CCQM P58.1:
Metrology for Clinical Sciences

Diagnostic Formulation Meeting, 24th Feb
James Noble
Development of a Reference Immunoassay for cTnI

- Cardiac Troponin I (cTnI) is an important marker for the diagnosis of ACS and risk stratification
- The NPL metrology study is linked to the IFCC initiative for standardization and traceability of cTnI measurements:
 - Drivers:
 - No reference method for value assignment – MS not sensitive enough to determine clinically relevant levels (ng/L – μg/L).
 - Analytically more sensitive assays being developed to enhance initial diagnosis – the need for improved assay performance and comparability.
Stakeholders and Project Drivers

Quality of Life; Improved cTnl measurement comparability

Develop cTnl RMP + associated standards

IVD Directive (98/97/EU): Traceability for in vitro medical diagnostic devices

Metrological methods applied to other programs: ChemBio, TSB and NIRD

Assign cTnl Standards

IFCC WG-cTnl

CCQM - BAWG

NIST

NPL

International Metrology Community:
- NIBSC (WHO)
- BAM + PTB (Germany)
- IRMM (Euro)
- VNIIM (Russia)
- NMIJ (Japan)
- NIM (China)
- ISS (Italy)
- KRISS (South Korea)
- NMIA (Australia)

Formulation: UK industrial Input
IFCC: Traceability for cTnI Measurements (1)

- Multiple manufactures of cTnI assays – each with own standards and antibodies with different epitope specificities.
 - Need to standardize cTnI measurements to facilitate intercomparison of clinical studies.
 - Traceable cTnI SRM displays limited commutability therefore:
 - Preparing secondary standard from AMI patients.
 - Develop immunoassay RMP to support secondary standards.
 - Characterise and prepare antibodies for RMP.
 - Evaluate the effectiveness of this approach through round robin studies.
IFCC: Traceability for cTnI Measurements (2)

• Purified cTnI SRM not suitable for standardizing all measurements:

BIPM: Metrology and the Development of a Immunoassay Reference Measurement Procedure

• ‘The task of the BIPM is to ensure world-wide uniformity of measurements and their traceability to the International System of Units (SI)’.
 – Reference System to be SI traceable.
 – The cTnI immunoassay RMP will be used by metrology institutes, reference laboratories and industry to assign concentrations to reference materials and manufacturers ‘master calibrators’.
 – World-wide comparability through CCQM studies to evaluate robustness of RMP.
 – RMP to be developed as a non-proprietary open access assay system that can be run in various laboratories using non-specialist equipment/techniques.
Proposed Reference Measurement System for human cTnI

- Materials
 - Purified CIT standard – NIST 2921
 - Serum-based commutable reference materials for cTnI
 - Target material e.g. manufacturer’s working calibrator
 - Patient samples

- Procedures
 - Reference measurement procedure: LC/MS and Amino Acid Analysis
 - Reference immunoassay method
 - Manufacturer’s selected reference measurement procedure
 - Manufacturer’s standing measurement procedure to value assign the target material

Slide prepared by Jill Tate, Royal Brisbane and Women’s Hospital, QLD, Australia.
cTnI – Standardization of a Heterogeneous Protein Analyte

• Compared to small organic and inorganic molecules the standardization of proteins is more complex:
 – Chemical heterogeneity:
 • Post-translational modifications
 • Protease digestion
 – 3D Structure
 – Protein complex formation
 – These issues can be patient, sampling/processing and time dependent

• The measureand cTnI can therefore be classed in terms of multiple isoforms:
 – RMP should display equal reactivity to all cTnI isoforms
Measurement Claim P58.1:

- The measurand ‘cTnI’ will be defined by the presence of both epitopes (fully characterised and mapped) that reside within the stable region of the molecule.
- Proposed Measurement Claim:
 - To determine the concentration of human myocardial infarction marker cTnI in the range of [ng/L-μg/L] using a defined non-competitive ELISA protocol with a controlled uncertainty.
Development of the cTnI Immunoassay RMP

• NPL has experience in immunoassay metrology running previous CCQM intercomparison studies.
 – Through internal research and intercomparison studies the sources of uncertainty in assigning cTnI concentration with this method will be quantitated.
 – NPL will be involved in the reference material assignment and commutability studies to assess the utility of this approach.
 – USP Protein A reference Immunoassays

• Current funding round is supporting the development and robustness analysis of the cTnI RMP
Cause and Effect Diagram showing Sources of Uncertainty

- Other effects (f_{other})
 - Specificity
 - Interferences
 - Tertiary and quaternary structure

- Imprecision (C_{uncorr})
 - Variation in non-specific binding
 - Sample Volume
 - Variation in phosphatase activity
 - Reagent Volume(s)
 - Variation in phosphatase binding

- Correction (f_{corr})
 - Preparation of standards
 - Value of SRM

- Sample effects (f_{sampler})
 - Homogeneity
 - Loss (recovery, or dilution) or contamination
 - Stability

- Statistical estimation

Performance criteria for the Secondary Reference ELISA

- Dynamic range to include the expected three (0.1 – 10 μg/L) serum standards and cTnI cut-off (0.05 μg/L).
- Display equal reactivity with cTnI isoforms and orthogonal methods.
- Multiple combinations of antibodies directed to epitopes both within and outside stable region tested.
Further Biomarker Standardization Work

- Validate RMP immunoassay and commutability of the cTnI standards.
- Characterise troponin complex and its interaction with selected antibodies for RMP.
- Develop methods to characterise the cTnI measure and (St George’s).
- Links to the JRP11 project: Traceability of Complex Biomolecules and Biomarkers in Diagnostics – Effecting Measurement Comparability in Clinical Medicine
- If successful can the cTnI standardization approach be applied to other complex protein biomarkers.
Acknowledgements

- Organisation + Input
 - BAWG
 - cTnI WG
 - Robert Porter NPL Simon Attree NPL
 - Lili Wang: NIST Maurice Cox NPL
 - David Bunk NIST Elaine Gray NIBSC
 - Alexei Katrukha HyTest Adrian Bristow NIBSC
 - Heinz Schimmel IRMM
 - Jill Tate IFCC

- Publications:

Thanks to the UK Government for funding the project through the Chemistry and Biology NMS Programme.