
Distributing EGS on the
NPL United Devices Grid

MCNEG 2004 at NPL

Simon Duane

National Physical Laboratory, UK

simon.duane @ npl.co.uk

16th March 2004

What’s a grid?

• Like electrical power distribution
• Producers and consumers linked in a transparent way
• Don’t need to know who burnt the oil (or where)

• Computing grid
• Producers have cpu / disk / memory
• Consumers have computational tasks

• Producers = donors / desktop pc owners … the victims
• Consumers = grid users … me, Hugo, et al.

Let’s get together…

Some pre-history: hardware for MC at NPL

• 1987 – VAX 11/785 (finance)
• 1988 – microVAX II (dosimetry)
• 1989 – Meiko Computing Surface (dosimetry)

• Initially 4 processors, then 28 processors
• 1990 onwards – PCs (dosimetry)

• DOS + Pharlap 386 + Lahey F77 (not networked)
• Win3.1, Win3.11, Win95 (networked)
• Linux (dual boot desktops)
• Linux (dedicated)

• 2002 up to 9 Linux boxes dedicated to MC
• But not a proper cluster…

=> We know about parallel execution

Parallelizing Monte Carlo simulations

• In principle, no problem:
• we need billions of histories anyway

• In practice, need to
• split task at start

• Independent random sequences – we use Marsaglia-
Zaman (easy to generate and label 108 sequences)

• Merge results at end
• Dose calculation - combine and improve statistics
• Phase-space generation – concatenate files

• Multiple instances of the executing program are
independent (they don’t need to talk to one another)

output data: fixed SIZE problems
(e.g. dose)

• Can always be made to work:

• Volume of data io is fixed

• Increase job duration to make
comms/comp large enough

DOSCHAM

output data: fixed RATE problems
(e.g. phase space)

• May or may not be worth it:

• Electron beams – no

• Photon beams – maybe

(for our linac simulations, anyway)

NPLLINAC and DOSCHAM:
EGS4/PRESTA usercodes written by

David Shipley

NPLLINAC

Grid examples

• GIMPS
• Great Internet Mersenne Prime Search:

• Seti@home
• You’ve seen the screen saver:

The NPL UD grid – (i)

• The desktop machines run MS Windows NT / 2000 /
XP
• UD also allow linux, or Sun, or AIX, or any mixture…

• Linux server(s)
• We have two, located centrally.

• Secure
• Optional encryption – we don’t need it.

• Unobtrusive
• Users unaware their pc being used by someone else

The NPL UD grid – (ii)

• 650 staff, approx 600 desktop PCs
• Mostly 3 year life, so reasonably current models
• Mostly idle, most of the time

• All networked, using managed switches
• 1Gbs (backbone – not sure exactly where)
• 100 Mbs (new building)
• 10Mbs (old buildings)

• PCs at NPL are configured with a standard disk image
• Includes UD Grid agent software (since late 2003)
• >200 PCs have agent installed

The NPL UD grid – (iii)

• 2 linux servers (could have been one)
• Filestore (DB2 database)
• Grid management services (5)

• Poll server
• Dispatch server
• Realm server
• RPC server
• File server

• 100 agent licenses (with option for more…)
• Dispatch server limits number of devices that can be

actively running jobs.

(show slide from UD training)

What happens?
• Each device runs agent as service

• i.e. on boot, independent of user login to Win2k
• Every 2 mins:

• Agent:
“hello – I’m waiting for something to do”
• Poll Server:
“thanks – do this” [sends program and data files]
or
• Agent:
“hello – I’m waiting for something to do”
• Poll Server:
“thanks – there’s nothing on at the moment – come back a bit later”

Setting up and running code on the grid

• Start with fortran source in CygWin (copy from linux?)
• Make all io to current directory (if not already)
• Implement split and merge
• Compile (e.g. g77 in CygWin)
• Copy to another directory

• The executable, cygwin1.dll, any input data files, the UD
loader.exe

• Build a UD program module and data packages
• persistent and workunit datas

• Run in the testagent (on local PC)
• Upload to UD server and launch job(s)

Grid user interface - options

• Web-based
• Interactive
• User-friendly
• Good for getting to know what’s there

• Use XML-RPC or SOAP
• Programmable – C++, Java, etc
• Scriptable – perl, python, etc

Web based – login

Web based – console

Web based – manage jobs

Web based – (after select job id)

Web based – (after select job step)

Web based – browsing results

and so on

Or use scripts – e.g. perl

Perl scripts at NPL adapted by Keith Lawrence from
UD examples

scripts – e.g. python

source code

python in use – command line

python in use – GUI

GUI

Early results

• PTRAN
• Proton transport code (Hugo Palmans’ talk…)
• Physics (ion chambers in phantom in proton beam)
• Jobs submited Friday evening, ready Sunday lunchtime

(equivalent to about 4 months on a desktop PC)

• EGS4/PRESTA – NPLLINAC usercode
• Phase space generation
• A benchmarking exercise (so far)
• Aim to discover the (io) limits of the system

NPLLINAC – performance on a laptop

• 4, 6, 8, 10, 12, 16, 19 MeV electrons onto a
• Tungsten target
• With or without Al filter
• With collimator (makes a beam 11cm diameter at 125cm
• Range rejection, brems splitting turned on …

4MV heavy filt 19 MV light filt

Histories /sec 4870 1025

Particle yield 0.005 0.23

Data rate 700 byte/sec 6.4 kbyte/sec

Run on a Pentium M 1.6GHz (g77 in CygWin)

Grid of 100 devices?

• 4MV heavy filtration

• 100 x 700 byte/s = 70 kB/s

• Should be manageable

• Even 19MV light filtration should be ok …

Some results

• How long does each agent spend on a workunit?

NPLLINAC - distribution of cpu times

0

100

200

300

400

500

600

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

workunit number

cp
u

se
co

nd
s

What about progress?

job id 150

0
10
20
30
40
50
60
70
80
90

100

0 50000 100000 150000 200000

seconds

%
 p

ro
gr

es
s

job step created
workunits sent
results received

Efficiency?

• Most realistic measure:
total cpu time / elapsed time / number of devices available

• Result (really preliminary, no tuning of server)
About 50% for jobs that last 4 minutes (NPLLINAC)
About 90% for jobs that last 10 hours (PTRAN)

Conclusions (i)
• Grid computing really is here now
• It is available on Windows as well as linux, etc.

• (it’s not that I am a Windows enthusiast, but that’s
what’s 95% of the cpu on site run)

• It makes obvious economic sense:
• Licence is ~ $100 per device

• Transferable when PC hardware is replaced
• Transferable when switch from MS Windows to Linux
• The business requires that most staff have PCs – the

marginal cost of harnessing all those cpus is not much
more than the electricity cost of leaving them on out of
hours

• United Devices have to compete with a lot of Free
Software (on Unix if not on Windows) – their pricing is
“flexible”.

Conclusions (ii)

• There are some unresolved issues in our system –
maybe because many/most devices have the same
speed (100 Mbs) network interface as the servers
• Workunit result error rate is sometimes high

• (recalculated automatically)
• Devices may be trying to hit server with 30 Gbyte/min…

• Devices can timeout during initial transfer from server
• (resent automatically)
• Server may try to send out 100 x 20MB simultaneously

Ever the optimist

• Our use of the Grid has only just begun
• Already good for production runs with fixed data size

code

• I expect that with a bit of learning / tuning
• It will even be good for short “steering” runs, of a few

minutes (though probably not a few seconds)

Post-script (i)
• What about coprocessors?
• In 1988, on hearing about the Weitek chip that would offer 5

Mflops, BLIF said
That could change the way I work

• In 2004, I googled for weitek and found out about
• www.clearspeed.com
• Their CS301 coprocessor:

• 64 processors on a chip
• 2 FPU per processor
• 12800 Mips
• 25.6 Gflops
• 2W at 200MHz
• 10 Gflops / Watt

• That could change the way I work…

Post-script (ii)

• Who are ClearSpeed?
• I googled some more, and found an “ex-Inmos

employees re-united” site, and found that
• some had gone on to Meiko (late ’80s)
• Others had ended up at ClearSpeed

• The Transputer lives on, in spirit …

