Monte Carlo modeling of an electronic brachytherapy source using MCNP5 and EGSnrc

Stephen D. Davis and Larry A. DeWerd

University of Wisconsin, Madison, WI

13th UK Monte Carlo User Group meeting March 29, 2007

Xoft Axxent[™] electronic brachytherapy source

Photos courtesy of Xoft, Inc.

Xoft Axxent[™] electronic brachytherapy source

X-Ray Probe Tip Detail

Photos courtesy of Xoft, Inc.

Motivation

- Brachytherapy uses air-kerma strength, S_K, as the measurement of source strength
- Air kerma rates can be measured using free-air ionization chambers, but $S_{\rm K}$ is defined *in vacuo*
- Correction is required for attenuation in air from the source to the point of measurement (100 cm in our case)
- Air cross sections change rapidly at photon energies < 20 keV
- Photon spectrum needs to be accurately known for a low uncertainty on the air attenuation correction

Photon spectra

- Measurements with high purity germanium spectrometer
 - Requires correction for the energy response of the detector
- Monte Carlo simulations
 - Assumes Monte Carlo code has the low energy physics included to model x-ray spectra accurately

Photon spectra at 178 cm in air

Photon spectra at 178 cm in air

Photon spectra at 0 cm in air

EGSnrc

- January 2005 release included model by Iwan Kawrakow for electron impact ionization for K- and Lshells with binding energies above 1 keV
- October 2005 release included C++ class library with general purpose geometry modeling and user code cavity.cpp
- February 2007 release allowed for scoring of photon spectra in a circular plane using cavity.cpp

EGSnrc vs. MCNP5

- Two codes have differences in:
 - Electron impact ionization
 - Binding effects and Doppler broadening for Compton interactions
 - Atomic relaxation
 - Electron transport
 - Variance reduction techniques
 - Scoring options

Doppler broadening

- "Broomstick problem" from MCNP5 LANL document
- 100 keV photons incident on 10 cm graphite rod with 10⁻⁶ cm radius

No Doppler broadening

W

With Doppler broadening

Atomic relaxation

• 30 keV photons incident on 10⁻⁵ cm thick yttrium slab

Atomic relaxation (cont.)

Atomic relaxation (cont.)

Atomic relaxation (cont.)

cavity.cpp model of AxxentTM source

Dose rates at 1 cm in water

MC code

 $P(r_0, \theta_0)$ [cGy-h⁻¹·µA⁻¹]

MCNP5

345 ± 0.1%

EGSnrc

346 ± 2.0%

EGSnrc/MCNP5

 $1.003 \pm 2.0\%$

Air kerma rates at 100 cm in air

MC code $P(r_0, \theta_0)$ [cGy-h⁻¹·µA⁻¹]

MCNP5

 $4.81 \cdot 10^{-2} \pm 0.1\%$

EGSnrc

 $4.72 \cdot 10^{-2} \pm 3.1\%$

EGSnrc/MCNP5

0.981 ± 3.1%

W

Conclusions

- Both codes produce similar water dose rates, air kerma rates, and photon spectra, and the small differences can be explained by different treatment of the low energy physics
- Further work will be necessary to compare these results to measurements, and to establish the required air attenuation corrections with low uncertainties

Acknowledgements

- Xoft, Inc.
- Iwan Kawrakow
- NIST
- UWMRRC staff and students
- UW ADCL customers
- Grid Laboratory of Wisconsin (GLOW)

