
The National Physical Laboratory is operated on behalf of the DTI by NPL Management Limited, a wholly owned subsidiary of Serco Group plc

The Wilkinson Prize for Numerical Software

I S S U E 1 4 • A U T U M N 2 0 0 3

MATHEMATICS AND SCIENT IF IC COMPUTING

Counting on IT
Contents
THE WILKINSON PRIZE FOR
NUMERICAL SOFTWARE 1

TESTING ALGORITHMS IN
STANDARDS AND METROS 2-3

CLUB MEMBERS’ PAGE 3

AUTOMATIC
DIFFERENTIATION 4-5

SSfM-3 FORMULATION
UPDATE 6-7

MEASURING PROPERTIES
OF OPTICAL FIBRES 7

SSfM WEBSITE EXCEEDS
HALF A MILLION HITS 8

FORTHCOMING EVENTS 8

In honour of the outstanding
contributions of James Hardy Wilkinson
to the field of numerical software, NPL,

the Numerical Algorithms Group and
Argonne National Laboratory award every
four years a prize of US $1000 for numerical
software. The 2003 prize presentation took
place in Sydney in July 2003 at the
International Congress for Industrial and
Applied Mathematics.

Wilkinson spent his pioneering days at
NPL, where he laid the basis for reliable
numerical methods for linear algebra and
floating-point error analysis. These concepts
are central to today’s quality software for
solving linear and non-linear algebraic
systems and least-squares problems.

The winner of the 2003 Prize was
Jonathan Shewchuk of the University
of California at Berkeley for Triangle,
two-dimensional mesh generator and Delaunay
triangulator. Triangle generates high-quality
unstructured triangular meshes. It also
generates two-dimensional Delaunay
triangulations, constrained Delaunay
triangulations, Voronoi diagrams, and
convex hulls. The software is used in
discrete meshing for the discretisation of
partial differential equations, in solving
classes of geometric problems, and the
graphing of surfaces. It has thousands of
users, and is downloaded on average more
than 30 times a day. Triangle has been
licensed for inclusion in eleven commercial
software packages.

The speed and accuracy of Triangle
is a result of novel algorithms for
extended precision floating-point
arithmetic and the use of adaptive
computation controlled by forward
error analysis.

NPL sponsors the Wilkinson Prize,
through the SSfM programme.

For further information contact
Maurice Cox, extension 6096
e-mail: maurice.cox@npl.co.uk

Jonathan Shewchuk (second
left) of the University of
California at Berkeley
receives the 2003 Wilkinson
Prize for Triangle from the
sponsors ANL (represented
by Jorge Moré, far left), NAG
(Steve Hague, far right) and
NPL (Maurice Cox).

Counting on IT

P A G E 2

Testing Algorithms in Standards and METROS

Certain mathematical and
computational analyses must be
undertaken in order to implement a

number of specification standards and guides
in metrology. Many other computations are
fundamental to metrology, although they
are not always specified in standards, and
these form the basis of software libraries
such as METROS.

Many mathematical and statistical problems
that arise in metrology can be posed in such
a way that they have a unique solution.
Algorithms in standards or software
libraries, however, may provide only an
approximate solution, or the solution to a
‘nearby’ problem. An approximate or nearby
problem is often introduced because it is
(more) tractable, i.e. it can be solved, it is
easier to solve, or it is quicker to solve.

Choosing to solve an approximate problem
is one reason why software may not deliver
correct results. Another reason is that the
implementation of software for solving the
approximate problem is poor or faulty. The
distinction is illustrated in figure 1, which
shows the relationship between software Sa
implemented to solve the problem specified
by the computational aim C0.

Algorithm testing [1] is concerned with
understanding the effect of solving an
approximate problem, by measuring the
departure of the solution so obtained from
the solution to the actual problem. In a
project undertaken as part of the SSfM
programme, a number of approaches, based
on the methodologies of numerical software
testing, have been proposed to test the fitness
for purpose of algorithms used in metrology.
The emphasis on fitness for purpose is an

important one. It is reasonable to ignore the
error introduced by solving an approximate
problem if that error is negligible compared
with the effect of other contributions to the
uncertainty associated with the measurement
result, e.g. inexact knowledge about the
state of the measurement system or
instrument, the environment, etc. On the
other hand, account must be taken of the
approximation error in cases where it is
appreciable compared with the effect of
these other contributions.

This (probabilistic) interpretation of fitness
for purpose is illustrated in figures 2 and 3,
in which y and ya, respectively, are the
solutions to the problems specified by C0
and Ca for the same measurement data.
The inexactness of the solutions, arising
from that associated with the measurement
data, is described by probability density
functions (pdfs) g(Y) and g(Ya), respectively
(figure 2). In terms of these pdfs, we can
answer questions about the ‘average’
departure of ya from y, as well as determining
the probability of obtaining a solution to the
problem specified by C0 that is further from
y than is ya.

Required
computational

aim C0

Algorithm A0 to
solve the problem

specified by C0

Software S0
implementing A0

Approximate
computational

aim Ca

Software Sa
implementing Aa Figure 2: Probability density functions

g(Y) and g(Ya) for, respectively, the
values of the solutions to C0 and Ca.

Figure 3: A measure of the fitness for
purpose for solving Ca in place of C0.
The area of the shaded regions
represents the probability of obtaining
a solution to C0 that is further from y
than is ya.

Algorithm Aa to
solve the problem

specified by Ca

Figure 1: Objects in the process of
developing mathematical software:
computational aims (mathematics),
algorithms (pseudo-code) and
software (source or object code).

P A G E 3

To determine the latter, consider the
evaluation of Prob(|Y – y| ≥ |ya – y|). This
problem corresponds to finding the sum of
the areas under the curve g(Y) to the left of
y - |ya – y| and to the right of y + |ya – y|
(figure 3). A small probability suggests that
ya, the solution obtained for Ca, is not a
likely solution to C0, accounting for the
inexactness of the measurement data.

Reference

[1] R M Barker, M G Cox,
P M Harris and I M Smith.
Testing algorithms in standards
and METROS. NPL Report
CMSC 18/03, March 2003.

For further information contact
Peter Harris, extension 6961
e-mail: peter.harris@npl.co.uk

Generally, guidance on the development
and validation of metrology software makes
no distinction between software used for
modelling or processing measurement data
and software to be used within a measuring
instrument (MI). However, the metrological
requirements on the software may be quite
different in the two cases. Software for
handling measurement data can be tested
or validated on its own. For example, in the
work on numerical software testing within
the SSfM programme, each numerical
function within packages like MatLab or
the NAG library is tested in isolation.

Software that forms part of an MI needs to
be treated differently: it must be tested or
validated as part of the MI. Although the
instrument designer would find it appropriate
to conduct software testing in accordance
with SSfM Best Practice Guide No. 1, the
essential requirement from a metrological

perspective is that it works properly in
combination with the MI hardware. There
is a need to describe, check, and certify the
MI as a complete system fit for the purpose
of metrology. This is the traditional
metrological approach to calibrating MIs.
Only if it is impossible to use this traditional
approach should the MI be validated as a
set of individual parts.

In conclusion, seen purely from the narrow
metrological perspective, we believe that
the traditional procedures for calibrating an
MI that is entirely implemented in hardware
should also be used for calibrating MIs that
incorporate software. Calibration of the MI
as a whole allows its metrological
characteristics to be evaluated, including
those of its software.

Contact: Valery Granovsky: +7 (812) 238 8167
e-mail: elprib@online.ru

Measuring Instruments Including Software:
Traditional Metrology Approach

Programme Manager’s response:

The need to treat general metrology software
differently from software embedded in MIs
is well understood in SSfM. Best Practice
Guide No. 12, (test and measurement
software), addresses the former, and Best
Practice Guide No. 1, (validation of
measurement software), addresses the
problem of validating the latter. Although,
in SSfM, we agree that this latter type of
software must be validated in combination

with the hardware, the fact that software
can exhibit classes of fault that are very
unlikely to occur in hardware means that
we need to combine validation techniques.
We see software validation techniques as
complementing but not replacing traditional
MI validation techniques. We believe
validation should focus on fitness for
purpose and the purpose is generally not
just metrological.

Club Members’ Page
Letter to the editor from Valery Granovsky

Counting on IT

P A G E 4

Automatic Differentiation

“Attention is now being
paid to the complex

step method”

Awide variety of mathematical and
scientific problems involve solving
systems of nonlinear equations, or

finding the maximum or minimum of a
nonlinear function. For example, in data
fitting, the estimates of model parameters
are found by minimising a goodness-of-fit
measure (figure 4). Finding the solution
to these problems usually depends on being
able to linearise the functions involved,
and to achieve this we have to calculate
their derivatives.

If f(x) is a function of a variable x, its
derivative f ‘ is also a function of x and
represents the slope of f at x. For a function
of a number of variables f (x1,.....,xn), the
partial derivative of f with respect to xj
represents the slope of f in the direction of
the jth axis. Using basic calculus rules, e.g.
(f + g)’(x) = f ’(x) + g’(x), the derivatives
of complex functions can be expressed in
terms of the derivatives of their simpler,
component functions. However, even for
only moderately complicated functions, the
hand calculation of derivatives can lead to
pages of tedious algebra with an increasing
likelihood of a mistake entering into the
computation. If the function evaluation is
encoded in a software component, it is
natural to ask if it is possible for the software
to compute the derivatives automatically.

Until recently, the standard method of
evaluating derivatives numerically was to
use finite differences. The main and simple
idea of the method is to approximate the

derivative by evaluating f at two nearby
points. Typical of finite-difference formulae
are the forward-difference formula
f ’(x) ≈ (f (x + h) - f (x))/ h and the

central-difference formula
f ’(x) ≈ (f (x + h) - f (x - h))/ 2h. Here

h is a “step” selected in an appropriate way.
These formulae generally calculate only
approximate estimates. If h is chosen to be
too small, cancellation errors are likely. If h
is too large, then the approximation error
will be large.

Because of the accuracy
difficulties associated
with finite differences,
attention is now being
paid to the complex step
method, which is similar
to finite differences, but
uses complex arithmetic.
We recall that a complex
number z is of the form
z = x + iy where x and
y are real and i = √-1.
All the arithmetic
operations for real
numbers also apply to
complex numbers. Most
real-valued functions
f(x) occurring in science

also have complex-valued
counterparts, and can be

written in the form f (z) ≈ Re f (z) + iIm f
(z) where the real-valued functions Re f and
Im f are known as the real and imaginary
parts. Taking z = x + ih where x is real
and h is real and small, the derivative is
approximated by f ’(x) ≈ Im f (x + ih)/ h.
Unlike the use of a finite difference formula,
h can be chosen to be very small without the
risk of cancellation errors. The complex
step is very straightforward to implement in
languages that support complex arithmetic.

The term automatic differentiation (AD)
generally applies to techniques that produce,
from a function evaluation software
component, a computational scheme, also
implemented in software, that calculates the
derivatives. The execution of any program,
no matter how complex, is built up from a
sequence of elementary arithmetic operations
(e.g. add, multiply) or elementary function
evaluations (e.g. sin, exp). This implies that
in any program, a function can be split into

Figure 4. Finding estimates of parameters from data
involves minimising a goodness-of-fit measure.

P A G E 5

atomic operations that involve no more
than two variables at a time. In automatic
differentiation, the rules of calculus are
applied to these atomic operations and are
combined appropriately according to the
algorithmic specification of the function.

The AD approach can be implemented in
two ways. In forward automatic differentiation
(FAD), the derivative information is
accumulated in the same order as for the
function evaluation. In reverse automatic
differentiation (RAD), the algorithm first
performs a forward sweep for the function
evaluation, storing, at the same time, the
information required for the derivative
computations. Then, in a second sweep, the
algorithm steps in the reverse direction to
that of the function generation and uses the
information saved from the forward sweep
to calculate the gradient. For many problems,
RAD can be considerably more efficient
than FAD.

In terms of software engineering, AD can
be implemented using operator overloading
and source-to-source transformation. In the
operator-overloading approach (for
languages such as Fortran 90 that support
it), the basic arithmetic operations and
intrinsic functions are re-assigned to
calculate the corresponding derivatives in
addition to the function values so that, at

the end of the computation, the derivative
information is also available. In source-to-
source transformation, the source code for
the function evaluation is analysed and
extended to produce source code to
evaluate the derivatives. Generally, the
implementation of source code transformation
requires much more effort than the operator
overloading approach.

When comparing the behaviour of the finite
difference approach (FD), the complex step
method (CS) , FAD and RAD on the
function f (x) = sin(1/x) with derivative,
f ’(x) = -(1/x2)cos(1/x), the finite

difference method is seen to be much less
accurate than the other three approaches.

Figure 5 illustrates the error for the CS,
FAD and RAD methods.

Further information on automatic
differentiation can be found in report
CMSC 26/03 Automatic differentiation
techniques and their application in metrology,
by R Boudjemaa, M G Cox, A B Forbes
and P M Harris.

For further information contact
Alistair Forbes, extension 6348
e-mail: alistair.forbes@npl.co.uk

Figure 5. Error in computing the derivative of f (x) = sin(1/x) for CS, FAD and

RAD. The band at zero indicates that the computed derivatives agreed with the

evaluated analytical derivative to machine precision.

Counting on IT

P A G E 6

SSfM-3 Formulation Update

The draft for public comment of the
Software Support for Metrology
programme for 2004-2007 (SSfM-3)

is now available. This document is the result
of six months’ consultation and development.

The consultation phase culminated in a
presentation to DTI and the Measurement
Advisory Committee Working Group
(MAC WG) at their annual review meeting
on 22 May. It had been intended that the
cost of the programme at that stage would
be 170% of the target of £3M, but there had
been so many worthwhile ideas put forward
that the programme as presented was over
200% of the target.

The draft programme for public comment
was reduced to 115% of the target based
on the scores the MAC WG members gave
to each topic presented. These scores were
used in combination with scores from the
completed questionnaires, received from
62 different respondents during the
consultation, and with information on
requests for joint projects from other
National Measurement System (NMS)
programmes. All this information was used
to select the most strongly supported set of
topics, combining or discarding the other
topics as appropriate.

These selected topics were then grouped
appropriately into themes, sub-themes and
projects in the Public Comment Document,
now available on both the DTI and SSfM
websites. Each theme was provided with an
aim, background and rationale, and a more
detailed aim was given for each sub-theme.
The deliverables and rationale were identified
for each project. The projects were classified
according to type of activity:

■ Development

■ Research

■ Maintenance

■ International liaison

■ Support for international traceability
and regulation

■ Knowledge transfer

■ Programme management

Figure 6 shows the make-up of the
programme by these activity types.

The themes selected for SSfM-3 in the draft
programme are as follows:

■ Modelling tools and techniques

■ Uncertainties and statistical techniques

■ Software development, testing and
validation

■ Applications and supporting
techniques

■ Generic knowledge transfer

■ Programme management

Figure 7 gives the division of the programme
by theme, showing that there is a good
balance between the themes.

The first three themes continue with topics
that have been central to the first two SSfM
programmes, whereas the fourth theme
tackles the following newer areas:

■ Data curation

■ Signal processing

■ Internet-enabled metrology

■ Support for soft metrology

Knowledge
transfer

27%

Programme
management

10%

Maintenance
9%

Development
31%

Research
16%

Traceability and
regulation

1%

International
liaison

6%

Figure 6. Composition of SSfM-3
by activity type

Software
development,

testing and
validation

14%

Generic
knowledge

transfer
23%

Programme
Management

11%
Modelling tools
and techniques

23%

Applications and
supporting
techniques

16%

Uncertainties and
statistical

techniques
13%

Figure 7. Composition of SSfM-3
by theme

P A G E 7

Measuring Properties of Optical Fibres

Optical fibres are used to carry
signals in many applications.
For example: links between

telephone sub stations, LANs, cable TV and
CCTV. Attenuation uniformity and loss of a
fibre can be measured using an Optical
Time Domain Reflectometer (OTDR). It is
important that the OTDR is calibrated to
give accurate results. In some cases it would
be convenient if this could be done in situ.

NPL has been taking a lead in the calibration
of a number of different instruments over
the internet. A demonstration of the
technology, based on previous work by
NPL and Adelard to develop a generic
internet solution for any instrument, has
been applied to the calibration of OTDRs.

The generic solution consists of a server
connected via a network to a PC that
contains some client software. The PC is
connected to the instrument to be calibrated,
and to any other equipment necessary for
the calibration. In this case, the OTDR
and associated instruments are connected
as shown in the diagram.

Software in the server controls the
calibration by sending instructions for the
operator, and commands for the OTDR
and attached instruments, to the client. The
client software delivers these instructions
and commands, and returns the responses to
the server for processing. All measurement
data is stored in the server in a MySQL
database, and all calculations are done on
the server.

The client software is written in Visual
Basic, and the server is written in PHP,
while the commands sent from the server
to the client are written in VBScript.

The current client software can have any
number of RS232 or GPIB interfaces, and
further interfaces are being considered. The
demonstration of the OTDR calibration
involves two RS232 and two GPIB interfaces
being used at the same time.

The same client software will be used across
the various internet calibration services, but
the server software will change according to
what is being calibrated.

For further information contact
Graeme Parkin, extension 7104
e-mail: graeme.parkin@npl.co.uk

Thermometer

ServerNetwork

Operator

Polarisation
Controller

Optical
Attenuator

Portable PC

Database

Optical Fibre

GPIB

Executes instructions
received from the server

returns data

Data and
instructions sent
using XML RPC

Controls the measurement
and processes the data

OTDR

RS232

RS232

The public comment period ended on
29 September and the comments are being
considered in producing the final draft of
the programme. The formulation will be
brought to a conclusion in the “Appraisal”
meeting, on 6 November, when DTI and
the MAC WG will decide what to cut from
the final draft programme to create the final
programme. They will also decide the
projects to be put out to competitive tender.

The final programme will be presented,
together with the supporting business case,
to the Minister for approval, in time for the
programme to start in April 2004.

For further information contact:
Dave Rayner, extension 7040,
e-mail: dave.rayner@npl.co.uk

Counting on IT

General CMSC enquiries

+44 20 8943 7100 (direct line)
+44 20 8977 7091 (facsimile)

Website: www.npl.co.uk/scientific_software

General NPL Helpline

For enquiries to NPL outside the scope of
CMSC, please use:

+44 20 8943 6880 (NPL Helpline)
+44 20 8943 6458 (Helpline facsimile)

Making contact
You can contact any of the experts directly by using the direct
dial number plus the extension or via e-mail.

Direct line +44 20 8943 + (extension)

Head of CMSC
Dave Rayner ext 7040 e-mail: dave.rayner@npl.co.uk

Software Support for Metrology Club
Wendy Johnson ext 6106 e-mail: ssfm@npl.co.uk
SSfM website: www.npl.co.uk/ssfm

If you have a general enquiry or do not know who you should
contact please call our general enquiries number and we will
be pleased to help you.

© Crown Copyright 2003. Reproduced by permission of the Controller of HMSO

National Physical Laboratory
Queens Road, Teddington, Middlesex, UK, TW11 0LW

Centre for Mathematics and Scientific Computing (CMSC)

SSfM website exceeds half a million hits

The growth in the number of accesses
to the SSfM-2 website continues:
we reached the 500,000 mark in

April 2003 and had already exceeded
600,000 by August.

The total number of accesses to our
documents area during this period was in
excess of 88,000. Best Practice Guide No. 1,
Measurement System Validation,
continues to enjoy its usual popularity.

The website remains the primary method
for distributing output from the programme.

For further information contact
Bernard Chorley, extension 7050
e-mail: bernard.chorley@npl.co.uk

Cumulative hits for SSfM since
April 2001

Number of downloads per best
practice guide, quarter 9

0

100000

200000

300000

400000

500000

600000

1 2 3 4 5 6 7 8 9

Quarter

N
o

. o
f

hi
ts

462

191

124

103
72121

186

138

234

80

214

BPG 1

BPG 2

BPG 3

BPG 4

BPG 5

BPG 6

BPG 7

BPG 8

BPG 9

BPG 10

BPG 12

10-11 November 2003, NPL Measurement
Software Design and Development, course
for software developers

2 December 2003, NPL Testing Numerical
Correctness of Scientific Software
Course for scientists and engineers

19-20 January 2004, Uncertainty
Evaluation and Associated Statistical
Modelling, one-and-a-half-day advanced
training course

27-28 January 2004, Scientific Computing
in Fortran 90/95, two-day course

Forthcoming Events

Visit www.npl.co.uk/training/schedule.html

Contact ssfm@npl.co.uk or Jan Kane on +44 20 8943 7100

