Power Splitter Characterisation – EM Day

29 November 2007

James Miall (james.miall@npl.co.uk)
National Physical Laboratory
Teddington, UK
Contents

• Why we need to measure power splitters

• How they get measured

• Actual devices

• Circles!
Why do we need splitter measurements

- **Power Splitters** and **Couplers** are very useful in power sensor calibrations

- A **splitter** or coupler **plus sidearm power sensor** can form a **transfer standard** to calibrate 1 power sensor against another

- In order to do an accurate calibration a **Mismatch Correction** should be made

- This requires the reflection coefficient of any power sensors and the **Equivalent Output Port Match** of the splitter or coupler
2 Resistor splitters

- If used in a levelling-loop or ratio system a 2 resistor splitter gives a broadband low value for effective source reflection coefficient

- If used as a simple passive device it has
 \(S_{22} \) (or \(S_{33} \)) \(\sim 0.25 \)
Ways to characterise splitters:

- 2-port S-parameter Measurements - equivalent output mismatch can then be calculated

- Direct method - measures equivalent output mismatch directly

- Tuned load method
Tuned load method

- Adjust tuned load until zero power appears at port 3
- Reflection coefficient looking into port 2 is effective source match
- Does not work with splitters
 - with size > 0
 - with loss on port 1 (requires tuned source instead)
2-port Measurement method employed (1)

- S-parameters of “partial 2-ports” measured using National Standard measurement system (PIMMS)

- Also VRC of terminating load measured using PIMMS
2–port Measurement method employed (2)

- Matrix renormalisation employed to obtain S-parameters of splitter 3-port following Tippet & Speciale
- Measurands calculated from splitter S-parameters
- Monte-Carlo Simulation employed to estimate uncertainties in measurands

References:
Matrix renormalisation to obtain S-parameters of splitter 3-port

\[
\begin{bmatrix}
* & * \\
* & * \\
\end{bmatrix}
\xrightarrow{\text{RENORMALISE}}
\begin{bmatrix}
* & * \\
* & * \\
\end{bmatrix}
\xrightarrow{\text{ASSEMBLE}}
\begin{bmatrix}
* & * & * \\
* & * & * \\
\end{bmatrix}
\xrightarrow{\text{RENORMALISE}}
\begin{bmatrix}
* & * & * \\
* & * & * \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
* & * \\
* & * \\
\end{bmatrix}
\xrightarrow{\text{NORMALISED TO Z₀}}
\begin{bmatrix}
* & * \\
* & * \\
\end{bmatrix}
\xrightarrow{\text{NORMALISED TO Z₀}}
\begin{bmatrix}
* & * & * \\
* & * & * \\
\end{bmatrix}
\]

NORMALISED TO 50 Ω AT BOTH PORTS
NORMALISED TO 50 Ω AT ALL THREE PORTS
NORMALISED TO Z₀ AT BOTH PORTS
NORMALISED TO Z₀ AT ALL THREE PORTS
Some results for a 3.5 mm splitter

$u_{VSWR} \approx 0.03 \quad u_S \approx 0.015 \quad u_{S11} \approx 0.006$
Direct method - Description

• How it works:
 – Connect unused ports of splitter to VNA
 – Attach 3 known impedances to 3rd port
 – Take 2 of the uncalibrated S-parameters from network analyser measurements for each impedance
 – Solve equations

• Equivalent to a ‘normal’ 1-port calibration

References:
Direct method - Mathematics

\[
\begin{pmatrix}
1 & L \cdot \Gamma_L & \Gamma_L \\
1 & O \cdot \Gamma_O & \Gamma_O \\
1 & S \cdot \Gamma_S & \Gamma_S \\
\end{pmatrix}
\begin{pmatrix}
E_{DF} \\
E_{SF} \\
E \\
\end{pmatrix}
=
\begin{pmatrix}
L \\
O \\
S \\
\end{pmatrix}
\]

where

\[
E = E_{RF} - E_{DF} \cdot E_{SF}
\]

and

\[
\frac{L}{O} / S = \frac{S_{11,raw}}{S_{21,raw}} \] with \(L/O/S\)-attached
Direct method - Results

Example measurement of the equivalent output port mismatch of a Weinschel 1870A 2-resistor power splitter with type-N connectors.
Direct method – Uncertainties

For the measurement of a well matched 2 resistor splitter with a Short, Open and Load as the known impedances the uncertainty is:

\[u_{Esf} \approx \sqrt{2u_L^2 + u_O^2 + u_S^2 + \text{random} + VNA} \]

i.e. the Load is an important contribution (although the uncertainty on this should be smaller than on either the Short or Open)
Problems

• Need access to **all 3 ports** of device

• This is not possible in many situations such as *transfer standards* or *Tegam / Weinschel-style* sensors

• How should a calibration laboratory characterise these devices?
Define Equations:

\[P_{DUT} = P_{TS} \cdot \frac{|1 - |\Gamma_{DUT}|^2| \cdot |1 - |S|^2|}{|1 - S \cdot \Gamma_{DUT}|^2} \]

Where \(S \) is the source match of the output port that we are trying to find.

If you expand out the terms into their real and imaginary parts and use:

\[|o + j \cdot p|^2 = o^2 + p^2 \]
Mathematics 2

Then you can rearrange the equation into the form:

\[S_r^2 + S_i^2 + a \cdot S_r + b \cdot S_i + c = 0 \]

with:

\[
\begin{align*}
a &= \frac{-2 \cdot \Gamma_r}{\Gamma_r^2 + \Gamma_i^2 + k} \\
b &= \frac{-2 \cdot \Gamma_i}{\Gamma_r^2 + \Gamma_i^2 + k} \\
c &= \frac{1-k}{\Gamma_r^2 + \Gamma_i^2 + k} \\
k &= \frac{1-\Gamma_r^2 - \Gamma_i^2}{R} \\
R &= \frac{P_{DUT}}{P_{TS}}
\end{align*}
\]

Using just the real parts of \(a \) and \(b \) this is the equation for a \textbf{circle offset from the origin} (actually equation in general is for a conic section but neither a hyperbola or parabola is possible)
A more recognisable form might be:

\[(S_r + d)^2 + (S_i + e)^2 = f^2\]

with:

\[d = \frac{a}{2}, \quad e = \frac{b}{2}, \quad f^2 = \left(\frac{a}{2}\right)^2 + \left(\frac{b}{2}\right)^2 - c\]

So from one measurement of power ratio with a sensor of known VRC we define a circle of possible source match values (this does not correspond to knowing the magnitude and not knowing the phase though!)
Circles

Once we have done a second measurement the circles should cross at (1 or) 2 points. If they don't cross at all then there has probably been a mistake in the measurements.

Once we have done 3 measurements then all 3 circles should cross at 1 point which we then need to find.
The problem

• Finding the intersection of 3 circles is not tricky if they do all actually cross at a single point
• As there will be some error associated with the circle centres and radii then they may instead meet each other at 0, 1 or 2 points
• Giving 0-6 potential crossing points
• How do we decide which are the best set?
Finding A Robust Solution

- Often the correct solution will be obvious *to the eye* such as a set of 3 points forming a small triangle
- Sometimes it will be less obvious, for example the situation to the right
- What we really have here is a crossing *area*, however it is useful to define a *single point*
- Several methods were tried and 1 that was fairly simple and worked in most cases tried
- It finds the *set of 3 points* from the 6 that give the *minimum perimeter triangle* (i.e. the closest together) and takes the average of the coordinates of these 3 to define a nominal "meeting point"
Conclusions

• Power splitters can be measured in a variety of ways
• Measuring power splitters can be tricky without access to all ports!