PTRAN

McPTRAN.MEDIA, McPTRAN.CAVITY & McPTRAN.RZ

Hugo Palmans

Centre for Acoustics & Ionising Radiation, National Physical Laboratory, Teddington, Middlesex, UK

Why PTRAN?

Louvain-la-Neuve 1994

Why PTRAN here?

Incidental remark

Order out of chaos:

 McPTRAN.MEDIA
 McPTRAN.CAVITY (&McPTRAN.CHAMBER)
 McPTRAN.RZ

• Illustrative

PTRAN

• Martin Berger 1993 (NISTIR 5113)

• Available through NEA, RSICC

 Designed for calculation of dose distributions in water

PTRAN: pre-calculated grid

$$\begin{array}{c} \mathsf{T}_{0} \ \delta \mathbf{s}_{0} \ \mathsf{f}_{\mathsf{V}}(\lambda)_{0} & \boldsymbol{\sigma}_{\mathsf{nuc0}} \\ \mathsf{T}_{1} \ \delta \mathbf{s}_{1} \ \mathsf{f}_{\mathsf{V}}(\lambda)_{1} & \boldsymbol{\sigma}_{\mathsf{nuc1}} \\ \mathsf{T}_{2} \ \delta \mathbf{s}_{2} \ \mathsf{f}_{\mathsf{V}}(\lambda)_{2} & \boldsymbol{\sigma}_{\mathsf{nuc2}} \\ \mathsf{f}_{\mathsf{M}}(\mathcal{G})_{1} & \boldsymbol{\sigma}_{\mathsf{nuc2}} \\ \mathsf{f}_{\mathsf{M}}(\mathcal{G})_{2} & \boldsymbol{\sigma}_{\mathsf{nuc2}} \end{array}$$

$$E_{1} S_{0} X_{0} y_{0} Z_{0} \theta_{0} \phi_{0}$$

$$E_{1} S_{1} X_{1} y_{1} Z_{1} \theta_{1} \phi_{1} W_{1}$$

$$E_{2} S_{2} X_{2} y_{2} Z_{2} \theta_{2} \phi_{2} W_{2}$$

. . .

 $\begin{array}{c} \mathsf{T}_{\mathsf{n}} \, \delta \mathsf{s}_{\mathsf{n}} \, \mathsf{f}_{\mathsf{V}}(\lambda)_{\mathsf{n}} & \sigma_{\mathsf{nucn}} \\ & \mathsf{f}_{\mathsf{M}}(\mathcal{P})_{\mathsf{n}} \end{array} \end{array}$

. . .

 $E_n s_n x_n y_n z_n \theta_n \phi_n W_n$

PTRAN: energy straggling

Vavilov

PTRAN: multiple scattering

• Molière

PTRAN: Total inelastic nuclear interaction cross sections

Theoretical threshold (Selzer, 1993)

PTRAN: preparatory programs

- PARAM
 - Parameters for Molière and Vavilov
 - Path lengths in CSDA
 - Nuclear attenuation coefficients

- VPREP: Vavilov distribution
- MPREP: Molière distribution

PTRAN: transport algorithm

- $(x_0, y_0, z_0) = (0, 0, 0); (u_0, v_0, w_0) = (0, 0, 1)$
- E₀ is only parameter
- $E_n E_{n-1}$ from Vavilov at nearest T_i
- Δs_n by interpolation
- θ ' from Molière at $[T_i, T_{i+1}] \& \varphi$ ' uniform between -180 and +180 degrees.
- (θ', ϕ') transformed to (θ, ϕ) using [R]
- $\Delta x', \Delta y', \Delta z'$ calculated
- $\Delta x', \Delta y', \Delta z'$ transformed to $\Delta x, \Delta y, \Delta z$ using [R]
- Stop when $E_n < E_{cut}$ or $E_n < E_{fin}$ and dump E_n

PTRAN: random generator

Default = congruential generator, period
 2²⁸

 Optional: Lagged Fibonacci (Marsaglia-Zaman, 1987) period 2¹⁴⁴

PTRAN: scoring geometry

PTRAN: scoring

- $(dE/dz)_{C}$, estimated as $(S/\rho)_{cross}$ · $W_{cross}/cos\theta_{cross}$
- $(dE/dz)_N$, estimated as $E_{cross} \cdot \mu_{cross} \cdot W_{cross} / cos\theta_{cross}$
- Φ estimated as 1/cosθ_{cross}
- Spectral distribution of Φ and radial distribution of (dE/dz)_C

Input file

Boundary file

≥ ~/ptran			
281	1070		
100	000		
100	0		
1			

```
boundary.060md
```

```
1
1
water_icru_e060.out5
water_icru.pt5
water_icru.vr5
water_icru.mr5
```

💽 ~/ptran			
20 40 0.100 0.720 0.910 0.980 100 100 100 0.0 0.0 0.0 0.0 0.	an 100 0.200 0.740 0.920 0.985 100 100 100 100 0.0 0.0 0.0 0.0 0.0 0.0	0.300 0.760 0.930 0.990 100 100 100 0.0 0.0 0.0 0.0 0.0 0.0 60.0 6	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
1.000 1.000 1.000	1.000 1.000 1.000	1.000 1.000 1.000	1. 1. 1.
1.000	1.000	1.000	1.

Example: 60 MeV pdd

Example: 250 MeV pdd

Examples: proton spectra

Example: radial distributions (150 MeV)

McPTRAN.MEDIA: aim

- Other materials than water
- Inhomogeneous slab geometries
- Broad rectangular and circular beams
- Incident beam with energy distribution
- Incident beam with angular distribution
- Implementation of modulator wheel

McPTRAN.MEDIA: data

- Stopping powers: ICRU 49 (for materials not listed: Bragg + I₀ + Barkas)
- For Vavilov: S₁ and I₁ (from Inokuti et al. 1978, 1981 Phys. Rev. A 17:1229-1231 and 23:95-109)
- For Molière: k_{HF} (from Berger and Wang 1988 ed. Jenkins...)
- Inelastic nuclear cross sections: Janni (1982) and ICRU 63 (for materials not listed: interpolation as a function of A)

McPTRAN.MEDIA: Stopping powers (consistent with ICRU 49)

McPTRAN.MEDIA: Total inelastic nuclear cross sections

McPTRAN.MEDIA: geometry

transport

scoring

McPTRAN.MEDIA: boundary crossing

Linear interpolation of

- Energy loss
- Angle
- Displacements Δx , Δy , Δz

$$D_w(z_w) = D_{\rho l}(z_{\rho l}) \cdot S_{w,\rho l} \cdot \phi_{\rho l}^w$$

$$Z_{w} = Z_{pl} \cdot \frac{\left(Z_{0}\right)_{w}}{\left(Z_{0}\right)_{pl}}$$

McPTRAN.MEDIA: example: fluence correction factors – correct conversion

$$D_{w}(z_{w}) = D_{pl}(z_{pl}) \cdot \left[\left(S/\rho \right) + E(\sigma/A) \right]_{wpl} \cdot e^{-N_{A} \cdot \int_{T}^{T_{0}} \left[\frac{1}{S_{w}(T')} \left(\frac{\sigma}{A} \right)_{w} - \frac{1}{S_{pl}(T')} \left(\frac{\sigma}{A} \right)_{pl} \right] dT'}$$

McPTRAN.MEDIA versus McNP and Geant: fluence correction factors

water equivalent depth (cm)

McPTRAN.MEDIA: example: bone slab in water

McPTRAN.MEDIA: modulator wheel

transport

sampled from

Interlude: Modulator wheel in GEANT4 (Paganetti 2004 Phys. Med. Biol. 49:N75-N82)

Figure 1. One of the range modulator wheels, consisting of three tracks, as modelled within GEANT4. The outer track is used for wobbling while the two inner tracks are for broad beam modulation. The beam would be entering from the right. Light grey segments refer to low-Z materials, dark grey segments refer to high-Z materials.

McPTRAN.MEDIA + modwheel: example: spectra in modulated proton beam

McPTRAN.MEDIA: example: stopping power ratios in modulated proton beam

McPTRAN.CAVITY: geometry & scoring

geometry interrogation region

McPTRAN.CAVITY: example: p_{wall,gr}

McPTRAN.CAVITY: example: gradient corrections for thimble IC (see grid calculation demo)

McPTRAN.CAVITY: example: secondary electron perturbation

(Verhaegen and Palmans, Med. Phys. 28:2088-2095)

Chamber

McPTRAN.RZ

McPTRAN.RZ: example: Alanine stack in PMMA

McPTRAN.RZ: example: Alanine stack in PMMA

That's all folks... Thanks!