MCNP-CP, an Extended Version of a General Purpose Monte Carlo N-Particle Transport Code with Radionuclide Source and Coincidence / Anticoincidence Pulse Height Tally

Andrey Berlizov

Institute for Nuclear Research, Kiev, Ukraine

13th UK Monte Carlo User Group Meeting MCNEG-2007 28 – 29 March, 2007 NPL, Teddington, UK

Outline

- Introduction
- MCNP-CP physics
- MCNP card extensions
- Applications
- Summary

Motivation

- Decay of radioactive nuclei and isomeric states usually represents a complex multi-stage atomic-nuclear process, which results in emission of **space and time correlated particles**: photons, β-particles, discrete energy electrons, and X-rays.
- Accurate prediction of a detection system response in measurements with such sources requires application of an adequate source model.

Restrictions of the standard MCNP

- Only one source particle per history is considered,
- Only source particles of particular type are considered within a calculation run, and
- There are no standard means for calculating pulse height distributions for the detection systems, which use coincidence / anticoincidence measurement techniques.

Background publications

- A.N. Berlizov, V.V. Tryshyn / ENSDF Based Radionuclide Source for MCNP // Proceedings of the International Conference on Supercomputing in Nuclear Applications, SNA'2003, 22-24 September 2003, Paris, France.
- A.N. Berlizov / An upgraded multidetector pulse height tally for MCNP // Proceedings of the Monte Carlo 2005 Topical Meeting, Chattanooga, USA, April 17-21, 2005, ISBN:0-89448-695-0, American Nuclear Society, Inc.
- A.N. Berlizov / MCNP-CP, a Correlated Particle Radiation Source Extension of a General Purpose Monte Carlo N-Particle Transport Code // Applied Modeling and Computations in Nuclear Science. T.M. Semkow, S. Pomme, and S.M. Jerome, Eds. ACS Symposium Series 945. American Chemical Society, Washington, DC, 2006, p.183-194.

For modeling radionuclide source MCNP-CP uses:

- Evaluated Nuclear Structure Data File ENSDF as a basic source of information about decay properties of radionuclides.
- Known theoretical models and additional nuclear and atomic data for simulating:
- spectral distributions of β -particles from β -decay;
- vacancy creation on the atomic K-shell and L_{1,2,3}-subshells in the electron capture and internal conversion processes;
- emission of a pair of annihilation 511-keV photons in β^+ -decay;
- Doppler shifting of annihilation photon energies and directions;
- intra-atomic transitions resulting in the emission of K- and LX-rays in single and double X-ray fluorescence, emission of K-LX and K-MX Auger-electrons;
- γ - γ angular correlations of cascade γ -rays.

Electromagnetic transitions

 Cascades of electromagnetic transitions are modeled based on the decay scheme information taken from the ENSDF data file.

In each transition two competing decay modes are considered: the emission of a gamma-ray and the emission of a conversion electron from the atomic K-shells or $L_{1,2,3}$ -subshells.

Angular correlations of cascade gamma-rays

$$W(\Theta) = 1 + \sum_{k=2}^{k_{max}} A_{kk} P_k(\cos \Theta)$$

k – even integer number:

 $k_{max} = min(L_1 + L'_1, L_2 + L'_2, 2I)$

Modeling energy distributions of β^{-} -particles

Beta spectrum:

 $dN_e(Q_{\beta}, T_e) \propto |M_{fi}|^2 (T_e(T_e + 2m_ec^2))^{1/2} (T_e + m_ec^2) (Q_{\beta} - T_e)^2 F(T_e, Z) dT_e$

Nuclear matrix element:

$$M_{fi} = G \int \phi_f^* \phi_i \exp(-i(p+q)r/\hbar) dr$$

- non-unique transitions: $|M_{fi}|^2 \sim 1$
- unique transitions: $|M_{fi}|^2 \sim p^2 + (Q_\beta T_e)^2$

Coulomb interaction of a beta-particle with a nucleus:

Point nucleus approximation (non-relativistic approach):

$$F(T_e, Z) = \frac{2\pi\eta}{1 - \exp(-2\pi\eta)} \quad \eta = \pm \frac{\alpha Z(T_e + m_e c^2)}{pc}$$

β--particle energy distributions: ⁹⁰Sr-⁹⁰Y source

Modeling of intra-atomic transitions

X-ray and Koster-Cronig transitions taken into consideration:

Emission of Auger electrons

Following 54 Auger transitions are taken into consideration:

- $\begin{array}{rll} \mathsf{K}\text{-}\mathsf{L}_2\mathsf{X}\text{:} & \mathsf{K}\text{-}\mathsf{L}_2\mathsf{L}_2 \ \mathsf{K}\text{-}\mathsf{L}_2\mathsf{L}_3 \ \mathsf{K}\text{-}\mathsf{L}_2\mathsf{M}_1 \ \mathsf{K}\text{-}\mathsf{L}_2\mathsf{M}_2 \ \mathsf{K}\text{-}\mathsf{L}_2\mathsf{M}_3 \ \mathsf{K}\text{-}\mathsf{L}_2\mathsf{M}_4 \ \mathsf{K}\text{-}\mathsf{L}_2\mathsf{M}_5 \ \mathsf{K}\text{-}\mathsf{L}_2\mathsf{N}_1 \\ & \mathsf{K}\text{-}\mathsf{L}_2\mathsf{N}_2 \ \mathsf{K}\text{-}\mathsf{L}_2\mathsf{N}_3 \ \mathsf{K}\text{-}\mathsf{L}_2\mathsf{O}_1 \ \mathsf{K}\text{-}\mathsf{L}_2\mathsf{O}_3 \end{array}$
- $\mathsf{K}\text{-}\mathsf{M}_1\mathsf{X}\text{:} \quad \mathsf{K}\text{-}\mathsf{M}_1\mathsf{M}_1 \ \mathsf{K}\text{-}\mathsf{M}_1\mathsf{M}_2 \ \mathsf{K}\text{-}\mathsf{M}_1\mathsf{M}_3 \ \mathsf{K}\text{-}\mathsf{M}_1\mathsf{N}_1 \ \mathsf{K}\text{-}\mathsf{M}_1\mathsf{N}_2 \ \mathsf{K}\text{-}\mathsf{M}_1\mathsf{N}_3$
- $\mathsf{K}\text{-}\mathsf{M}_2\mathsf{X}\text{:}\quad \mathsf{K}\text{-}\mathsf{M}_2\mathsf{M}_3\ \mathsf{K}\text{-}\mathsf{M}_2\mathsf{N}_1\ \mathsf{K}\text{-}\mathsf{M}_2\mathsf{N}_3$
- $\mathsf{K}\text{-}\mathsf{M}_3\mathsf{X}\text{:}\quad \mathsf{K}\text{-}\mathsf{M}_3\mathsf{M}_3 \ \mathsf{K}\text{-}\mathsf{M}_3\mathsf{M}_4 \ \mathsf{K}\text{-}\mathsf{M}_3\mathsf{M}_5 \ \mathsf{K}\text{-}\mathsf{M}_3\mathsf{N}_1 \ \mathsf{K}\text{-}\mathsf{M}_3\mathsf{N}_2 \ \mathsf{K}\text{-}\mathsf{M}_3\mathsf{N}_3$

Auger electron energies: $E(K-LX) = B_K - B_L - B_X$, $E(K-MX) = B_K - B_M - B_X$ Emission probabilities: *M.O. Krause* (*J. Phys. Chem. Ref. Data, 8 , 1979*)

Annihilation photon emission

- Probability of emission of a pair of annihilation 511-keV photons is evaluated assuming local deposition of kinetic energy of a positron and by neglecting the on-the-fly annihilation process.
- Energies and directions of the annihilation photons are subject to Doppler shifting in the course of simulation based on the evaluations of *Prochazka (Materials Structure, 8, No.2 (2001) 55)*:

$$\begin{split} &\mathsf{E}_{12} = 511 \pm \sigma_\mathsf{E}, \, \sigma_\mathsf{E} = 1 \; keV \\ &\Theta = \pi \pm \sigma_\Theta, \, \sigma_\Theta = 2 \; \Delta \mathsf{E} \; / \; m_e c^2 = 0.0039 \; \text{radians (liquids and gases).} \end{split}$$

General source card extension

SDEF ... ZAM=zzzaaam ...

- zzzaaam = zzz atomic number (nucleus charge), aaa - mass number, and m - isomeric index of the radionuclide of interest.
 - .. = standard SDEF card parameters specifying source location and geometry: CEL, SUR, X, Y, Z, POS, EXT, RAD, AXS, CCC.
- Default: zzzaaam = 0000000, which results in standard SDEF card function.
- Example: SDEF POS=0 0 0 ZAM=270600 60 Co point source (Z = 27, A = 60, M = ground state) located at the origin of a coordinate system

Source settings card

CPS RT IAS IGA IAN IKX ILX IBT ICE IAE IGG

- RT = the correlated particle grouping time in shakes.
- IAS = analog/semi-analog decay simulation flag.
- IGA = decay gamma-ray emission flag.
- IAN = annihilation photon emission flag.
- IKX = KX-ray emission flag.
- ILX = LX-ray emission flag.
- IBT = beta-particles emission flag.
- ICE = conversion electrons emission flag.
- IAE = Auger electrons emission flag.
- IGG = gamma-gamma angular correlation flag.

Default: RT=50 IAS=IGA=IAN=IKX=ILX=IBT=ICE=IAE=IGG=1.

Use: Use IGA through IAE entries to enable (0) or disable (1) emission of different types of particles. Zero value of IGG flag suppresses modeling of gamma-gamma angular correlations.

CPS card: Source simulation modes

- RT > 0: particles are grouped within the time intervals with length RT according to their emission times. Then each of the particle groups are tracked in different histories (one history per group), thus assuming no correlations between groups. This mode can be considered as a <u>realistic source mode</u>.
- RT = 0: all particles are considered within one group (and within one history) disregarding their emission times, the so called <u>forced</u> <u>correlation</u> case.
- RT = -1: particles are sampled in the same manner as it is done in two previous modes, but each particle is tracked in a separate history disregarding its emission time. This is so called <u>forced uncorrelated</u> <u>source mode</u>.
- RT < 0 (RT ≠ -1): all particles are sampled independently using perdecay probabilities. Tracking of particles is carried out in separate histories, one history per one particle. This is the case of <u>totally</u> <u>uncorrelated source</u>.

IAS flag: analog / semi-analog source simulation modes

 $\begin{array}{l} \mathsf{P}_{ij} \text{ - probability of population of level "j" through decay branch "i",} \\ \mathsf{BR}_i \text{ - branching ratio for decay branch "i",} \\ \mathsf{PP}_j \text{ - population probability for level "j",} \\ \mathsf{wgt}_{ij} \text{ - particle weights assigned when simulating the decay.} \end{array}$

Extended pulse-height tally F8

Fn:p1 b	in ₁ bin	₂ bin _N
---------	---------------------	-------------------------------

n p1 M bin_i

- = tally number (8, 18, 28 ...). = P, E or P,E.
- = number of tally bins.
- = *i*-th tally cell bin.

All standard formats of cell bins remained supported:

- single cell bin = S, where S is problem number of cell for tallying;
- cell union bin = $(S_1 S_2 ... S_N);$
- rep. structure and lattice tally bin = $((S_1 S_2) < (C_1 C_2[I_1 ... I_2]) < (C_3 C_4 C_5)).$

New Coincidence / Anticoincidence tally bin format:

bin =
$$((S_1 \dots S_l) + (C_{11} \dots C_{1J1}) \dots - (A_{11} \dots A_{1K1}) \dots)$$

Cells for
tallying

Logic of tallying of a coincidence / anticoincidence cell bin

MCNP-CP output

1decay branch: Eu-152 EC Sm-152 (13.54 y) - 72.08% print table 210

L	evel	Spin &	Parity	Half	Tra	nsition i	intensities	*	Flag
##	E,keV	ENSDF2	Taken as	Life	Beta-	Beta+	EC	Alpha	**
1	0.000	0+	0+	stable	0.0000	0.0000	0.0000	0.0000	A/NQ
2	121.782	2+	2+	1.396 NS	0.0000	0.0110	0.7421	0.0000	A/NQ
3	366.479	4+	4+	60 PS	0.0000	0.0028	0.9025	0.0000	A/NQ
4	684.701	0+	0+		0.0000	0.0000	0.0000	0.0000	A/NQ
5	706.880	6+	6+		0.0000	0.0000	0.0000	0.0000	A/NQ
6	810.453	2+	2+	7 PS	0.0000	0.0000	1.3036	0.0000	A/NQ
7	963.354	1-	1-		0.0000	0.0000	0.0000	0.0000	A/NQ
8	1022.966	4+	4+		0.0000	0.0000	0.2377	0.0000	A/NQ
9	1041.114	3-	3-	5 PS	0.0000	0.0000	0.0762	0.0000	A/NQ
10	1085.883	2+	2+	4 PS	0.0000	0.0000	21.7903	0.0000	A/NQ
11	1233.855	3+	3+	6 PS	0.0000	0.0000	17.4583	0.0000	A/NQ
12	1292.757	(2+)	2+		0.0000	0.0000	0.6598	0.0000	A/NQ
13	1371.744	4+	4+		0.0000	0.0000	0.8614	0.0000	A/NQ
14	1529.794	2-	2-	27 FS	0.0000	0.0000	24.9892	0.0000	A/NQ
15	1579.432	3-	3-		0.0000	0.0000	2.0908	0.0000	A/NQ
16	1612.780	4+,5-	4+		0.0000	0.0000	0.0212	0.0000	A/Q
17	1649.889	2-	2-		0.0000	0.0000	0.9256	0.0000	A/NQ
18	1730.240	(3-)	3-		0.0000	0.0000	0.0424	0.0000	A/NQ
19	1757.032	2+,3+	2+		0.0000	0.0000	0.0471	0.0000	A/NQ
20	1769.100	2+	2+		0.0000	0.0000	0.0662	0.0000	A/NO

Exited and ground level properties

* Intensities per 100 decays of a parent nucleus.

** Adopted, NonAdopted, Questionable or NonQuestionable level.

Vacancies due to electron capture

L	evel	Decay	Unique	Intensity	of vacanci	es on atomi	c shells
##	E,keV	Q, keV	ness	K-shell	L1-shell	L2-shell	L3-shell
1	0.000	1874.300		0.00e+000	0.00e+000	0.00e+000	0.00e+000
2	121.782	1752.518		6.25e-001	8.78e-002	3.40e-003	5.42e-005
3	366.479	1507.821		7.59e-001	1.07e-001	4.15e-003	8.33e-005
4	684.701	1189.599		0.00e+000	0.00e+000	0.00e+000	0.00e+000
5	706.880	1167.420		0.00e+000	0.00e+000	0.00e+000	0.00e+000
6	810.453	1063.847		1.09e+000	1.56e-001	6.05e-003	2.00e-004
7	963.354	910.946		0.00e+000	0.00e+000	0.00e+000	0.00e+000
8	1022.966	851.334		1.99e-001	2.87e-002	1.11e-003	4.93e-005
9	1041.114	833.186		6.39e-002	9.20e-003	3.57e-004	1.63e-005
10	1085.883	788.417		1.83e+001	2.64e+000	1.02e-001	4.99e-003
11	1233.855	640.445		1.46e+001	2.13e+000	8.24e-002	5.14e-003
12	1292.757	581.543		5.52e-001	8.06e-002	3.12e-003	2.17e-004
13	1371.744	502.556		7.20e-001	1.06e-001	4.10e-003	3.31e-004
14	1529.794	344.506		2.08e+001	3.11e+000	1.20e-001	1.37e-002
15	1579.432	294.868		1.74e+000	2.61e-001	1.01e-002	1.30e-003
16	1612.780	261.520		1.76e-002	2.65e-003	1.03e-004	1.44e-005
17	1649.889	224.411		7.69e-001	1.17e-001	4.52e-003	7.01e-004
18	1730.240	144.060		3.51e-002	5.40e-003	2.10e-004	4.12e-005
19	1757.032	117.268		3.90e-002	6.03e-003	2.34e-004	5.01e-005
20	1769.100	105.200		5.47e-002	8.49e-003	3.29e-004	7.33e-005
т (OTAL:			6.04e+001	8.84e+000	3.43e-001	2.70e-002

* Intensities per 100 decays of a parent nucleus.

Properties of electromagnetic transitions

Transition Loval indexes Multipolarity Mixing Ca							Gammag
##	E,keV	init	-> fin	ENSDF2	Taken as	ratio	Gammas *
1	121.782	2	1	E2	E2	0.00000	28.65984
2	244.697	3	2	E2	E2	0.00000	7.60451
3	562.930	4	2	E2	E2	0.00000	0.00268
4	340.400	5	3	E2	E2	0.00000	0.03651
5	125.690	6	4	[E2]	E2	0.00000	0.01611
6	443.965	6	3	(E2)	E2	0.00000	0.32748
7	688.670	6	2	E2+M1+E0	M1	0.00000	0.85896
8	810.451	6	1	(E2)	E2	0.00000	0.32050
9	841.570	7	2	El	E1	0.00000	0.16642
10	963.390	7	1	E1	E1	0.00000	0.13529
11	212.568	8	6	E2	E2	0.00000	0.01989
12	316.200	8	5	(E2)	E2	0.00000	0.00215
13	656.487	8	3	E2+M1+E0	M1	0.00000	0.14522
14	901.181	8	2	E2	E2	0.00000	0.08616
15	674.675	9	3	E1	E1	0.00000	0.17287
16	919.330	9	2	El	E1	0.00000	0.42787
17	275.449	10	6	(M1)	M1	0.00000	0.03355
18	719.349	10	3	(E2)	E2	0.00000	0.27916
19	964.079	10	2	E2+M1(+E0)	M1+E2	-9.30000	14.64532
20	1085.869	10	1	E2	E2	0.00000	10.23508
21	148.010	11	10	[M1+E2]	M1	0.00000	0.03731
• • •	• • • • • • • •	•••	• • •	• • • • • •	• • • • • •	•••••	• • • • • • • •

* Intensities per 100 decays of a parent nucleus.

Internal conversion coefficients

Tran	sition	Total	K-1	shell	L-sl	hell	Calculat	ted ICC for	r subshells*
##	E,keV	ENSDF2	ENSDF2	calc.*	ENSDF2	calc.*	L1	L2	L3
1	121.782	1.17e+000	6.85e-001	6.85e-001	3.74e-001	3.74e-001	6.39e-002	1.55e-001	1.54e-001
2	244.697	1.08e-001	8.13e-002	8.13e-002	2.08e-002	2.08e-002	8.76e-003	6.79e-003	5.29e-003
3	562.930	9.50e-003	7.80e-003	7.80e-003	1.28e-003	1.28e-003	9.33e-004	2.21e-004	1.27e-004
4	340.400	3.84e-002	3.04e-002	3.04e-002	6.26e-003	6.26e-003	3.44e-003	1.67e-003	1.14e-003
5	125.690	1.04e+000	6.24e-001	6.24e-001	3.25e-001	3.25e-001	5.86e-002	1.34e-001	1.32e-001
6	443.965	1.78e-002	1.44e-002	1.44e-002	2.60e-003	2.60e-003	1.69e-003	5.62e-004	3.49e-004
7	688.670	4.34e-002	3.59e-002	8.42e-003	4.97e-003	1.13e-003	1.07e-003	5.58e-005	1.08e-005
8	810.451	3.96e-003	3.32e-003	3.32e-003	4.90e-004	4.87e-004	4.01e-004	5.66e-005	2.98e-005
9	841.570	1.44e-003	1.23e-003	1.23e-003	1.59e-004	1.59e-004	1.46e-004	6.11e-006	6.96e-006
10	963.390	1.11e-003	9.50e-004	9.50e-004	1.22e-004	1.22e-004	1.13e-004	4.24e-006	4.90e-006
11	212.568	1.71e-001	1.25e-001	1.25e-001	3.60e-002	3.60e-002	1.31e-002	1.26e-002	1.03e-002
12	316.200	4.80e-002	3.76e-002	3.77e-002	8.11e-003	8.11e-003	4.23e-003	2.28e-003	1.60e-003
13	656.487	5.68e-002	4.97e-002	9.47e-003	6.80e-003	1.28e-003	1.20e-003	6.39e-005	1.22e-005
14	901.181	3.14e-003	2.63e-003	2.63e-003	3.80e-004	3.77e-004	3.19e-004	3.88e-005	2.01e-005
15	674.675	2.26e-003	1.92e-003	1.93e-003	2.52e-004	2.52e-004	2.28e-004	1.13e-005	1.27e-005
16	919.330	1.22e-003	1.04e-003	1.04e-003	1.34e-004	1.34e-004	1.23e-004	4.81e-006	5.53e-006
17	275.449	1.03e-001	8.75e-002	8.75e-002	1.22e-002	1.22e-002	1.13e-002	7.73e-004	1.37e-004
18	719.349	5.21e-003	4.34e-003	4.34e-003	6.60e-004	6.58e-004	5.24e-004	8.74e-005	4.71e-005
19	964.079	2.73e-003	2.30e-003	2.30e-003	3.20e-004	3.25e-004	2.79e-004	3.05e-005	1.56e-005
20	1085.869	2.11e-003	1.78e-003	1.78e-003	2.50e-004	2.47e-004	2.16e-004	2.04e-005	1.04e-005
21	148.010	5.77e-001	4.30e-001	4.80e-001	1.10e-001	6.75e-002	6.19e-002	4.77e-003	8.56e-004
22	423.450	2.70e-002	2.20e-002	2.85e-002	3.50e-003	3.90e-003	3.63e-003	2.23e-004	4.03e-005
23	867.373	3.46e-003	2.90e-003	2.90e-003	4.20e-004	4.19e-004	3.52e-004	4.41e-005	2.27e-005
24	1112.069	2.02e-003	1.71e-003	1.71e-003	2.40e-004	2.36e-004	2.08e-004	1.87e-005	9.46e-006
	••••	• • • • • • • • • •	• • • • • • • • • •	•••••	•••••	• • • • • • • • • •		• • • • • • • • • •	• • • • • • • • •

* Calculated are from Band et al for Z=3,6,14-29 and Hager-Seltzer for Z > 29.

x denotes measured ENSDF2 values.

KX-ray and associated Auger transition intensities

Notation	K-she E, keV	ll X-rays Intensity*	Intensity**	Notation	Auger E, keV	electrons Intensity*	Intensity**
Ka1 Ka2 Kb1 Kb2 Kb3 Kb4 Kb5	40.1180 39.5224 39.0974 45.4144 46.5777 45.2935 46.7052 45.7411	4.820e+001 2.660e+001 6.750e-003 9.120e+000 3.010e+000 4.710e+000 1.140e+000 1.350e-001	3.894e+001 2.149e+001 5.453e-003 7.368e+000 2.432e+000 3.805e+000 9.210e-001 1.091e-001	K-L3L3 K-L2L2 K-L2L3 K-L1L1 K-L1L2 K-L1L3	33.4018 32.2106 32.8062 31.3606 31.7856 32.3812	7.720e-001 7.980e-002 1.590e+000 6.140e-001 7.940e-001 7.750e-001	6.237e-001 6.447e-002 1.285e+000 4.961e-001 6.415e-001 6.261e-001

* Intensities are per 100 K-shell vacancies.

** Intensities per 100 decays of a parent nucleus.

LX-ray energies and intensities

L-shell	X-rays	Intensity	y per 100 vaca	ancies on	Intensity
Notation	E, keV	L1-subshell	L2-subshell	L3-subshell	*
Lal	5.6360	3.330e+000	1.520e+000	1.010e+001	5.499e+000
Lb2	6.5872	7.030e-001	3.200e-001	2.140e+000	1.165e+000
La2	5.6102	3.700e-001	1.690e-001	1.120e+000	6.105e-001
Lb5	0.0000	0.000e+000	0.000e+000	0.000e+000	0.000e+000
Lb6	6.3705	3.100e-002	1.410e-002	9.420e-002	5.115e-002
Ll	4.9934	1.390e-001	6.310e-002	4.210e-001	2.284e-001
Lb1	6.2058	2.240e+000	1.180e+001	0.000e+000	3.641e+000
Ln	5.5890	5.480e-002	2.880e-001	0.000e+000	8.919e-002
Lg1	7.1828	3.690e-001	1.940e+000	0.000e+000	6.008e-001
Lg6	0.0000	0.000e+000	0.000e+000	0.000e+000	0.000e+000
Lb3	6.3170	3.470e+000	0.000e+000	0.000e+000	4.720e-001
Lb4	6.1961	2.080e+000	0.000e+000	0.000e+000	2.831e-001
Lg2	7.4712	6.410e-001	0.000e+000	0.000e+000	8.724e-002
Lg3	7.4894	9.120e-001	0.000e+000	0.000e+000	1.242e-001

* Intensities per 100 decays of a parent nucleus.

Gamma-gamma true coincidence table*.

## 	E, keV	Ten the	e most in	ntense co	oinciding	g gamma-1	rays, ke	7			
1	121.78	1408.01	964.10	1112.07	244.70	867.38	443.91	1212.95	688.67	1005.26	1457.65
2	125.75	121.78	443.91	564.01	295.94	416.03	768.98	719.34	147.97	275.43	493.55
3	147.97	121.78	964.10	1085.88	244.70	688.67	295.94	443.97	810.45	719.40	416.03
4	207.69	121.78	964.10	1085.88	244.70	688.67	1005.26	919.33	443.97	810.45	719.40
5	212.51	121.78	244.70	688.67	443.97	810.45	556.47	125.75	269.79	357.13	562.92
6	239.31	121.78	1408.01	964.10	1112.07	1085.88	244.70	867.38	443.91	688.67	295.94
7	244.70	121.78	867.38	443.91	1212.95	1005.26	564.01	295.94	488.68	443.97	719.40
8	251.64	121.78	244.70	919.33	674.63	357.13					
9	269.79	121.78	244.70	688.67	443.97	810.45	656.49	901.18	340.40	212.51	125.75
10	275.43	121.78	244.70	443.91	688.67	564.01	295.94	443.97	810.45	416.03	147.97
11	285.86	121.78	964.10	1085.88	244.70	688.67	443.97	810.45	719.40	275.43	125.75
12	295.94	121.78	964.10	1112.07	1085.88	244.70	867.38	688.67	443.97	810.45	719.40
13	316.09	121.78	244.70	340.40	556.47	269.79	357.13				
14	329.40	121.78	841.57	963.35	357.13						
15	330.63	121.78	244.70	919.33	674.63	207.69	385.29				
16	340.40	121.78	244.70	556.47	664.86	905.90	269.79	207.69	385.29	357.13	316.09
17	357.13	121.78	244.70	688.67	919.33	443.97	810.45	926.28	674.63	841.57	656.49
18	385.29	121.78	964.10	1085.88	244.70	688.67	1005.26	919.33	443.97	810.45	719.40
19	416.03	121.78	964.10	1112.07	1085.88	244.70	867.38	688.67	443.97	810.45	719.40
20	423.40	121.78	244.70	688.67	295.94	443.97	810.45	416.03	125.75	523.18	496.39
21	443.97	121.78	244.70	443.91	564.01	295.94	416.03	768.98	719.34	147.97	275.43
22	443.91	121.78	964.10	1085.88	244.70	688.67	443.97	810.45	719.40	275.43	125.75
23	482.30	121.78	244.70	688.67	443.97	810.45	125.75	357.13	562.92		
24	488.68	121.78	244.70	919.33	674.63	239.31					
25	493.55	121.78	964.10	1085.88	244.70	688.67	443.97	810.45	719.40	275.43	125.75
•••	•••••	•••••	•••	••••	• • • • • • •		• • • • • • •		••••	•••••	

Sum peaks predictions (arranged by intensity).

##	Sum-Peak, keV	Pair of gamma-rays	Intensity product	Single
1	1529.79	121.78 + 1408.01	6.04e-002	No*
2	1233.86	121.78 + 1112.07	3.92e-002	No*
3	366.48	121.78 + 244.70	2.18e-002	Yes
4	989.16	121.78 + 867.38	1.22e-002	Yes
5	565.69	121.78 + 443.91	8.11e-003	Yes
6	1334.73	121.78 + 1212.95	4.09e-003	Yes
7	1529.79	443.91 + 1085.88	2.90e-003	No*
8	688.61	244.70 + 443.91	2.15e-003	Yes
9	1127.05	121.78 + 1005.26	1.86e-003	Yes
10	1579.43	121.78 + 1457.65	1.44e-003	No*
11	685.79	121.78 + 564.01	1.41e-003	Yes
12	417.72	121.78 + 295.94	1.28e-003	Yes
13	1041.11	121.78 + 919.33	1.23e-003	Yes
14	610.46	121.78 + 488.68	1.20e-003	Yes
15	565.76	121.78 + 443.97	9.39e-004	Yes
16	1649.89	121.78 + 1528.11	8.09e-004	No*
17	841.19	121.78 + 719.40	8.00e-004	Yes
18	1048.06	121.78 + 926.28	7.98e-004	Yes
19	1260.04	295.94 + 964.10	6.56e-004	Yes
•••			• • • • • • • • • • • • • •	* *

* Pair with the largest intensity product indicated.

**No pairs differing by > 100 times in intensity product included.

Possible applications

Calculation of characteristics and optimization of construction of detectors and detector systems:

- Single crystal spectrometers
- Pair Gamma-Spectrometers
- Phoswich detectors
- Compton/Escape Suppression Spectrometers

*

CLOVER segmented detector NPRG at Liverpool, UK

4 coaxial n-type Germanium crystals arranged like a four leaf clover. Outer ptype contact of each crystal segmented longitudinally, splitting each crystal into four quadrants. CLUSTER detector FZ Rossendorf, Germany

The detector comprises seven individually encapsulated HPGe crystals of about 60 % efficiency in a common cryostat surrounded by an escape-suppression shield consisting of 18 optically isolated BGO scintillator crystals.

http://www.fz-rossendorf.de/

GAMMASPHERE

Argonne National Laboratory, USA

The array consists of 110 large volume, high purity germanium detectors, each in a BGO (Bismuth Germanate) compton suppression shield.

http://www-gam.lbl.gov/ http://www.phy.anl.gov/gammasphere/

Nuclear Medical Imaging with Positron emission tomography (PET)

PCR-I, a single ring positron emission tomograph.

Source: A HISTORY OF POSITRON IMAGING by Gordon L. Brownell, Massachusetts Institute of Technology

PCR-II, a cylindrical positron emission tomograph.

Compton Imaging System

Ring Compton camera. Scatter detector: 3×3 cm² silicon pad detectors. Absorption detector: Each of eleven detector modules is nominally composed of 44 NaI(TI) bars.

Source: Compton Imaging System Development and Performance Assessment by Chia-ho Hua, University of Michigan, Ph.D. dissertation, 2000

Coincident Compton Imaging

Coincident Compton imager uses a positron emitting radionuclide accompanied by an additional γ-ray (top) or 3-gamma cascade (bottom)

Source: Coincident Compton Nuclear Medical Imager by James D. Kurfess and Bernard F. Phlips Naval Research Laboratory, Washington, DC USA

NDA techniques: Multi-Detector Analysis System for Spent Nuclear Fuel

Prototype MDAS has 68 detectors; 20 HPGe for gamma-ray detection and 48 liquid scintillator detectors for neutron detection.

Advantages: fast coincidence methods, list-mode data, gamma-ray coincidence, neutron coincidence, pulseshape discrimination, detector arrays, and data acquisition and analysis.

Source: Using New Fission Data with the Multi-Detector Analysis System for Spent Nuclear Fuel by J.D. Cole et al., INEEL, USA

Coaxial 60% HPGe with Co-60 point source (close geometry)

Coaxial 60% HPGe with Eu-152 point source (close geometry)

Planar LEGe Detector with Cs-137 point source (\emptyset 16×10 mm, Inactive Ge = 0.3 μ m, Be window = 0.005 in.)

Compton Suppression Spectrometer based on coaxial 60% HPGe and BGO detectors

Analyzing detector: HPGe with relative efficiency 60%, crystal - \emptyset 74×53 mm, inactive germanium – 0.7 mm, rear contact - \emptyset 10×36 mm, crystal cladding – 1 mm of Al.

Guard detectors: annular and plug BGO scintillators with 1.5 mm aluminum coating and thickness 3 and 4 cm respectively.

Compton Suppression Spectrometer with Co-60 point source

Compton Suppression Spectrometer: coincidence summing corrections calculations*

Decay		Compton	Suppressi	on Spectrom	eter CFs
branch	E _γ , keV	no suppression	plug	annular	plug and annular
⁶⁰ Co→ ⁶⁰ Ni	1173.25	1.300	1.372	1.511	1.595
	1332.52	1.310	1.392	1.536	1.634
$^{152}Eu \rightarrow ^{152}Sm$	121.78	1.404	1.537	1.732	1.897
	244.70	1.601	1.932	2.290	2.905
	443.97	1.514	1.730	1.985	2.312
	867.37	1.743	2.562	3.716	7.614
	964.08	1.248	1.422	1.535	1.844
	1085.87	0.889	0.902	0.913	0.926
	1112.07	1.136	1.284	1.376	1.639
	1408.01	1.185	1.344	1.403	1.678
$^{152}Eu \rightarrow ^{152}Gd$	344.28	1.259	1.335	1.450	1.535
	411.12	1.758	2.269	3.140	4.493
	778.90	1.413	1.696	2.189	2.910

* A.N. Berlizov, V.V. Tryshyn, A Monte Carlo approach to true-coincidence summing correction factor calculation for gamma-ray spectrometry applications, Journal of Radioanalytical and Nuclear Chemistry, Vol.264, No.1 (2005) 169-174.

γ-γ coincidence technique for the direct measurement of ²⁴²Pu: applicability study

Decay properties of ²⁴²Pu

Reasons:

- 1. Lower energy of 44.9 keV photons will result in higher selfattenuation.
- 2. Higher intensity of 44.9 keV photons will produce higher background of accidental coincidences.

Measurement setup model

Geometry:

- Detectors: planar HPGe (S=1000 mm², d=15 mm);
- Input windows: AI (0.5 mm);
- Collimators: W (5 mm) lined with Cd (1 mm) and Cu (0.2 mm);
- Source: point

Other parameters:

- FWHM= $a+b*E^{1/2}$, FWHM(5.9 keV)=300 eV, FWHM(122 keV)=600 eV.
- LBU Pu: 0.0109% ²³⁸Pu, 93.54% ²³⁹Pu, 6.292% ²⁴⁰Pu, 0.1149% ²⁴¹Pu, 0.0385% ²⁴²Pu, 0.201% ²⁴¹Am (Pu-2000 Sample M).
- HBU Pu: 1.303% ²³⁸Pu, 64.99% ²³⁹Pu, 24.02% ²⁴⁰Pu, 5.041% ²⁴¹Pu, 4.642% ²⁴²Pu, 4.95% ²⁴¹Am (Pu-2000 Sample N).

Results: coincidence spectrum

Summary

- A standard MCNP code was extended to allow carrying out calculations with a radiation source emitting correlated nuclear particles.
- A new version of the code, MCNP-CP, performs statistical simulation of processes accompanying radioactive decay of a specified radionuclide, yielding characteristics of emitted correlated nuclear particles, which are then transported through the problem geometry.
- MCNP-CP presents a powerful tool for predicting responses and performance characteristics of conventional single detector as well as advanced multi-detector γ- and β-spectrometry systems.

Thank you for your attention !