On-machine Measurement for Precision Corrective-polishing of Aspheres and Freeform Surfaces

David Walker, Christopher King
University College London
Zeeko Ltd & Zeeko Research Ltd
Based at the OpTIC Technium, North Wales

Sub-title

An update on an on-going product development

Acknowledgements

- Funding from PPARC (now STFC) PIPSS scheme
- Collaboration between UCL, Zeeko Ltd and the OpTIC Technium

Areas of interest include ...

- Optical lenses and mirrors
 - Head-up displays
 - Defence and space optics
 - Telescope and instrumentation optics
- Hip and knee joint implants
- Turbine blades
- Moulds and dies
- Mandrels for X-ray mirrors
- But, we'll address larger components for now!

The polishing technology

- Range of CNC polishing machines
 - Zeeko-Classic inflated bonnet tools
 - Fluid-jet polishing
- Polish rough surfaces
- Rectify measured form-errors

Numerical optimisation of process

Run machine

Measure surface form-error

Iterate

Finish

Measure tool removal function ('influence function')

Aspheres & free-form surfaces

- Measurement dynamic range
- Need for null ('corrective') optics
 - The Hubble Space telescope problem!

For large parts

- Risk of damage in handling
- Substantial down-time measuring off-machine,
 - moving the component
 - re-adjusting at test setup and back on machine
 - thermal stabilization

On-machine metrology

- Demountable interferometer module to fit tool-chuck of the larger Zeeko machines
- Overlapping sub-aperture measurements
 - Sub-apertures cover pupil optimally
 - Sub-apertures are stitched in software
 - Residuals in overlap-regions => estimate of uncertainty of stitched results

Advantages

- Increased dynamic range for on- and off- axis aspheres
- Close-up test reduces effects of air-turbulence
- Increased spatial resolution (more pixels)
- Handle large parts
- Handle steeply convex parts
- Possible application to convex/concave parts (e.g. saddles)

Key issues

- Size-envelope of module
- Environmental conditions
 - Vibration:- ambient, machine servos
 - Heat-load from machine and process
- Effectiveness of stitching software

Test-rig for software development

Stepper-motor rolling-element slide-ways

Old Zygo PTI interferometer with Vidicon

Vibration-isolated bench

Stitching

Individual phase-maps require correction for geometric distortion

 In the general case, stitching will not work well without distortion correction, especially on strongly-curved surfaces.

Effect of distortion

Stitching

- Stitching then proceeds by optimization of the residuals in the overlap areas.
- The stitching error is estimated from residual noise, merit function and analysing data in the sub-aperture overlap areas.

Example stitching a convex part

First results

1. Full aperture measurement

2. Raw sub-aperture measurements

3. Comparison

Full-aperture

Stitched

	RMS	PV
Full-aperture	32.0 nm	204 nm
Stitched	29.2 nm	208 nm

4. Difference full-aperture & stitched

PV=92 nm RMS 11 nm

Much of the residual error is systematic.
Calibration is predicted to leave a few nm residual.

Expect residuals
~ X10 improvement
after calibration

Stitching a part with complex features (140mm diameter)

Module design: vibration and thermal

- Collaboration with 4D Technologies Corp.
 - 4D are developing a compact version of their simultaneous phase-shift interferometers
 - Short exposures freeze vibration

- Interferometer tests in machine environment confirm suitability for metrology
 - Polishing environment is flooded with polishing slurry at constant temperature when in use.

Module concept in polishing machine

X,Y,Z,A,B motions

Next stages

- Validate stitching on aspheres
- Evaluate prototype 4D compact interferometer
- Integrate optics and interferometer into on-machine module
- Formal consideration of uncertainty of measurement
- Delivery of first commercial system

Thank you!