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Polar representations are popular, but are they a good way of report-
INg uncertainty in a complex quantity?

= Uncertainty in the complex plane — geometry
m Polar — rectangular

= Rectangular — polar

= Checks and balances?

= ‘Polarised’ uncertainty statements?




Notes

This talk is based on some published work (B. D. H&tlme considerations related to the
evaluation of measurement uncertainty for complex-valued quantities in radio frequency
measurements, Metrologia (200744 L62-L67.)

Begin by reviewing the geometry of uncertainty in the compiane: the idea of a re-
gion/ellipse (rather than an interval) associated withsgme values of the measurand and
the relationship of that ellipse to the calculated covargamatrix (i.e., how the geometry of
the ellipse is related to the matrix properties)

Show how to take a statement of uncertainty in polar co-atémand calculate a covariance
matrix (in rectangular co-ordinates)

Show how to take a covariance matrix and calculate uncéytairpolar co-ordinates

Are these calculations safe? Do we loose information aldmihteasurement uncertainty
when performing these transformations? How do we find out?

Can we check to see if the transformation is ‘safe’?

Is there an alternative to polar uncertainty statements?
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= Uncertainty is associated with a region in the complex plane
= We think that the measurand is inside the region

m Units are the same in both directions



Notes

m A complex value is represented as a point in the complex plane

® Uncertainty in a complex value represents what we know athaulikely errors in the real
and imaginary components.

®m The locus of possible error values forms a region in the ceriplane.

®m A conventional shape for an uncertainty region is an ellpssered on the estimate of the
guantity.
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Notes

In real-valued uncertainty calculations it is common tosprg uncertainty calculations in
terms of a standard deviation associated with the quarttitp@rest. This is creating a false
impression that the standard deviation is the importamissitaal quantity.

In fact the important quantities in those calculations hea/ériances andcovariances.

In the complex case, the variance-covariance matrix aaativith the two components of
the complex quantity is fundamental.

A 2 x 2 variance-covariance matrix is associated with every infteequantity in order to
evaluate the x 2 variance-covariance associated with the measuremerit. resu

The variance-covariance matrix determines the shape dlipécal uncertainty region.
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A circle is the simplest uncer-
tainty region

m Real and imaginary uncer-
tainties are equal

u(rre) = u(Tim) = u(x)

m No correlation:

T(ZTre, Tim) = 0

m Simple covariance matrix

"5 A

Aimag

\ dia ~ u(x)

real



Notes

m Acircle in the complex plane is the simplest form of uncernaregion.
® Itrepresents

1 errors of equal variance (likelihood of a certain magnitatierror is the same) in the
real and imaginary components

| independent errors in the real and imaginary components

® Note, thedistributionis not circular: a circular uncertainty region does NOT iynglniform
circular distribution.
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Notes

®m |f the major and minor axes of the ellipse align with the read anaginary axes there is no
correlation between the estimates of the real and imagit@mnponents.

® The square root of the covariance matrix eigenvalues agmptional to the real and imagi-
nary standard uncertainties
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Notes

®m The principal axes (along the directions of the covarianagrimeigenvectors) are no longer
aligned with the real and imaginary axes.

® This signifies correlation between the estimates of thearedlimaginary components

® The covariance matrix eigenvalues do not have a simplaoekdtip to the real and imagi-
nary standard uncertainties
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A single summary value for the covariance matrix is useful but two
are in common use

= Total Variance [recommended]

[1 The trace of the covariance matrix
L Ve = A1 + Ao

[] Think of the standard variance of the sum
of the real and imaginary components

m Generalized Variance [not recommended]

[1 The determinant of the covariance matrix
I Vo= A1+ A (NB, units are different)

[] If one component has little or no uncertainty
Vo — 0, hiding uncertainty in the other com-
ponent



Notes

® The variance-covariance has 4 elements, so it is convetoidiatve single-valued magnitude
for the covariance matrix.

® Two common choices are;

| Total Variance: the trace of the covariance matrix

| Generalized Variance: the determinant of the covariandexna

® These can be related to the geometry of the uncertaintynrdyiconsidering the eigenvalues
of the covariance matrix:

| The Total Variance is equal to the sum of the eigenvaluesuniinsarises the uncer-
tainty but ignores correlation.

| The Generalized Variance is equal to the product of the gajeas, so it is a measure

of the surface extent of the region (proportional to the aaaared of the region) —
note, it doesn’t have the units of variance!

| Note, these measures do not change under a rotation of tbedowte axes (the
eigenvalues don’'t change)

®m The Total Variance is preferred for metrology. Itis relatethe combined standard variance
of (the sum of) the real and imaginary components.

® The Generalized Variance is not as useful for metrology bsea one component has lit-

tle or no uncertainty the GV~ 0, which could hide significant uncertainty in the other
component
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Procedure (approximate):

m Write down a covariance
matrix Iin coordinates
aligned with polar axes

Ve [0 ol

u(xy) = xp tan u(xy)

= Transform to rectangular
coordinates by rotation

V:R%VrtR;(b




Notes

® This method is NOT exact. It may not work very well if the cuiua in the polar coordinates
is significant.

® The matrix
R. — COSTy  — sin T
e T |sinxg COS T ¢

m |f there is correlation betwees andr then the off-diagonal elements 8.+ need to be
entered too.
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u(x) =/ Vi (1,1)
u(zy) = tan™ (\/Vrt(2, 2)/x,
r=V(1,2)/v/ Vi (1, 1)V (2,2)




Notes

® This method is NOT exact. It may not work very well if the cuiua in the polar coordinates
is significant.

® We do not think that it is a good idea to transform uncertagttements from rectangular
to polar coordinates. However, if you insist, then this is @ray to do it.

® In calculating the correlation coefficientwe also assume that the correlation is unchanged
by transforming from the ‘polarised’ coordinates back téap@oordinates. This too is an
approximation.
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Test by simulation
m Choose p, e, and ey

1. Simulate observations of x, and z

2. Apply the procedure to obtain V

3. Does the uncertainty region contain p?
4. Simulate again (go back to step 1)

m Expect close to a 95% success-rate over a large
number of simulations




Notes

Assume that if the procedure works well on data sets sinvléndse obtained in real mea-
surements, then it is reliable

Take the standard uncertaintieéx,) andu(z,) to be the standard deviations of the un-
known errorse; andeg

Use random number generators to simulate experimentdtgeptoviding sets of data to
test the procedure

In this case, we will add Gaussian random numbers with zesnmad standard deviations
u(xy) andu(x4) to the polar coordinates of to obtain simulated observations

A general procedure for this could be more complicated ,(d.§jnite degrees-of-freedom
were considered)
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m Data

®= Increased phase uncertainty

Uncertainty success-rate
2u(1“¢) 94 %




Notes

®  Assume that the errors in magnitude and phase are indepgisdehere are no off-diagonal
matrix elements)

® The diagonal elements & .+ are roughly the same size, which means that the ellipse
roughly circular

®  When the standard uncertainty in phase is increased fidetfed covariance matrix element
increases 25-fold.

® When the standard uncertainty in phase is increased fidg-fioiepresents d° standard
uncertainty in the phase
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Is the Intermediate matrix an alternative? N A
Introduction = The ‘polarised’ covariance matrix Is ‘like’ an uncertainty
Complex uncertainty statement in polar coordinates

— covariance matrix
— circular regions
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- other measures = Homogeneous units are insightful when dealing with a
Polar— rectangular . .
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Rectangular— polar

[] radial and tangential uncertainties

Validation ] ) ]
Example | (1 Why have different tangential units?
TS [] Perhaps some measurements are not really about

the complex quantity?

~ u(zy)

~ u(zy)




Notes

®m The ‘polarised’ covariance matrix could be reported, iadtef the real-imaginary covari-
ance matrix, without any of the loss of information that gath the transformation to polar
coordinates. Would there be any merit in that?

® [t is more informative to look at the ‘polarised’ covariang®trix if one is considering a
complex quantity because the units are homogeneous. Arstateof uncertainty in polar
coordinates on the other hand is hard to visualise in the Bogbane.

®m Forinstance, how easy is it to see that the uncertainty negithe offset-short example is
nearly circular? Given only the data in polar coordinatgsjtiite hard: given the ‘polarised’
covariance matrix it is trivial.

® Where does the real ‘demand’ come from for statements ofrtaingy in polar coordinates?

| Are we actually considering the magnitude and phase asdistal quantities? (In
which case, GUM methods apply and we do not need to get tamglexa bivariate
uncertainty propagation.)

| Are we simply captured by a legacy of engineering formula taquire phase as an
argument?
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A simple method can transform uncertainties between po-
lar and rectangular coordinates

[] to a covariance matrix from polar uncertainty
[] to polar uncertainty from a covariance matrix

The method is approximate

[] Trigonometric functions needed to handle phase

The intermediate ‘polarised’ covariance matrix may be
useful in reporting uncertainty without information loss

[] What is the purpose of the measurement?
[ Is the quantity of interest just a component?



Notes

The method of transforming between polar and rectangulandooates is easy to apply
The method can loose information in some cases (it is apmiabe)
The intermediate step in which a ‘polarised’ covariancerixa obtained is interesting

| Could it be used to report results when the polar coordirtags some fundamental
meaning to the measurement?

| Can it help to wean people off polar coordinates?

Why do people really want to work in polar coordinates anywdood to discuss this).
A homogeneous set of units is appropriate for a complex agy&nire we confusing some
cases where the problem is univariate with others whereiveziate?
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