

serco

Serco Assurance

Applications of MCBEND

Presentation to NPL Workshop on Monte Carlo codes

by Pat Cowan

The ANSWERS Software Service Serco Assurance

Overview

- The MCBEND Code
- Traditional Applications
- Industrial Applications
- Design of Shielded Facilities
 - Food Irradiation Chamber
 - Hospital Treatment Room
- Operational Analysis
 - Food Irradiation
 - BNCT Treatment Planning
 - Irradiator Decommissioning
 - Oil Well Logging
- Summary

- MCBEND is a Monte Carlo code
- Monte Carlo Method
 - Physically-realistic simulation of the fate of individual particles
 - Predicts the level of nuclear radiation in a detailed geometric system in space, energy and time
- Outcome is often some form of radiation flux map
 - radiation dose
 - radiation effects damage/heating
 - instrument response

Traditional Applications of MCBEND

- MCBEND has many years of successful application in the nuclear industry:
 - Reactor operations
 - Fuel transport
 - Storage facilities
 - Reprocessing plant
 - Waste handling facilities
 - Incident detection systems
 - Materials degradation
 - Personnel dose uptake
 - Evacuation dose contours

Typical Nuclear Industry Shielding Problem

- Design of Radiological Shield
- Determination of external dose-rates

Problems facing Shielding Assessors

- Dealing with bulk penetration
- Identifying shield weaknesses

- Streaming
 - Ducts, labyrinths

- Skyshine
 - Cask parks
 - Flask transport
 - Waste facilities

Industrial Applications of MCBEND

Design of Shielded Facilities

- Food Irradiation Chamber
- Hospital Treatment Room
- Source Calibration Facility

Operational Analysis

- Dose Uptake in Food
- BNCT Treatment Planning
- Irradiator Decommissioning
- Nuclear Oil Well Logging Tools

Design of Shielded Facilities

Source: Radiation Technology, Inc., Rockaway, NJ. Adapted <u>FDA Consumer</u>, July/August 1986, p. 14-15.

Food Irradiation Chamber

- Food is irradiated by large gamma-ray sources in a heavily shielded cave, to kill off bacteria and preserve it
- MCBEND was used to determine personnel dose-rates outside the chamber:
 - Through the bulk shielding
 - At mouth of product and personnel mazes

Food Irradiation Chamber

- MCBEND was also used to determine the temperature profile in cave walls
 - The walls of the chamber were divided up into layers.
 - The energy deposited in each layer by the gamma radiation was determined using MCBEND
 - Heat transfer calculations were performed using the TAU Finite Element code, assuming natural cooling

Hospital Treatment Room

Assessment carried out by Birmingham University

Hospital Treatment Room

MCBEND model of Shielding Labyrinth showing Splitting Mesh

Hospital Treatment Room

Sample of MCBEND Results

No extra shielding - neutron dose

Scoring region	Dose rate (μSv/hr/mA)	% statistical error
2 (doorway)	65.5	7.4
3 (radiographer's area)	3.60	7.6

Li-polyethylene shielding around moderator system - neutron dose

Scoring region	Dose rate (μSv/hr/mA)	% statistical error
2 (doorway)	17.7	6.9
3 (radiographer's area)	1.02	7.1

Li-polyethylene shielding around moderator system and 'Premadex' screens at both ends of labyrinth - neutron dose

Scoring region	Dose rate (μSv/hr/mA)	% statistical error
2 (doorway)	0.294	4.1
3 (radiographer's area)	0.046	4.0

Operational Analysis – Food Irradiation

- MCBEND was used to determine the Dose Uptake by Product
 - In the MCBEND model the whole 'product' was divided into a number of segments.
 - Dose Uptake was determined in every segment to see the variation in dose uptake for a number of source designs.
 - Optimum source design is when all segments of the product are evenly irradiated.

Operational Analysis – BNCT Treatment Planning

Feasibility Study carried out by Birmingham University

- CT scan of patient
- Overlay 3D mesh
- Volume-weighted assignment of materials to each 3D mesh element (e.g. brain, bone, scalp, void)
- Put 3D array into MCBEND
- Calculate 3D distribution of dose rates for each dose component
- Overlay 3D dose distribution onto CT scan

Operational Analysis – BNCT Treatment Planning

Feasibility Study carried out by Birmingham University

Operational Analysis – Irradiator Decommissioning

- MCBEND was used to determine gamma-ray dose-rates during decommissioning of a Hospital Irradiator.
 - Dose-rates were calculated all around the vicinity of the irradiator containing the sources, with the irradiator lid raised (or completely removed) during source removal operations.
 - Dose-rates were calculated in the room directly above the room in which the irradiator was housed.

Operational Analysis – Irradiator Decommissioning

MCBEND Results

- Calculations were performed both with and without temporary steel or lead shield plugs located in the top of the irradiator.
- The optimum design of temporary shield plug was determined, which gave acceptable dose-rates while allowing access to the sources individually for removal.

Operational Analysis - Oil Well Logging

- Oil Well Logging tools are instruments lowered into boreholes, which are used to locate oil.
- As the tool is moved up the borehole, it takes measurements from the surrounding rock formation - which are recorded.
- Even after a well is producing oil, Oil companies may want to log the well to see how the formation properties have changed to give them information on how much oil is left.
- MCBEND has been used to model various types of Nuclear Logging Tools:
 - Gamma Density tools
 - Neutron Porosity tools
 - Pulsed Neutron Capture or Carbon/Oxygen tools

Gamma Density Logging Tool

- Medium Energy Gamma Source
- Two scintillation detectors e.g. Nal Crystals
 - Near (collimated) detector focussed towards the near bore region
 - Far detector looks further into the rock formation
- Gamma-rays are scattered by the electrons in the rock formation
- Energy Deposition or Pulse Height Distribution is scored in the detectors
- Counts in detectors can be related to Formation Density - related to oil bearing properties

Gamma Density Tool in Inclined Thin Bed Formation

- MCBEND has been used to simulate the response of Gamma Density tools for configurations that cannot be easily reproduced experimentally
 - e.g. Inclined Thin Beds

Pulsed Neutron Logging Tool

- High energy pulsed neutron source, two scintillation detectors.
- Neutrons emitted from source collide with nuclei in the rock formation.
- Some collisions emit gamma-rays, which are detected in the detectors of the tool.
- The gamma-ray energies are characteristic of the element in which the collision occurred.
- MCBEND is used to simulate the operation and response of these time dependent tools.

Summary

- MCBEND has had many years of successful application in the nuclear industry
- Diversification into new markets:
 - Food Irradiation
 - Medical
 - Oil Well Logging
- Examples where MCBEND has been used are:
 - Design of Shielded Facilities
 - Food Irradiation Chamber
 - Hospital Treatment Room
 - Source Calibration Facility
 - Operational Analysis
 - Food Irradiation Plant
 - Hospital Treatment Planning
 - Irradiator Decommissioning
 - Oil Well Logging

serco

Serco Assurance

The ANSWERS Software Service