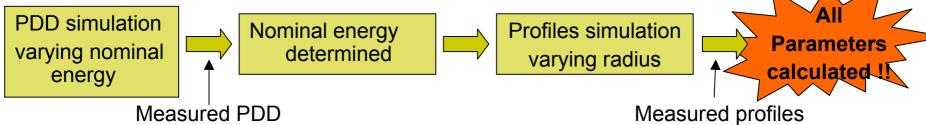
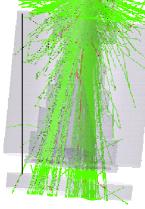
Monte Carlo commissioning of photon beams in medical LINACS using wide-field profiles in a water phantom

F.Gómez¹, L. Franco¹, A. Iglesias¹, J. Pardo¹, <u>J. Pena¹</u>, A. Rodríguez¹, R.Lobato², J. Mosquera², M. Pombar², J. R. Sendón²


> ¹ Universidade de Santiago de Compostela, Depto. de Física de Partículas, Facultade de Física. Santiago de Compostela, Spain
> ² Hospital Clínico Universitario de Santiago. Santiago de Compostela, Spain

Discussion and motivation

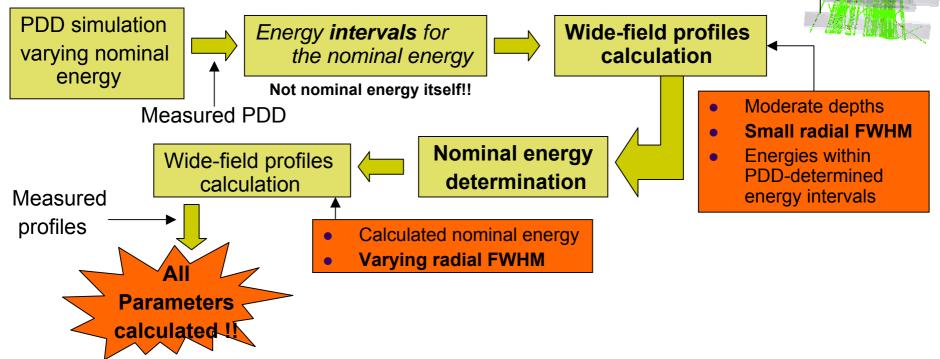
The less known parameters in a Monte Carlo simulation of <u>photon</u> <u>beams</u> from a medical LINAC are the **incident electron beam energy spectrum and spatial distribution.**


General procedure for tuning this parameters:

Problems of this method:

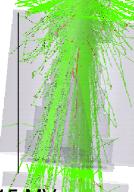
- Depth dose profiles are <u>rather insensitive to the nominal energy</u>
- Profiles are very sensitive to the nominal energy
- Small-field profiles suffer from phantom scatter and JAWS+MLC contributions making the <u>radial dependence blurry</u>

Discussion and motivation

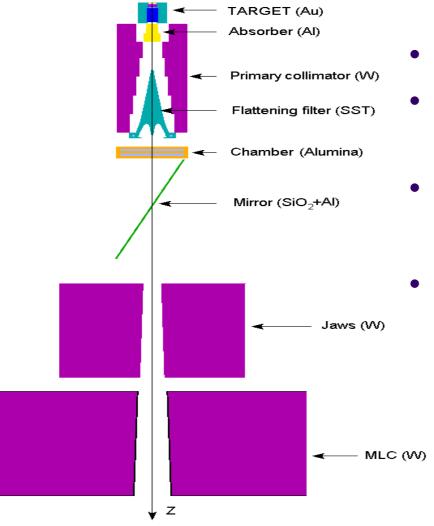


Other ways of making the commissioning:

- Sheikh-Bagheri and Rogers: in-air off-axis factors
 - Very sensitive to most of the simulation parameters and the geometry details of the accelerator
 - Require dedicated measurements!!
- This work: *wide-field* lateral profiles in a water phantom at *moderate depth*
 - Advantages:
 - Very sensitive to both nominal energy and radial distribution
 - Little contribution from phantom scatter and beam-defining elements → JAWS+MLC and TARGET+PC+FF simulations clearly separated
 - No dedicated measurements!!


Javier Pena. Univ. Santiago

How to do the commissioning using wide-field profiles??



Problems in using this method:

 Profiles are sensible to the nominal energy and spatial distribution at the same time → necessary the help of the PDDs in the nominal energy determination

The Siemens Primus LINAC

- We have simulated both 6 MV and 15 MV configurations in a "generic accelerator".
- V.R. techniques: Selective
 Bremmstrahlung Splitting with
 SSD=100cm, NMIN=40, NBRSPL=400 and
 FS = 10+field width
- Energy cutoffs:
 - photons: 10 KeV
 - electrons: 700 KeV (rest+kinetic)
- Available information from the manufacturer:

	6MV	15MV	
Nominal energy	5.47 MeV	12.0 MeV	
Energy spectrum	Gaussian 14% FWHM	Gaussian 14% FWHM	
Radial distribution	??	??	

Javier Pena. Univ. Santiago

Influence of the incident electron beam parameters on the percentage depth doses (PDDs)

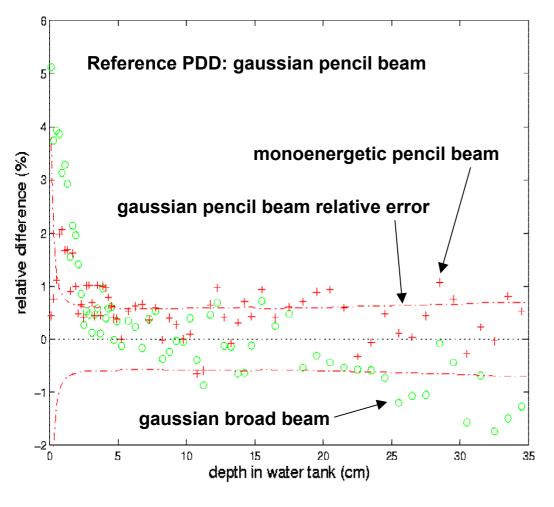
We have made three simulations with **a nominal energy of 12 MeV** (15 MV configuration) but varying both energy spectrum and the FWHM of a <u>gaussian radial</u> <u>distribution</u>:

- <u>Monoenergetic beam</u> with radial FWHM = 0.001 cm (monoenergetic pencil beam)
- <u>Gaussian energy spectrum (FWHM=14%)</u> with radial <u>FWHM=0.001 cm</u> (gaussian pencil beam)
- Idem as before but <u>FWHM=0.35 cm</u> (gaussian broad beam)

Influence of the incident electron beam parameters on the percentage depth doses (PDDs)

Accelerator simulation

- **1.5·10⁶ electrons** (2.1 hours in a P4, 2.4 Ghz)
- Russian Roulette = OFF
- Same random number seeds for the 3 different beams
- Field size: 10cm x 10cm at SSD = 100cm


PDD calculation

- 2.5.10⁸ histories (8 hours in a P4, 2.4 Ghz CPU) from a phase space file situated at a SSD=100 cm with ~ 2.10⁶ histories
- We used the CHAMBER CM to simulate a water phantom with a voxel size of:
 - 0.2 cm until 5cm depth
 - **0.5 cm** from 5cm to 15 cm depth
 - 1 cm from 15 cm to 40 cm depth
- ECUT = 521KeV and PCUT = 10 KeV

PDD comparison

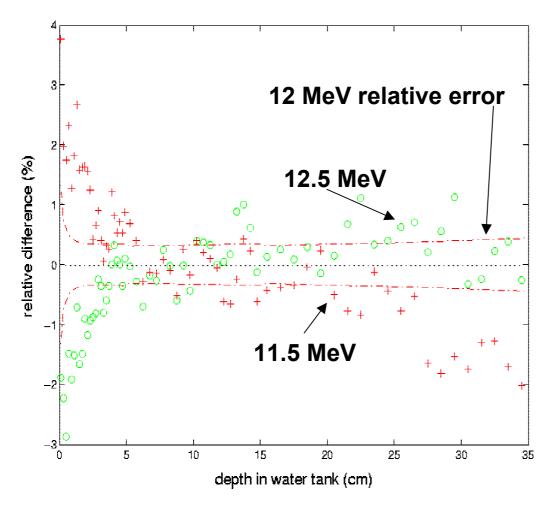
 Presented PDDs where normalized at 10 cm depth using a 4th degree polynomial fitting from 5cm to 15 cm depth

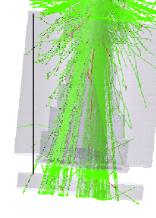
Influence of the incident electron beam parameters on the percentage depth doses (PDDs)

- PDD of the monoenergetic distribution simulates a higher nominal energy
- PDD with the highest radial FWHM shows a lower energy behaviour
- Both of them <u>are within the</u> relative uncertainty of the gaussian pencil beam

Relative difference calculated as:

 $\frac{PDD_{BEAM_x}(i) - PDD_{gaussian_pencil_beam}(i)}{PDD_{gaussian_pencil_beam}(i)} *100$


Javier Pena. Univ. Santiago


Influence of the nominal energy on the PDDs

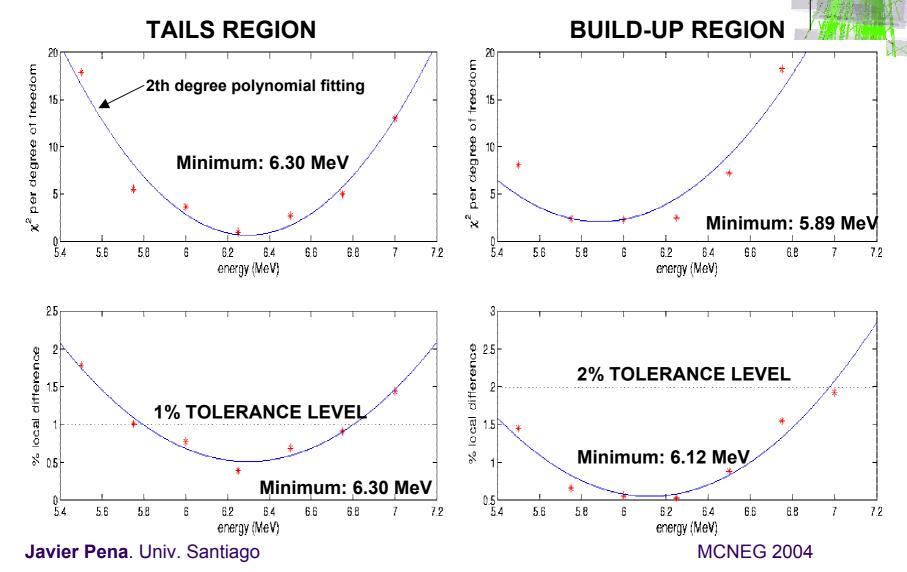
Assuming a gaussian energy spectrum with FWHM = 14% and a gaussian radial distribution with FWHM = 0.2 cm we have simulated PDDs for 11.5, 12.0 and 12.5 MeV of nominal energy

- Accelerator simulation ran 9·10⁶ electrons, generating a ph.sp. file at SSD=100cm with ~12·10⁶ histories
- Field size: **10cm x 10cm at SSD=100cm**
- Cutoff energy: electrons: 700 Kev, photons: 10 KeV

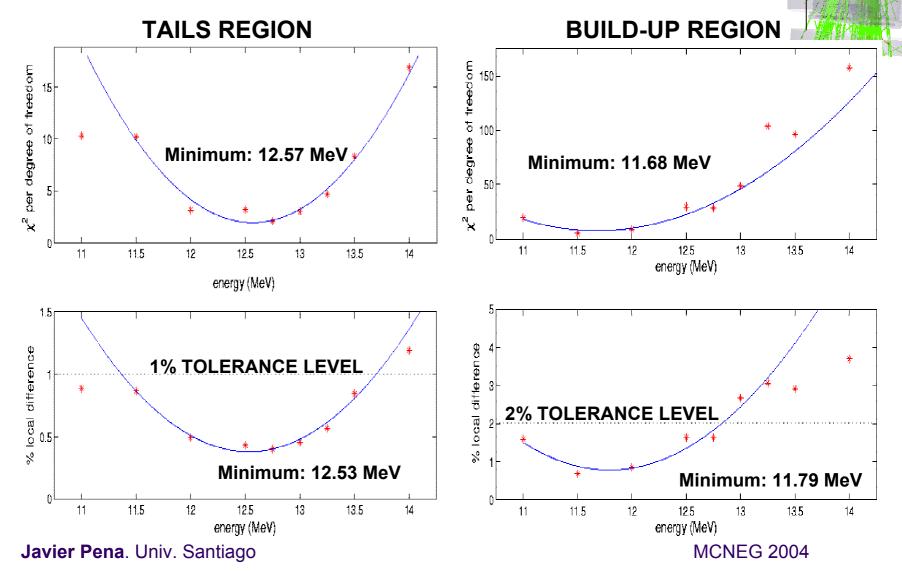
Influence of the nominal energy on the PDDs

Some of the points of both <u>11.5 MeV and 12.5 MeV fall</u> within the 12 MeV error !!

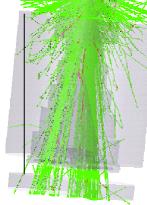
PDDs with a nominal energy difference of 0.5 MeV are NOT so different !!!


Javier Pena. Univ. Santiago

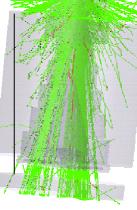
Nominal energy calculation


We have simulated several PDDs varying the nominal energy:

- Energy ranges were:
 - between <u>5.5MeV</u> and <u>7MeV</u> for the 6MV configuration
 - between <u>11MeV</u> and <u>14MeV</u> for the 15MV configuration.
- Measured depth dose profiles:
 - Chamber: <u>PTW semiflex tube chamber, type 31002</u> (0.125 cm³⁾
 - Water phantom: PTW MP3 water tank (60x50x40 cm³)
 - Corrections: <u>effective point of measurement</u>: 0.6*0.275 (chamber radius).
- χ^2 /NDF and % mean local relative difference calculation:
 - Tails region: between <u>5 cm and 35 cm</u> depth
 - Buildup region: between <u>0.7cm and 5 cm</u> depth


Nominal energy calculation (6 MV)

Nominal energy calculation (15 MV)

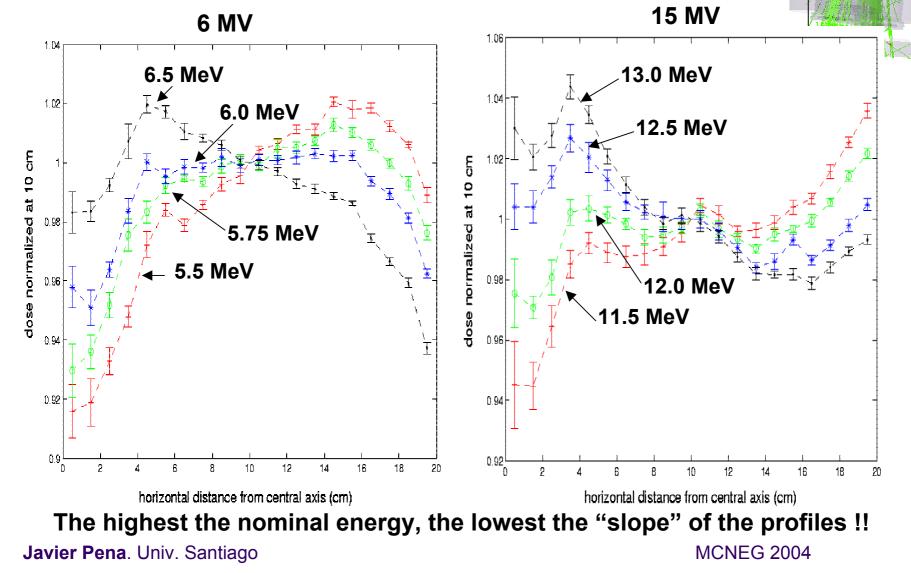

PDD study conclusions

- PDD dependence on initial electron beam parameters establish a minimum uncertainty in the nominal energy determination from PDD calculations and measurement comparison.
- Setting "maximum tolerance levels" in χ²/NDF and % mean local relative difference we open an energy window of 1-1.5 MeV width for the nominal energy value.

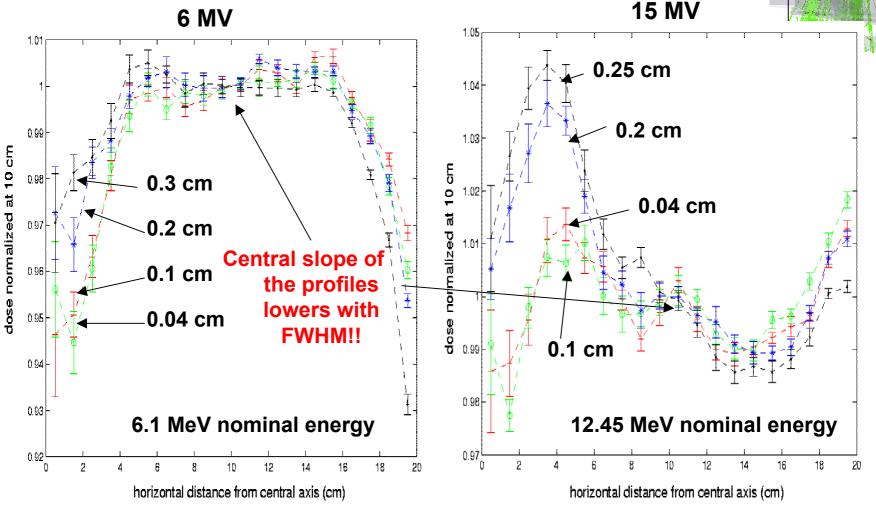
Water profiles could help us in fine-tuning the nominal energy !!!

Wide-field profiles calculation

 We have simulated 40cm x 40cm fields at a SSD=100cm with a 5cm thick water slab (~10 MeV electron CSDA range), scoring a phase space file at Z=105 cm.

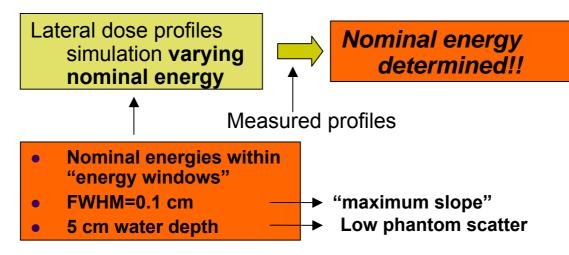

5·10⁵ electron histories (~1 hour in a P4, 2.4 Ghz)→ ~14·10⁶ histories in the ph.sp. files

• Assuming CPE we calculated the dose multiplying the initial photon fluence by the water mass energy absorption coefficient (using ring bins of 1 cm width).


Incident fluence photon separated from phantom-generated photons using different LATCH bits

Uncertainty calculation using 10 BATCHES

Sensitivity of the profiles to the nominal energy



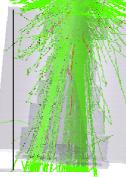
Sensitivity of the profiles to the radial FWHM

The highest the radius, the highest the ratio dose at central axis/dose at 10 cm !! Javier Pena. Univ. Santiago MCNEG 2004

Calculating the nominal energy using the profiles

Energy windows

- <u>6 MV</u>: 5.5 MeV 6.5 MeV
- <u>15 MV</u>: 11.5 MeV 13 MeV

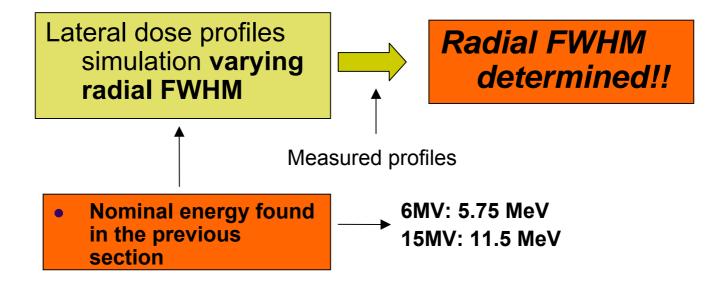

Profiles measurements were made in the same conditions as PDDs X profiles showed but Y profiles yielded to the same results

CPE condition

- Depth past buildup maximum.
- Lateral off-axis maximum distance:
 - 6MV: 17.45cm (20cm 5MeV electron CSDA range¹)
 - 15MV:15 cm (20cm 10 MeV electron CSDA range²)

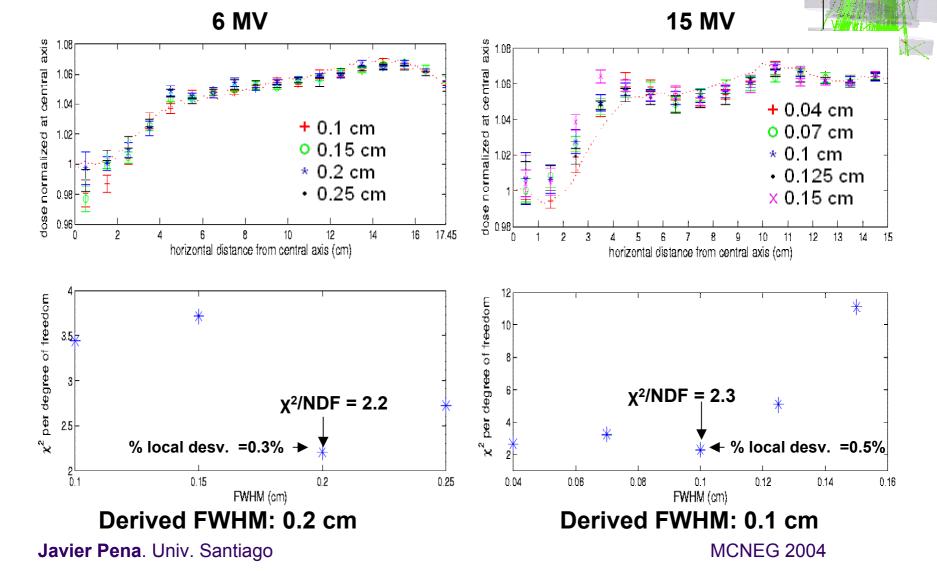
¹ only 0.94% of the photons in the incident fluence > 5 MeV ² only 1.06% of the photons in the incident fluence > 10 MeV

Javier Pena. Univ. Santiago



Derived nominal energy

6 MV 15 MV axis dose normalized at central axis 1.1 central 1.075 1.05 dose normalized at .025 5.5 MeV 11.5 MeV 1.05.75 MeV 12.0 MeV 1.026.0 MeV 12.5 MeV 0.975 6.5 MeV 13.0 MeV 0.98 12 17.45 10 12 Û 2 6 8 10 14 16 0 3 5 8 9 11 13 14 15 horizontal distance from central axis (cm) horizontal distance from central axis (cm) 200 150 χ^2 per degree of freedom χ^2 per degree of freedom 125 150 100 100 $\chi^{2}/NDF = 3.4$ 75 50 50 $\chi^{2}/NDF = 2.3$ 25 --50 ⊾ 5.5 11.5 12.25 5.75 6.25 6.5 11.75 12 12.5 12.75 6 13 energy (MeV) energy (MeV) Derived energy: 5.75 MeV Derived energy: 11.5 MeV **MCNEG 2004**


Javier Pena. Univ. Santiago

Calculating the radial FWHM using the profiles

Javier Pena. Univ. Santiago

Derived radial FWHM

Conclusions

- PDDs show some dependence on both energy spectrum and radial distribution of the initial electron beam
- A nominal energy determination using only PDDs can lead to wrong results and has a significant minimum uncertainty
- Wide-field profiles are very sensitive to both nominal energy and radial distribution of the initial electron beam thus serving as a way of determining this parameters
- This kind of commissioning is also very sensible to geometrical and composition features of the accelerator
- No dedicated measurements needed

	Original		Derived	
	6 MV	15 MV	6 MV	15 MV
Nominal energy	5.47 MeV	12.0 MeV	5.75 MeV	11.5 MeV
Radial FWHM			0.2 cm	0.1 cm

Thank you for your attention !!