

Monte Carlo simulations for a prototype calorimeter for HDR brachytherapy sources

Thorsten Sander, Hugo Palmans, Mark Bailey, David Shipley, Simon Duane National Physical Laboratory, Teddington, UK

28 - 29 March 2007

13th UK Monte Carlo User Group Meeting (MCNEG 2007), NPL

Overview

- Motivation: Ionometry and calorimetry
- MC calculations for calorimeter design parameters (build-up curves, overall dimensions for full scatter, dose distributions)
- MC calculated correction factors (vacuum gap, inhomogeneity, volume averaging)
- Summary

Current calibration method: air kerma based approach (lonometry)

- Reference air kerma rate (RAKR) of brachytherapy photon source measured with primary standard cavity chamber
- Source strength in terms of Gy/s at 1 m
- Conversion from RAKR to absorbed dose to water using AAPM TG-43 protocol

Calibration set-up

Nucletron micro-Selectron source

Alternative measurement method: absorbed dose based approach (Calorimetry)

- Objective: avoid conversion of RAKR to absorbed dose
- Overall standard uncertainty in conversion using TG-43 is estimated to be 5% (clinically significant)
- Development of a prototype calorimeter for HDR brachytherapy sources
- Direct measurement of absorbed dose

$$D_{\text{point}} = \frac{E_{rad}}{m} = c_p \Delta T$$

EGSnrc Monte Carlo simulations

• Various aspects of calorimeter modelled with DOSRZnrc

AISI 316L

- Default settings used (incl. PRESTA-II)
- ECUT = 10 keV, PCUT = 5 keV
- All calculations to ≤0.1% standard uncertainty
- Source (Nucletron microSelectron Classic):
 - Bare ¹⁹²Ir spectrum used for ¹⁹²Ir cylinder
 - Source encapsulation and steel cable: AISI 316L stainless steel

5.0 mm

MC geometrical inputs DOSRZnrc model for calorimeter

CC file non		TE0024				Pauras sas	erend.					
EGS file han	ne.	1 5003 1				Source cer	irred.					
		_				2 - 7 0m	1	11 1				
Core height 2	Z: 0.5 cm.	core thicknes	s: 0.2 cm									
Centre-to-ce	entre sourc	e-to-core: 2.5	cm									
Geometrical	inputs											_
		R										
radii (cm)												
10		8	6	8 59	60	61	62	63	64		65	
2.7	2	7	5	0 51	52	53	54	55	56		57	
2.6	1	6	4	2 43	44	46	46	42	48		49	
2.4	1	5	3	4 35	36	37	38	39	40		41	
2.3	l.	4	2	6 27	28	29	30	31	32		33	
1.3		3	1	8 19	20	21	22	23	24		25	
0.055		2	1	0 11	12	13	14	15	16	2	17	
0.03	1	1		2 3	4	6	6	7	8		9	
0			1	2	3	4	5	6	7	8		Z
								_				
d	lepth bou	ndaries (cm)	0	6.65	6.75	6.825	7.175	7.215	7.25	7.35	14	
Legend												
		araphite										
-	=	iridium										
	=	stainless s	teel 316L				-	-				

Nucletron microSelectron Classic Ir-192 source in water and graphite

Water equivalent radial distance R, cm

- $(\mu_{en}/\rho)^w_g = 1.11$ for mean ¹⁹²Ir energy (encapsulated source: 397 keV)
 - Energy dependent \rightarrow calculate fluence spectrum

Scatter build-up along R-axis

20 cm

$ROI = 1 mm \times 1 mm$

0 cm

20 cm

Scatter build-up along Z-axis

0 cm

20 cm

20 cm

Scatter build-up in graphite (1)

- R = 20 cm and $Z = \pm 10$ cm from centre of source
 - → absorbed dose in all 5 ROIs (1...5 cm) >99.5% of D_{full scatter}
- $D_{\text{full scatter}}$ calculated using R = 50 cm and Z = ±50 cm

Scatter build-up in graphite (2)

ROI at R = 1 cm

Radius of graphite cylinder R, cm

Scatter build-up in graphite (3)

ROI at R = 5 cm

Scatter build-up in graphite (4)

Half height of graphite cylinder Z/2, cm

Scatter build-up in graphite (5)

ROI at R = 5 cm, radius of graphite cylinder = 20 cm

Half height of graphite cylinder Z/2, cm

Scatter build-up in graphite (6)

Min. R required at ROI to get 99.9% and 99.5% of D_{full scatter}

Scatter build-up in graphite (7)

Min. Z/2 required at ROI to get 99.9% and 99.5% of D_{full scatter}

Dose distribution parallel to long source axis (1)

	A E	3 C	D	E	F	G	н	1	J	К	L	м	N	0	P	Q	R	S	Т	U	V	W.	X	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	A	d .	Τ
1																		~																		4
2	EGSfile name:		120053						_									a = 30.1	· centred 75 cm	l.																+
4																																				1
5	Geometrical inp	outs					_	_																												+
-			ы																																	+
(8	radii (ca)		n																																	+
9	30		32	963	964	96	5 96	5 96	57 968	3 963	970	971	972	973	974	975	976	977	978	979	980	981	982	983	984	985	986	987	988	985	990	991	992		33:	3
10	4.31		31	932	333	3 33	4 93	5 93	36 931	7 938	3 939	940	941	942	943	944	945	946	947	948	949	350	951	352	953	954	355	356	357	358	353	960	961		36/	ŝ
11	4.05		30	901	902	2///49	6///80	£///5t	5 //36	5//7997	///808	///9063	//39	///55	///56	///55	/314	515	///395	////59	////583	//353	//566	//325	//392	//\$23	/344	//\$25	/365	//\$25	//348	//\$25	930		93	1
12	4.02	-	29	870	87	1//37	2//27	8///87	<u>A</u> //80			///874	///670	//685	///86	//932	683	684	////858E	////366	///393	//643	11333	//8599	//8589	//8582	//393	//8534	///////////////////////////////////////	//659	//397	//658	899		300	4
13	3.36	-	28	833	840	1///57	87//299 10 81	4///99	545/// 394 / 12 81/	9 <i>7//3</i> 999 3 81/	815	816	/// 394 3 817	818	///09/8 819	820	8052	800	////8744 823	/////0958 824	/// <i>/491</i> 8 825	// 8744 / 826	///99/8 827	// 8747 828	// 00% 829	2// 390 830	/// /// 831	2//9960	833	2//8045	835	836	837		83	4
15	3.69		26	777	778	3 77	9 78	0 7	81 782	2 783	784	785	786	787	788	789	790	791	792	793	794	795	796	797	798	799	800	801	802	803	804	805	806		80	ź
16	3.31		25	746	747	74	8 74	9 75	50 75	1 752	2 753	754	755	756	757	758	759	760	761	762	763	764	765	766	767	768	769	770	771	772	773	774	775		77	ŝ
17	3.05		24	715	716	5////	£	\$ <i>\///i</i> /	19 // <i>1</i> /2/8	8/////2	/////28	1///26	///%	1///25	1/14/28	1/1/20	1.26	/////25	////#58	////#55	///////////////////////////////////////	17,643	/////////	1/7,65	1/4/\$	1/2633	1144	117633	1///6	/////	////	1/7.6/2	744		74	ŝ
18	3.02		23	684	685	5///66	6//65	2///52	6 //36	6///6/30	i ///8-51	///%%	//55	//5.76	/63E	//636	1637	///636	///858	<u>///7</u> 547	201	/7.62	///52	/764	/76E	/706	1957	/7.68	////54	///%	/////	////	713		71/	ł
19	2.98	-	22	653	654	///65	\$///65	9///\$	97//88/	///65/	\$///659	///669	///%/	//\$955	//6544	1/665	1536	////\$\$	////36/8	////65435	////\$09	//673	//672	//97/2	//67.4	1/27/2	//6739	1/1917	//673	/////	//649	1//689	682		683	4
20	2.35	-	21	622	623 For	21 62 21 62	4 62 2 50	o 62 4 54	20 621 20 50	n 628 : Ees	529 5 Ecc	6 30	631	632	633	634	635	636	637	638	639	640	641	642	643	644	645	646	647	648	649	650	651		652	1
21	2.31	-	19	531	56	1 56	0 56	4 00 3 56	30 030 31 569	5 566	567	568	569	570	571	572	573	574	575	576	577	578	579	580	581	582	583	584	585	586	587	588	589		59	å
23	2.05		18	529	530	1///		£7//3/	6.77.55	c///56	X//X34	1/////	///5/2	1////	1/1.46	1///	1342	11/15/15	7777566	11111445	11/1646	1/1/14	11/2.4/2	///////////////////////////////////////	17556	1/1555	////	7/552	1/1554	//55	1/1554	1/552	558		55	ŝ
24	2.02		17	438	493	0///55	6///55	ŧ///s/	2///56		1/5:65	///565	///555	/////////	1/5:63	1//5/6	1155	////\$12	////\$\$8	////518	////56	//5.65	///59	//5.52	///56	1/528	1152	11:55	1.5.4	11:33	1/5/45	1/56	527		520	ŝ
25	1.98		16	467	468	3///45	<u>5</u> //A%	8////	Es /// A.Z.	1///20	<i>/////</i>	/////5	/////	/////	//27/8	///////////////////////////////////////	4.85	/////	////45/8	////46/3	///464	//A/67	//468	/////	//46/8	/////////	//456	//45	//45/	////	//4/55	//#SE	496		43	4
26	1.95	-	15	436	437	43	8 43	9 44	10 44	1 442	443	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465		466	ź
27	1.63	-	14	405	406	5 40 - /////	17 40 (2 <i>1//23</i>	8 40 477777	03 410	0 41 24///42/	1 412 C/// <i>A/G/</i>	413	414	415	416	417	418	419	420	421	422 //// <i>6/6</i> /	423 //###	424	425	426	427 ///////	428	423 77666	430	43	432	433	434		435	i
20	1.02	-	12	343	344	1///	8////		5 ////		/////56	///////////////////////////////////////	1111	////	11654	/////	115		·///2000	//////	///////////////////////////////////////	/////	77733	////	7777	//200	////	11,409	11.2	111	11646	1116	403		404	i.
30	0.98		11	312	313	3////5	4 ///24	\$ <i>7778</i>	05 ///51		//////	////25	11/152	////	11.62	/////	1.65	////201	/////201	////5/28	1111525	//446	//////	////	////	////	////	//////	////	////	////	///46	341		34	2
31	0.95		10	281	282	2 28	3 28	4 28	35 286	5 287	288	289	290	291	292	293	294	295	296	297	298	299	300	301	302	303	304	305	306	307	308	303	310		31	1
32	0.55	_	9	250	25	1//25	4//#5	1/2	4 //28	\$//254	1//#57	///258	//28/5	//2549	//255	¢//26/2	1253	254	///255	265	///267	/256	263	/270	//23/5	/27/2	<u>//27/5</u>	//27.4	1/275	/270	//277	/276	279	·	28	2
33	0.53	-	8	219	220				3 //28	8///28		1//227	///285	///223	//239	///231	1230		////2345	///235	///205		//266	//239	//289 //////////////////////////////////	///240	//282	1255	//85	//245	//249		248		24:	4
35	0.49	-	6	157	103				64 // 48	\$77755 \$77756		///#	////	//#5	///60	////	1255	200	111156	/////	111.57	77753	1166	//299	11.54	1//250	///2.55 /////	1118		///6/	////	11/63	217		18	á
36	0.47		5	126	127	////	s	5.//x	39 ///A3	1///6/	////	V//x54	////		////	///66	1/4/3	110	/////	/////	////	//546	///	//546	//sst	//146	//14/3	//œ.o	//de/	//œ,	///50		155		15	ŝ
37	0.45		- 4	35	36	5 3	7 3	8 8	99 100	0 10	1 102	103	104	. 105	106	107	108	103	110	111	112	113	114	115	116	117	118	119	120	12	122	123	124		125	ŝ
38	0.19	_	3	64	65	5 6	6 6	7 6	58 63	9 70) 71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	83	30	91	32	93		3/	ł
39	0.055	-	2	33	34	4 3 5	5 3	5 3	37 31 c	3 33	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	53	60	61	62		6:	á,
40	0.00	-	<u> </u>	4			4		0				40	44	40	40	14	45	46	47	40	40	20	22	20	24	20	20	21	07	20	00	20			4
41					2	3	- •	5	0	· ·	•	3	10	- "	12	1.5	14	19	10	17	10	13	20	21	22	23	24	29	20	21	20	23	30	3	•	+
43																																				1
44	depth bou	ındar	ies (cm)	0	28.7	29	29.1	29.2	29.3	29.4	29.5	29.6	29.7	29.8	29.9	30	30	30.03	30.13	30.23	30.33	30.4	30.4	30.5	30.6	30.7	30.8	30.9	31	31.1	31.2	31.3	31.39	31.65		1
45		+				2	3 23	1 29	.2 29.3	3 29.4	29.5	29.6	29.7	29.8	29.9	30	30	30.08	30.18	30.28	30.34	30.4	30.4	30.5	30.6	30.7	30.8	30.9	31	31.	31.2	31.3				-
47	Legend																																			1
48																																				
49		=	graphite					-																												_
50		-	iridium	taal 216					_																											-
51		-	stainiess s	teel alloL		-		-		-	-			-		-	-	-												-		-				+
53		7 - 1	ROI			-		-		-	-			-		-	-													-						1
54																																				1
55		=	photon cr	oss section enhancement in (this region;	minimu	ım distar	cefror	n blue lin	e to RC	I = CSD	A range	of 0.91	MeV ele	ctrons	; in grap	ohite =	0.26 cm	(ICRU re	port 37)																1
56	1	1 1	1		1	÷ .		-	1	-	1	1 e -			1	1	1	· .											1	1	1	1	1			1
							\ /	\frown	C	in	\mathbf{O}	11	st i	in	n			in				1	0	(ri		•										
					-		V 1	C	Э		IL	١C	スし	IU	11	U	5		IU			L	U		IU	•										
			States and states and states	and a second																																

5,000,000,000 histories in less than 1.5 hours

Variance reduction techniques used

- Electron range rejection Here: ESAVE = 0.871 MeV
- Photon cross section enhancement Increase photon cross section of selected region in geometry by factor C_e → this will increase the interaction density by that factor

Dose distribution parallel to long source axis

Variation of D_{average} with core height

Daverage (core height) / D_{full scatter} at ROI

Core height required to measure $D_{total} = 99.5\%$ of $D_{full scatter}$

ROI (cm)	Max. core height, cm
2	0.5
3	0.75
4	1.05

Radial dose gradient in graphite

Dose vs distance (ROI = 2 cm)

NPL

Summary of MC simulations

Source to core, cm	Build- up	Min. R, cm	Min. Z/2, cm	Max. core height, cm	Dose gradient over 2 mm, %	Dose rate from 370 GBq source, Gy/s	∆T in 120 s, K	
1	X	√	√	X	X	9.99E-02	1.68E-02	
2	(✓)	8.1 5.4		0.5	23	2.52E-02	4.24E-03	
2.5	 Image: A second s	10.1	6.8	0.6	18.5	1.60E-02	2.69E-03	
3	✓	12.1	8.1	0.75	15	1.12E-02	1.88E-03	
4	4 🗸		10.9	1.05	11	6.21E-03	1.04E-03	
5	5 🖌		X	\checkmark	\checkmark	X	X	

Volume averaging factor

- Centre of ROI: 25 mm from source
- Dose at a 'point', *D_{point}* size: 0.1 mm × 0.1 mm
- Dose averaged over core, *D_{core}* size: 2 mm × 5 mm

point $k_{\rm av}$ =1.0033core

Inhomogeneity correction factor

- Centre of ROI: 25 mm from source
- Dose averaged over core, *D_{core}* size: 2 mm × 5 mm
 - = graphite
 = air
 = aluminium or steel

$$k_{\rm inh} = \frac{D_{\rm core, graphite}}{D_{\rm core, graphite+air+metal}}$$

Inhomogeneity correction due to aluminium tube

Percentage change of dose to core due to absorption and scatter in aluminium tube

Inhomogeneity correction due to stainless steel tube

Percentage change of dose to core due to absorption and scatter in stainless steel tube

Gap correction factor

Displacement correction, Z-axis

	an ann an											-	and the second
EGS file name:	TS0034	see also TS0032				Source centr	red.						
						z = 7 cm							
Core height Z: 0.5 cm, o	ore thickness: I	0.2 cm											
Centre-to-centre source	+to-core: 2.5 cm												
Geometrical inputs													
	R												
radii (cm)													
10	11	102	103	104	105	106	107	108	109	110	111		
2.96	10		93	94	95	96	97		99	100	101		
2.7	9	82	83	84	85	86	87	88	89	90	91		
2.6	8	72	73	74	///////////////////////////////////////	///////////////////////////////////////	//////	///////////////////////////////////////	79	80	81		
2.4	7	62	63	64	65	66	67	68	69	70	71		
2.3	6	52	53	54	55	56	57	58	59	60	61		
2.04	5	42	43	44	45	46	47	48	49	50	51		
0.165	4	32	33	34	35	36	37	38	39	40	41	0.1cm	aluminium
0.065	3	27	23	24	25	26	27	28	29	30	31		
0.055	2	12	13	14	15	16	17	18	19	20	21		
0.03	1	2	3	4	5	6	7	8	9	10			
0		4	0	2	4	E	<i>.</i>	7		0	10		7
			2	3	4	Ð	•	'	•	3	10		2
depth ber	ndarias (am)	0	C 20	C CE	C 75	C 025	7 175	7.015	7.25	7.25	7.01	14	
depin bou	ndaries (cmj	U	6.33	6.60	6.70	6.820	7.179	7.219	7.29	7.30	7.61	14	
Legend													
				C	niroo	dicr		00		N /			
=	graphite			30	JUILE	015	JIa		U L	JY			
=	iridium												
=	stainless s	teel 316L 🕂	ראס)	m	+0 1	75 (m	a	hd	+0 2	75 cm		
=	air	±0.0		7111	, <u></u> 0. I	100	ווע		IU	÷0.2			
=	aluminium												
=	ROI												
=	photon cro	ss section enhancement in th	is region; mini	mum dis	tance from blue lir	ne to ROI = CS	5DA ran	ge of 0.9	HeV ele	ctrons in graph	ite = 0.26 cm (ICRU report 37)		

Displacement correction factor, R-axis

Summary: Design criteria for prototype calorimeter

- Graphite cylinder (R = 10 cm, Z = 14 cm)
- Centre-to-centre source-to-core distance: 2.5 cm
- Thickness of core: 0.2 cm
- Height: 0.5 cm
- Mass: 2.67 g
- Aluminium tubing with max. 1 mm radial thickness,
 0.2 mm radial clearance
- 1 mm vacuum gap around core to deal with measurement problems due to self-heating of source

