The dB_{ht}(*Species*); a metric for estimating the behavioural effects of noise on marine species.

Or, on the hearing of a herring and the deafness of a dab

Dr Jeremy Nedwell

Jeremy.nedwell@subacoustech.com

The underwater environment

- Most underwater animals use sound to navigate, communicate and explore their environment (fish, marine mammals, crustaceans,)
- Man made noise therefore has great capacity to effect their environment
- How do we judge the significance of noise?

(Research still in progress)

Underwater Source Levels

dB re 1 uPa @ 1 metre

Noise source	Source Level	Hear it!
Background noise	110-140	
Vessel	170-190	4
Airgun array	190-240	
Piling	170-270	
Borehole blasting	220-260	

Effects of major noise sources

Туре	Death and lethal injury	Non lethal and auditory injury	Behavioural effects
Typically	Dead floating fish	Deafness and	Driven from area
characterised		increased	inc. feeding &
by		predation	breeding grounds
over	Few 10s of metres, ~ .001 km ²	Few 100s of metres, ~ 0.5 km ²	Over 20 kilometres, ~ 1000 km ²
Effecting	Odd unlucky	A few marine	Fish stocks, entire
	marine mammal,	mammals, shoals	marine mammal
	a few fish	of fish	populations

Behavioural effects of noise

Level at a point depends on

- Source Level
- Transmission Loss
- *But* simple measurement or estimate completely useless without means to make biological interpretation
 - Sensitivity of animal to sound frequency content (spectrum) of sound
 - Hearing range and ability of animal

Hearing

Defined by audiogram, lowest level of sound that can be perceived by species as function of frequency

Audiograms

Auditory Brainstem Response

Threshold of hearing is estimated by finding the level of sound at which the brainstem auditory response just appears above noise.

"Loudness" of sound

Frequency

Effects of noise

Level	Comment	Effects	Human equivalent
< 0 dB _{ht}	Animal can't hear it	No reaction	Soundproof room
0-90 dB _{ht}	Increasingly loud	Reactions primarily cognitive	e.g. office 50, workshop 70 dB _{ht}
90-130 dB _{ht}	Unbearably loud	Instinctive reaction (avoidance)	Roadhammer >100dB _{ht}
> 130 dB _{ht}	Deafening	Traumatic hearing damage	Gunfire near ear

Some notes on dB_{ht}

- dB_{ht} is an estimate of the *perceivable* level of sound, or its "loudness"
- In concept, similar to dB(A) used for humans
- Units of dB level re species hearing threshold (hence dB <u>ht</u>)
- Since different for different species, must have species name appended e.g. 88 dB_{ht}(Gadhus Morhua) for cod, unless used generically ("levels of 90 dB_{ht} and above will cause avoidance....")
- Concept similar to dB(A); effect of sound determined by level *above threshold*.
- Not a perfect scale but much better than absolute sound levels. (e.g. some effects may occur lower in "nervous" species (for instance, the grazers) than in "bold" (predatory) species.)

Reaction to noise

dBht Levels vs Deterrent Efficieny

dBht Levels

Coastal background noise

dBht Distribution 5m Depth

dBht (Species)

Piling noise

Hammering of 4.3 m diameter pile at 4 km

Piling noise

5m - All Transects

SL and TL Model for measurements of pile hammering noise

Behavioural effects of piling noise?

Pile hammering noise measurements at 5m depth

Behavioural effects of seismics?

dBht levels

Evidence?

- Piling: World's largest offshore wind farm was build on Horns Reef in the Danish North Sea in 2002; observations from ship surveys showed a significant change in behaviour of harbour porpoise on days with pile driving at distances up to 15 km from the wind farm
- (Tougaard, J, Carstensen, J, Skov, H, Teilmann, J, and Henriksen, O D (2003). Effects from pile driving operations on harbour porpoises at Horns Reef offshore windfarm, monitored by T-PODs and behavioural observations. Report by National Environmental Reseach Institute, Frederiksborgvej 399, DK-4000 Roskilde, Denmark)
- Seismics: Significant study by Engås in 1992 confirmed that a 3-D seismic survey caused an immediate reduction in commercial catch rates in its vicinity of substantially more than 50%, while having lesser effects extending at least 20 km away and perhaps further

(ENGÅS, A., S. LØKKEBORG, E. ONA & A.V. SOLDAL (1993). Effects of seismic shooting on catch and catch-availability of cod and haddock. Fisken og Havet 1993(9): 117p.)

Summary

- Research and validation still in progress
- Data confirm the dB_{ht}(Species) hypothesis, that the degree of behavioural effect induced by sound depends primarily on the dB_{ht}(Species) level.
- Enables detailed investigation of species specific effects, sorting out real problems from red herrings, and simple generic statements about behavioural effects (e.g. "sound above 90 dB_{ht} will cause strong avoidance reaction")

