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1. Abstract 
 
PTRAN is a class I Monte Carlo code for proton transport in the energy range of clinical 
proton beams. Its application is restricted to the simulation of pencil beams in homogeneous 
water and the calculation of depth dose data, radial dose and fluence deposition data and 
spectral distributions as a function of depth.  
We started using this code with the purpose of calculating perturbation factors of various 
detectors in proton beams in a time that MCNP didn’t provide proton transport and GEANT 
had not developed its low-energy transport modules. To this end, various modifications were 
applied in the course of many years resulting in a number of codes that essentially use 
PTRAN’s step, multiple scattering and energy loss sampling algorithms, but in which the 
geometry testing algorithms and scoring procedures were developed independently from the 
original program. The modifications allow the simulation of transport in other materials than 
water, broad beams with various geometrical and energy distributions, through cavities, in rz-
voxel geometries and also allowed dynamic geometries such as a range modulator wheel.  
In the first part of the presentation, the possibilities and principles of the original PTRAN 
code will be explained. In the second part, the implementation of the various adaptations, 
which resulted in the codes PTRAN_MEDIA, PTRAN_CAVITY and PTRAN_RZ, will be 
described and their use to dosimetry will be illustrated.  
We are aware that the PTRAN code might be of rather limited general use, but we would like 
to present this as an illustration of how with some effort in understanding the basic concepts 
and principle algorithm of the code it is fairly easy to adapt it in order to use it in a flexible 
way for one’s own purposes. 
 
 
2. PTRAN – calculation of ppds in water 
 
PTRAN [1] uses the Monte Carlo method to simulate the transport of proton beams through 
water. Details on the use of the programs and the methods used in the Monte Carlo transport 
are given by Berger [1]. A brief summary is given in this section. 
The incident proton energies for which the code is designed range from 50 to 250 MeV, 
although it is applicable to a wider range of energies. PTRAN contains several cross section 
preparation programs and two main codes, PTRAN3D and PTRAN1D. The code take into 
account multiple scattering and Coulomb interaction energy loss mechanisms along with non-
elastic nuclear interactions. Deposition of energy as a function of depth and radial distance 
from the beam as well as energy spectra of the primary protons as function of depth are 
scored. 



The simulations follow a class I condensed random walk scheme [2] in which each proton is 
transported down to a cut-off energy by dividing its track in a series of short steps. They are 
based on a precalculated energy grid at which the various cross section and probability 
distributions are evaluated. The following distributions are used: 
 

(i) Energy losses in Coulomb collisions with atomic electrons are sampled from the 
Vavilov energy straggling distribution [3] using the ICRU report 49 stopping 
powers [4] as average values.  

(ii) Multiple scattering deflections due to elastic scattering by atoms are sampled from 
the Molière distribution [5]. 

(iii) Energy losses in non-elastic nuclear interactions are based on fits to experimental 
data [6, 7] based on theoretical considerations [8]. 

 
2.1. Cross-section preparation programs 
 
2.1.1. PARAM calculates grids and various parameters: 
 

(i) An energy grid with energy steps ∆Ti = Ti – Ti+1 which are either a constant value 
∆T or k·Ti (whichever is smaller) down to a chosen cut-off energy Tcut. 

(ii) The path length for each energy interval in the continuous slowing down 
approximation (CSDA) using ICRU 49 stopping powers. 

(iii) Parameters for calculating the Vavilov distribution at Ti. 
(iv) Parameters for calculating the Molière distribution at (Ti + Ti+1)/2. 
(v) Nuclear absorption coefficients, representing the probability per unit path length 

of a non-elastic nuclear interaction, are calculated from the non-elastic nuclear 
cross sections.  From these, CSDA survival weight factors are derived as a 
function of energy Ti, which thus represent the fraction of protons (on the average) 
that has not undergone a non-elastic nuclear interaction when slowed down from 
energy T0 to Ti. 

 
2.1.2. VPREP calculates the Vavilov distribution for each grid energy Ti. The data are 
prepared for enabling sampling using the alias sampling method. 
 
2.1.3. MPREP calculates the Molière distribution for each grid energy Ti [at (Ti + Ti+1)/2]. 
The data are prepared for enabling sampling using the alias sampling method. 
 
2.2. Transport algorithm of PTRAN3D 
 
The following scheme is applied: 
 

(i) All protons start at (x,y,z) = (0,0,0) in the direction of the z-axis (polar axis) with 
an energy E1 which can be specified at the start of the program. 

(ii) In the nth step, the proton starts with and energy En and a direction characterised 
by a polar angle θn and an azimuthal angle φn, both with respect to the initial 
direction of the protons at the 1st step (laboratory coordinate system). 

(iii) The energy loss En – En+1 is sampled from the Vavilov distribution at the energy 
grid value Ti that is nearest to En. 

(iv) The path length ∆sn is calculated by interpolating to the energy En in the path 
length versus Ti table. 



(v) The multiple-scattering angular deflection is sampled by sampling and angle θ’ 
from the Molière distribution for the energy grid interval [Ti,Ti+1] and φ’ from a 
uniform distribution between –180 and +180 degrees. θ’ and φ’ are both specified 
in a coordinate system x’y’z’ whose polar axis coincides with the direction of the 
proton at the beginning of the step and are converted to angles θn and φn at the end 
of the step by a rotational transformation. 

(vi) The displacements in the coordinate system x’y’z’ are calculated and transformed 
into displacements ∆x, ∆y and ∆z in the laboratory coordinate system by the same 
rotational transformation. 

(vii) If the energy En+1 is lower than the cut-off energy Ecut or a final energy Efin, 
defined upon starting the calculation, the remaining energy of the particle is 
binned in a track-end array. 

 
2.3. Scoring geometry – scoring method 
 
A set of scoring planes is defined perpendicular to the direction of the incident proton beam 
as shown in figure 1. The depths zi of these planes are defined in terms of the CSDA range r0. 
In each plane, an array of concentric radial bins with centre (x,y) = (0,0) is defined for the 
scoring of radial energy deposition distributions as well as an array of energy bins for the 
scoring of spectra. The positions of the scoring planes and the radial and energy bins are 
defined in a boundary input file.  
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Figure 1. Scoring geometry of PTRAN3D. 
 
If a step during the transport simulation of a proton traverses one of the defined scoring 
planes, the energy Ecross, the lateral position (xcross,ycross) and the polar angle θcross are 
determined by linear interpolation between the conditions at the beginning and at the end of 
the step. The survival factor Wcross, the stopping power Scross and the nuclear absorption factor 
µcross are then evaluated at the energy Ecross. The following quantities are then scored: 
 

(i) the energy loss in Coulomb interactions, (dE/dz)C, estimated as 
Scross·Wcross/cosθcross, 



(ii) the energy loss in non-elastic nuclear interactions, (dE/dz)N, estimated as 
Ecross·µcross·Wcross/cosθcross, 

(iii) the fluence estimated as 1/cosθcross. 
 
The fluence is binned in the energy spectra and (dE/dz)C in the radial bins. Since the energy 
transferred in non-elastic nuclear interactions is only partially going to charged particles (the 
rest is escaping through neutrons and photons) this fraction can be taken into account in a 
post-processing program PTSUM. In this, the energy transferred to secondary charged 
particles is deposited at the position where they are generated. This is a crude approximation, 
which is not accurate for high-energy protons where secondary proton disequilibrium has a 
significant effect on dose distributions. 
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Figure 2 (a) calculated depth dose data with PTRAN3D, (b) spectral fluence 

distributions and (c) radial energy deposition data for a 60 MeV beam (left) and a 
150 MeV beam (right). 



2.4. Random numbers 
 
Two random number generators are foreseen with PTRAN:  
 

(i) A congruential generator which requires only two statements:   
       
 IR=IAND(MASK,IR*MULT)      
 R=RNORM*IR        
           
 where RNORM = 2-31 = 4.656612873E-10 and MASK = 2147483647 
 PTRAN3D uses two random number sequences with different MULT values
 the period of the sequence is about 5.37E+08    
  

(ii) The lagged Fibonacci random number generator 
 
2.5. Example calculation 
 
Figure 2 shows depth distributions of (dE/dz)C and (dE/dz)N, spectral fluence distributions 
and radial energy deposition distributions at a few depths for incident proton energies of 60 
MeV and 150 MeV beam. 
 
 
3. PTRAN_MEDIA – calculation of pdds in other materials, 
inhomogeneous slab geometries and for modulated beams 
 
PTRAN_MEDIA is a modified version of PTRAN3D, which allows the simulation of  
 

(i) other materials than water 
(ii) inhomogeneous slab geometries 
(iii) broad and non mono-energetic beams  
(iv) the dynamic feature of a modulator wheel.  
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Figure 3 Scoring geometry of PTRAN_MEDIA. 



This code was developed in three stages for different applications over time. The geometry 
for this code is shown in figure 3 and will be explained in the next subsections, following the 
three-stage chronology of the development. 
 
3.1. Other materials than water 
 
3.1.1. Implementation This is mainly a matter of including the data for those materials. 
 

(i) For most materials of interest, stopping powers can be taken directly from ICRU 
report 49 [4]. For materials not listed in there, Bragg’s additivity rule can be 
applied although a recent paper [9] shows that some refinements are required in 
order to be consistent concerning the calculation of the mean excitation energy I0 
and the Barkas correction. 

(ii) The calculation of the Vavilov distribution require the first moments S1 and I1 of 
the oscillator strength distribution and the mean excitation energies for the 
calculation of a small correction to the theory introduced by Shulek [10]. S1 and I1 
were taken from Inokuti et al [11, 12] for all elements with Z ranging from 1 to 
38. Bragg’s rule was applied for compounds.  

(iii) For the calculation of the Molière multiple scattering distributions, a correction 
factor kHF has  to be applied to the screening angle. These data were taken from 
Berger and Wang [13].  

(iv) Non-elastic nuclear interaction cross sections were taken from Janni [14] and 
ICRU report 63 [15] in the studies described below. For the elements not specified 
in these references, log-log interpolation of the cross sections as a function of the 
atomic number was used. In recent work, only the ICRU report 63 data have been 
considered since they form a more comprehensive set. Apart from gathering the 
required data, some technical modifications to the coding of the cross section 
preparation programs. 

(v) In addition, the range of incident beam types was extended from only mono-
directional and mono-energetic beams to circular beams, rectangular beams, 
beams with an angular distribution and beams with a Gaussian energy distribution. 

 
 
3.1.2. Application: fluence correction factors IAEA TRS-398 [16] recommends to perform 
reference dosimetry with ionisation chambers in a water phantom. However, when 
performing dosimetry in low-energy beams, it could be necessary to do the measurements in 
a plastic phantom in order to achieve sufficiently accurate positioning. A fluence correction 
factor should then be introduced to account for any difference in fluence at equivalent depths 
in the plastic phantom and in water. This situation can be compared with the one for electron 
beams. A preparatory study showed that differences in scaled depth dose curves between 
different materials were almost entirely due to differences in non-elastic nuclear interaction 
cross sections [17]. PTRAN_MEDIA was used to evaluate fluence correction factors for 
PMMA and polystyrene and compare these values with experimental results [18]. Later, 
fluence correction factors were calculated for graphite to examine the water equivalence of 
graphite in calorimetry [19,20], for alanine [21] regarding the measurement of depth dose 
curves with alanine pellets and for some ICRU tissue specifications to evaluate the 
importance of incorporating material dependent non-elastic nuclear interaction data in 
treatment planning [22]. Results are shown in figure 4. 
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Figure 4. Fluence perturbation correction factors for (a) polystyrene in various 

energies (adapted from [18]), (b) PMMA in a 191 proton beam (squares: 
experimental results - adapted from [18]), (c) graphite in 60 MeV (non-modulated 
and modulated - adapted from [20]), (d) some ICRU defined tissues in 250 MeV. 

 
 
3.2. Boundary crossing algorithm 
 
3.2.1. Implementation The technical changes required for this implementation are: 
  

(i) When a boundary is encountered in a particle’s trajectory, the particle is 
transported to the boundary along the trajectory. The energy loss along the track is 
scaled with the ratio of the step length up to the boundary to the initially sampled 
step length. At the boundary, the energy Ebound, the polar angle θbound and the 
survival factor Wbound, are evaluated in the same way as the scoring plane crossing 
quantities (section 2.3). Given the small scattering angles and energy losses that 
are involved, we can assume that the errors due to this approximation are small. 
An evaluation of the influence of the step-cutting artefact revealed no significant 
effect [23]. For the next step, new multiple scattering angles and energy loss are 
calculated based on the material properties of the new region. 

(ii) The expression of all distances in cm instead of scaled with r0. 
(iii) Giving all material dependent data an additional array dimension. 
(iv) Administration of the media information for each layer defined by two scoring 

planes. 
 



3.2.2. Application: dose in an inhomogeneity An example will be given; the dose in a bone 
slab from a calculation in homogeneous water versus from a calculation in the 
inhomogeneous situation is compared [22]. 
 
3.3. Dynamic geometries – modulator wheels 
 
3.3.1. Implementation As illustrated in figure 3, the implementation of a modulator wheel is 
done by including an additional layer at the front of the geometry. For each incident proton, 
the thickness of this layer is sampled from the distribution of the wheel thickness. The 
incident proton is then set in motion at the front of this additional layer. The usual situation 
where the wheel is a long distance away from the phantom can be easily dealt with by 
defining the second layer as air with the thickness equalling the distance between the 
modulator wheel and phantom. 
 
3.3.2. Application: spectra and stopping powers in modulated beams This feature of 
PTRAN_MEDIA was used to calculate spectral distributions for the calculation of the 
effective response of a TLD detector in a modulated beam [24] and for the calculation of 
proton stopping powers in a modulated beam [23]. The latter study showed that water to air 
stopping power ratios in a modulated beam down to distances of about 1.5 cm from the distal 
edge of the pdd were not more than 0.3% higher than in non-modulated mono-energetic 
proton beam at the same residual range Rres (the distance from the depth of the distal 10% 
dose level). This result was used in IAEA TRS-398 [16] to justify the use of a unique beam 
quality specifier and data set, common to both modulated and non-modulated proton beams. 
Example spectra in a modulated beam at various depths are shown in figure 5. 
 
 

1E-03

1E-02

1E-01

1E+00

0 20 40 60 80 10
E (MeV)

d ϕ
/d

E 
(M

eV
-1

)

z/r0 = 1.0

z/r0 = 0.3z/r0 = 0.6z/r0 = 0.9

0

 
 

Figure 5. Spectral fluence distributions in a 100 MeV modulated proton beam at 
various depths in water normalised per incident proton (adapted from [23]). 

 
 



4. PTRAN_CAVITY – calculation of doses in cavities 
 
4.1. Further changes 
 
The existing scoring algorithm in PTRAN3D is inconvenient for calculating doses in 
inhomogeneous geometries that are more complex than slab geometries. In the next stage, the 
original scoring algorithm was abandoned and cylindrical and spherical cavity geometries 
were introduced, with the specific purpose of simulating ionisation chamber perturbations, 
hence, this version of the code has been called PTRAN_CAVITY. Essentially, all elements 
from the existing geometry in PTRAN_MEDIA were retained. Although the scoring planes 
have no function in the scoring algorithm any more, they proved to be useful for geometry 
interrogation reduction. In between two of the existing scoring planes a number of non-
intersecting and embedded spherical and/or cylindrical cavities can be defined. The situation 
of two concentric cylindrical cavities is illustrated in figure 6. 
 
4.1.1. Scoring algorithm The following scoring features are implemented: 
 

(i) In each geometrical region, the track length can be scored and binned into an 
energy spectrum. The boundary-crossing algorithm assumes that track length is 
distributed evenly along the step. 

(ii) The energy loss is calculated as the difference between the begin and end energy 
of the step (whether it be a ‘normal’ or a cut-off step). 

(iii) The non-elastic nuclear energy transfer is scored at the average value of the 
energies at begin and end of the step.  

(iv) If desired, both quantities in the previous two steps can be binned as a function of 
energy as well. 
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Figure 6. Geometry with dynamic modulator wheel and two concentric 
cylindrical cavities. 

 
4.2.2. Geometry interrogation and correlated sampling A geometry interrogation reduction 
method is used to avoid unnecessary testing. The test whether or not a particle enters a cavity 
is only activated in a region between two slabs where the cavities have been specified. This 
results in a substantial reduction of calculation time.  



A correlated-sampling technique was implemented as well, to allow a more efficient 
calculation of perturbation factors for ionisation chambers with equal geometries but different 
wall materials. Practically this means that when a particle enters the cavity that defines the 
outer dimensions of the ionisation chamber wall, the energy, the spatial coordinates and 
directional coordinates of the proton are stored as well as the random numbers of the 
simulation at that point. After the transport of that particle is finished, the transport simulation 
is restarted with the stored conditions but with the wall set to another material. This approach 
not only saves computing time but also improves the statistical correlation of the doses in the 
cavity with and without wall (in which case the wall material is set to the surrounding 
medium). 
 
4.2. Applications 
 
4.2.1. Gradient correction factors for ionisation chambers The response of a graphite walled 
NE2571 ionization chamber was measured as a function of wall thickness in a PMMA 
phantom. To this end, four graphite build-up caps (serving as sleeves to increase the apparent 
wall thickness) and corresponding PMMA holders to fit in the phantom were constructed. 
The thicknesses of the build-up caps were 1.5 mm, 2.5 mm, 4.5mm and 9.5 mm. The 
measured dose response as a function of wall thickness was compared with Monte Carlo 
calculated values using PTRAN_CAVITY. The results, reported in [25], are shown in figure 
7. This code was used to calculate the effective point of measurement for a number of 
ionisation chamber types [26,27] 
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Figure 7. Monte Carlo calculated (dashed line) and measured (symbols) variation 
of the ionisation chamber signal as a function of graphite wall thickness 

(reproduced from [25]). 
 
4.2.2. Secondary electrons perturbation correction factors for ionisation chambers The track 
lengths scored in a volume can be used to evaluate the probability distribution of the 
generation of δ-electrons with energies above a certain threshold (1 keV in this case). This 
method was used to calculate the amount of energy that was transported out of the air cavity 
of an ionisation chamber by electrons and the amount of energy that was imported from the 
surrounding regions (wall, sleeve and medium) [28]. The Bahba cross-section for the 
generation of secondary electrons was used [29] and the transport of these electrons was 
simulated with EGSnrc [30]. That way, δ-electron perturbation correction factors were 
calculated for ionisation chambers and the results were compared with experimental data [25] 
shown in figure 8. 
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Figure 8. Comparison of the pwall,e-ratios (relative to the NE2571 chamber) 
calculated using Monte Carlo (thick horizontal lines) and obtained experimentally in 
a 75 MeV proton beam. Square symbols are for a non-modulated beam, triangles for 
a modulated beam, open symbols are based on absorbed dose calibrations and full 

symbols based on air kerma calibrations (Adapted from [31]). 
 
 

5. PTRAN_RZ – calculation of doses in rz-geometry 
 
5.1. Geometry 
 
With all the information in the previous sections, the implementation of an rz-voxel geometry 
is straightforward. The slab geometry is retained and a number of concentric cylinders are 
constructed perpendicularly to the slabs. In each of the rz-voxels, a different medium can be 
specified and the same quantities as in PTRAN_CAVITY can be scored. The geometry is 
shown in figure 9. 
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Figure 9. Geometry used in PTRAN_RZ. 
 



5.2. Application: pdds measured with alanine pellets 
 
Figure 10 shows the application to a stack of alanine pellets in a PMMA phantom. This 
simulation was performed to investigate the source of the tail beyond the Bragg peak. The 
agreement is fine up to the beginning of the Bragg peak. In the Bragg peak there seems to be 
an under response of the alanine dosimeters which is consistent with other results in the 
literature [9]. The tail in the calculation is the result of in scatter from the surrounding 
medium and under predicts the effect. The remainder of the measured signal might be due to 
tunnelling of protons through the air gap between the pellets and the PMMA phantom [9,32]. 
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Figure 10. Dose in a stack of alanine pellets in a PMMA phantom, measured 

(symbols) [32] and calculated with PTRAN_RZ using a Gaussian energy 
distribution with a mean value of 62 MeV and a variance of 0.5% (line). 
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