TABLE PHYSICS

- Neutron Physics (0 150 MeV)
- Photon Physics (1KeV 10⁵ MeV)
- Electron Physics (1KeV 1000 MeV)
- Proton Physics (1KeV 150 MeV)
- Summary (Details in MCNP Manual Ch. 2)

MCNPX Input "Cards" - Cross Sections and Physics

Туре			Card		
Problem Type	MODE				
Material	M	DRXS	TOTNU	NONU	AWTAB
	XS	VOID	PIKMT	MGOPT	MX
Variance	PWT	FCL	BBREM	SPABI	PHYS
Reduction					
Tally	FM				
Energy	PHYS	TMP	THTME	MT	
Cutoff	CUT	ELPT			
Peripheral	PERT				

Mn CARDS

Mn ZAID₁ **fraction**₁ **ZAID**₂ **fraction**₂ ...

For example:

- M1 1001 2 8016 1
- M75 92235.60c -.95 92238.60 -.05
- M10 82000.02p 1
- M4 5010 .8 5011 3.2 6000.50c 1.0 nlib=.60c plib=.02p hlib=.24h elib=.01e gas=0 estep=20 cond=0 pnlib=.24u

Mix and Match The MX Card

Form: MXn:p $zzaaa_1$ $zzaaa_2$

where
n = material number (material card <u>must</u>
 <u>precede</u> MX card in input file)
p = particle type (n, p, h)
p is for photonuclear, not photoatomic
zzaaa_n = replacement nuclide for the nth nuclide
 on the material card, <u>OR</u>
 "MODEL"

Mix and Match

Makes the interface between table physics and model physics seamless.

- Cross-section Tables are used when available for a particular nuclide, particle, and energy.
 - < 20 MeV N, P, & H Tables exist for <u>many</u> nuclides (<u>but not all</u>)
 - <150 MeV N, P, & H tables exist for <u>some</u> nuclides
 - Tables for most particle types are <u>non-existent</u>, regardless of energy or nuclide.

• Physics Models are used when tabular data are not available

- outside tabular data energy range
- nuclide not represented in data tables
- particle type not represented in data tables for selected nuclide

From Table to Model Physics Mix and Match

Mix and Match Example

mode n h p phys:p 3j 1 1002 1 1003.6 1 6012 1 nlib.24c 20040 1 m1 20000 mx1:n i model 6000 mx1:h model 1001 **6012** mpn1 0

Models will be used for neutron tritium and proton deuterium.

Decision Applications Division Los Alamos National Laboratory & HQC Professional Services, Inc.

Mix and Match

1particles and energy limits

print table 101

Par	ticl	e type	particle cutoff energy	maximum particle energy	smallest table maximum	largest table maximum	always use table below	always use model above
1	n	neutron	0.0000E+00	1.0000E+37	1.5000E+02	1.5000E+02	0.0000E+00	1.5000E+02
2	р	Photon	1.0000E-03	1.0000E+02	1.0000E+05	1.0000E+05	1.0000E+05	1.0000E+05
9	h	proton	1.0000E+00	1.0000E+02	1.5000E+02	1.5000E+02	0.0000E+00	1.5000E+02

CLASSES OF MCNPX DATA

(10th character of ZAID)

- **C** Continuous-energy neutron
- **D** Discrete-reaction neutron
- **M** Multigroup neutron
- **Y** Neutron dosimetry
- **T** Neutron $S(\alpha,\beta)$ thermal
- **P** Continuous-energy photon
- **G** Multigroup photon
- **U** Continuous-energy photonuclear
- **H** Continuous-energy proton
- **E** Continuous-energy electron

Default Cross Sections

e.g., ZAID = 74000

- Based on other cards (MODE, DRXS, MGOPT) and options, MCNPX knows which class of data is required.
- MCNPX will "read" the cross-section directory file, XSDIR, starting at the beginning. The first valid match will define which cross-section table to use.
- Therefore, defaults depend upon the configuration of the XSDIR file that you happen to be using.

XSDIR File

directory

1001.60c 0.999170 endf60 0 1 1 3484 0 0 2.5300E-08 1002.60c 1.996800 endf60 0 1 884 2704 0 0 2.5300E-08 1003.60c 2.990140 endf60 0 1 1572 3338 0 0 2.5300E-08 2003.60c 2.989032 endf60 0 1 2419 2834 0 0 2.5300E-08 2004.60c 4.001500 endf60 0 1 3140 2971 0 0 2.5300E-08 3006.60c 5.963400 endf60 0 1 3895 12385 0 0 2.5300E-08 3007.60c 6.955732 endf60 0 1 7004 14567 0 0 2.5300E-08 4009.60c 8.934780 endf60 0 1 10658 64410 0 0 2.5300E-08 5010.60c 9.926921 endf60 0 1 26773 27957 0 0 2.5300E-08 5011.60c 10.914700 endf60 0 1 33775 108351 0 0 2.5300E-08 6000.60c 11.898000 endf60 0 1 60875 22422 0 0 2.5300E-08

MCNPX Cross-Section Plotting

- Use "MCNPX IXZ" options to enable
- Plots cross sections as actually used in MCNPX
- Neutron, photon, protons and electron data can be displayed
- Can plot individual isotope / element or combined material
- Some plots require an FM card to omit expunging (MT>4)
- Most regular MCPLOT commands apply (e.g., coplot)
- Can dump an ASCII listing of points (printpts)
- Cannot currently plot secondary distributions

MCNPX Cross-Section Plotting Commands

xs = material or ZAID

- xs = m5
- xs = 8016.60c (complete ZAID required)
- xs = ? will give brief help package

mt = reaction number

- mt = 102
- mt = -5
- mt = 999 (or some other unavailable value) will give list of available mt's

par = **particle** type

- par = n
- par = p
- par = e
- par = h

G roup * * P e r i o d 1 18 ΙA V I I I A 8 A 1 A 2 15 16 13 14 17 Η ΙΙΑ H e 1 IIIA IVA VA VIA VIIA 1.008 2 A 3 A 4 A 5 A 6 A 7 A 2 Li Be <u>C</u> <u>N</u> 1 4 .0 1 0 1 6 . 0 0 F <u>N</u> e B 0.811 2.0 119.00 9.012 9 10 12 3 4 5 7 8 11 1 2 6 A 1 <u>S</u>i $\frac{S}{2 \cdot 0 7}$ 3 IVBVBVIBVIIB -----VIII ---- IB IIB P <u>C 1</u> <u>A r</u> 3 9 . 9 5 Na M g IIIB 7 B 3 5 . 4 5 22.99 24.31 3 B 4 B 5 B 6 B _ _ _ _ 1 B 2 B 26.98 28.09 30.97 ----- 8 ------28 29 2 0 2 2 Κ S c V F e C o Ni B r C a Τi Zn <u>G</u> e <u>S</u> e <u>K</u>r 4 C r M n C u G a A s 40.08 44.96 4 7 .8 8 5 0 .9 4 5 2 .0 0 54.94 55.85 5 8 . 4 7 5 8 . 6 9 6 3 . 5 5 6 5 . 3 9 6 9 . 7 2 72.59 74.92 79.90 39.10 83.80 38 Y N b M o R h P d<u>S</u>b <u>I</u> 1 2 6 .9 <u>X e</u> 5 R b <u>S</u> r 8 7 .6 2 <u>Z</u> r T c R u C d <u>S</u> n T e <u>In</u> Ag 88.91 9 1 .2 2 9 2 .9 1 9 5 .9 4 (98) 101.1 102.9 106.4 107.9112.4 1 1 4 .8 118.7 121.8 85.47 L a * H f T a W P t T 1 P b Bi Po 6 C s B a R e O s I r H g A t <u>R</u> n A u 204.4209.0 (210)(210)132.9 178.5180.9 183.9 195.1 197.0200.5 109 88 89 7 R f Sg $\frac{B}{(2\ 6\ 2)}h$ H s Fr D b M t R a A c ~ - -- - -- - -- - -(226)(<u>25</u>7) (263)(265) ()() () () 223 (227)(260) (266)

Periodic Table of the Elements

L an th an id e S e rie s *	5 8 <u>C e</u> 1 4 0 . 1	59 <u>Pr</u> 140.9	6 0 <u>N d</u> 1 4 4 . 2	6 1 <u>P m</u> (1 4 7)	6 2 <u>S m</u> 1 5 0 . 4	63 <u>Eu</u> 152.0	6 4 <u>G d</u> 1 5 7 . 3	65 <u>Tb</u> 158.9	66 Dy 162.5	67 <u>Ho</u> 164.9	68 <u>Er</u> 167.3	69 Tm 168.9	7 0 Y b 1 7 3 .0	71 <u>Lu</u> 175.0
Actinide Series~	9 0	9 1	92	93	9 4	95	9 6	97	98	99	1 0 0	1 0 1	1 0 2	1 0 3
	<u>T h</u>	<u>P a</u>	<u>U</u>	<u>Np</u>	<u>P u</u>	<u>Am</u>	C m	Bk	<u>C f</u>	<u>Es</u>	F m	M d	N 0	<u>L r</u>
	2 3 2 .0	(2 3 1)	(238)	(237)	(2 4 2)	(243)	(2 4 7)	(247)	(249)	(254)	(2 5 3)	(2 5 6)	(2 5 4)	(2 5 7)

Some Neutron MT's (Reaction Identifiers)

- MT FM Description
- 1 -1 Total
- 2 -3 Elastic
- 16 (n,2n)
- 17 (n,3n)
- 18 -6 Fission
- 51 (n,n') to 1st excited state
- 90 (n,n') to 40th excited state
- 91 (n,n') to continuum
- **101 -2** Total absorption (i.e., neutron disappearance)
- **102** Radiative capture (n,γ)
- 103 (n,p)
- **107** (**n**,α)
- **202 -5 Total photon production**
- **301 -4** Average heating numbers (MeV/collision)

Exercise #1 - Plotting Neutron Cross Sections in MCNPX

• Input file: copy %inputs%\physics\intxs3

basic xs plotting 1 1-1-1 2 01 1 so 5 mode n sdef imp:n 1 0 m1 92235.50c .2 92238.50c .8 1001.50c 2 8016.50c 1 6012.50c 1 m2 92235.60c 1 m1 grph.01t f4:n 1 fm4 (1 1 (102) (-6)) (1 2 -6) nps 100

• mcnpx i=intxs3 ixz

- 1. Plot the total cross section for ZAID=92235.50c
- 2. Plot the total cross section for Material M1.
- 3. Compare the fission cross sections for ENDF/B-V U²³⁵ (ZAID=92235.50c) with ENDF/B-VI U²³⁵ (ZAID=92235.60c).

cross section plot

cross section plot

cross section plot

neutron total cross section

THERMAL ISSUES

FREE GAS THERMAL TREATMENT

- Target nuclei are in motion as a result of non-zero temperature of the material. We assume an isotropic Maxwellian distribution of target velocities.
- Cross sections are a function of relative velocity between the neutron and the target. In a Maxwellian "sea" of targets, monoenergetic neutrons "see" targets with a spectrum of relative velocities. This leads to Doppler broadening of the cross sections.
- Temperature also impacts kinematics of neutron collisions. Neutrons tend to be "thermalized" to energies consistent with the material temperature.

MCNPX Input - Temperature

• TMPn card

enter the temperature for each cell (in MeV) at time n

default - room temperature (2.53e-08 MeV)

• THTME card

enter the times (in shakes) that correspond to the n's on the TMPn cards

default - no entry (temperatures are time-independent)

- MCNPX knows the temperature at which a particular ZAID was processed from a value on the appropriate entry of the XSDIR file.
- If ZAID temperature is equal to cell temperatures containing that ZAID, MCNPX does nothing.
- If ZAID temperature is not equal to cell temperatures containing that ZAID, MCNPX adjusts cross sections based on a rather simple model.

THERMAL EFFECTS

MOLECULAR BINDING THERMAL TREATMENT $S(\alpha, \beta)$

- Low energy-wavelength neutrons can interact with the lattice spacing of solids
- Cross sections show very jagged behavior. Each peak corresponds to a particular set of crystal planes.
- Coherent scattering (interference of scattered waves) add constructively in some directions and add destructively in other directions. Thus angular distributions change (Bragg scattering).
- Molecular energy levels of liquids and solids can be important
- Vibrational and rotational levels (~0.1 eV spacing below a few eV).
- Neutron loses or gains energy in discrete amounts which modifies the double-differential cross section (thermal inelastic scatter).

Thermal S(α , β) **Tables (Class T)**

- designed to model neutron scattering as impacted by the binding of the scattering nucleus in the solid, liquid, or gas moderator
- data are provided at very low energies (< 4 eV) for several moderators
- temperature-dependent data based on ENDF/B-V are provided for MCNPX (ENDF/B-VI in Sab2002.60t)
- can be very important for LWR, criticality safety, and ultra-cold applications
- to invoke in MCNPX, use appropriate MT card(s)

Mn 1001 2 8016 1

MTn LWTR.01T

• when invoked, will override isotopic scattering data if in $S(\alpha,\beta)$ energy range

	Date of			Temp
ZAID	Processing	Material Description	Nuclides ^a	<u>(_K)</u>
THERXS1 (So	ource: LANL)			
smeth.01t	04/10/88	Solid methane	1001	22
lmeth.01t	04/10/88	Liquid methane	1001	100
hpara.01t	03/03/89	Para H	1001	20
hortho.01t	03/03/89	Ortho H	1001	20
dpara.01t	05/30/89	Para D	1002	20
dortho.01t	05/30/89	Ortho D	1002	20
TMCCS1 (Sou	urce: ENDF)			
lwtr.01t	10/22/85	H in light water	1001	300
lwtr.02t	10/22/85	H in light water	1001	400
lwtr.03t	10/22/85	H in light water	1001	500
lwtr.04t	10/22/85	H in light water	1001	600
lwtr.05t	10/22/85	H in light water	1001	800
poly.01t	10/22/85	H in polyethylene	1001	300
h/zr.01t	10/22/85	H in Zr-hydride	1001	300
h/zr.02t	10/22/85	H in Zr-hydride	1001	400
h/zr.04t	10/22/85	H in Zr-hydride	1001	600
h/zr.05t	10/22/85	H in Zr-hydride	1001	800
h/zr.06t	10/22/85	H in Zr-hydride	1001	1200
benz.01t	09/08/86	Benzene	1001, 6000, 6012	300
benz.02t	09/08/86	Benzene	1001, 6000, 6012	400
benz.03t	09/08/86	Benzene	1001, 6000, 6012	500
benz.04t	09/08/86	Benzene	1001, 6000, 6012	600
benz.05t	09/08/86	Benzene	1001, 6000, 6012	800
hwtr.01t	10/22/85	D in heavy water	1002	300
hwtr.02t	10/22/85	D in heavy water	1002	400
hwtr.03t	10/22/85	D in heavy water	1002	500
hwtr.04t	10/22/85	D in heavy water	1002	600
hwtr.05t	10/22/85	D in heavy water	1002	800
be.01t	10/24/85	Be metal	4009	300
be.04t	10/24/85	Be metal	4009	600
be.05t	10/24/85	Be metal	4009	800
be.06t	10/24/85	Be metal	4009	1200
beo.01t	09/08/86	Be oxide	4009, 8016	300
beo.04t	09/08/86	Be oxide	4009, 8016	600
beo.05t	09/08/86	Be oxide	4009, 8016	800
beo.06t	09/08/86	Be oxide	4009, 8016	1200
grph.01t	09/08/86	Graphite	6000, 6012	300
grph.04t	09/08/86	Graphite	6000, 6012	600
grph.05t	09/08/86	Graphite	6000, 6012	800
grph.06t	09/08/86	Graphite	6000, 6012	1200
grph.07t	09/08/86	Graphite	6000, 6012	1600
grph.08t	09/08/86	Graphite	6000, 6012	2000
zr/h.01t	09/08/86	Zr in Zr-hydride	40000	300
zr/h.02t	09/08/86	Zr in Zr-hydride	40000	400
zr/h.04t	09/08/86	Zr in Zr-hydride	40000	600
zr/h.05t	09/08/86	Zr in Zr-hydride	40000	800
zr/h.06t	09/08/86	Zr in Zr-hydride	40000	1200

a. Nuclides for which the $S(\alpha, \beta)$ data are valid. For example, lwtr.01t provides scattering data only for 1H; 16O would still be represented by the default free-gas treatment.

Exercise #2 - Plotting Neutron S(α , β) **Cross Sections**

• Input file: intxs3

basic xs plotting 1 1-1-1 2 01 1 so 5 mode n sdef imp:n 1 0 m1 92235.50c .2 92238.50c .8 1001.50c 2 8016.50c 1 6012.50c 1 m2 92235.60c 1 m1 grph.01t f4:n 1 fm4 (1 1 (102) (-6)) (1 2 -6) nps 100

```
mcnpx i=intxs3 ixz
mcplot> xs=6012.50c xlim 1e-9 1e-5 &
mcplot> ylim=.1 10 loglin
mcplot> cop xs=grph.01t mt=1 cop mt=2 cop mt=4
```


Thermal Effects

MCNPX calculation of k_{eff} for ORNL-2 benchmark (unreflected sphere of uranyl nitrate in water plus B-10)

no $S(\alpha,\beta)$ treatment for light water with $S(\alpha,\beta)$ treatment for light water k_{eff} 0.980 (.001) 0.996 (.001)

Los Alamos
 NATIONAL LABORATORY

CUT Card

Form: CUT: pl T E WC1 WC2 SWTM

- Neutron default:T=very large, E=0.0 MeV, WC1 =-.50, WC2 = -.25 SWTM = minimum source weight if the general source is used.
- *pl* = particle type/designator
- T = time cutoff in shakes (10⁻⁸ sec).
- *E* = lower energy cutoff in MeV.
- WC1 = weight cutoff survival weight
- WC2= weight cutoff. If weight goes below WC2 roulette is played to restore weight to WC1. Negative values make WC1 and WC2 relative to importances.

Setting WC1 = 0 invokes analog capture.

TOTNU Card

Criticality (k_{eff} or alpha) Problems • default is total nubar **TOTNU** • can get prompt nubar with **TOTNU** NO **Fixed-Source Problems** • default is prompt nubar TOTNU NO • can get total nubar with **TOTNU** • can turn off fission neutrons with **NONU**

Exercise #3 - See Physics Options

• Input file: COPY %inputs%\physics\inpw14 testprob32 -- simple neutron problem to test delayed treatment Simple sphere representation С 1 - 18.6 - 1 1 0 +1 2 so 4.7407 1 mode n a imp:n 10 sdef pos= 0 0 0 erg=d10 sp10 -3 .968 2.29 phys:n j j j 15.0 j -1 \$multiplicity turned on c phys:n j j j 15.0 **\$** multiplicity off cut:n 180.+8 j j j totnu f4:n 1 T4 0 100i 1 200i 200 1+8 180i 180.+8 fq4 t f print Materials specified with atom densities С m1 94239.61 0.95 2004.05 .05 prdmp j j -1 nps 1000

				by number fission	multiplicity		by weight fission	multiplicity	
			fissions	neutrons	fraction	fissions	neutrons	fraction	error
nu	=	2	219	438	2.11799E-02	1.66291E-01	3.32581E-01	2.10476E-02	0.0619
nu	=	3	8496	25488	8.21663E-01	6.48963E+00	1.94689E+01	8.21402E-01	0.0000
nu	=	4	1595	6380	1.54255E-01	1.22335E+00	4.89339E+00	1.54841E-01	0.0000
nu	=	5	30	150	2.90135E-03	2.14072E-02	1.07036E-01	2.70954E-03	0.1892
t	ota	al	10340	32456	1.00000E+00	7.90068E+00	2.48019E+01	1.00000E+00	0.0000

factorial moments	by number	by weight	
nu	3.13888E+00 0.0013	3.13921E+00 0.0013	
nu(nu-1)/2!	3.44072E+00 0.0034	3.44139E+00 0.0035	
nu(nu-1)(nu-2)/3!	1.46770E+00 0.0080	1.46786E+00 0.0082	
nu(nu-1) (nu-3)/4!	1.68762E-01 0.0259	1.68389E-01 0.0264	
nu(nu-1) (nu-4)/5!	2.90135E-03 0.1823	2.70954E-03 0.1915	

			by number			by weight ·		
			fission	multiplicity		fission	multiplicity	
		fissions	neutrons	fraction	fissions	neutrons	fraction	error
nu =	0	175	0	1.58586E-02	1.37436E-01	0.00000E+00	1.65909E-02	0.0713
nu =	1	807	807	7.31309E-02	5.98239E-01	5.98239E-01	7.22177E-02	0.0185
nu =	2	2302	4604	2.08609E-01	1.71929E+00	3.43858E+00	2.07548E-01	0.0000
nu =	3	3517	10551	3.18713E-01	2.64214E+00	7.92643E+00	3.18952E-01	0.0000
nu =	4	2846	11384	2.57907E-01	2.15490E+00	8.61959E+00	2.60133E-01	0.0000
nu =	5	1114	5570	1.00952E-01	8.27356E-01	4.13678E+00	9.98760E-02	0.0000
nu =	6	250	1500	2.26552E-02	1.87198E-01	1.12319E+00	2.25980E-02	0.0575
nu =	7	24	168	2.17490E-03	1.72629E-02	1.20840E-01	2.08393E-03	0.2115
tot	al	11035	34584	1.00000E+00	8.28383E+00	2.59637E+01	1.00000E+00	0.0000

factorial moments	by numbe	er	by weig	nt
nu	3.13403E+00 0	.0038	3.13426E+00	0.0039
nu(nu-1)/2!	4.10720E+00 0	.0079	4.10670E+00	0.0082
nu(nu-1)(nu-2)/3!	2.88908E+00 0	0.0139	2.88314E+00	0.0144
nu(nu-1) (nu-3)/4!	1.17861E+00 0	0.0244	1.17142E+00	0.0252
nu(nu-1) (nu-4)/5!	2.82556E-01 0	.0451	2.79227E-01	0.0465
nu(nu-1) (nu-5)/6!	3.78795E-02 0	.0898	3.71855E-02	0.0924
nu(nu-1) (nu-6)/7!	2.17490E-03 0	.2039	2.08393E-03	0.2136

SECONDARY PARTICLE PRODUCTION IN LA150

Table 0-1. Charged Particle Production Thresholds for Low Energy Neutron Libraries (MeV)

Isotope	ZAID	Proton	Deuteron	Triton	Alpha
H-1	1001.24c		1.0E-11		
H-2	1002.24c	3.339		1.0E-11	
Be-9	4009.24c	14.266	16.301	11.709	0.667
С	6000.24c	20.0	20.0		20.0
N-14	7014.24c	20.0	20.00		20.0
O-16	8016.24c	20.0	20.0		20.0
AI-27	13027.24c	1.897	6.274	11.29	3.25
Si-28	14028.24c	4.0	20.0	20.0	2.746
Si-29	14029.24c	3.0	20.0	20.0	1.3
Si-30	14030.24c	8.012	20.0	20.0	4.345
P-31	15031.24c	20.0	20.0		20.0
Ca	20000.24c	20.0	20.0	20.0	20.0
Cr-50	24050.24c	1.0	20.0	20.0	2.25
Cr-52	24052.24c	3.256	20.0	20.0	1.233
Cr-53	24053.24c	2.69	20.0	20.0	1.0
Cr-54	24054.24c	6.33	20.0	20.0	1.581
Fe-54	26054.24c	0.7	20.0	20.0	3.0
Fe-56	26056.24c	2.966	20.0	20.0	0.862
Fe-57	26057.24c	1.943	20.0	20.0	0.8
Ni-58	28058.24c	0.5	20.0	20.0	0.5
Ni-60	28060.24c	2.076	20.0	20.0	2.021E-8
Ni-61	28061.24c	0.549	20.0	20.0	0.07
Ni-62	28062.24c	4.532	20.0	20.0	0.445
Ni-64	28064.24c	6.627	20.0	20.0	2.481
Cu-63	29063.24c	0.9	20.0	20.0	1.742
Cu-65	29065.24c	1.375	20.0	20.0	0.112
Ni-93	41093.24c	20.0	20.0	20.0	20.0
W-182	74182.24c	20.0	20.0	20.0	20.0
W-183	74183.24c	20.0	20.0	20.0	20.0

W-184	74184.24c	20.0	20.0	20.0	20.0
W-186	74186.24c	20.0	20.0	20.0	20.0
Hg-196	80196.24c	20.0	20.0	20.0	20.0
Hg-198	80198.24c	20.0	20.0	20.0	20.0
Hg-199	80199.24c	20.0	20.0	20.0	20.0
Hg-200	80200.24c	20.0	20.0	20.0	20.0
Hg-201	80201.24c	20.0	20.0	20.0	20.0
Hg-202	80202.24c	20.0	20.0	20.0	20.0
Hg-204	80204.24c	20.0	20.0	20.0	20.0
Pb-206	82206.24c	20.0	20.0	20.0	20.0
Pb-207	82207.24c	20.0	20.0	20.0	20.0
Pb-208	82208.24c	4.236	5.816	6.403	1.0e-11
Bi-209	83209.24c	20.0	20.0	20.0	20.0

Table 0-1. Charged Particle Production Thresholds for Low Energy Neutron Libraries (MeV)
Major Neutron Physics Approximations

- each secondary particle from a neutron collision is sampled independently
- neutron reaction and photon-production reaction are not correlated
- no consideration of delayed photon production (e.g., about half of the steady-state fission gamma energy is not modeled)
- charged-particle production (& recoils) with LA-150 libraries only
- treatment of temperature effects is limited in its range of validity
- neutron heating (energy-deposition) tallies are the same whether or not secondary photons are transported

Useful Web Sites at LANL for Nuclear Data

http://www-xdiv.lanl.gov/XCI/PROJECTS/DATA/nuclear/ dataweb.html (X-5)

- Currently supported MCNPX cross-section libraries.
- Documentation for certain topics related to nuclear data.
- Answers to frequently-asked questions.

http://t2.lanl.gov/data/data.html (T-16)

- Maintained by Bob MacFarlane (Group T-16; Nuclear Theory and Applications).
- Includes a nuclear data viewer.
- Extensive information on ENDF/B-VI neutron data.
- Also provides information about other evaluated neutron data (e.g., JENDL-3.2 and JEF-2.2).

TABLE PHYSICS

- Neutron Physics (0 150 MeV)
- Photon Physics (1KeV 10⁵ MeV)
- Electron Physics (1 KeV- 1000 MeV)
- Proton Physics (1 KeV 150 MeV)
- Summary

PHOTON PHYSICS

- Storm and Israel ENDF, EPDL
- Coherent (Thomson) Scattering + Form Factors
- Incoherent (Compton) Scattering + Form Factors
- Pair Production
- Photoelectric Absorption and Fluorescence
- Thick-Target Bremsstrahlung

PHYS:P EMCPF IDES NOCOH PNB PDB

- EMCPF = simple physics if E>EMCPF *Default: 100 MeV*IDES = 0/1 = TTB or electron transport per mode/turn off electron production *Default: 0*NOCOH = 0/1 = on/off coherent scatter (for detector convergence) *Default: 0*
- PNB = -1/0/1 = analog/none/biased photonuclear particle production 0<PNB≤15
 Default: 0
- PDB = 0/1 = on/off Photon Doppler broadening *Default: 1*

NOTE: There is photonuclear modeling for all nuclides in MCNPX

Simple vs. Detailed Photon Physics

Simple (E>100 MeV)

Detailed

Ignores coherent scattering

Coherent scattering with form factors

Compton scattering on free electron

Photoelectric effect is pure absorption modeled by implicit capture

Pair production

Compton scattering with incoherent form factors

Photoelectric effect is analog absorption plus possible K and L-shell fluorescence

Pair production

Detailed physics is recommended for most applications, particularly for high Z nuclides, low energy photons, and deep penetration problems.

Results for Simple/Detailed Photon Physics

	simple	detailed
SIMP1 (high energy, low Z, thin material)	1.129 (.003)	1.129 (.003)
SIMP2 (low energy, high Z, thick material)	1.904-6 (8%)	1.799-6 (8%)
SIMP2 (longer run)	1.849-6 (2%)	1.678-6 (2%)

Thick-Target Bremsstrahlung

- Electrons generated in direction of incident photon and immediately annihilated after generating bremsstrahlung photons
- Eliminates expensive electron transport
- Slows photon-only problems considerably
- Is default, but should not be used! Turn off TTB if bremsstrahlung unimportant; transport electrons if bremsstrahlung is important

Electron Production At Photon Collisions

	MODE P E	MODE P (w/ TTB)	MODE P (w/o TTB)
Coherent	No electrons	No electrons	No electrons
Incoherent	Electron produced and transported	Electron produced; TTB photon(s) transported	Electron energy deposited
Photoelectric	Electron(s) produced and transported	Electron(s) produced; TTB photon(s) transported	Electron energy deposited
Pair Prod.	Electron and positron produced and transported	Electron and positron produced; TTB photon(s) transported	Electron energy deposited; two 0.511 MeV photons created and transported

Results for Photon/Electron Physics

	tally	particles / minute
MODE P w/ TTB	0.132 (.013)	1.04+5
MODE P w/o TTB	0.097 (.014)	2.31+5
MODE P E	0.115 (.029)	84

PHOTONUCLEAR CAPABILITY

• Data in LA150U library (.24u ZAID)

note: IAEA has a large collection of PhotoNuclear library data

- May use PNLIB keyword on the material card
 - m1 plib=02p elib=03e nlib=49c pnlib=24u 74184 1 6000.24c 3
- Use photonuclear material card (MPNm or MXm:p) 0 entry omits PN for that nuclide

mx1:p 74184 6012

- Make the 4th entry on PHYS:p card nonzero phys:p .05 2j -1
- Models used if library data is not available

Exercise #5 - Photonuclear Effects

• Input file: inpw04

testprob04 -- photoneutrons 1 1 .02 -1 2.1-2134 0 2 3 4 2.1-35 5 2.1-46 6 2.1-5 7 2.1-6 so 10 1 2 so 20 3 s-10 2r 2.1 4 s 10 2r 1.1 5 s-10 2r 1.9 6 s 10 2r .9 mode n p imp:n,p1101111 m1 plib=02p elib=03e nlib=49c 74184 1 6000.24c 3 mpn1 74184 6012 m2 plib=02p elib=03e nlib=49c 74184 1 8016.24c 3 c monoenergetic isotropic photon point source at (0,0,0) sdef erg=d1 cel=1 par=2 sp1 -4 f4:p 124567 \$ flux tally f14:n 124567 nps 10000 prdmp 2j -1 phys:p .05 2j -1

• mcnpx i=inpw04

Photon MT's (Reaction Identifiers)

- **501 -5** Total
- **504 -1 Incoherent (Compton)**
- **502 -2 Coherent (Thomson)**
- 522 -3 Photoelectric
- 516 -4 Pair Production
- **301 -6 Heating**

PHOTONUCLEAR MT's

- 1 Total
- 2 Non-elastic
- **3** Elastic
- 4 Heating
- 5 Other (fission)
- 2005 Yield of Particle 2 from reaction 5

Exercise #6 - Plotting Photon Data in MCNPX

• Input file: intxs4

xs and physics ---- gamma, electron plotting

1 1 -1 -1 2 2 -2.7 1 -2 3 3 -19.2 2 -3 4 0 3 1 so 1 2 so 2 3 so 3 mode p e sdef m1 1001 2 8016

m1 1001 2 8016 1 m2 13027 1 m3 74000 1 mpn1 0 8016 imp:p 1 2r 0 prdmp 2j -1 phys:p 3j -1

• mcnpx i=intxs4 ixz

1. Plot the total photon cross sections for M1, M2 and M3.

2. Plot the total and four partial photon cross sections for Tungsten.

3. Plot photonuclear cross sections

cross section plot

total photon cross section

cross section plot

total photon cross section

Major Photon Physics Approximations in MCNPX

- Only K,L edges treated for photoelectric absorption
- Thick-target bremsstrahlung is the default
- No distinction between pair and triplet production
- No anomalous scattering factors

TABLE PHYSICS

- Neutron Physics (0 150 MeV)
- Photon Physics (1KeV 10⁵ MeV)
- Electron Physics (1KeV 1000 MeV)
- Proton Physics (1MeV 150 MeV)
- Summary

Electron Physics in MCNPX

- Foundation is the condensed history method of Berger.
- Angular deflections from Goudsmit and Saunderson.
- Energy straggling from Landau, Blunck and Leisegang, Blunck and Westphal, and Seltzer. Equivalent to ITS 3.0.
- Density effect correction from prescription of Sternheimer, Berger, and Seltzer.
- Occupation numbers and atomic binding energies from Carlson.
- Bremsstrahlung cross sections from Berger and Seltzer.
- Riley cross sections and Mott / Rutherford cross sections.
- Moller cross sections for knock-on electrons.

(References provided in the MCNP4C manual, LA-13709-M)

Condensed History Algorithm

An electron passing through matter will interact with each atom along its trajectory

- Energy loss from the electron to the media or to radiation
- Small deflections or scatterings along its path
- Production of secondary electrons or photons
- This algorithm attempts to average the effect of all these interactions into aggregate quantities. Thus
 - The effect of many small deflections is a single scattering deflection in a substep due to the multiple-scattering theory of Goudsmit and Saunderson.
 - The effect of energy loss is accounted for by a single energy loss modified for straggling in each step.
 - A step is related to the average distance an electron traverses to lose a specified amount of energy.
 - Number of substeps per step is material dependent (ESTEP on M card)

Electron Options

- Bremsstrahlung angular distribution options:
 - detailed
 - simple (always used for next-event estimators; can be used for transport)
- Bremsstrahlung energy biasing (BBREM card)
- Production biasing for:
 - Bremsstrahlung photons (2 methods)
 - Knock-on electrons
 - Electron generated x-rays
 - Photon generated electrons
- ESTEP, GAS, and COND entries on material cards
- Energy indexing option:
 - DBCN(18)=0 bin-centered treatment (MCNP style) default
 - DBCN(18)=1 nearest group boundary treatment (ITS style)

Electron Data for MCNPX

On libraries:

- energies
 - radiative stopping power parameters
 - bremsstrahlung production cross sections
- bremsstrahlung energy distributions (EL03 only)
 - K-edge energies
- Auger electron production energies
- parameters for the evaluation of the Goudsmit-Saunderson theory for angular deflections
- atomic data of Carlson for density effect calculations (EL03 only)

Internally calculated:

- electron stopping powers and ranges
 - K x-ray production probabilities
- knock-on probabilities

PHYS:E EMAX IDES IPHOT IBAD ISTRG BNUM XNUM RNOK ENUM NUMB

- EMAX = upper limit for electron energy (100 MeV)
- IDES = 0/1 = on/off electron production from photons
- IPHOT = $\frac{0}{1} = \frac{on}{off}$ photon production from electrons
- IBAD = 0/1 = *detailed*/simple bremsstrahlung prod.
- ISTRG = 0/1 = *straggling*/expected-value e energy loss
- BNUM ≥ 0 ; scaling of bremsstrahlung photons (1.0)
- XNUM ≥ 0 ; scaling of electron-induced x-rays (1.0)
- RNOK ≥ 0 ; scaling of knock-on electrons (1.0)
- ENUM ≥ 0 ; scaling of photon-induced electrons (1.0)
- NUMB = 0/1 = on/off substep bremsstrahlung prod.

photon creation	tracks	weight	energy	photon loss	tracks	weight	energy
		(per sour	ce particle)			(per sou	rce particle)
source	0	0.	0.	escape	668	6.6800E-01	1.2374E+00
nucl. interaction	0	0.	0.	energy cutoff	625	6.2500E-01	8.4539E-01
particle decay	0	0.	0.	time cutoff	0	0.	0.
weight window	0	0.	0.	weight window	0	0.	0.
cell importance	0	0.	0.	cell importance	0	0.	0.
weight cutoff	0	0.	0.	weight cutoff	0	0.	0.
energy importance	0	0.	0.	energy importance	0	0.	0.
dxtran	0	0.	0.	dxtran	0	0.	0.
forced collisions	0	0.	0.	forced collisions	0	0.	0.
exp. transform	0	0.	0.	exp. transform	0	0.	0.
from neutrons	0	0.	0.	compton scatter	0	0.	7.4540E-01
bremsstrahlung	1631	1.6310E+00	3.3926E+00	capture	412	4.1200E-01	3.2646E-01
p-annihilation	156	1.5600E-01	7.9717E-02	pair production	82	8.2000E-02	3.1764E-01
- photonuclear	0	0.	0.	photonuclear abs	0	0.	0.
- electron x-rays	0	0.	0.	-			
1st fluorescence	0	0.	0.				
2nd fluorescence	0	0.	0.				
(gamma, xgamma)	0	0.	0.				
tabular sampling	0	0.	0.				
total	1787	1.7870E+00	3.4723E+00	total	1787	1.7870E+00	3.4723E+00
number of photons b	oanked		1783	average time of (shakes)		cutoffs	
photon tracks per	source pa	rticle	1.7870E+00	escape 7.882	22E-02	tco	1.0000E+34
photon collisions	per source	e particle	1.7140E+00	capture 6.901	11E-02	eco	5.0000E-01
total photon colli	isions		1714	capture or escape 7.50	79E-02	wcl	0.0000E+00
				any termination 7.156	63E-02	wc2	0.0000E+00
alectron greation	tracka	weight	oporqu	alastron loss	tracka	weight	oporqu
election cleation	CIACKS	(per sour	ce particle)		CIACKB	(per sou	rce particle)
	1000	1 000000.00	1 0000		0	0 0000 00	1 24055 02
source	1000	T.0000€+00	T.0000E+0I	escape	2022	9.0000E-03	1.2495E-02
nuci. Interaction	0	0.	0.	time suboff	5652	5.05ZUE+UU	9.399/E-UI
particle decay	0	0.	0.		0	0.	0.
aell importance	0	0.	0.	aell importance	0	0.	0.
weight gutoff	0	0.	0.	weight gutoff	0	0.	0.
aportu importance	0	0.	0.	weight cutoff	0	0.	0.
pair production	153	♥• 1 5300₽-01	V• 2 3251〒_01	energy importance	0	0	V• 7 8110₽±00
compton reacil	133 771	7 7100E-01	2.3231E-VI 6 0740E-01	bromgetrahlung	0	0	3 4366E+00
photo-electric	412	4 1200E-01	3 0407F-01	DI EMBS LI AITTUILY	U	••	3.43004400
photon auger	<u>م</u> تد ۷		0				
Photon auger	U	••	.				

Electron Plot Quantities

MT	Description
1	de/dx collision - collisional energy loss (MeV-cm2/g)
2	de/dx radiation - brem. energy loss (MeV-cm2/g)
3	de/dx total (MeV-cm2/g)
4	range - distance to energy cutoff (g/cm2)
5	radiation yield - fraction of energy to brem.
6	beta**2 - relativistic beta (v/c)
7	density correction - empirical correction (MeV-cm2/g)
8	radcol - ratio of de/dx radiation to de/dx collision
9	drange - major step size (log grid, g/cm2)
10	dyield - average radiative loss over energy step (MeV)
11	rng - range used in current calculation (g/cm2)
12	gav - average collisional energy loss (MeV)
13	ear - energy loss correction due to Landau straggling

Exercise #7 - Plotting Electron Data in MCNPX

• Input file: intxs4

xs and physics ---- gamma, electron plotting

1 1 -1 -1 2 2 -2.7 1 -2 3 3 -19.2 2 -3

4 03

1 so 1 2 so 2 3 so 3

```
mode p e
sdef
m1 1001 2 8016 1
m2 13027 1
m3 74000 1
mpn1 0 8016
imp:p 1 2r 0
prdmp 2j -1
phys:p 3j -1
```

• mcnpx i=intxs4 ixz

1. Plot the total electron stopping powers for M1, M2 and M3.

2. Plot the collisional, radiative, and total stopping powers for Tungsten.

cross section plot

cross section plot

POSITRONS

- Positron Sources are allowed: SDEF par = -e
- Positrons may be tallied separately: FTn ELC 3
- MCNPX uses ITS 3.0 physics:
 - Positron and electron physics are identical except when they stop (fall below energy cutoff). Electrons deposit energy whereas positrons generate annihilation photons.
 - At high energies positrons behave like electrons. At low energies (< 1 MeV), stopping powers, bremsstrahlung, knock-ons, and annihilations are increasingly poor.

TABLE PHYSICS

- Neutron Physics (0 150 MeV)
- Photon Physics (1KeV 10⁵ MeV)
- Electron Physics (1KeV 1000 MeV)
- Proton Physics (1MeV 150 MeV)
- Summary

PHYS:H EMAX U ECUT U ISTRG U RECL

• EMAX = maximum proton energy

Default: Very large (100 MeV)

- U = unused
- ECUT = use tables below ECUT and models above Default: -1 (Tables when available, else models)
- U = unused
- ISTRG = -1/0/1 = old Vavilov/new Vavilov/slowing down
 Default: 0
- U = unused
- RECL= 0/n = off/produce n recoil ions per elastic collision Default: 0

Principal Proton Table Data Reactions

- +/- 1 = total
- +/- 2 = nonelastic
- +/- 3 = elastic
- +/- 4 = heating
 - > 4 = various reactions

In LA150H proton library, mt = 5 is all-inclusive

Proton Table Secondary Particle Yield

Reaction number + 1000*p = multiplicity for particle type p

mt = 1005 is the number of neutrons produced from reaction 5 mt =34001 is the total number of alphas produced from h collisions

Exercise: Plot proton table data for inp = talmh*

* copy %inputs%\tally\talmh

for material 1, plot rxns 1, 2, 3, 5

OS

nos

LABORATORY

HQC PROFESSIONAL SERVICES, INC.
MCNPX Workshops

HQC PROFESSIONAL SERVICES, INC.

LA150 Neutron, Proton, Photonuclear Libraries

- Production cross sections for light particles
- Production cross sections for gammas
- Production cross sections for heavy recoil particles
- Energy-angle correlated spectra for secondary light particles (up to and including alphas)
- Energy spectra for gammas and heavy recoil nuclei

Isotopes in LA150 Libraries

Element	Neutrons	Protons	Photonuclear
Hydrogen	¹ H, ² H	¹ H, ² H	
Lithium		⁷ Li	
Beryllium	⁹ Be (100 MeV)		
Carbon	^{nat} C	¹² C	¹² C
Nitrogen	¹⁴ N	¹⁴ N	
Oxygen	¹⁶ O	¹⁶ O	¹⁶ O
Aluminum	²⁷ AI	²⁷ AI	²⁷ AI
Silicon	²⁸ Si, ²⁹ Si, ³⁰ Si	²⁸ Si, ²⁹ Si, ³⁰ Si	²⁸ Si
Phospho- rous	³¹ P	³¹ P	
Calcium	^{nat} Ca	⁴⁰ Ca	⁴⁰ Ca
Chromium	⁵⁰ Cr, ⁵² Cr, ⁵³ Cr, ⁵⁴ Cr	⁵⁰ Cr, ⁵² Cr, ⁵³ Cr, ⁵⁴ Cr	
Iron	⁵⁴ Fe, ⁵⁶ Fe, ⁵⁷ Fe	⁵⁴ Fe, ⁵⁶ Fe, ⁵⁷ Fe	⁵⁶ Fe
Nickel	⁵⁸ Ni, ⁶⁰ Ni, ⁶¹ Ni, ⁶² Ni, ⁶⁴ Ni	⁵⁸ Ni, ⁶⁰ Ni, ⁶¹ Ni, ⁶² Ni, ⁶⁴ Ni	
Copper	⁶³ Cu, ⁶⁵ Cu	⁶³ Cu, ⁶⁵ Cu	⁶³ Cu
Niobium	⁹³ Nb	⁹³ Nb	
Tantalum			¹⁸¹ Ta
Tungsten	¹⁸² W, ¹⁸³ W, ¹⁸⁴ W, ¹⁸⁶ W	¹⁸² W, ¹⁸³ W, ¹⁸⁴ W, ¹⁸⁶ W	¹⁸⁴ W
Mercury	¹⁹⁶ Hg, ¹⁹⁸ Hg, ¹⁹⁹ Hg,	¹⁹⁶ Hg, ¹⁹⁸ Hg, ¹⁹⁹ Hg,	
	²⁰⁰ Hg, ²⁰¹ Hg, ²⁰² Hg,	²⁰⁰ Hg, ²⁰¹ Hg, ²⁰² Hg,	
	²⁰⁴ Hg	²⁰⁴ Hg	
Lead	²⁰⁶ Pb, ²⁰⁷ Pb, ²⁰⁸ Pb	²⁰⁶ Pb, ²⁰⁷ Pb, ²⁰⁸ Pb	²⁰⁶ Pb, ²⁰⁷ Pb, ²⁰⁸ Pb
Bismuth	²⁰⁹ Bi	²⁰⁹ Bi	

Getting the Data for MCNPX

From RSICC

- MCNPX data distribution package is DLC-205.
- Contains the entire suite of currently-supported data libraries plus some documentation.
- CD-ROMs of DLC-205 are available from RSICC (pdc@ornl.gov, (865) 574-6176, or http://epicws.epm.ornl.gov/rsic.html).

• DLC-165 JAERI (Japan)	JENDL-3	02/2000
• DLC-216 ENEA (Italy)	ENDF/B-VI Rel. 3	12/2003
• DLC-203 ENEA (Italy)	JEF22	11/2003
• DLC-205 LANL (MCNPX)	ENDF/B-VI rel. 2	09/2002
• CCC-710 LANL (MCNP5)	ENDF/B-VI rel. 6	11/2003
• DLC-211 UT (Texas)	High Temp.	04/2001
• DLC-183 IAEA (Austria)	FENDL-2.0	02/2000

DECISION APPLICATIONS DIVISION LOS ALAMOS NATIONAL LABORATORY HQC PROFESSIONAL SERVICES, INC.

Summary

MCNPX contains high-quality physics and has access to the most up-to-date cross-section data.

There are, however, approximations and assumptions that you should be aware of. It is important to know as much as possible about the cross-section libraries you are using and the physics models in the code, so that you can understand the strengths and weaknesses of the libraries and physics within the context of your application.

Questions: email to "nucldata@lanl.gov" (goes to Nuclear Data Team at LANL)

DECISION APPLICATIONS DIVISION LOS ALAMOS NATIONAL LABORATORY HQC PROFESSIONAL SERVICES, INC.