Power Splitter Characterisation - EM Day

29 November 2007

James Miall (james.miall@npl.co.uk)
National Physical Laboratory
Teddington, UK

Contents

- Why we need to measure power splitters
- How they get measured
- Actual devices
- Circles!

Why do we need splitter measurements

- Power Splitters and Couplers are very useful in power sensor calibrations
- A splitter or coupler plus sidearm power sensor can form a transfer standard to calibrate 1 power sensor against another
- In order to do an accurate calibration a Mismatch Correction should be made
- This requires the reflection coefficient of any power sensors and the Equivalent Output Port Match of the splitter or coupler

2 Resistor splitters

- If used in a levelling-loop or ratio system a 2 resistor splitter gives a broadband low value for effective source reflection coefficient
- If used as a simple passive device it has
 $\mathrm{S}_{22}\left(\right.$ or $\left.\mathrm{S}_{33}\right) \sim 0.25$

Ways to characterise splitters:

- 2-port S-parameter Measurements equivalent output mismatch can then be calculated
- Direct method - measures equivalent output mismatch directly
- Tuned load method

- Adjust tuned load until zero power appears at port 3
- Reflection coefficient looking into port 2 is effective source match
- Does not work with splitters
- with size > 0
- with loss on port 1 (requires tuned source instead)

2-port Measurement method employed (1)

- S-parameters of "partial 2-ports" measured using National Standard measurement system (PIMMS)

- Also VRC of terminating load measured using PIMMS

2-port Measurement method employed (2)

- Matrix renormalisation employed to obtain Sparameters of splitter 3-port following Tippet \& Speciale
- Measurands calculated from splitter S-parameters
- Monte-Carlo Simulation employed to estimate uncertainties in measurands

References:

- Tippet \& Speciale 'A Rigorous Technique for Measuring the Scattering Matrix of A Multiport Device with a 2-Port Network Analyser', IEEE Trans. Microwave Theory Tech., May 1982

Matrix renormalisation to obtain Sparameters of splitter 3-port

NORMALISED TO 50Ω AT BOTH PORTS

NORMALISED TO 50Ω AT ALL THREE PORTS
:1 : $:$

$\left[\begin{array}{ll}* & * \\ * & *\end{array}\right] \quad\left[\begin{array}{ll}* & * \\ * & *\end{array}\right]$

NORMALISED TO Z_{0}
AT BOTH PORTS

NORMALISED TO Z Z_{0}
AT ALL THREE PORTS

Some results for a 3.5 mm splitter

$u_{\text {VSWR }} \sim 0.03 \quad u_{s} \sim 0.015 \quad u_{S 11} \sim 0.006$

Direct method - Description

- How it works:
- Connect unused ports of splitter to VNA
- Attach 3 known impedances to $3^{\text {rd }}$ port
- Take 2 of the uncalibrated S-parameters from network analyser measurements for each impedance
- Solve equations
- Equivalent to a 'normal' 1-port calibration

References:

- J. Juroshek 'A Direct Calibration Method for Measuring Equivalent Source Mismatch’, Microwave Journal, Oct 1997, pp 106-118
- M. Rodriguez 'A Semi-Automated Approach to the Direct Calibration Method for Measurement of Equivalent Source Match', ARMMS Conference, April 1999

Direct method - Mathematics

Direct method - Uncertainties

For the measurement of a well matched 2 resistor splitter with a Short, Open and Load as the known impedances the uncertainty is:

$$
u_{E s f} \approx \sqrt{2 u_{L}^{2}+u_{O}^{2}+u_{S}^{2}+\text { random }+V N A}
$$

i.e. the Load is an important contribution (although the uncertainty on this should be smaller than on either the Short or Open)

Problems

- Need access to all 3 ports of device
- This is not possible in many situations such as transfer standards or Tegam / Weinschel-style sensors
- How should a calibration laboratory characterise these devices?

Mathematics 1

Define Equations:

$$
P_{D U T}=P_{T S} \cdot \frac{\left|1-\left|\Gamma_{D U T}\right|^{2}\right\rfloor \cdot\left\lfloor 1-|S|^{2}\right\rfloor}{\left|1-S \cdot \Gamma_{D U T}\right|^{2}}
$$

Where S is the source match of the output port that we are trying to find

If you expand out the terms into their real and imaginary

$$
|o+j \cdot p|^{2}=o^{2}+p^{2}
$$ parts and use:

Mathematics 2

Then you can rearrange the equation into the form:

$$
S_{r}^{2}+S_{i}^{2}+a \cdot S_{r}+b \cdot S_{i}+c=0
$$

with:

$$
\begin{array}{ll}
a=\frac{-2 \cdot \Gamma_{r}}{\Gamma_{r}^{2}+\Gamma_{i}^{2}+k} & b=\frac{-2 \cdot \Gamma_{i}}{\Gamma_{r}^{2}+\Gamma_{i}^{2}+k} \quad c=\frac{1-k}{\Gamma_{r}^{2}+\Gamma_{i}^{2}+k} \\
k=\frac{1-\Gamma_{r}^{2}-\Gamma_{i}^{2}}{R} \quad R=\frac{P_{D U T}}{P_{T S}}
\end{array}
$$

Using just the real parts of a and b this is the equation for a circle offset from the origin
(actually equation in general is for a conic section but neither a hyperbola or parabola is possible)

Mathematics 3

A more recognisable form might be:

$$
\left(S_{r}+d\right)^{2}+\left(S_{i}+e\right)^{2}=f^{2}
$$

with:

$$
d=\frac{a}{2} \quad e=\frac{b}{2} \quad f^{2}=\left(\frac{a}{2}\right)^{2}+\left(\frac{b}{2}\right)^{2}-c
$$

So from one measurement of power ratio with a sensor of known VRC we define a circle of possible source match values (this does not correspond to knowing the magnitude and not knowing the phase though!)

Circles

Once we have done a second measurement the circles should cross at (1 or) 2 points. If they don't cross at all then there has probably been a mistake in the measurements.

Once we have done 3 measurements then all 3 circles should cross at 1 point which we then need to find.

The problem

- Finding the intersection of 3 circles is not tricky if they do all actually cross at a single point
- As there will be some error associated with the circle centres and radii then they may instead meet each other at 0,1 or 2 points
- Giving 0-6 potential crossing points
- How do we decide which are the best
set?

Finding A Robust Solution

- Often the correct solution will be obvious to the eye such as a set of 3 points forming a small triangle
- Sometimes it will be less obvious, for example the situation to the right
- What we really have here is a crossing area, however it is useful to define a single point
- Several methods were tried and 1 that was fairly simple and worked in most cases tried
- It finds the set of 3 points from the 6 that give the minimum
 perimeter triangle (i.e. the closest together) and takes the average of the coordinates of these 3 to define a nominal "meeting point"

MathCAD...

$$
r_{\text {DUT }}=\varepsilon\left[r_{D U T}\right) \quad r_{\text {DUT }}=\cdots\left[\Gamma_{D U T}\right)
$$

uirere sis te sarce makh or tie culbul pal thal we ae bitra io

$$
(1++\infty)=0^{2}+0^{\circ}
$$

Tien youcan rearasye tre equatoninb ive kina:
wh:

$$
\begin{aligned}
& -\frac{-2 \boldsymbol{r}_{z}^{2}}{\boldsymbol{r}_{t}^{2}+\boldsymbol{r}_{2}^{2}+k} \quad-\frac{2 \boldsymbol{r}}{\boldsymbol{r}_{t}^{2}+\boldsymbol{r}^{2}+k} \\
& -\frac{r_{2}}{\boldsymbol{r}_{r}^{2}+\boldsymbol{r}_{2}^{2}+k}
\end{aligned}
$$

$-\left(\begin{array}{c}0.018 \\ -0.011 \\ 0.019\end{array}\right) \quad-\left(\begin{array}{c}-0.098 \\ 0.418 \\ 0.150\end{array}\right) \quad-\left(\begin{array}{c}1.63 \times 10^{-} \\ 0.056 \\ 0.084\end{array}\right.$

 namisaza

${ }^{18}\left|{ }^{17}+{ }_{21}\right|<4$
tren te clicles cross
podnl
 natrecostina circles:
$\operatorname{Ln}_{1}\left(4_{1}, c_{1}, x_{1}, d_{2}, c_{2}, x_{2}\right)=\frac{d_{1}}{1}+\frac{d_{2}-d_{1}}{2}\left[+\frac{t_{1}-t_{2}}{\sqrt{\left(d_{2}-d_{1}\right)+\left(r_{2}-c_{1}\right)}}\right.$
$\operatorname{lu}_{1},\left(4_{1}, c_{1}, x_{1}, d_{2}, c_{2}, 2_{2}\right)=c_{1}+\frac{c_{2}-c_{1}}{2}\left[1+\frac{r_{1}-c_{2}}{\sqrt{\left(d_{2}-d_{1}\right)+\left(c_{2}-c_{1}\right)}}\right]$ $\ln _{4}\left(d_{1}, c_{1}, x_{1}, d_{2}, c_{2}, r_{2}\right)=d_{1}+\frac{d_{2}-d_{1}}{2}\left[+\frac{t_{1}+t_{2}}{\sqrt{\left(d_{2}-d_{1}\right)+\left(E_{2}-c_{1}\right)}}\right.$
$\ln _{1}\left(u_{1}, c_{1}, x_{1}, d_{2}, c_{2}, c_{2}\right)-c_{1}+\frac{c_{2}-c_{1}}{2}\left[1+\frac{r_{1}+t_{2}}{\sqrt{\left(d_{2}-d_{1}\right)+\left(c_{2}-c_{1}\right)}}\right.$
Tiese + xucions glive tex x and y cocatinaks of the 2 crossiny pants
$x\left(u_{1}, c_{1}, n_{1}, d_{2}, c_{2}, n_{2}\right)-\frac{d_{2}+d_{1}}{2}+\frac{\left(d_{2}-d_{1}\right)\left(r_{1}^{2}-n_{2}^{2}\right)}{\left.2\left[山_{2}-d_{1}\right)^{2}+\left(e_{2}-c_{1}\right)\right]}$
$x\left[u_{1}, c_{1}, \varepsilon_{1}, d_{2}, c_{2}, c_{2}\right)=\frac{c_{2}-c_{1}}{2\left[\left[d_{2}-d_{1}\right\}+\left(\varepsilon_{2}-c_{1}\right)\right]} \sqrt{\left(\left[1+c_{2}\right)-\right.}$
$2\left(f_{1}, c_{1}, c_{1}, d_{2}, c_{2}, n_{2}\right)=\frac{c_{2}+c_{1}}{2}+\frac{\left(c_{2}-c_{1}\right)\left(n_{1}^{2}-c_{2}\right)}{\left.2\left[u_{2}-d_{1}\right)+\left(c_{2}-c_{1}\right)\right]}$

Elyustons ured bplol tre graphs laker

 indera)

mol lakeiviry
comple ely outide nol
baciviry
ackiving el ter ance or

Veckes oral tex xam y coordinaks of tre inkrsectone ownen worniy wh

$$
4\left(u_{1}, u_{2}, u_{3}, v_{1}, v_{2}, v_{3}\right)-\sqrt{\left(u_{1}-u_{2}\right)+\left(v_{1}-v_{2}\right)}+\sqrt{\left(u_{1}-u_{3}\right)+\left(v_{1}-\sqrt{)}\right)}+\sqrt{\left(u_{3}-u_{2}\right)+\left(v_{3}-v_{2}\right)}
$$

Detre te Xuciton aser all comblinatone or 3 tom ar

$$
=0 . .5 \quad-0 . .5 \quad k=0.5
$$

Averaye te coodiliaks of tre 3 cioses
pants

Conclusions

- Power splitters can be measured in a variety of ways
- Measuring power splitters can be tricky without access to all ports!

