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Outline

• Optical frequency standards and optical  
clocks based on trapped ions

• Strontium ion trap standard at NPL
• Results of recent measurements and future 

prospects



A bit of history

50 years ago the definition of the second was
based upon the movement of the earth.

1955: First caesium atomic clock produced 
at NPL, accurate to 1 part in 1010.

1967: Caesium clock adopted as the basis
for the international definition of time.

The second is currently defined as

“the duration of 9 192 631 770 periods of the radiation
corresponding to the transition between the two hyperfine 
levels of the ground state of the caesium-133 atom”.



The NPL caesium fountain

Accuracy 1 � 10-15 (1�)

(with several days averaging time)
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Optical clocks
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instability

• Based on forbidden optical transitions in atoms or ions
• Frequencies �105 times higher than microwave frequencies
• Q-factor �1015 (or even higher)
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Trapped ion optical frequency 
standards or optical clocks

• Laser-cooled single trapped ion
• High-Q optical clock transitions (1015 or higher)
• Low perturbation environment



Quantum jumps

short-lived (�10 ns)

long-lived (�1 s)
strong
cooling
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Advantages of ion trap based 
optical standards

•No 1st-order Doppler shift (Lamb 
Dicke regime)

•Minimum 2nd-order Doppler shift

•Field perturbations minimised at 
trap centre

•Background collision rate low

•Electron shelving technique -
quantum jumps give high detection 
efficiency 



Laser Cooling

~h�0

h�L

�Laser �0 Frequency

Spectral profile for a 
Doppler-broadened  

absorption

Atom or ion is 
Doppler-shifted 
into resonance

ħkLaser Mvz

kLaser= ω/c= 2π/λlaser

For each photon absorption and 
emission the ion velocity is reduced 

dv  =  ħk / M

v(thermal)  ~  few x 100 metres per sec
dv    ~  few cm per sec

104 scattering events to reach mK level.



Trapped ion optical clock 
candidates

Ion       � Transition Linewidth Freq Laboratory
Theory Expt uncert.

----------------------------------------------------------------------------------------------------------------
88Sr+ 674 nm 2S1/2 - 2D5/2 0.4 Hz 70 Hz 1.5 Hz   NPL, NRC

199Hg+ 282 nm 2S1/2 - 2D5/2 1.7 Hz 7 Hz 1.5 Hz * NIST

171Yb+     435 nm 2S1/2 - 2D3/2 3 Hz 30 Hz 6 Hz PTB

115In+       236 nm 1S0 - 3P0 1 Hz 170 Hz       230 Hz   MPQ

171Yb+     467 nm 2S1/2 - 2F5/2 0.5 nHz       180 Hz       600 Hz   NPL

43Ca+ 729 nm 2S1/2 - 2D5/2 0.14 Hz        1 kHz - Uibk, CRL

27Al+ 266 nm 1S0 – 3P0,2 0.5 mHz - - NIST

*(unpublished)



88Sr+ term scheme
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Zeeman structure of the 88Sr+

clock transition
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Strontium endcap trap

V1

V2

Vaccos �t0.56 mm

� = 17.8 MHz
Vac ~ 260 V
V1, V2 ~ few V

Allows monitoring of ion motion along all three axes via rf-photon correlation

� 3D micromotion control



Experimental arrangement

PMT

422 nm cooling radiation

1092 nm DBR
diode laser

KNbO3 crystal
in build-up cavity AOM1

844 nm
extended cavity

diode laser

674 nm “clock” laser
AOM2

Sr+ trap

1092 nm repumper
EOM

polarization modulator

674 nm
probe laser



674 nm probe laser system

vibration-isolation platform

APD
�/4

PBS ULE high-
finesse etalon

fibre link674 nm
extended cavity

diode laser

FM sideband 
lock

current 
supply

to laser PZT

PBS

optical
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Probe laser linewidth
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Locking the probe laser to
the clock transition
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f1 f2 f3 f4 • Servo scheme uses two Zeeman 
components symmetrically placed 
about line centre

• Number of quantum jumps is 
sampled at four frequencies f1 to f4

• Error signals N2-N1 and N4-N3 are 
generated

• Applied correction combines proportional control �f = 

with “feed-forward” drift compensation to reduce servo errors

G (N2-N1)
(N1+N2)



Femtosecond optical
frequency comb

E(t)

I(f)

= �1
frep

�� 2��

2�f0 = �� frep

f0

frep

0 f

Time domain

Frequency domain

t

fn = n frep + f0



Self-referenced optical
frequency comb

fprobe = m frep � f0 � �

Offset frequency
f0

0

I(f)

f

Hydrogen-maser 
(Cs) referenced 
repetition rate  frep

�

Trapped ion probe laser

n1frep + f0
x 2

2n1frep + 2f0

beat = f0
if n2 = 2n1

n2frep + f0



Femtosecond optical
frequency comb

frep
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Stability of frequency 
measurements
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Electric quadrupole shift

Due to the interaction between the electric quadrupole moment of the 4d 2D5/2
state with any residual electric field gradient at the position of the ion.

Frequency shift of the 4d 2D5/2 state with magnetic quantum number mj is:

� �1cos 3
12
35 22 ��

�

�
�
�

�
��	 �� jmA

where A = 3 Qdc �(D,5/2) / 10 h
� = angle between quadrupole field axis and magnetic field

Qdc = quadrupole field gradient

�(D,5/2) = quadrupole moment of 4d 2D5/2 state

h = Planck’s constant
Qdc is determined from measurements of the trap secular frequencies and minimized by 
adjusting the voltages on the outer endcap electrodes.

The 4d 2D5/2 state quadrupole moment was measured see:

G. P. Barwood et al., Phys. Rev. Lett. 93, 133001 (2004)



Nulling the quadrupole shift

Method A:

• Select a particular pair of Zeeman components

• Carry out frequency measurements for three mutually orthogonal 
magnetic field directions

• Average quadrupole shift is zero

Method B:

• Carry out frequency measurements for three different pairs of Zeeman 
components, corresponding to |mj| = 1/2, 3/2, and 5/2

• Average quadrupole shift is zero independent of magnetic field direction

� �1cos 3
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88Sr+ frequency measurements: 
method A
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• Measurements carried out relative to the NPL caesium fountain

• Quadrupole shift nulled by measuring in 3 orthogonal B-field directions

• 6 days of data, statistical uncertainty 1.3 Hz

fSr = 444 779 044 095 484.3 (1.9) Hz



88Sr+ frequency measurements: 
method B
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• Measurements carried out relative to the NPL caesium fountain

• Quadrupole shift nulled by measuring for 3 different values of mj

• 5 days of data, statistical uncertainty 1.2 Hz

fSr = 444 779 044 095 484.8 (1.6) Hz



Uncertainty estimate

1.2-1.3-Statistics

1.6+1.31.9+0.7Total
0.100.10Gravitational shift
0.700.70Maser reference frequency
0.3-0.40.6-1.0Servo errors
0.8+1.40.8+1.4422 nm ac Stark shift

0.0200.0201092 nm ac Stark shift
0.08+0.300.08+0.30Blackbody Stark shift
0.01<0.010.01<0.01Stark shift (secular motion)
0.01+0.010.01+0.01Stark shift (micromotion)
0.01<0.010.01<0.012nd order Doppler shift (secular motion)
0.01<0.010.01<0.012nd order Doppler shift (micromotion)

<0.0100.50Quadrupole shift

Uncertainty (Hz)Shift (Hz)Uncertainty (Hz)Shift (Hz)
Method BMethod ASource



Comparison with previous results
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444 779 044 095 484.6(1.5) Hz

NPL (2003): Margolis et al., Phys. Rev. A 67, 032501 (2003)
NRC (2003): Madej et al., Phys. Rev. A 70, 012507 (2004)
NRC (2004): Dubé et al., CPEM 2004 book of abstracts
NPL (2004): Margolis et al., Science 306, 1355 (2004)



Stability
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674 nm probe laser linewidth 
improvements
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Allan deviation of beat between 
two probe lasers

Probe laser  stability

0.01
10

-15

10
-14

R
el

at
iv

e 
fr

eq
ue

nc
y 

st
ab

ili
ty 10

-13

0.1 1 10 100

Averaging time (seconds)



Conclusion

• A measured absolute frequency of
fSr = 444 779 044 095 484.6 (1.5) Hz

• Relative standard uncertainty � 3.4 � 10-15

– Within a factor of three of the NPL caesium fountain standard
• Accurate enough to put forward as a secondary representation of 

the second



What next?

• Improvements in 422 nm extinction ratio (reduced ac Stark shift)

• Reductions in probe laser linewidth and drift (reduced servo errors)

• Additional AOM giving a drift-free source for frequency measurements

• Second endcap trap to enable trap comparisons

• Frequency measurements using a second (higher repetition rate) 
femtosecond comb

A 88Sr+ optical frequency standard with stability 
and reproducibility exceeding that of the 

caesium fountain primary frequency standard

Our aim:
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Applications of atomic
frequency standards

• Realisation of SI units
– Time and length

• Fundamental physics
– Tests of QED, general relativity
– Measurements of fundamental constants
– Laboratory searches for time-variation of fundamental constants

• Satellite navigation and ranging
– GPS, Galileo and deep space

• Telecommunications
• Astronomy and survey

– Gravity wave detection
– Star and planetary survey using very deep baseline interferometry



Optical clock 

Science 293 825 (3 August 2001)
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