

Monte Carlo simulations as a tool for the development of a new reference ionisation chamber

Johan Camps, Jan Paepen, Stefaan Pommé and Uwe Wätjen

Institute for Reference Materials and Measurements (IRMM) Geel, Belgium

> http://www.irmm.jrc.be http://www.jrc.cec.eu.int

Contents

- Motivation for the development of a new reference ionisation chamber
- Monte Carlo simulations in the design process of a new reference chamber
- Towards absolute MC simulations
- Conclusions

Motivation

SIR (Système International de Référence) chamber at BIPM

- 4π well-type ionisation chamber (IG11, 2 MPa N_2)
- 30 years of calibrations, >60
 radionuclides (photon and pure beta)
- Comparison with ²²⁶Ra reference source (equivalent activity A_e)

BUT

- What if any component breaks down?
- Sensitivity to low photon energies

C. Michotte, Appl. Rad. Isot. 56 (2002)15-20

Motivation

Development of a new reference IC:

"determination of design and operation criteria for a cylindrical IC system which should guarantee a reproducible output at the level of a few tenths of a percent for different chambers constructed according to these criteria"

- Original idea : Reher (IRMM), Woods (NPL), Denecke (IRMM)
- Proto-type chamber based on NPL IC
- MC simulations :
 - L. Johansson, A. Švec/J. Gasparro (EGS-4),
 - this work (MCNP)

... MC simulations

In development process several methods used :

- Deterministic model of cylindrical IC
- Measurements with proto-type chamber
- MC simulations
 - MCNP4c

... MC simulations

Several contributions to ionisation current

6

. MC simulations

Start from proto-type IC: photon and electron response (MCNP)

.... MC simulations

Determination of tolerances on IC system parameters for a <u>0.1%</u> variation in output (20 keV to 2 MeV)

Example 1. IC response as a function of electrode thickness

... MC simulations

Example 2. Determination of effect of radial source displacements

 \rightarrow tolerance for 0.1% : 0.9 mm for optimised design

im

.. MC simulations

New reference chamber ...

Joint Research Centre

Item	Value/statement	Required tolerance
L	35-40 cm	1.6 mm (2 MeV)
R	9 - 9.5 cm	70 µm (2 MeV)
R ₀	2.5 – 3 cm	55 µm (30 keV)
R _e	5.5 cm	60 µm (20 keV)
Inner wall	Aluminium/Vespel	
<i>m</i> (thickness inner wall)	0.2 cm Al / 0.6 cm Vespel	1 μm/15 μm (20 keV)
Electrode	Aluminium	
$m_{\rm e}$ (thickness electrode)	0.3 cm	14 µm (30 keV)
Filling gas	Argon	
Gas pressure	2 MPa	2 kPa (2 MeV)
Source positioning	center	0.9 mm (20 keV, Al)

PENELOPE MC / Experiment Vinten 671 chamber (~1 MPa N₂)

±7% (gas pressure)

A. De Vismes, M.N. Amiot, Appl. Rad. Isot. 59 (2003) 267-272

Can we get absolute agreement between MC and measurements ?

- Proto-type IC : Geometrical parameters well-known
- Pressure controlled with traceable RUSKA pressure balance
- Measurement of ⁵⁴Mn source (834.8 keV) as function of gas pressure
- Ion loss (recombination, diffusion)?
 - \rightarrow determination of saturation current (I_s)

 $\frac{I}{I_s} = 1 - \frac{a}{U} - \frac{b}{U^2} I$

Measurements :

absolute measurement of current ($\delta I/I > 1\%$)

Simulations :

MCNP, *F8 tally : E_d (MeV/particle)

$$Q_d = \frac{e E_d}{W}$$

 $W_{Ar} = 26.4 \text{ eV} \pm 0.5 \text{ eV}$ (ICRU31)

Argon, Al inner tube

im

Joint Research Centre

.....Conclusions

- Tolerances on geometrical and operational parameters for a new reference IC system were determined with MC simulations (MCNP)
- Absolute agreement between measurements and MC simulations (limited by uncertainty on W-value!)
- New reference chamber will be built and tested in near future