

Why study Free and Bound Data Results?

Log scaling is often deceptive

Overview of water cross section

H bound in H2O cross section, at 293.6 K

Energy grid scallops effect

CADARACHE

What is important and what is not important

Free Atom Scattering Results

CADARACHE

5%TRIPOLI (3-4 MeV) and 1% TART05 (5-7 MeV)

CADARACHE

Flux inside 30 cm Radius Sphere of Water Using Free Atom Scattering Cross Sections

The most important energy range for PWR, BWR

Bound Atom Scattering Results

The most important energy range for PWR, BWR

Near the peak of the Maxwellian

CADARACHE

MCNP Family of Codes

Smoothing of MCNPX, spike of MCNP5 & MCNP4c3

œ

Discrete thermal sampling versus continuous impact on Keff

LCT6-2,-4,-6,-8,-10 4 to 27 pcm with s.d. of 10 pcm

CADKRACHE

Use discrete thermal sampling instead of continuous

ICSBEP	MCNP5-Bob Keff results with ENDF/B-VII
HST42-1	1.00100(07) - 1.00100(06) = .00000(07)
- 2	0.99995(07) - 1.00006(06) =00011(07)
- 3	1.00155(05) - 1.00153(05) = .00002(05)
- 4	1.00230(05) - 1.00222(05) = .00008(05)
HST32	0.99789(13) - 0.99800(13) =00011(13)
LST20-1	1.00024(09) - 1.00023(08) = .00001(09)
- 2	1.00003(08) - 0.99983(08) = .00020(08)
HST1-1	0.99843(14) - 0.99838(15) = .00005(15)
- 5	0.99864(13) - 0.99885(13) =00019(13)
LCT6-2	1.00074(10) - 1.00058(10) = .00016(10)
- 4	1.00031(10) - 1.00004(10) = .00027(10)
- 6	1.00054(10) - 1.00050(10) = .00004(10)
- 8	1.00015(10) - 1.00019(10) =00004(10)
-10	1.00013(10) - 1.00001(10) = .00012(10)

discrete tables Keff - new continuous tables Keff

MCNPX26c?? still differ from MCNP5-Bob

Prospects for cross section

Back up to ENDF/B-VII beta1 H(H2O)

ICSBEP	MCNP5 Keff results	
 HST42-1	1.00017(04)-1.00022(04)	=00005(04)
HST9-2	1.00084(14)-1.00275(14)	=00191(14)
LCT6-06	0.99929(10)-1.00050(10)	=00121(10)
LCT39-01	0.99675(11)-0.99805(11)	=00130(11)
PST1-1	1.00414(13)-1.00612(13)	=00198(13)
PST11-1.18	0.99514(16)-0.99398(16)	= .00116(16)

Cross sections variations impact still dominate the Keff variations and reactions rates

Prospects for cross section

CADARACHE

TRIPOLI-4.4 results: thermal data files influence

TRIPOLI-4.4 results: thermal data files influence

TRIPOLI-4.4 results: thermal data files influence

Same (latest) thermal data but different Monte Carlo

RACHE

Same (latest) thermal data but different CODE

Inelastic thermal energy distribution

Peaked and evolving...

Inelastic thermal angular distribution

LWTR ENDF/B-VII NJOY-99, 161-CEA 293.6K thermal inelastic for e= 1.417E-08 MeV

Structured ...with valley

Conclusions

ALL of the participating codes or data were improved based on this code comparisons

There is one positive conclusion that we can reach from this study: regardless of how much time and effort we put into improving our Monte Carlo codes, we are never going to eliminate differences unless we improve our <u>nuclear data</u> and <u>processing codes</u>

We hope that the results presented here serve as a wake up call to those who think our Monte Carlo codes or other systems and the nuclear data they use are "now perfect". This should serve as a WARNING for current code system

Be aware that there is more uncertainty in Monte Carlo answers than the estimates of statistical uncertainty printed out by the codes

