GRID-enabling BEAMnrc & 1st CLASS PARTICLE TRANSPORT

PW CHIN, DG LEWIS & J GIDDY

mary.chin@physics.org

Velindre Cancer Centre Canolfan Ganser Felindre In collaboration with

Velindre Cancer Centre Canolfan Ganser Felindre

THE VISION

RESEARCH

MONTE CARLO

THE VISION

MONTHS PER CASE

DAYS PER CASE

MONTE CARLO RUNTIME

HOURS PER CASE

~ CALCULATOR

APPROX TRANSPORT

e.g. variance reduction

cut corners during simulation

DENOISING

massage data after simulation

- LESS CONTROL
- MORE RESOURCES
- HETEROGENEOUS
- DECENTRALISED
- LESS SECURE

GRID 😴

DISTRIBUTED

CLUSTER

SINGLE-HOST

PARALLEL COMPUTING

THE GRID

THE GRID

COMBINED MHz

CLUSTER

PARALLEL COMPUTING

OF PARALLEL RUNS

HOWEVER...

PARALLEL COMPUTING

CLUSTER

HUMAN LABOUR

OF PARALLEL RUNS

SOLUTION

X

ME

N,

IALL

SOME LOGI SINGLE **EACH S 10 SITES** 10 US **COMMAND-LINE** & 10 FROM THE USER. **NO FURTHER** SEND 200 **INTERACTION** DIF SITES: C NEEDED. GLASG

eg. 200 PARALLEL RUNS

SOLUTION SOME **LOGIN TO** CONDOR GLOBUS 10 SILES, INEN **GET 10 USERNAMES STUCK GET 100** × **& 10 PASSWDS!** NO. OF **OUTPUT FILES** PERL UTILITY **SEND JOBS T** TOOLS **200 HOSTS** CH SOME DIFFERENT **WOULD BE** SITES: CARDIFF, **BIG-ENDIAN**, GLASGOW, **OTHERS** SMALL

SOURCES

GLOBUS

authentication, authorisation, data transfer

www.globus.org

CONDOR

queuing, scheduling, priority scheme, resource classification www.cs.wisc.edu/condor/

PERLUTILITY TOOLS streamlining BEAMnrc simulations

Chin PW, Lewis DG and Giddy J "Implementation of BEAMnrc Monte Carlo simulations on the GRID" 14th Int. Conf. on the Use of Computers in Radiation Therapy 2004

AUTOMATED

RADIATION TRANSPORT CALCULATION

"ANALOG SIMULATION"

IDEAL BUT NOT PRACTICAL

e.g. in gold, electrons undergo 7000 elastic scatterings from 500 to 250keV

> DETERMINISTIC EQUATIONS

EQUATIONS

an example

1ST CLASS TRANSPORT USING BEAMnrc

~ 1 to 2 WEEKS ON THE WELSH e-SCIENCE GRID (20~60 SGIs) depending on availability of resources

DEFAULT

Global ECUT= 0 Global PCUT= 0.01 Global SMAX= 0 ESTEPE= 0.25 XIMAX= 0.5 Boundary crossing algorithm= EXACT Skin depth for BCA= 0 Electron-step algorithm= PRESTA-II Spin effects= On Brens angular sampling= KM Brens cross sections= BH Bound Compton scattering= On Pair angular sampling= KM Photoelectron angular sampling= On Rayleigh scattering= Off Atomic relaxations= On

:Stop MC Transport Parameter:

Global ECUT= 0 Global PCUT= 0.01 Global SMAX= 5 ESTEPE = 0.25XIMAX = 0.5Boundary crossing algorithm= PRESTA-I Skin depth for BCA= 0 Electron-step algorithm= PRESTA-II Spin effects= On Brens angular sampling= Simple Brens cross sections= BH Bound Compton scattering= Off Pair angular sampling= Simple Photoelectron angular sampling= Off Rayleigh scattering= Off Atomic relaxations= Off

:Stop MC Transport Parameter:

no noticeable difference, but...

IN-PHANTOM

PHASE-SPACE ANALYSIS: ENERGY FLUENCE

PHASE-SPACE ANALYSIS: ENERGY SPECTRUM

INVESTIGATION IN PROGRESS: WHO'S THE CULPRIT?

Summary

- GRID-enabled BEAMnrc & DOSXYZnrc
- developed Perl utilities suite for singlecommand automation
- demonstrated significant difference between 1st class and default transport parameters

Further work

Grid of grids! (Presently Welsh e-Science GRID only)

Acknowledgement

Thanking Cancer Research Wales & Yr Ysgol Uwchradd Tregaron for PhD support.