

MONTE CARLO techniques implemented in the MORET code

29 March 2007 / Teddington

Benoit FORESTIER, IRSN

The criticality code MORET

MORET 4:

- 3D Monte Carlo multigroup criticality code
 - Any energy group structure and Xsct processed to be readable by MORET
 - >172 energy groups from JEF2.2 in the CRISTAL framework
 - Modular combinatorial geometry

Calculates:

- Effective multiplication factor (keff)
- Reaction rates in the different volumes of the geometry
- Leakage out of the system
- Used in the the French criticality-safety package CRISTAL in conjunction with the APOLLO2 deterministic assembly code
- Developed by IRSN

MORET 5: (in progress)

- Continuous energy version
- Xsct processing from any evaluation

- Benoit Forestier - 29/03/2007 - Page 2

Conventional MC strategy

- Neutron tracking in heterogeneous systems :
 - Tracking through multiple homogeneous material regions (stopping at each material boundary)
 - > Neutron free path sampling for medium i $(\lambda(\Sigma_i))$
 - Distance to the nearest boundary surface calculation (D_s)
 - > Distance to next event: $D = Min (\lambda, D_s)$
- Slow procedure for complex geometries:
 - High number of volumes
 - Volumes with complex shapes
 - Problems with heterogeneous materials

The Woodcock method is an alternative

Artificial homogenization of the Xsct

Equations to solve : $Bi(x+\Omega) = 0$

Ω: neutron direction Bi(x) = 0 : boundary of vol. i

The Woodcock method

Making the system share the same total Xsct (Σ^{max})

- Adding a fictitious Xsct (Σ_i^{δ}) to each material $\Sigma^{max} = \Sigma_i^{T} + \Sigma_i^{\delta} = Max(\Sigma_i^{T})$
 - > Free path sampling according to $(\lambda(\Sigma^{max}))$
 - \triangleright Distance to system boundary calculation (D_s)
 - > Distance to next event: $D = Min (\lambda, D_s)$
- Hidden geometry

Searching for the material lying at the neutron position

- Fictitious collision probability: $\Sigma^{\delta}_{i}/\Sigma^{max}$
- Key routine (invoked at each collision)

Advantages:

Faster simulation in some configurations

- No need to stop tracking at each boundary surface
- No distance to inner volumes calculation
- Procedure giving material lying at a given position

Unbiased

Weaknesses:

- No track-length estimator
- Not efficient when high discrepancies
 observed in Xsct

Successful implementation in MORET 5 - multigroup

- Material searching procedure:
 - Very simple and improvable
 - Geometry learning procedure to help this search
 - Two different strategies considered
 - Dynamic Learning + during early stage of calculation

Geometrical aspects:

The user specifies which part of the system is to be treated with the Woodcock tracking method

Geometrical redefinition of concerned zones

"Woodcock zones" are "holes" in the geometry

\succ One Σ^{M} per zone

Estimators

- **No track-length flux estimator** (unknown detail of volumes visited by the neutron)
- **New collision estimator** $\phi = N_{coll} / \Sigma^{M}$ (Better convergence for optically thin volumes)

Woodcock tracking : preliminary tests

Various simple geometrical configurations

- Mesh functionalities not used
- Variation on the number of volumes considered
- Variation on the size of each volume
- Different volume shapes
- Various chemical sets

Same keff obtained w/wo Woodcock treatment (not presented)

- Simulation time evaluation (680 neutrons ; 100 cycles)
 - Simulation time evaluation :
 - Conventional tracking
 - Woodcock tracking

Presented as simulation time for 100s conventional tracking running

Woodcock tracking parametrization effects investigated on complex geometry (not presented)

IRSN

- Benoit Forestier - 29/03/2007 - Page 6

Preliminary results 1/2

Boxes embedded in a 100x100x40 cm³ parallelepiped

- 3 different sizes for boxes
- Variation on the number of boxes
- 2 chemical sets

n UOX BOXES in graphite

IRSI

- Benoit Forestier - 29/03/2007 – Page 7

Preliminary results 2/2

Graphite cylinders embedded in a 100x100x40 cm3 UOX parallelepiped

- Variation on the number of volumes.
- 3 different radius for cylinders
- Vol_{uox}/VOL_{graph} = cst (for a given radius)
- One configuration has been tested with different chemical sets

40 UOX CYLZ 4 40 in XXX

IRS

- Benoit Forestier - 29/03/2007 - Page 8

Options for source re-sampling at each cycle 1/3

Conventional strategy:

- Number of neutrons renormalized at each cycle
- Source neutrons sampled in the fissile volumes on the basis of collision sites from the last cycle

Limitations:

- Neutrons can possibly desert some important fissile volume
- Problems with loosely coupled systems

4 other simulation options are proposed in MORET:

- Stratified Sampling
- Superhistory powering
- Fission matrix method
- Importance function method

Options for source re-sampling at each cycle 2/3

Stratified sampling:

Aim:

Prevent neutrons from deserting some important fissile volumes

Method:

At least 1 neutron per fissile volume (possibly with a weight <1)</p>

Superhistory powering:

Aim:

- Prevent the systematic renormalization of the neutrons
- Prevent the positive correlation that exists between iterations (cf. Brissenden & Garlick)

Method:

Each neutron is followed through L generations before starting a new cycle

Options for source re-sampling at each cycle 3/3

Fission matrix method

Aim:

Speed-up source convergence

Method:

- Every F cycle, the eigenvector of Kij matrix is used to establish new fission distribution (using the F previous generations)
- During other cycles the stratified method is employed

Importance function method

Aim:

Speed-up source convergence

Method:

- Use of the adjoint Kij matrix to estimate the importance of each volume
- Weight each potential fission site by the ratio
 - $R = \frac{\text{Importance of the volume where the fission site sits}}{R}$

Importance of the volume where the neutron comes from

Conclusions

MORET 4 includes various simulation options

- 4 different strategies for source re-sampling at each new cycle
- Can help for loosely coupled systems
- Full validation needed

MORET 5 includes Woodcock tracking method

Successfull implementation in the multigroup version

Encouraging first results

- Up to a factor 3 gain on simulation time
- Even with a simple volume searching algorithm
- No difference between keff calculated with and without the Woodcock tracking method

Full performance study needed

Perspectives

Full performance study

- Woodcock tracking:
 - Quantified gain on simulation time for various simple configurations
 - Compared performances for various settings on a complex geometry
 - Define application domain and emit recommendation for users

Geometry learning:

- Compared benefits of both methods
- Sensibility to parametrization

Source sampling options:

- Full validation of both methods
- Compared benefits of each option

Upcoming developments

- Get a better volume searching procedure
- Estimators
- Second strategy for geometry learning
- Compatibility with the continuous energy version of MORET

