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Polar representations are popular, but are they a good way of report-
ing uncertainty in a complex quantity?

■ Uncertainty in the complex plane – geometry

■ Polar→ rectangular

■ Rectangular→ polar

■ Checks and balances?

■ ‘Polarised’ uncertainty statements?



Notes

■ This talk is based on some published work (B. D. Hall,Some considerations related to the
evaluation of measurement uncertainty for complex-valued quantities in radio frequency
measurements, Metrologia (2007)44 L62-L67.)

■ Begin by reviewing the geometry of uncertainty in the complex plane: the idea of a re-
gion/ellipse (rather than an interval) associated with possible values of the measurand and
the relationship of that ellipse to the calculated covariance matrix (i.e., how the geometry of
the ellipse is related to the matrix properties)

■ Show how to take a statement of uncertainty in polar co-ordinates and calculate a covariance
matrix (in rectangular co-ordinates)

■ Show how to take a covariance matrix and calculate uncertainty in polar co-ordinates

■ Are these calculations safe? Do we loose information about the measurement uncertainty
when performing these transformations? How do we find out?

■ Can we check to see if the transformation is ‘safe’?

■ Is there an alternative to polar uncertainty statements?
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imag

real

■ Uncertainty is associated with a region in the complex plane

■ We think that the measurand is inside the region

■ Units are the same in both directions



Notes

■ A complex value is represented as a point in the complex plane.

■ Uncertainty in a complex value represents what we know aboutthe likely errors in the real
and imaginary components.

■ The locus of possible error values forms a region in the complex plane.

■ A conventional shape for an uncertainty region is an ellipsecentered on the estimate of the
quantity.
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The covariance matrix characterises uncertainty

■ Key information:

◆ real cpt: u(xre)

◆ imaginary cpt: u(xim)

◆ correlation: r(xre, xim)

■ Covariance matrix

V =

[

v11 v12

v21 v22

]

v11 = u
2(xre)

v12 = u(xre) r(xre, xim) u(xim)

v21 = v12

v22 = u
2(xim)

■ The contour of an uncer-
tainty region is defined by

(ξ − x)′V−1(ξ − x) = c
2

real

imag ξ3

ξ2

ξ1

x



Notes

■ In real-valued uncertainty calculations it is common to present uncertainty calculations in
terms of a standard deviation associated with the quantity of interest. This is creating a false
impression that the standard deviation is the important statistical quantity.

■ In fact the important quantities in those calculations are thevariances andcovariances.

■ In the complex case, the variance-covariance matrix associated with the two components of
the complex quantity is fundamental.

■ A 2 × 2 variance-covariance matrix is associated with every influence quantity in order to
evaluate the2 × 2 variance-covariance associated with the measurement result.

■ The variance-covariance matrix determines the shape of theelliptical uncertainty region.
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A circle is the simplest uncer-
tainty region

■ Real and imaginary uncer-
tainties are equal

u(xre) = u(xim) = u(x)

■ No correlation:

r(xre, xim) = 0

■ Simple covariance matrix
[

u
2(x) 0
0 u

2(x)

]

real

imag

dia ∼ u(x)



Notes

■ A circle in the complex plane is the simplest form of uncertainty region.

■ It represents

◆ errors of equal variance (likelihood of a certain magnitudeof error is the same) in the
real and imaginary components

◆ independent errors in the real and imaginary components

■ Note, thedistribution is not circular: a circular uncertainty region does NOT imply auniform
circular distribution.
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■ Principal axes are parallel to the real and imaginary axes

■ Diagonal covariance matrix:
[

u2(xre) 0
0 u2(xim)

]

∼ u(xim)
∼ u(xre)

xre

xim



Notes

■ If the major and minor axes of the ellipse align with the real and imaginary axes there is no
correlation between the estimates of the real and imaginarycomponents.

■ The square root of the covariance matrix eigenvalues are proportional to the real and imagi-
nary standard uncertainties
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■ Principal axes are rotated

■ Covariance matrix:
[

u2(xre) r u(xre)u(xim)
r u(xre)u(xim) u2(xim)

]

√
λ1

√
λ2



Notes

■ The principal axes (along the directions of the covariance matrix eigenvectors) are no longer
aligned with the real and imaginary axes.

■ This signifies correlation between the estimates of the realand imaginary components

■ The covariance matrix eigenvalues do not have a simple relationship to the real and imagi-
nary standard uncertainties
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A single summary value for the covariance matrix is useful but two
are in common use

■ Total Variance [recommended]

◆ The trace of the covariance matrix

◆ VT = λ1 + λ2

◆ Think of the standard variance of the sum
of the real and imaginary components

■ Generalized Variance [not recommended]

◆ The determinant of the covariance matrix

◆ VG = λ1 · λ2 (NB, units are different)

◆ If one component has little or no uncertainty
VG → 0, hiding uncertainty in the other com-
ponent



Notes

■ The variance-covariance has 4 elements, so it is convenientto have single-valued magnitude
for the covariance matrix.

■ Two common choices are:

◆ Total Variance: the trace of the covariance matrix

◆ Generalized Variance: the determinant of the covariance matrix

■ These can be related to the geometry of the uncertainty region by considering the eigenvalues
of the covariance matrix:

◆ The Total Variance is equal to the sum of the eigenvalues. It summarises the uncer-
tainty but ignores correlation.

◆ The Generalized Variance is equal to the product of the eigenvalues, so it is a measure
of the surface extent of the region (proportional to the areasquared of the region) –
note, it doesn’t have the units of variance!

◆ Note, these measures do not change under a rotation of the co-ordinate axes (the
eigenvalues don’t change)

■ The Total Variance is preferred for metrology. It is relatedto the combined standard variance
of (the sum of) the real and imaginary components.

■ The Generalized Variance is not as useful for metrology because if one component has lit-
tle or no uncertainty the GV→ 0, which could hide significant uncertainty in the other
component
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Procedure (approximate):

■ Write down a covariance
matrix in coordinates
aligned with polar axes

Vrt =

[

u2(xr) 0
0 u2(xt)

]

u(xt) = xr tan u(xφ)

■ Transform to rectangular
coordinates by rotation

V = Rxφ
Vrt R

′

xφ

←
x r
→

xφ

∼ u(xt)

∼ u(xr)

∼ u(xim)

∼ u(xre)

xre

xim



Notes

■ This method is NOT exact. It may not work very well if the curvature in the polar coordinates
is significant.

■ The matrix

Rxφ
=

[

cosxφ − sin xφ

sin xφ cosxφ

]

■ If there is correlation betweenφ andr then the off-diagonal elements ofVrt need to be
entered too.
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Procedure (approximate):

■ Change coordinates to obtain a ‘polarised’ covariance ma-
trix, aligned with the polar coordinates

Vrt = R
′

xφ
VRxφ

■ Calculate standard uncertainty in polar coordinates

u(xr) =
√

Vrt(1, 1)

u(xφ) = tan−1

(

√

Vrt(2, 2)/xr

)

r = Vrt(1, 2)/
√

Vrt(1, 1)Vrt(2, 2)



Notes

■ This method is NOT exact. It may not work very well if the curvature in the polar coordinates
is significant.

■ We do not think that it is a good idea to transform uncertaintystatements from rectangular
to polar coordinates. However, if you insist, then this is one way to do it.

■ In calculating the correlation coefficientr we also assume that the correlation is unchanged
by transforming from the ‘polarised’ coordinates back to polar coordinates. This too is an
approximation.
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Test by simulation

■ Choose µ, er and eφ

1. Simulate observations of xr and xφ

2. Apply the procedure to obtain V

3. Does the uncertainty region contain µ?

4. Simulate again (go back to step 1)

■ Expect close to a 95% success-rate over a large
number of simulations



Notes

■ Assume that if the procedure works well on data sets similar to those obtained in real mea-
surements, then it is reliable

■ Take the standard uncertaintiesu(xr) andu(xφ) to be the standard deviations of the un-
known errors,er andeφ

■ Use random number generators to simulate experimental results, providing sets of data to
test the procedure

■ In this case, we will add Gaussian random numbers with zero mean and standard deviations
u(xr) andu(xφ) to the polar coordinates ofµ to obtain simulated observations

■ A general procedure for this could be more complicated (e.g., if finite degrees-of-freedom
were considered)
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Offset-short (data from METAS calibration report)

■ Data

Γr = 0.995, u(Γr) = 0.013; Γφ = 85.34◦, u(Γφ) = 0.88◦

Vrt =

[

1.69× 10−4 0
0 2.34× 10−4

]

Success-rate in simulations: 94.7± 0.4%

■ Increased phase uncertainty

uncertainty success-rate
2u(Γφ) 94 %
5u(Γφ) 84 %



Notes

■ Assume that the errors in magnitude and phase are independent (so there are no off-diagonal
matrix elements)

■ The diagonal elements ofVrt are roughly the same size, which means that the ellipse
roughly circular

■ When the standard uncertainty in phase is increased five-fold, the covariance matrix element
increases 25-fold.

■ When the standard uncertainty in phase is increased five-fold, it represents a4◦ standard
uncertainty in the phase
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■ The ‘polarised’ covariance matrix is ‘like’ an uncertainty
statement in polar coordinates

◆ radial and tangential uncertainties

■ Homogeneous units are insightful when dealing with a
complex quantity (previous example)

◆ Why have different tangential units?

◆ Perhaps some measurements are not really about
the complex quantity?

←
x r
→

xφ

∼ u(xt)

∼ u(xr)



Notes

■ The ‘polarised’ covariance matrix could be reported, instead of the real-imaginary covari-
ance matrix, without any of the loss of information that goeswith the transformation to polar
coordinates. Would there be any merit in that?

■ It is more informative to look at the ‘polarised’ covariancematrix if one is considering a
complex quantity because the units are homogeneous. A statement of uncertainty in polar
coordinates on the other hand is hard to visualise in the complex plane.

■ For instance, how easy is it to see that the uncertainty region in the offset-short example is
nearly circular? Given only the data in polar coordinates its quite hard: given the ‘polarised’
covariance matrix it is trivial.

■ Where does the real ‘demand’ come from for statements of uncertainty in polar coordinates?

◆ Are we actually considering the magnitude and phase as distinct real quantities? (In
which case, GUM methods apply and we do not need to get tangledup in bivariate
uncertainty propagation.)

◆ Are we simply captured by a legacy of engineering formulae that require phase as an
argument?
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■ A simple method can transform uncertainties between po-
lar and rectangular coordinates

◆ to a covariance matrix from polar uncertainty

◆ to polar uncertainty from a covariance matrix

■ The method is approximate

◆ Trigonometric functions needed to handle phase

■ The intermediate ‘polarised’ covariance matrix may be
useful in reporting uncertainty without information loss

◆ What is the purpose of the measurement?

◆ Is the quantity of interest just a component?



Notes

■ The method of transforming between polar and rectangular coordinates is easy to apply

■ The method can loose information in some cases (it is approximate)

■ The intermediate step in which a ‘polarised’ covariance matrix is obtained is interesting

◆ Could it be used to report results when the polar coordinateshave some fundamental
meaning to the measurement?

◆ Can it help to wean people off polar coordinates?

■ Why do people really want to work in polar coordinates anyway? (Good to discuss this).
A homogeneous set of units is appropriate for a complex quantity? Are we confusing some
cases where the problem is univariate with others where it isbivariate?
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