A parallel implementation of Geant4 application using OOMPI

Luís Augusto Perles, Adelaide de Almeida

Departamento de Física e Matemática Faculdade de Filosofia Ciências e Letras de Ribeirão Preto USP - Brazil

MCNEG 2004

Luís Augusto Perles, Adelaide de Almeida

A parallel implementation of G4 application using OOMPI

Image: A matrix

Outline

Introduction Parallelizing a G4 application Future improvements Acknowledgements

Outline

Introduction

- The use of parallelized Monte Carlo (MC) codes
- When parallelize a MC code
- Choosing a parallel library for a C++ applications

2 Parallelizing a G4 application

- Important highlights
- A Geant4 parallel application using OOMPI
- Code changed and added
- Running
- Useful links

The use of parallelized Monte Carlo (MC) codes When parallelize a MC code Choosing a parallel library

(D) (D) (D) (D)

Outline

Introduction

• The use of parallelized Monte Carlo (MC) codes

- When parallelize a MC code
- Choosing a parallel library for a C++ applications

Parallelizing a G4 application

- Important highlights
- A Geant4 parallel application using OOMPI
- Code changed and added
- Running
- Useful links

3 Future improvements

The use of parallelized Monte Carlo (MC) codes When parallelize a MC code Choosing a parallel library

イロト イヨト イヨト イヨト

Some examples

• Fast results in scientific research (everyone needs)

 Use in radiotherapy Treatment Planning Systems (TPS) in hospitals

The use of parallelized Monte Carlo (MC) codes When parallelize a MC code Choosing a parallel library

Some examples

- Fast results in scientific research (everyone needs)
- Use in radiotherapy Treatment Planning Systems (TPS) in hospitals

The use of parallelized Monte Carlo (MC) codes When parallelize a MC code Choosing a parallel library

(D) (D) (D) (D)

Outline

1 Introduction

• The use of parallelized Monte Carlo (MC) codes

• When parallelize a MC code

• Choosing a parallel library for a C++ applications

Parallelizing a G4 application

- Important highlights
- A Geant4 parallel application using OOMPI
- Code changed and added
- Running
- Useful links

3 Future improvements

The use of parallelized Monte Carlo (MC) codes When parallelize a MC code Choosing a parallel library

イロト イヨト イヨト イヨト

When parallelize?

- When we need a lot of histories to be processed (event parallelism)
- When we have secondaries hard to track (track parallelism)
- When we have a cluster or a multiprocessor machine (of course!)

The use of parallelized Monte Carlo (MC) codes When parallelize a MC code Choosing a parallel library

When parallelize?

- When we need a lot of histories to be processed (event parallelism)
- When we have secondaries hard to track (track parallelism)
- When we have a cluster or a multiprocessor machine (of course!)

The use of parallelized Monte Carlo (MC) codes When parallelize a MC code Choosing a parallel library

イロト イポト イヨト イヨト

When parallelize?

- When we need a lot of histories to be processed (event parallelism)
- When we have secondaries hard to track (track parallelism)
- When we have a cluster or a multiprocessor machine (of course!)

The use of parallelized Monte Carlo (MC) codes When parallelize a MC code Choosing a parallel library

(D) (D) (D) (D)

Outline

- The use of parallelized Monte Carlo (MC) codes
 When parallelize a MC code
- \bullet Choosing a parallel library for a C++ applications

Parallelizing a G4 application

- Important highlights
- A Geant4 parallel application using OOMPI
- Code changed and added
- Running
- Useful links

The use of parallelized Monte Carlo (MC) codes When parallelize a MC code Choosing a parallel library

イロト イヨト イヨト イヨト

The main choices for OO

Para++

- Works with both MPI and PVM library
- Doesn't care about MPI Standard
- Is it still updated?

DOMPI

- Cares about MPI standard
- Frequently updated
- Very small overhead compared against MPI for C

The use of parallelized Monte Carlo (MC) codes When parallelize a MC code Choosing a parallel library

イロト イヨト イヨト イヨト

The main choices for OO

Para++

- Works with both MPI and PVM library
- Doesn't care about MPI Standard
- Is it still updated?

DOMPI

- Cares about MPI standard
- Frequently updated
- Very small overhead compared against MPI for C

The use of parallelized Monte Carlo (MC) codes When parallelize a MC code Choosing a parallel library

イロト イヨト イヨト イヨト

The main choices for OO

Para++

- Works with both MPI and PVM library
- Doesn't care about MPI Standard
- Is it still updated?

- Cares about MPI standard.
- Frequently updated
- Very small overhead compared against MPI for C

The use of parallelized Monte Carlo (MC) codes When parallelize a MC code Choosing a parallel library

(日) (四) (三) (三)

The main choices for OO

Para++

- Works with both MPI and PVM library
- Doesn't care about MPI Standard
- Is it still updated?

OOMPI

- Cares about MPI standard
- Frequently updated
- Very small overhead compared against MPI for C

The use of parallelized Monte Carlo (MC) codes When parallelize a MC code Choosing a parallel library

イロト イヨト イヨト イヨト

The main choices for OO

Para++

- Works with both MPI and PVM library
- Doesn't care about MPI Standard
- Is it still updated?

OOMPI

- Cares about MPI standard
- Frequently updated
- Very small overhead compared against MPI for C

The use of parallelized Monte Carlo (MC) codes When parallelize a MC code Choosing a parallel library

イロト イヨト イヨト イヨト

The main choices for OO

Para++

- Works with both MPI and PVM library
- Doesn't care about MPI Standard
- Is it still updated?

OOMPI

- Cares about MPI standard
- Frequently updated
- Very small overhead compared against MPI for C

The use of parallelized Monte Carlo (MC) codes When parallelize a MC code Choosing a parallel library

(日) (四) (三) (三)

Some OOMPI features

Few global objects (MPI_COMM_WORLD is default)

- Send/receive objects inherited from OOMPI_User_type
- ③ Each MPI function has a related class method

Object Oriented Message Passing Interface - OOMPI

Open Systems Laboratory Pervasive Technologies Labs Indiana University Homepage: http://www.osl.iu.edu/reseau

The use of parallelized Monte Carlo (MC) codes When parallelize a MC code Choosing a parallel library

(日) (四) (三) (三)

Some OOMPI features

- Few global objects (MPI_COMM_WORLD is default)
- Send/receive objects inherited from OOMPI_User_type
- Each MPI function has a related class method

Object Oriented Message Passing Interface - OOMPI

Open Systems Laboratory Pervasive Technologies Labs

Homepage: http://www.osl.iu.edu/research/oompi/

The use of parallelized Monte Carlo (MC) codes When parallelize a MC code Choosing a parallel library

・ロト ・ 日 ・ ・ ヨ ・ ・ モ ト

Some OOMPI features

- Few global objects (MPI_COMM_WORLD is default)
- Send/receive objects inherited from OOMPI_User_type
- Sech MPI function has a related class method

Object Oriented Message Passing Interface - OOMPI

Open Systems Laboratory Pervasive Technologies Labs Indiana University Homepage: http://www.osl.iu.edu/research/oompi/

The use of parallelized Monte Carlo (MC) codes When parallelize a MC code Choosing a parallel library

Some OOMPI features

- Few global objects (MPI_COMM_WORLD is default)
- Send/receive objects inherited from OOMPI_User_type
- Seach MPI function has a related class method

Object Oriented Message Passing Interface - OOMPI

Open Systems Laboratory Pervasive Technologies Labs Indiana University Homepage: http://www.osl.iu.edu/research/oompi/

The use of parallelized Monte Carlo (MC) codes When parallelize a MC code Choosing a parallel library

イロト イヨト イヨト イヨト

Other non-OO libraries

Other parallel libraries for C

- PVM
- MPI (LAM-MPI, MPICH, ...)
- TOP-C (MPI based)

The use of parallelized Monte Carlo (MC) codes When parallelize a MC code Choosing a parallel library

イロト イヨト イヨト イヨト

Other non-OO libraries

Other parallel libraries for C

- PVM
- MPI (LAM-MPI, MPICH, ...)

• TOP-C (MPI based)

The use of parallelized Monte Carlo (MC) codes When parallelize a MC code Choosing a parallel library

イロト イヨト イヨト イヨト

Other non-OO libraries

Other parallel libraries for C

- PVM
- MPI (LAM-MPI, MPICH, ...)
- TOP-C (MPI based)

The use of parallelized Monte Carlo (MC) codes When parallelize a MC code Choosing a parallel library

イロト イヨト イヨト イヨト

TOP-C features and limitations

Features

- Task oriented abstraction
- Latency tolerance
- Works with shared and distributed memory

Limitations

- Have functions instead of classes
- Difficult to send/receive objects through MPI
- Scalability is a problem for > 100 nodes

The use of parallelized Monte Carlo (MC) codes When parallelize a MC code Choosing a parallel library

(日) (四) (三) (三)

TOP-C features and limitations

Features

- Task oriented abstraction
- Latency tolerance
- Works with shared and distributed memory

Limitations

- Have functions instead of classes
- Difficult to send/receive objects through MPI
- Scalability is a problem for > 100 nodes

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

(D) (D) (D) (D)

Outline

Introduction

- The use of parallelized Monte Carlo (MC) codes
- When parallelize a MC code
- Choosing a parallel library for a C++ applications

2 Parallelizing a G4 application

Important highlights

- A Geant4 parallel application using OOMPI
- Code changed and added
- Running
- Useful links

3 Future improvements

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

・ロト ・ 日 ・ ・ 日 ・ ・ 日

Important highlights

ROOT is used!

- This implementation uses ROOT objects to store and send/receive data through OOMPI interface!
- TH3D has been used to store dose data or TTrees to store tracks and hits since their first sequential implementations.
- TOOMPI class library was created to easily send/receive ROOT TObject's classes

So none G4THitsCollection is sent/received in this implementation!

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

(日) (四) (三) (三)

Important highlights

ROOT is used!

- This implementation uses ROOT objects to store and send/receive data through OOMPI interface!
- TH3D has been used to store dose data or TTrees to store tracks and hits since their first sequential implementations.
- TOOMPI class library was created to easily send/receive ROOT TObject's classes

So none G4THitsCollection is sent/received in this implementation!

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

(日) (四) (三) (三)

TOOMPI class

TOOMPI is a small class library created to serialize and send/receive ROOT TObject's through OOMPI interface. Currently its main methods are: SendObject sends a TObject inherited class RecvObject receives a TObject inherited class Get_source shows from which node the current message co

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

イロト イポト イヨト イヨト

TOOMPI class

TOOMPI is a small class library created to serialize and send/receive ROOT TObject's through OOMPI interface. Currently its main methods are:

SendObject sends a TObject inherited class

RecvObject receives a TObject inherited class

Get_source shows from which node the current message comes

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

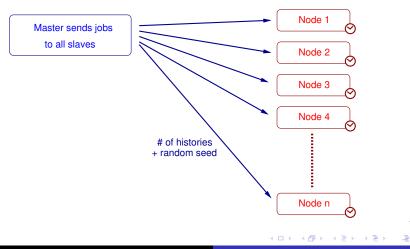
(D) (D) (D) (D)

Outline

Introduction

- The use of parallelized Monte Carlo (MC) codes
- When parallelize a MC code
- Choosing a parallel library for a C++ applications

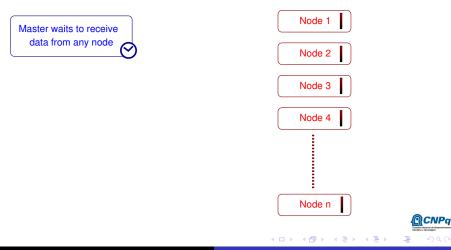
2 Parallelizing a G4 application


- Important highlights
- A Geant4 parallel application using OOMPI
- Code changed and added
- Running
- Useful links

3 Future improvements

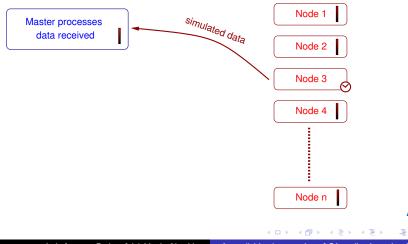
Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

CNPq


How it works - Starting

Luís Augusto Perles, Adelaide de Almeida A parallel implementation of G4 application using OOMPI

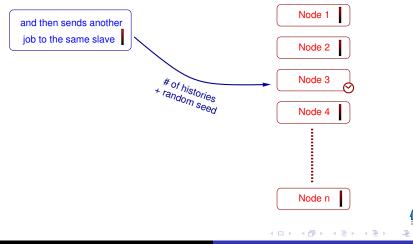
Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links


How it works - Waiting & Simulating

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

CNPq

How it works - Getting results



Luís Augusto Perles, Adelaide de Almeida A parallel implementation of G4 application using OOMPI

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

CNPq

How it works - Sending another job

Luís Augusto Perles, Adelaide de Almeida A parallel implementation of G4 application using OOMPI

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

(日) (四) (三) (三)

Some features and limitations

Features

- Easy parallelizing of any G4 application
- Independent of the number of slaves (scalability)
- Master controls the slave's random seeds
- Send/Receive any kind of objects inherited from OOMPI_User_type
- Should work in any Unix like system, even in non homogeneous clusters

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

(日) (日) (日) (日) (日)

Some features and limitations

- Easy parallelizing of any G4 application
- Independent of the number of slaves (scalability)
- Master controls the slave's random seeds
- Send/Receive any kind of objects inherited from OOMPI_User_type
- Should work in any Unix like system, even in non homogeneous clusters

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

(日) (日) (日) (日) (日)

Some features and limitations

- Easy parallelizing of any G4 application
- Independent of the number of slaves (scalability)
- Master controls the slave's random seeds
- Send/Receive any kind of objects inherited from OOMPI_User_type
- Should work in any Unix like system, even in non homogeneous clusters

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

(日) (日) (日) (日) (日)

Some features and limitations

- Easy parallelizing of any G4 application
- Independent of the number of slaves (scalability)
- Master controls the slave's random seeds
- Send/Receive any kind of objects inherited from OOMPI_User_type
- Should work in any Unix like system, even in non homogeneous clusters

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

・ロト ・ 日 ・ ・ ヨ ・ ・ モ ト

Some features and limitations

- Easy parallelizing of any G4 application
- Independent of the number of slaves (scalability)
- Master controls the slave's random seeds
- Send/Receive any kind of objects inherited from OOMPI_User_type
- Should work in any Unix like system, even in non homogeneous clusters

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

イロト イヨト イヨト イヨト

Some features and limitations

Current limitations

 No interactive input by terminal or graphic interface, only macrofile is accepted

• If a node is turned off or disconnected all related processes including master's will crash

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

(D) (D) (D) (D)

Some features and limitations

Current limitations

- No interactive input by terminal or graphic interface, only macrofile is accepted
- If a node is turned off or disconnected all related processes including master's will crash

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

<ロ> (日) (日) (日) (日) (日)

Outline

Introduction

- The use of parallelized Monte Carlo (MC) codes
- When parallelize a MC code
- Choosing a parallel library for a C++ applications

2 Parallelizing a G4 application

- Important highlights
- A Geant4 parallel application using OOMPI
- Code changed and added
- Running
- Useful links

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

イロト イヨト イヨト イヨト

Code Changed and Added

Code Changed

- GNUMakefile
- The main() function
- Analysis or Tracker(Phantom)SD

Code Added

- ParRunManager
- ParRandomState

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

イロト イヨト イヨト イヨト

Code Changed and Added

Code Changed

- GNUMakefile
- The main() function
- Analysis or Tracker(Phantom)SD

Code Added

- ParRunManager
- ParRandomState

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

GNUMakefile

Added paths for header files and used mpic++ instead of g++

```
EXTRALIBS += -L/usr/local/lib -ltoompi -loompi
CPPFLAGS += -I/usr/local/include/oompi \
-I/usr/local/include/TOOMPI
```

CXX = mpic++

. . .

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

・ロト ・ 同ト ・ ヨト ・ ヨト

GNUMakefile

Added paths for header files and used mpic++ instead of g++

```
EXTRALIBS += -L/usr/local/lib -ltoompi -loompi
CPPFLAGS += -I/usr/local/include/oompi \
-I/usr/local/include/TOOMPI
```

CXX = mpic++

. . .

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

イロト イヨト イヨト イヨト

- Included TOOMPI and OOMPI header files
- Added two code lines in order to initialize and finalize the OOMPI interface properly
- Instantiated ParRunManager instead of G4RunManager

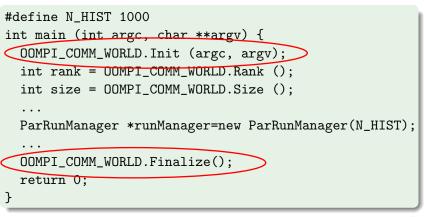
main()

```
#define N_HIST 1000
int main (int argc, char **argv) {
  OOMPI_COMM_WORLD.Init (argc, argv);
  int rank = OOMPI_COMM_WORLD.Rank ();
  int size = OOMPI_COMM_WORLD.Size ();
  . . .
  ParRunManager *runManager=new ParRunManager(N_HIST);
  . . .
  OOMPI_COMM_WORLD.Finalize();
  return 0:
}
```

Important highlights

Running

Useful links


Code changed and added

A Geant4 parallel application using OOMPI

(日) (四) (三) (三) (三)

main()

Important highlights

Running

Useful links

Code changed and added

A Geant4 parallel application using OOMPI

・ロト ・ 日ト ・ モト・

main()

```
#define N HIST 1000
int main (int argc, char **argv) {
  OOMPI_COMM_WORLD.Init (argc, argv);
  int rank = OOMPI_COMM_WORLD.Rank ();
  int size = OOMPI_COMM_WORLD.Size ();
  ParRunManager *runManager=new ParRunManager(N_HIST);
  . . .
  OOMPI_COMM_WORLD.Finalize();
  return 0:
}
```

Important highlights

Running

Useful links

Code changed and added

A Geant4 parallel application using OOMPI

<ロ> (四) (四) (三) (三)

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

イロト イヨト イヨト イヨト

Two new methods were created:

GetTree to get TTree pointer (where are stored all simulated hits and tracks)

InsertNewResults to insert the received TTree object inside the main TTree object

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

<ロ> (四) (四) (三) (三)

ParRandomState

Class declaration

```
class ParRandomState:virtual public OOMPI_User_type {
  public:
```

```
ParRandomState ();
```

```
inline void GetNextRandomStateForSlave (){...}
```

```
inline void SetNextRandomStateForSlave (){...}
```

```
private:
   long nextSeed;
   static OOMPI_Datatype type;
};
```


ParRandomState

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

<ロ> (四) (四) (三) (三)

Inline methods

```
inline void GetNextRandomStateForSlave () {
  nextSeed = (long)
    (10000000L*HepRandom::
    getTheGenerator ()->flat ());
}
inline void SetNextRandomStateForSlave () {
  HepRandom::setTheSeed (nextSeed);
}
```


Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

<ロ> (四) (四) (三) (三)

ParRandomState

}

Class implementation

```
OOMPI_Datatype ParRandomState::type;
```

```
ParRandomState::ParRandomState ():
    OOMPI_User_type (type, this, 201) {
    if (!type.Built()) {
```

type.Struct_start(this);

```
type.Entry(nextSeed);
```

```
type.Struct_end();
```


ParRunManager

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

It manages the Geant4 run. Based in the Geant4/TOP-C examples.

This class is also responsible for sending/receiving the objects between master and slave nodes

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

ParRunManager

It manages the Geant4 run. Based in the Geant4/TOP-C examples.

This class is also responsible for sending/receiving the objects between master and slave nodes

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

イロト イヨト イヨト イヨト

```
ParRunManager::MasterJob() - Starting loop
```

Starting all slave nodes

```
do
```

```
{
```

```
OOMPI_COMM_WORLD[node].Send(n_events);
remaining_events -= n_events;
```

```
randomState->GetNextRandomStateForSlave();
OOMPI_COMM_WORLD[node].Send(*randomState);
```

```
node++;
} while (remaining_events > 0 && node < size);</pre>
```


Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

イロト イヨト イヨト イヨト

```
ParRunManager::MasterJob() - Starting loop
```

Starting all slave nodes

```
do
```

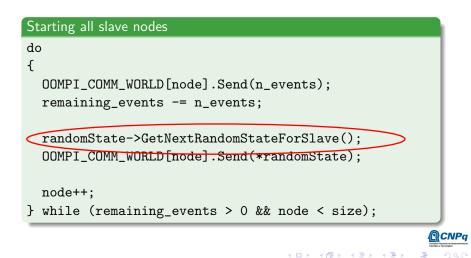
```
{
```

```
OOMPI_COMM_WORLD[node].Send(n_events);
remaining_events -= n_events;
```

randomState->GetNextRandomStateForSlave(); OOMPI_COMM_WORLD[node].Send(*randomState);

node++;

while (remaining_events > 0 && node < size);</pre>


Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

```
ParRunManager::MasterJob() - Starting loop
```


Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

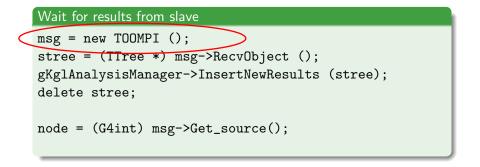
```
ParRunManager::MasterJob() - Starting loop
```


Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

・ロト ・ 日 ・ ・ ヨ ・ ・ モ ト

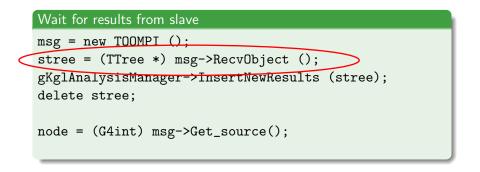
ParRunManager::MasterJob() - Receiving loop

Wait for results from slave


```
msg = new TOOMPI ();
stree = (TTree *) msg->RecvObject ();
gKglAnalysisManager->InsertNewResults (stree);
delete stree;
```

```
node = (G4int) msg->Get_source();
```


Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links


ParRunManager::MasterJob() - Receiving loop

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

ParRunManager::MasterJob() - Receiving loop

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

イロト イヨト イヨト イヨト

ParRunManager::SlaveJob() - Process a job

It receives, processes histories and then send data to master

```
OOMPI_COMM_WORLD[0].Recv(n_events);
OOMPI_COMM_WORLD[0].Recv(*randomState);
randomState->SetNextRandomStateForSlave();
```

```
DoEvent (n_events);
```

```
stree = gKglAnalysisManager->GetTree ();
msg = new TOOMPI ();
msg->SendObject (0, stree);
```

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

ParRunManager::SlaveJob() - Process a job

```
It receives, processes histories and then send data to master
```

```
OOMPI_COMM_WORLD[0].Recv(n_events);
OOMPI_COMM_WORLD[0].Recv(*randomState),
randomState >SetNextRandomStateForSlave();
```

```
DoEvent (n_events);
```

```
stree = gKglAnalysisManager->GetTree ();
msg = new TOOMPI ();
msg->SendObject (0, stree);
```

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

ParRunManager::SlaveJob() - Process a job

It receives, processes histories and then send data to master

```
OOMPI_COMM_WORLD[0].Recv(n_events);
```

OOMPI_COMM_WORLD[0].Recv(*randomState);

```
randomState->SetNextRandomStateForSlave();
```

DoEvent (n_events);

```
stree = gKglAnalysisManager->GetTree ();
msg = new TOOMPI ();
msg->SendObject (0, stree);
```

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

ParRunManager::SlaveJob() - Process a job

It receives, processes histories and then send data to master

```
OOMPI_COMM_WORLD[0].Recv(n_events);
OOMPI_COMM_WORLD[0].Recv(*randomState);
randomState->SetNextRandomStateForSlave();
```

```
DoEvent (n_events);
```

```
stree = gKglAnalysisManager->GetTree ();
msg = new TOOMPI ();
msg->SendObject (0, stree);
```

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

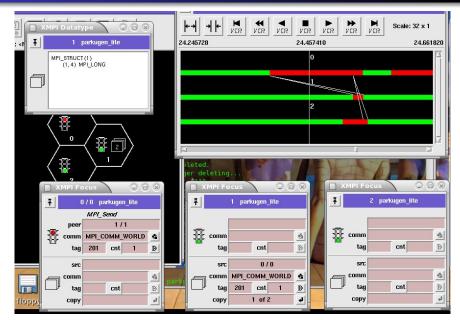
(D) (D) (D) (D)

Outline

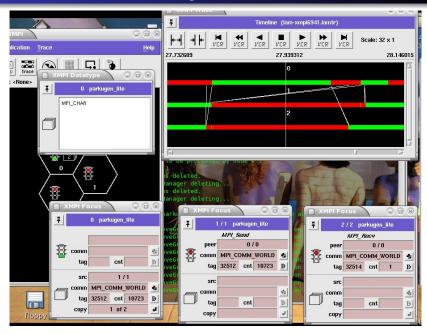
Introduction

- The use of parallelized Monte Carlo (MC) codes
- When parallelize a MC code
- Choosing a parallel library for a C++ applications

2 Parallelizing a G4 application


- Important highlights
- A Geant4 parallel application using OOMPI
- Code changed and added

Running


• Useful links

3 Future improvements

XMPI view: sending # of histories and random seed

XMPI view: slaves sending simulated data to master

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

(D) (D) (D) (D)

Outline

Introduction

- The use of parallelized Monte Carlo (MC) codes
- When parallelize a MC code
- Choosing a parallel library for a C++ applications

2 Parallelizing a G4 application

- Important highlights
- A Geant4 parallel application using OOMPI
- Code changed and added
- Running
- Useful links

3 Future improvements

Important highlights A Geant4 parallel application using OOMPI Code changed and added Running Useful links

イロト イポト イヨト イヨト

Useful links

- Geant4: http://geant4.web.cern.ch/geant4/
- ROOT: http://root.cern.ch
- LAM-MPI: http://www.lam-mpi.org/
- OOMPI: http://www.osl.iu.edu/research/oompi/
- TOOMPI: http://dfm.ffclrp.usp.br/perles

Future improvements

• Re-write it

- Make an easy send/receive G4THitsCollection possible
- Interactive terminal/graphics mode
- Load profile of every node in order to reduce the latency

Future improvements

- Re-write it
- Make an easy send/receive G4THitsCollection possible
- Interactive terminal/graphics mode
- Load profile of every node in order to reduce the latency

Future improvements

- Re-write it
- Make an easy send/receive G4THitsCollection possible
- Interactive terminal/graphics mode
- Load profile of every node in order to reduce the latency

イロト イポト イヨト イヨト

Future improvements

- Re-write it
- Make an easy send/receive G4THitsCollection possible
- Interactive terminal/graphics mode
- Load profile of every node in order to reduce the latency

Acknowledgements

- CNPq by scholarship and support
- MCNEG and NPL people by the travel bursary
- My tutor Prof. Dr. Adelaide de Almeida

イロト イポト イヨト イヨト

Luís Augusto Perles e-mail: perles@dfm.ffclrp.usp.br homepage: http://dfm.ffclrp.usp.br/perles

イロト イヨト イヨト イヨト