

# A simulation for the METAS electron beam primary standard dosimeter

S. Vörös, G. Stucki, M. Sassowsky Swiss Federal Office of Metrology and Accreditation (METAS) 3003 Bern-Wabern



## The METAS electron beam for primary standard dosimetry

- Electron accelerator (microtron) M22
- Electron energies range from 5.3 to 22.4 MeV
- Electrons travel in bunches of ~3.3  $\mu$ s duration
- Narrow beam with FWHM < 3 mm
- Beam energy spectrum has FWHM ~ 25 keV





m

e

а

switzerland

S

metrology and accreditation





t

а

switzerland

metrology and accreditation

e

m



## **Chemical dosimeter: Fricke solution**

 $(NH_4)_2 Fe(SO_4)_2 \cdot 6H_2O$ NaCl  $H_2SO_4$ 

0.001 Mol/L

0.001 Mol/L

0.4 Mol/L

### **Properties:**



[Fe<sup>3+</sup>] ~ D

 $\Delta A$  measured at 304 nm



## **Total absorption experiment**



## **Total absorption experiment, large vessel**



m

metrology and accreditation



## **Total absorption experiment, medium vessel**



## Simulation: Monte Carlo parameters

• Using EGSnrc V3 code

metrology and accreditation

- 100'000 incident electrons (measured energy spectrum)
- Parallel beam with box or Gaussian radial profiles
- Transport cut off energy : 700 / 10 keV for e<sup>-</sup> / photon
- Single scattering mode boundary crossing
- Spin effects for e<sup>-</sup> elastic scattering
- Bethe-Heitler bremsstrahlung cross section
- Rayleigh and bound Compton scattering not included



## Simulation: Geometry description and physical quantities scoring and output

#### DOSRZnrc package used for geometry description

- Ideal for a cylindrically symmetric experimental setup

#### New scoring and output structure independent of geometry

- 3D arrays and 2D planes with any binning that can be positioned anywhere
- Can overlap several geometry regions
- "Boundaries description" for use with boundary crossing algorithm
- Cylindrical (with azimuthal information) or Cartesian scoring regions possible
- Parameters input using the DOSRZnrc GET\_INPUT routine
- Output in HBOOK format or ascii file (double precision) for analysis in a separate program

## Simulation: Small vessel geometry



metrology and accreditation

## Simulation: Input spectra for EGSnrc



m

metrology and accreditation

#### M C t a s metrology and accreditation switzerland

### **Simulation: Isodoses for 1 accelerator bunch**





### **Simulation: Isodoses for 1 accelerator bunch**



## Simulation: Correction factors (1 - f<sub>MC</sub>)



m

metrology and accreditation

## Simulation: Correction factors (1 - f<sub>MC</sub>)

| Beam<br>energy<br>(MeV) | Unregistered energy portion<br>(Box profile)<br>(1 std deviation stat. uncert.) |   |        | Unregistered energy portion<br>(Gaussian profile)<br>(1 std deviation stat. uncert.) |   |        |
|-------------------------|---------------------------------------------------------------------------------|---|--------|--------------------------------------------------------------------------------------|---|--------|
| 5.0                     | 2.691%                                                                          | ± | 0.023% | 2.689%                                                                               | ± | 0.023% |
| 6.0                     | 2.866%                                                                          | ± | 0.024% | 2.864%                                                                               | ± | 0.024% |
| 6.5                     | 2.571%                                                                          | ± | 0.022% | 2.541%                                                                               | ± | 0.022% |
| 10.0                    | 3.806%                                                                          | ± | 0.028% | 3.843%                                                                               | ± | 0.029% |
| 12.0                    | 4.663%                                                                          | ± | 0.032% | 4.617%                                                                               | ± | 0.032% |
| 15.0                    | 5.165%                                                                          | ± | 0.034% | 5.162%                                                                               | ± | 0.033% |
| 18.0                    | 6.438%                                                                          | ± | 0.038% | 6.403%                                                                               | ± | 0.037% |
| 20.0                    | 7.060%                                                                          | ± | 0.039% | 7.078%                                                                               | ± | 0.039% |
| 22.0                    | 8.193%                                                                          | ± | 0.042% | 8.048%                                                                               | ± | 0.041% |

m

e

а

switzerland

S

metrology and accreditation



## **Summary and Outlook**

- A simulation for the METAS electron beam primary standard dosimeter has been undertaken
- First results have been obtained using EGSnrc
- Corrections for losses between 2.69% (5 MeV beam) and 8.05% (22 MeV beam) have been obtained
- Simulation of the full ionisation chamber calibration procedure (2 steps) will be done
- GEANT4 will also be used for this simulation