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Chemometrics

A. M. C. Davies, Spectroscopy Europe 10 (1998) 28

Chemometrics is the science of relating measurements made on a 
chemical system to the state of the system via application of 
mathematical or statistical methods

(c) C
rown Copyright 2008
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Multivariate analysis

• Analysis involving a 
simultaneous statistical 
procedure for two or more 
dependent variables, e.g. 
mass (SIMS) or binding 
energy (XPS)

• Summarises the data with 
a large number of 
dependent variables using 
a smaller number of 
statistical variables
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Multivariate analysis

• Advantages
– Fast and efficient on modern computers
– Statistically valid
– Uses all information available
– Removes potential bias

• Disadvantages
– Lots of different methods, procedures, terminologies
– Can be difficult to understand!

(c) C
rown Copyright 2008
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Data analysis

SIMS 
Dataset
SIMS 

Dataset

How is it related to 
known properties?

Where are they 
located?

What chemicals
are on the surface? 

Calibration / 
Quantification

Classification

Identification

Can we predict
these properties?

Which group does 
it belong to?

Is there an outlier
in the data?(c) C

rown Copyright 2008
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Data matrix

X has 3 row and 5 columns →
3 × 5 data matrix
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Vector inner product
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Transpose (to exchange 
rows and columns)

Vector length
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Vector Inner Product (‘dot product’)
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The smaller      is the larger the 
correlation between a and b

Vector correlations

θcosbaba =′

If then they
are orthogonal
i.e. at right angles 

0=′ba

o90=θ

If they are also of unit length
then they are orthonormal
i.e. 1=a 1=b

Orthogonal vectors are 
uncorrelated

Orthogonality
If             then the vectors are 
collinear

o0=θa

b Collinearity a
b

If then the vectors 
are neither orthogonal nor 
collinear – they are correlated

oo 900 ≠≠θ

Correlation a

b

θ

θ
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Matrix algebra

• A and B must be the same size
• Each corresponding element is 

added
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⎦
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Matrix addition

(e.g. pure spectra + noise = 
experimental data)

• No. of columns of A must be equal 
no. of rows of B

• Row i of A times column j of B gives 
the row i and column j of the product 
matrix AB

CBA =
)())(( KIKNNI ×=××
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Matrix multiplication
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Matrix inverse
for a square matrix

(only exists if matrix
is ‘full rank’)

Matrix inverse

AAI =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
010
001

IIdentity matrix: 
diagonal of 1s

CAB +=

CBA =We can now solve matrix equation

If A is square

If A is rectangular

CAB 1−=

IAA =1-

Matrix pseudoinverse
for a rectangular matrix

[ ] 1−′′=+ AAAA
IAA =+

(c) C
rown Copyright 2008
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Rank and singularity
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Simultaneous equations of any size can be solved by matrices

Rank = number of unique 
equations. This matrix is rank 2
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y
xThe matrix inverse. If it cannot be 

inverted the matrix is singular

Rank is the number of rows or columns that are linearly independent
To obtain unique solution we require number of variables       rank≤

(c) C
rown Copyright 2008



Slide 14

©
C

ro
w

n 
C

op
yr

ig
ht

 2
00

8

3

Matrix projections

yxa 32 +=

a
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y
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To write a in terms of x* and y*, we
find its projections on the new axes

projections of a
onto new axes new axes
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The new axes x* and y* can be 
written in terms of x and y

projections of new axes
onto old axes

old axes
(c) C

rown Copyright 2008
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Matrix projections

yxa 32 +=

a
y
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Putting these together,
we can write vector a as

projections of a
onto new axes projections of

new axes
onto old axes

old axes
3

2

(c) C
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Data matrix
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Data matrix

1. Each spectrum can be represented by a vector
2. Instead of x, y, z in 3D real space, the axes are mass1, mass2, 

mass3… etc in variable space (also ‘data space’)
3. Without noise, rank of dataset = number of unique components

4. With random, uncorrelated noise, rank of dataset = number of 
samples or number of variables, whichever is smaller
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Vector and matrix 
summary

• Each row of the data matrix contains a spectrum that can be 
represented by a vector in K dimensional data space
(K = no. of mass bins)

• Vectors can be orthogonal (90°), collinear (0°) or correlated

• Vectors can be described using a set of rotated axes by finding their 
projections onto the new axes

• The rank of a data set represents the number of independent 
parameters that are needed to fully describe the data

(c) C
rown Copyright 2008
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Contents

1. Introduction
2. Linear algebra
3. Factor analysis

• Principal component analysis (PCA)
• Data preprocessing
• PCA Examples
• Multivariate curve resolution (MCR)
• MCR Examples

4. Multivariate regression
5. Classification
6. Conclusion
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Data analysis

SIMS 
Dataset
SIMS 

Dataset

How is it related to 
known properties?

Where are they 
located?

What chemicals
are on the surface? 

Calibration / 
Quantification

Classification

Identification

Can we predict
these properties?

Which group does 
it belong to?

Is there an outlier
in the data?(c) C

rown Copyright 2008
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Terminology

“… then we add a smidgin of this – that’s less than a 
dollop, but more than a pinch…”.

A well-defined terminology is essential for ideas and practices
to be communicated clearly and accurately

(c) C
rown Copyright 2008
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Terminology

In order to clarify existing terminology and emphasise the 
relationship between the different multivariate techniques, we 
are going to adopt the following terminology in this lecture

Terms 
Here Symbol Definition PCA MCR PLS 

Factor - 

An axis in the data space 
representing an underlying 
dimension that contributes to 
summarising or accounting 
for the original data set 

Principal 
Component 

Pure 
Component 

Latent 
Vectors, 
Latent 

Variables 

Loadings P 
Correlation between the 
original variables and the 
factors 

Loadings, 
Eigenvector

Component 
Spectrum Loadings 

Scores T Projection of the samples 
onto the factors 

Scores, 
Projections 

Component 
Concentration Scores 

 

ISO 18115:Part 1:2007, Surface chemical analysis – Vocabulary –
Part 1: General terms and terms for the spectroscopies, in draft.

(c) C
rown Copyright 2008
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Principal component 
analysis (PCA)

m1

m2

PCA Factor 1
PCA Factor 2

• Factors are directions in the data space that contributes to 
summarising or accounting for the original data set

• Equivalent to a rotation in data space – factors are new axes
• Data described by their projections onto the factors
• Factor analysis techniques differ in the way the factors are extracted

PCA is a technique for 
reducing matrices of data to 
their lowest dimensionality by 
describing them using a small 
number of factors

(c) C
rown Copyright 2008
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Principal component 
analysis (PCA)

PCA follows the factor analysis equation –

Data matrix

Projection of samples
onto factors (scores matrix)

Projection of variables
onto factors (loadings matrix)

Residuals (noise)

EPTX +′=
)())(()( KIKNNIKI ×+××=×

EptEPTX +′=+′= ∑
=

N

n
nn

1

We describes the data X (rank R) using N rotated axes (factors), 
where N < R. Each factor consists of two vectors, tn (scores vector), 
and pn (loadings vector)

)1)(1( II ××

I = no. of samples
K = no. of mass units
N = no. of factors

(c) C
rown Copyright 2008
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Raw Data

Data Matrix

Data selection and 
preprocessing

PCA outline

Covariance Matrix

Matrix 
multiplication

Eigenvectors 
and Eigenvalues

Decomposition

PCA Factors
x R

Sort by eigenvalues

Reproduction
Reproduced
Data Matrix

Reproduction

PCA Factors
x N

Factor 
compression

After Malinowski, Factor Analysis in Chemistry, John Wiley & Sons (2002)

(c) C
rown Copyright 2008
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Covariance matrix contains information about the variances of data 
points within the dataset, and is defined as

PCA decomposition

XXZ ′=
))(()( KIIKKK ××=×

pZp λ=

In PCA, Z is decomposed into a set of eigenvectors p and associated 
eigenvalues λ, such that

Eigenvalues and eigenvectors have some special properties:

– Eigenvalues are positive or zero
– The number of non-zero eigenvalues = rank of data R
– Eigenvectors are orthonormal

)1()1)(( ×=×× KKKK

I = no. of samples
K = no. of mass units
N = no. of factors

(c) C
rown Copyright 2008
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PCA factors

• Because Z is the covariance matrix, eigenvectors of Z are special 
directions in the data space that is optimal in describing the 
variance of the data

• Eigenvalues are the amount of variance described by their 
associated eigenvector

∑
=

′=′=
R

n
nn

1
ptPTX

Projection of 
samples onto

nth factor
(scores)

Projection of
variables onto

nth factor
(loadings)

• These eigenvectors are the factors PCA 
obtain for the factor analysis equation. 
They are sorted by their eigenvalues

• PCA factors successively capture the 
largest amount of variance (spread) 
within the dataset

• Projection of samples onto factors 
(scores) are orthogonal(c) C

rown Copyright 2008
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• The first factor lies along the major 
axis of ellipse and accounts for 
most variation

• Instead of describing the data 
using correlated variables m1 and 
m2, we transform them onto a new 
basis (factors) which are 
uncorrelated

• By removing higher factors 
(variances due to noise) we can 
reduce dimensionality of data ⇒
‘factor compression’

PCA – graphical 
representation

m1

m2

PCA Factor 1
PCA Factor 2

m1

m2

PCA Factor 1
PCA Factor 2

(c) C
rown Copyright 2008
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Number of factors

1 2 3 4 5 6 7 810-15

10-10

10-5

100

105

1010

E
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1 2 3 4 5 6 7 8101

102

103

104

105

106

107

108

Sorted eigenvector index

(a)

(b)

Data set of 8 spectra from mixing 3 pure compound spectra

no noise

Poisson noise
max 5000 counts

1. Prior knowledge of system

2. ‘Scree test’:
Eigenvalue plot levels off in a linearly 
decreasing manner after 3 factors

3. Percentage of variance captured by Nth

eigenvector: 

4. Percentage of total variance captured 
by N eigenvectors:

%100
seigenvalue all of sum

eigenvalue th

×
N

%100
seigenvalue all of sum

 to up seigenvalue of sum
×

N

E
ig

en
va

lu
e

(c) C
rown Copyright 2008
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Data reproduction

X is the reproduced data matrix
• reproduced from N selected factors
• noise filtered by removal of higher 

factors that describe noise 
variations

• useful for MCR

EptEPTX +′=+′= ∑
=

N

n
nn

1

PTEXX ′=−=

E is the matrix of residuals
• should contain noise only
• useful for judging quality of PCA model
• may show up unexpected features!

XXE −=

∑
=

′−=
N

n
nn

1
ptXE(c) C

rown Copyright 2008
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Raw Data

Data Matrix

Data selection and 
preprocessing

PCA outline

Covariance Matrix

Matrix 
multiplication

Eigenvectors 
and Eigenvalues

Decomposition

PCA Factors
x R

Sort by eigenvalues

Reproduction
Reproduced
Data Matrix

Reproduction

PCA Factors
x N

Factor 
compression

After Malinowski, Factor Analysis in Chemistry, John Wiley & Sons (2002)

(c) C
rown Copyright 2008
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Data preprocessing

Data preprocessing is the 
manipulation of data prior to 
data analysis…

(c) C
rown Copyright 2008
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Data preprocessing

More details in the 
following slides

• Enhances PCA by bringing out important variance in dataset
• Makes assumption about nature of variance in data
• Can distort interpretation and quantification

• Includes:
– mass binning
– peak selection
– mean centering
– normalisation 
– variance scaling
– Poisson scaling
– Binomial scaling
– Logarithmic transformation

(c) C
rown Copyright 2008
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• Subtract mean spectrum from each sample
• PCA describes variations from the mean

Mean centering

x

y

z

Factor 2

Factor 1

Raw data

1st factor goes from origin to 
centre of gravity of data

y

x

z

Factor 1Factor 2

Mean Centering

1st factor goes from origin and 
accounts for the highest variance

( ),ki,ki,k :XXX mean−=~

Preprocessed data
sample i, mass k Raw data

sample i, mass k
Mean intensity of mass k

(c) C
rown Copyright 2008
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Normalisation

• Divide each spectrum by its 
total ion intensity

• Reduces effects of 
topography, sample charging, 
drift in primary ion current

• Assumes chemical variances 
can be described by relative 
changes in ion intensities

• Reduces rank of data by 1

S. N. Deming, J. A. Palasota, J. M. Nocerino, J. Chemomet, 7 (1993) 393

( ):X
XX

,
,, sum

1
i

kiki ×=~

Preprocessed data
sample i, mass k Total intensity of sample iRaw data

sample i, mass k

(c) C
rown Copyright 2008
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Variance scaling

• Divide each variable by its variance in the dataset
• Equalises importance of each variable (i.e. mass)
• Problematic for weak peaks – usually used with peak selection
• Called ‘auto scaling’ if combined with mean centering

V
ar

ia
nc

e

Mean

For each variable (mass, 
in SIMS spectrum)

Raw data Mean-
centering

Variance 
scaling

Auto 
scaling

P. Geladi and B. Kowalski, Partial Least-Squares Regression: A Tutorial,
Analytica Chimica Acta, 185 (1986) 1  

( )k
kiki

,
,, var

1
:X

XX ×=~

Preprocessed data
sample i, mass k Variance of mass kRaw data

sample i, mass k

(c) C
rown Copyright 2008
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Poisson scaling

• PCA assumes the error associated with each data point is equal

• But SIMS data is dominated by Poisson counting noise –
noise variance of a peak is proportional to its intensity

M. R. Keenan, P. G. Kotula, Surf. Interface Anal., 36 (2004) 203

No preprocessing
Num of factors?

Poisson scaling
4 factors needed

• Divide each data 
point by the square 
root of the mean 
sample intensity and 
the square root of 
the mean spectrum

• Provides improved 
noise rejection in 
PCA

( ) ( )k:i
kiki

,,
,, mean

1
mean

1

:

~
XX

XX ××=
Preprocessed data
sample i, mass k Mean intensity

of mass k

Raw data
sample i, mass k

Mean intensity
of sample i

(c) C
rown Copyright 2008
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Data preprocessing
summary

Equalises noise variance of each data point. 
Provides greater noise rejection.Poisson scaling

Equalises variance of every peak regardless of 
intensity. Best with peak selection.Variance scaling

Equalises total ion yield of each sample and 
emphasise relative changes in ion intensitiesNormalisation

All factors describe variations from the meanMean centering

First factor goes from origin to mean of dataNo preprocessing

Effect of preprocessingMethod of 
preprocessing

(c) C
rown Copyright 2008
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PCA example (1)

• Three protein compositions 
(100% fibrinogen, 50% 
fibrinogen / 50% albumin, 
100% albumin) adsorbed onto 
poly(DTB suberate)

• Loadings on first factor (PC1) 
shows relative abundance of 
amino acid peaks of two 
proteins

• Scores on PC1 separates 
samples based on protein 
composition

D.J. Graham et al, Appl. Surf. Sci., 252 (2006) 6860

PC
1 

Lo
ad

in
gs

 (6
2%

)
P

C
1 

S
co

re
s 

(6
2%

)

Fib

Alb

(c) C
rown Copyright 2008
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PCA example (2)

• SIMS spectra acquired for 
antiferritin with or without 
trehalose coating

• Largest variance (PC 1) 
arises from sample 
heterogeneity

• PC 2 distinguishes samples 
protected by trehalose –
higher intensities of polar 
and hydrophilic amino acid 
fragments

• Trehalose preserves protein 
conformation in UHV

N. Xia et al, Langmuir, 18 (2002) 4090

(c) C
rown Copyright 2008
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PCA example (3)

• 16 different single protein 
films adsorbed on mica

• Excellent classification of 
proteins using only 2 factors

• Factors consistent with total 
amino acid composition of 
various proteins

• 95% confidence limits 
provide means for 
identification / classification

M. Wagner & D. G. Castner, Langmuir, 17 (2001) 4649

P
C

2 
S

co
re

s 
(1

9%
)

PC1 Scores (53%)

P
C

A
 L
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s

(c) C
rown Copyright 2008
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PCA image analysis

I, 
rows

J, columns
K, m

ass 

peaks

• ‘Datacube’ contains a raster of 
I x J pixels and K mass peaks

• The datacube is rearranged 
into 2D data matrix with 
dimensions [(I × J) × K] prior to 
PCA – ‘unfolding’

• PCA results are folded to form 
scores images prior to 
interpretation

9

8

7

6

5

4

3

2

1

963

852

741
unfold

(c) C
rown Copyright 2008
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PCA image example (1)

Immiscible PC / PVC polymer blend
42 counts per pixel on average

Total ion image

Mean centering

Normalisation

Poisson scaling

Only 2 factors needed –
dimensionality of image reduced
by a factor of 20!

J. L. S. Lee, I. S. Gilmore, “The application of multivariate data analysis techniques in surface analysis”, in 
Surface Analysis: The Principal Techniques 2nd edition (eds J C Vickerman, I S Gilmore), Wiley.

(c) C
rown Copyright 2008
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0 5 10 15 20 25 30 35 40
-0.5
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0.5

1

1.5

2

Mass, u

PCA image example (1)

 

 

-5

0

5

10

PCA results after Poisson scaling and mean centering

1st factor distinguishes 
PVC and PC phases

J. L. S. Lee, I. S. Gilmore, “The application of multivariate data analysis techniques in surface analysis”, in 
Surface Analysis: The Principal Techniques 2nd edition (eds J C Vickerman, I S Gilmore), Wiley.

PC1 loadings

PC1 scores
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1

Mass, u

2nd factor shows 
detector saturation 
for intense 35Cl peak

PC2 loadings

PC2 scores(c) C
rown Copyright 2008
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PCA image example (2)

Hair fibre with multi-component pretreatment

(c) C
rown Copyright 2008
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PCA image example (2)

Hair fibre with multi-component pretreatment

Mass, u

Total Spectra

50μm

Total ion

PCA factors are linear combinations of chemical components and 
optimally describe variance – PCA results can be difficult to interpret!

Image courtesy of Dr
Ian Fletcher, Intertek MSG

J. L. S. Lee, I. S. Gilmore, “The application of multivariate data analysis techniques in surface analysis”, in 
Surface Analysis: The Principal Techniques 2nd edition (eds J C Vickerman, I S Gilmore), Wiley.

A
D

CE

B B

C

D

A

D

C

A

B

PC1 loadings PC2 loadings PC3 loadings

(c) C
rown Copyright 2008
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PCA summary

• PCA describes the original data using factors, consisting of loadings
and scores which efficiently accounts for variance in the data

• Eigenvalues give the variance captured by the corresponding factors

• Data preprocessing method needs to be selected with care

• PCA is excellent for discrimination and classification based on 
differences in spectra, and for identifying important mass peaks

• PCA factors optimally describe variance – PCA results may be 
difficult to interpret

Data matrix
Projection of samples

onto factors (scores matrix)
Projection of variables

onto factors (loadings matrix)

Residuals (noise)

EPTX +′=

I = no. of samples
K = no. of mass units
N = no. of factors

(c) C
rown Copyright 2008
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Contents

1. Introduction
2. Linear algebra 
3. Factor analysis

• Principal component analysis (PCA)
• Data preprocessing
• PCA Examples
• Multivariate curve resolution (MCR)
• MCR Examples

4. Multivariate regression
5. Classification
6. Conclusion

(c) C
rown Copyright 2008
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Multivariate curve 
resolution (MCR)

• PCA factors are directions that describes variance
– positive and negative peaks in the loadings
– can be difficult to interpret

• We want to resolve original chemical spectra and reverse the 
following process:

• Use multivariate curve resolution (MCR)

⎥
⎥
⎥
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⎢
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40161

60
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S
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Variables
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C
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Data matrixChemical spectraSample 
composition =×

(c) C
rown Copyright 2008
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Multivariate curve 
resolution (MCR)

MCR is designed for recovery of chemical 
spectra and contributions from a multi-
component mixture, when little or no prior 
information about the composition is 
available

MCR uses an iterative least-squares 
algorithm to extract solutions, while applying 
suitable constraints e.g. non-negativity m1

m2 MCR Factor 2

MCR Factor 1

Data matrix

Projection of samples
onto factors (scores matrix)

Projection of variables
onto factors (loadings matrix)

Residuals (noise)

EPTX +′=
)())(()( KIKNNIKI ×+××=×

I = no. of samples
K = no. of mass units
N = no. of factors

(c) C
rown Copyright 2008
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Multivariate curve 
resolution (MCR)

1. Determine number of factors N via eigenvalue plot
2. Obtain PCA reproduced data matrix for N factors
3. Obtain initial estimates of spectra (loadings) or contributions (scores)

• Random initialisation
• PCA loadings or scores
• Varimax rotated PCA loadings or scores
• Pure variable detection algorithm e.g. SIMPLISMA 

4. Constraints
• Non-negativity
• Equality

5. Convergence criterion
6. Alternating least squares (ALS) optimisation

Six Steps to MCR Results

(c) C
rown Copyright 2008
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Outline of MCR

Raw Data

Data Matrix

Constraints

MCR
Scores T

MCR
Loadings P

MCR-ALS

Reproduced
Data Matrix

Initial 
Estimates

Number of 
FactorsPCA

(c) C
rown Copyright 2008
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• Start with PCA reproduced data matrix

• Assume initial estimate of loadings P

• Steps (1) – (4) are repeated until MCR loadings P and scores T are 
able to reconstruct reproduced data matrix X within acceptable 
error specified in convergence criterion

MCR-ALS algorithm

PTX ′=

( )

M

XXE

PTX

XTP

PXT

−=

′=

+=′

+′=

ˆ

ˆ

(1) Find estimate of T using P, applying constraints

(2) Find new estimate of P using T, applying constraints
(3) Compute MCR reproduced matrix 

(4) Compare results and check convergence

[ ] 1−′′=+ AAAA

Pseudoinverse of 
rectangular matrix

(c) C
rown Copyright 2008
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• MCR solutions are not unique!
• Accuracy of resolved spectra depends on the existence of pixels or 

samples where there is only contribution from one chemical 
component

• Peaks for the intense components may appear in spectra resolved 
for weak components

• Good initial estimates and suitable data preprocessing are essential

m2

Rotational ambiguity

m1

MCR Factor 2

MCR Factor 1

m2

m1

MCR Factor 2

MCR Factor 1

(c) C
rown Copyright 2008
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MCR example (1)

• ToF-SIMS depth profiling of 
copper film grown on TaN
coated silicon wafer

• Manual analysis is difficult, e.g. 
Si- can arise from SiOx

-, SiN- or 
silicon substrate

• MCR resolves 8 factors. 
Loadings resemble SIMS 
spectra of individual phases 
and scores resemble their 
contribution to the depth profile

• Improve signal to noise and 
correlation of related peaks

K G Lloyd. J. Vac. Sci. Technol. A 25 (2007) 878

Scores for all 8 MCR factors

Scores and loadings for 3 of the MCR factors 

(c) C
rown Copyright 2008
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MCR image example (1)

Hair fibre with multi-component pretreatment

Mass, u

Total Spectra

MCR scores 1 MCR scores 3 MCR scores 4 MCR scores 5MCR scores 2

Image courtesy of Dr
Ian Fletcher, Intertek MSG

50μm

Total ion

J. L. S. Lee, I. S. Gilmore, “The application of multivariate data analysis techniques in surface analysis”, in 
Surface Analysis: The Principal Techniques 2nd edition (eds J C Vickerman, I S Gilmore), Wiley.

(c) C
rown Copyright 2008
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MCR image example (1)

Scores 1

Scores 3

Scores 4

Scores 5Scores 2

Loadings 1A

Loadings 2

Loadings 3

Loadings 4

Loadings 5B

C

D

Mass, u

Distribution and characteristic 
peaks are obtained for hair fibre 

and four surface chemicals
Mass, u

E

Image courtesy of Dr
Ian Fletcher, Intertek MSG

J. L. S. Lee, I. S. Gilmore, “The application of multivariate data analysis techniques in surface analysis”, in 
Surface Analysis: The Principal Techniques 2nd edition (eds J C Vickerman, I S Gilmore), Wiley.

(c) C
rown Copyright 2008
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MCR image example (2)

• We take three pictures and assign each with a SIMS spectra 
(PBC, PC, PVT)

• The pictures are combined to form a multivariate image dataset
• Poisson noise are added to the image (avg ~50 counts per pixel)

PCA Scores 1 PCA Scores 2 PCA Scores 3

(c) C
rown Copyright 2008
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MCR image example (2)

• We take three pictures and assign each with a SIMS spectra 
(PBC, PC, PVT)

• The pictures are combined to form a multivariate image dataset
• Poisson noise are added to the image (avg ~50 counts per pixel)

PCA Scores 1 PCA Scores 2 PCA Scores 3MCR Scores 1 MCR Scores 2 MCR Scores 3

MCR resolves the original images unambiguously!
(c) C

rown Copyright 2008
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MCR summary

• MCR describes the original data using factors, consisting of loadings
and scores which which resembles chemical spectra and 
contributions from a multi-component mixture, respectively

• MCR uses an iterative algorithm to extract solutions, while applying 
suitable constraints e.g. non-negativity

• Good initial estimates and suitable data preprocessing are essential

• MCR is excellent for identification and localisation of chemicals in 
complex mixtures and allows for direct interpretation

Data matrix

Projection of samples
onto factors (scores matrix)

Projection of variables
onto factors (loadings matrix)

Residuals (noise)

EPTX +′=

I = no. of samples
K = no. of mass units
N = no. of factors

(c) C
rown Copyright 2008
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Contents

1. Introduction
2. Linear algebra
3. Factor analysis
4. Multivariate regression

• Multiple linear regression (MLR)
• Principal component regression (PCR)
• Partial least squares regression (PLS)
• PLS Examples
• Calibration, validation and prediction

5. Classification
6. Conclusion

(c) C
rown Copyright 2008
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Data analysis

SIMS 
Dataset
SIMS 

Dataset

How is it related to 
known properties?

Where are they 
located?

What chemicals
are on the surface? 

Calibration / 
Quantification

Classification

Identification

Can we predict
these properties?

Which group does 
it belong to?

Is there an outlier
in the data?(c) C

rown Copyright 2008
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Regression analysis

Mass spectrum of Sample 1

0
10
20
30
40

1 2 3 4 5
Mass

In
te

ns
ity

Mass spectrum of Sample 2

0
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30

1 2 3 4 5
Mass
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ity

Mass spectrum of Sample 3

0
10
20
30
40

1 2 3 4 5
Mass

In
te
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ity

6

4

1

Molecular 
weight

41Sample 3

72Sample 2

35Sample 1

Concentration
ratio

XPS 
measurement

Measured properties

Can we predict the properties of similar 
materials from their SIMS spectra?

( )
exbxbxbxby

efy

mm +++++=
+=

...332211

x

‘Response’ variable
i.e. measured property

‘Predictor’ variable
i.e. intensity at mass m

Regression
coefficient

(c) C
rown Copyright 2008
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Multiple linear regression 
(MLR)

• Extending to I samples and M response variables

EXBY +=

Response
variables

SIMS
data matrix

Regression
matrix

Residuals (noise)

)())(()( MIMKKIMI ×+××=×

I = no. of samples
K = no. of mass units
M = no. of response variables

This is the covariance matrix of X! In SIMS this is likely to be close 
to singular and a well defined inverse matrix cannot be found. This 
is due to the problem of collinearity, caused by linearly dependent
rows or columns in the matrix.

• Least squares solution (MLR solution)

( ) YXXXB ′′= −1YXB += or
( ) XXXX ′′=+ −1

is the pseudoinverse of X

(c) C
rown Copyright 2008
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MLR - graphical 
representation EXBY +=

Response
variables

SIMS
data matrix

Regression
matrix

Residuals

We relate Y to the projection of X onto B –

MLR finds the least 
squares solution that 
minimises E i.e. the 
best R2 correlation
between Y and the 
projections of data 
onto the regression 
vector XB

A. M. C. Davies, T. Fearn, Spectroscopy Europe 17 (2005) 28

Large number of correlated variables (e.g. mass) → Risk of overfitting!
(c) C

rown Copyright 2008
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Principal component 
regression (PCR)

• PCA reduces dimensionality of data and reduces effect of noise
• PCA scores matrix is the coordinates of data points in reduced 

factor space
• Hence we can use PCA scores matrix T in our linear regression

( ) YTTTB
YTB

′′=

+=
−1

I = no. of samples
N = no. of PCA factors
M = no. of response variables

ETBY +=

Response
variables PCA Scores

Matrix
Regression

matrix

Residuals

( ) )()()( MIMNNIMI ×+××=×

These are now guaranteed to be invertible since the rows of PCA 
scores matrix are orthogonal(c) C

rown Copyright 2008
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PCR – graphical 
representation

A. M. C. Davies, T. Fearn, Spectroscopy Europe 17 (2005) 28

One factor PCR example –
PCR finds correlation 
between Y and projection 
of data onto first PCA 
factor (scores T).

For more than one factor, 
PCR finds linear 
combinations of scores T
on each PCA factor that 
are best for predicting Y

EΤBY +=
Response
variables

PCA scores
matrix

Regression
matrix

Residuals

Important to determine appropriate number of factors to include in PCR model(c) C
rown Copyright 2008
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Partial least squares 
regression (PLS)

The problem with PCR

• PCR uses PCA scores T are computed to model variations in X only!
• By choosing directions that maximise the variance in data X we hope to 

include important information which relates the original variables to Y
• First few PCA factors of X may contain only matrix, topographical or other 

effects, and may have no relation to quantities Y which we want to predict

X = SIMS data matrix
Y = Response variables

Introducing PLS!

• PLS extracts scores T that are common to both X and Y, using simultaneous 
decomposition of X and Y

• It finds factors describing large amounts of covariance between X and Y
• It removes redundant information from the regression i.e. factors describing X

that has no correlation with Y
• More viable, robust solution using fewer number of factors(c) C

rown Copyright 2008
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PLS (NIPALS) algorithm

For decomposition of single matrix X in PCA, NIPALS calculate t1 and p1
alternately until convergence. The next set of factors t2 and p2 are calculated 
by fitting the residuals (data not explained by p1)

From E. Malinowski, Factor Analysis in Chemistry, John Wiley and Sons (2002)

(1) PCA decomposition

X
t

p’

)( KI ×

)1( ×I

)1( K×

(2) PLS decomposition

For simultaneous decomposition of X and Y, PLS finds a mutual set of scores 
common to X and Y so tx = ty

tX = tY

Y

q’p’ )1( K×

X
)( KI ×

)1( M×

)( MI ×

)1( ×I

I = no. of samples
K = no. of mass units
M = no. of response variables
N = no. of PCA factors

(c) C
rown Copyright 2008
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We can now write

PLS formulation

• W is the weights matrix and reflects covariance structure between X and Y
• T are PLS scores used to predict Y from X. Columns of T are orthogonal.
• P and Q are not orthogonal matrices due to constraint on finding common 

scores T. They are sometimes called ‘x-loadings’ and ‘y-loadings’ 
respectively

• In literature ‘latent variable’ refers to the set of quantities t, p and q
associated with each PLS factor

FQTY
EPTX
+′=
+′=

scores residuals

EXBY +=
( ) QWQPYXB ′=′+′=+=

regression matrix weights matrix

X = SIMS data matrix
Y = Response variables

(c) C
rown Copyright 2008
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PLS example (1)

• SIMS spectra of thin films of 
Irganox were compared with 
their thicknesses measured 
with XPS

• Two PLS factors are retained, 
explaining 99.8% of the 
variance in X (SIMS data) and 
98.8% of the variance in Y 
(thicknesses)

• PLS model able to predict 
thicknesses for t < 6 nm

• PLS regression vector shows 
us the SIMS peaks most 
correlated with thickness

200 400 600 800 1000 1200
-2

0

2

4

6

8

10

12
x 1010

Mass, u

R
eg

re
ss

io
n 

V
ec

to
r f

or
 Y

231

1176

59

277(c) C
rown Copyright 2008



Slide 72

©
C

ro
w

n 
C

op
yr

ig
ht

 2
00

8

PLS example (2)

A. J. Urquhart et al., Anal. Chem., 80 (1), 135 -142, 2008

• ToF-SIMS spectra of 576 copolymers are related to 
their experimental water contact angles (WCA)

• Positive and negative ion spectra are normalised 
separately, then concatenated (combined) into 
single data matrix X

Polar species
e.g. CnHmO+ & CN-

hydrophilic

Hydrocarbons
e.g. CnHm

+

hydrophobic

(c) C
rown Copyright 2008
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PLS validation

• PLS can be used to build predictive models (calibration)
• Validation is needed to guard against over-fitting
• Without enough data for validation set, cross validation can be useful
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Good predictive model Data is overfitted!

(c) C
rown Copyright 2008
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RMSEC

PLS validation

• ‘Leave one out’ cross validation most popular
– Calculate PLS model excluding sample i
– Predict sample i and calculate error
– Repeat for all different samples
– Calculate root mean square error of cross validation (RMSECV)

RMSEC (Root Mean Square Error 
of Calibration) goes down with 
increasing number of factors

To decide optimal number of 
factors use minimum of RMSECV
(Root Mean Square Error of Cross 
Validation) or PRESS (Prediction 
Residual Sum of Squares)(c) C

rown Copyright 2008
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PLS validation

• If dataset is large enough, split into calibration and validation sets
• Rule of thumb – 2/3 calibration set, 1/3 validation set
• Validation data should be statistically independent from calibration data

i.e. NOT repeat spectra of same sample!

sample

population
calibration

validationnext set of
sample?

Calibration

Validation

Prediction

Independent validation set is 
essential if we want to use model to 
predict new samples!(c) C

rown Copyright 2008
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PLS summary

• PLS is a multivariate linear regression technique

• PLS decomposes matrices X (predictors) and Y (responses) 
simultaneously, in order to find factors that best describe the 
structure of covariance between X and Y

• Data preprocessing method needs to be selected with care

• PLS is excellent for calibration and quantification, and for studying 
the relationship between SIMS data and other measured properties

• Properly validated PLS models can be used for predictions of these 
properties using SIMS data

EXBY +=
Response
variables

Data matrix Regression
matrix

Residuals (noise)

(c) C
rown Copyright 2008
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Contents

1. Introduction
2. Linear algebra
3. Factor analysis
4. Multivariate regression
5. Classification

• PCA classification
• PC-DFA
• PLS-DA

• Conclusion

(c) C
rown Copyright 2008
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Data analysis

SIMS 
Dataset
SIMS 

Dataset

How is it related to 
known properties?

Where are they 
located?

What chemicals
are on the surface? 

Calibration / 
Quantification

Classification

Identification

Can we predict
these properties?

Which group does 
it belong to?

Is there an outlier
in the data?(c) C

rown Copyright 2008
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PCA classification (1)

• 16 different single protein 
films adsorbed on mica

• Excellent classification of 
proteins using only 2 factors

• Factors consistent with total 
amino acid composition of 
various proteins

• 95% confidence limits 
provide means for 
identification / classification

M. Wagner & D. G. Castner, Langmuir, 17 (2001) 4649

P
C

2 
S

co
re

s 
(1

9%
)

PC1 Scores (53%)

P
C

A
 L

oa
di

ng
s
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PCA classification (2)

• Octadecanethiol self-
assembled monolayers on 
gold substrates, exposed to 
different allylamine plasma 
deposition times

• Four clusters of objects are 
observed when the scores 
are on different PCA factors 
are plotted

• Magnification of framed 
cluster reveals further 
clustering

• Outliers can also be located

M. Von Gradowski et al, Surf. Interface Anal. 36 (2004) 1114

(c) C
rown Copyright 2008
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• PC-DFA = “Principal Component – Discriminant Function Analysis”
• ‘Discriminant functions’ maximizes the Fisher’s ratio between groups

• Used to distinguish strains of bacteria 

PC-DFA

( )
21

2
21ratio sFisher'

varvar
meanmean
+
−

=

J. S. Fletcher et al, Appl. Surf. Sci. 252 (2006) 6869
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PLS-DA

• Partial Least Squares Discriminant Analysis
• PLS finds factors that describes the biggest 

co-variance between the data X and the 
group assignments (e.g. 0 and 1) Y.

• Regression vector shows linear combination 
of peaks that maximally distinguishes 
epidermal and other cells
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Classification summary

• PCA allows for quick grouping of samples based on their similarities
• PC-DFA and PLS-DA are supervised classification methods – prior knowledge 

about groups are required
• Properly validated classification models are needed for predictions
• There also exists unsupervised clustering methods, e.g. hierarchal cluster 

analysis, K-nearest-neighbours, artificial neural networks…..

design

retrieval

analysis dissemination

visualisation

use
creation

organisation

management

chemical 
information
chemical 

information

All these (and much, much more) belong to the
wider field of chemoinformatics!
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Data analysis

SIMS 
Dataset
SIMS 

Dataset

How is it related to 
known properties?

Where are they 
located?

What chemicals
are on the surface? 

Calibration / 
Quantification

Identification

Can we predict
these properties?

PCA, MCR

PCR, PLS

Classification
Which group does 
it belong to?

Is there an outlier
in the data?

PC-DFA, PLS-DA

(c) C
rown Copyright 2008
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Multivariate analysis
summary

J L S Lee, I S Gilmore, “The application of multivariate 
data analysis techniques in surface analysis”, in
Surface Analysis: The Principal Techniques 2nd edition
(eds J C Vickerman, I S Gilmore), Wiley.

(c) C
rown Copyright 2008
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Conclusion

In this tutorial we have looked at
– Identification using PCA and MCR
– Quantification using MLR, PCR and PLS
– Classification using PC-DFA, PLS-DA
– Importance of validation for predictive models
– Data preprocessing techniques and their effects
– Matrix and vector algebra
– Newly defined multivariate analysis terminology

 

Terms 
Here Symbol Definition PCA MCR PLS 

Factor - 
An axis in the data space representing 
an underlying dimension that 
contributes to summarising or 
accounting for the original data set 

Principal 
Component 

Pure 
Component 

Latent 
Vectors, 
Latent 

Variables 

Loadings P Correlation between the original 
variables and the factors 

Loadings, 
Eigenvector 

Component 
Spectrum Loadings 

Scores T Projection of the samples onto the 
factors 

Scores, 
Projections 

Component 
Concentration Scores 
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