

Iwan Kawrakow Ionizing Radiation Standards NRC, Ottawa

MC treatment head simulations

- are useful tool for understanding the phase space distribution of particles emerging from the linear accelerator
- are difficult to use for routine clinical application and/or beam commissioning

Tools available

- BEAMnrc is a EGSnrc user code specifically developed for treatment head simulations
- · MCNP, GEANT4, PENELOPE

NRC-CNRC

- BEAMnrc is faster by at least one order of magnitude
- Well over 100 BEAM related papers published in the literature

Practical difficulties

- Very time consuming
 - several days of CPU time for a reasonable statistical precision
 - many simulations necessary to determine parameters of electrons incident on the target
- Difficult to obtain precise geometry specification from manufacturers

Develop a treatment head simulation tool that is faster than BEAM by 2-3 orders of magnitude

Much easier commissioning
 On-the-fly treatment head simulation for each patient dose calculation

- Fast MC algorithm optimized for the simulation in the patient
- Accurate electron transport algorithm
- No restrictions on applicability
- Models all relevant interactions
- Object oriented design => use of arbitrary geometries possible

Why are photon beam treatment head simulations slow?

 Without use of Variance Reduction Techniques (VRT), most time spent tracking electrons

 Most photons absorbed in primary collimator and jaws (only 2-3% arrive at bottom of treatment head)

VRT implemented in BEAMnrc

- Uniform Bremsstrahlung splitting (UBS): split each interaction that produces photons N times
- Selective Bremsstrahlung Splitting (SBS): split bremsstrahlung events a variable number of times, depending on electron direction

- Reduces the fraction of time spent for electron transport
- Still have to track many photons that don't arrive at the plane of interest
- Increases efficiency compared to no-VRT by a factor of ~8.

- Reduces time spent tracking noncontributing photons
- Increases variance
- Efficiency increase: about a factor ~3 compared to UBS, a factor of ~25 compared to no-VRT
- Not very widely used

New technique: Directional Radiative Splitting (DRS)

- Define a region of interest (ROI)
- Goal 1: many photons within ROI, few photons outside ROI
- Goal 2: all photons within ROI have the same statistical weight

- Split radiative events as in UBS
- Before transporting photons, check if they go towards the ROI and play Russian Roulette (RR) if they don't
- \rightarrow All photons within ROI have weight 1/N
- All photons outside ROI have weight 1
- If N is large, only very few noncontributing photons to be transported, relatively little time spent on electrons

- When a photon interacts: if it is a "thin" photon first play RR -> weight 1
- Photo-absorption or pair-production: just set in motion the resulting electrons
- Compton scattering: split the interaction *N* times, keep photons going towards the ROI, play RR with non-ROI photons and the Compton electrons

DRS so far

- All electrons and non-ROI photons are "fat", all ROI photons are "thin".
- Many ROI photons
 → good statistics
- Very few electrons and non-ROI photons -> efficient simulation
- But: bad statistics for contaminant electrons

DRS: other tricks

 One can calculate (estimate) the probability p of bremsstrahlung emission or scattering into ROI => need to simulate only p N interactions

 Use cylindrical symmetry above the photon jaws

Probability for Bremsstrahlung

////C++

T time for the simulation
 σ uncertainty on the quantity of interest. Will use the photon (or electron) fluence in 1x1 cm² voxels in a plane 100 cm from the source

DRS: improving statistics of electron contamination

- Most contaminant electrons are set in motion in the lower portion of the flattening filter, the inner faces of the jaws and the air below the jaws.
- Assign "electron importance" N_i to different regions of the treatment head

Electron importance (EI)

1000

DRS with EI

- 1. When a photon interacts in a region with $EI=N_i$, then
 - Play RR if weight less than $1/N_i$
 - Split photon interaction if weight greater than $1/N_i$
- so that weight always $1/N_i$

DRS with EI

2. If an electron goes from region with N_1 to region with N_2 , then

- Split the electron N_2/N_1 times, if $N_1 < N_2$

- Play RR with the electron if $N_1 > N_2$

 Number of transported electrons in different regions proportional to their EI
 Few electrons in the upper part, many electrons in the lower part

VMC⁺⁺ efficiency

Its fast, but is it accurate ?

Its fast, but is it accurate ?

What is accomplished

- VMC⁺⁺ produces ~6 million photons and ~0.5 million electrons per minute
- This corresponds to ~10-20% of the CPU time spent for transport in the patient
- On-the-fly simulation possible
- If one wanted to write a phase space file, the 2 GB file size limit will be reached in ~10 minutes.

What needs to be done

- Implement geometry modules for MLC, wedges, compensators
- Check if the techniques described are fast enough for transport through MLC
- Work on automated beam commissioning tool
- Investigate use of quasi-random sequences

BEAM

- Some of the techniques presented here are implemented in a development version of BEAM
- New BEAM version is ~8 times faster than SBS but still 70-80 times slower than VMC⁺⁺
- BEAM paper submitted to Med.Phys. in January
- VMC⁺⁺ paper in preparation

Advantages of full treatment head simulations

- Empirical and semi-empirical beam models are difficult to develop
- If a manufacturer comes up with a new design, new models will have to be developed (e.g. Tomotherapy)
- If the characteristics of a machine changes, re-commissioning is much easier

