Structured Surfaces — the new paradigm in surface metrology

Professor Xiangqian Jane Jiang
Chair of Precision Metrology
Centre for Precision Technologies
University of Huddersfield
DAMC Meeting, Cranfield, 11th September 2007

Outline
• Overview of surface metrology
• What is the new paradigm?
• What are structured surfaces?
• How to classify structured surfaces?
• How to evaluate structured surfaces?

Overview of Surface Metrology
• 1940s
 – Mechanical instruments with 2RC analogue filter
• 1960-1970s
 – Digital instruments with mean line filter system
• 1980s
 – Larger range instruments (for form and texture measurement), started sound mathematical based approach
• 1990-2000s
 – Areal surface instrumentation (Optical, Stylus and AFM) and a well-defined characterisation system

1990’s & 2000’s
Dedicated Areal Surface Measurement Instruments

Field Parameters
Uses all the available data from the texture surface, which includes the S-parameter and V-parameter sets

Feature Parameters
Uses only data from previously identified segments from the texture surface.

Stochastic Surface Characterisation

Honed
Ground
Polished
Hand polished
EDM
EPI wafer
Stochastic Surface Characterisation

- Grounding wheel surface
- Steel sheet surface
- Biological surface
- Diamond-turned optical surface

New Types of Surfaces

- Optical de-pixelators
- Micro-lens mold
- 3M Abrasive Paper

What Is the New Paradigm — in Surface Metrology

- From Stochastic To Deterministic
- From Simple Geometry To Freeform

Metrology Faces — New Type of Surfaces

- Surfaces derived from:
 - Micro/nano manufacture technology
 - Ultra precision engineering
- Surface characteristics:
 - Simple or freeform shapes
 - Micro/nano dimensional/geometric deterministic pattern features

New Types of Surfaces

- High beam freeform reflectors
- Freeform reflector of fog lamp
- V-grooves
- Laser Zone Texture
- Fresnel lens
- MEMS/MST Devices

What Are Structured Surfaces

- Surface texture with deterministic patterns are called "structured surfaces" and include:
 - Non-rotationally symmetric patterns and linear patterns
 - Tessellations
- Characterisation of structured surfaces
 - From Statistics of a cloud of points
 - To Statistics of predefined surface features
How to Classify Structured Surfaces

It is proposed to classify structured surfaces into two types according to surface characteristics:

Type 1
- Fresnel lens

Type 2
- 3M Abrasive Paper

Type One: Patterned Surfaces

- Surfaces that include steps, edges and facets.
- An example is the Fresnel lens that is used to focus the light in lighthouses and in some modern car headlights.

Type Two: Tessellated Surfaces

- Surfaces that have a tessellated pattern, that is, a repeated structure over the surface.
- An example is a 3M abrasive surface which consists of an array of triangular based micron sized pyramids.

How to Evaluate Structured Surfaces

Initialised two evaluation techniques:

Type 1:
- Edge detection techniques (pattern recognition)
 - To detect the steps and edges which can be used to locate and orientate between the steps or edges.

Type 2:
- Segmentation in the autocorrelation function
 - To determine the unit tile, its geometrical shape and boundary.
 - To generate two translational vectors to provide the relationship between unit and neighbourhood.

Type 1: Edge Detection Techniques

- Enclosed contours to define sub-regions to generate a datum
- Mean Step = 4.25µm
- Unbiased step height
- Edge detection: Pattern Recognition Technique

Type 2: Tessellated Surface

- Tessellated surfaces have a 'repetitive' filled tessellation
 - A tessellation is a collection of tiles that fills the plane with no overlaps and no gaps.
- The most common tessellations have translational symmetry
 - It can be evaluated by a unit tile and two translational vectors which describe the two basic repetitive planar translations of the unit tile.
Type 2: Tessellated Surface

- For example, a tessellation model for the abrasive surface (3M paper surface), has a unit tile consisting of two adjacent triangular pyramids (one the mirror image of the other).

Type 2: Tessellated Surface Characterisation

- The areal autocorrelation function combined with segmentation can provide the information for symmetric translation surfaces.
 - The segment around the origin provides the unit tile.
 - From the relationship of the unit tile with other segments it is easy to determine two independent planar translational vectors.

Type 2: Tessellated Surface Characterisation

- The segmented areal autocorrelation function of the 3M Abrasive Surface shows:
 1. A unit tile (a quadrilateral consisting of two adjacent triangular pyramids at the origin).
 2. The relationship between the unit tile and its eight neighbours.
 3. Two translation vectors.
 4. An unit tile can be mapped by the two translational vectors onto adjacent congruent structures.

Tessellated Surface Characterisation

- An optical de-pixelator:
 1. A hexagonal unit tile
 2. Six adjacent neighbours
 3. Two translation vectors.

Summary

- Overview of surface metrology: 1940-2000’s
- What is the new paradigm? Structured surfaces, Freeform surfaces
- What are structured surfaces?
 - Surfaces with deterministic patterns or tessellated texture
- How to classify structured surfaces?
 - Type 1: Patterned Surface Geometry
 - Type 2 Tessellated Surface Texture
- How to evaluate structured surfaces?
 - Edge detection (Pattern Recognition Technique)
 - Segmentation on areal autocorrelation function (obtain a Unit and Two Vectors)

Structured Surfaces

- the new paradigm in surface metrology

Thank you for your attention

x.jiang@hud.ac.uk
Centre for Precision Technologies
University of Huddersfield
DAMC Meeting, Cranfield, 11th September 2007