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■ Mismatch Uncertainty

◆ What is it?

◆ How is it represented in real-valued uncertainty calcula-

tions?

■ Measurement uncertainty

◆ What is the uncertainty of a complex quantity?

◆ How is it represented?

■ Ignorance about phase

◆ When only the magnitude is measured

◆ How is that represented?

■ Example

This talk is based on recently published work (B. D. Hall,Metrologia 44 (2007) L62-L67).

It discusses the evaluation of measurement uncertainty when mismatch is to be considered. Specifi-

cally, the talk is concerned with the representation of mismatch uncertainty in problems that involve

complex-valued quantities. The related problem, mismatch uncertainty in real-valued uncertainty

calculations, is dealt with in many guidelines on uncertainty.

The notion of mismatch is intrinsically linked to the complex (2-dimensional) nature of the mea-

surements. Formal techniques for carrying out complex uncertainty calculations are now available,

so a complex representation for mismatch uncertainty is important. This work therefore extends that

of Harris and Warner, which lead to the widespread use of the arcsine distribution in real-valued

uncertainty calculations (I A Harris and F L Warner, IEE Proc. H-128, 1981, 35-41).

We have found that when the problem is considered from a two-dimensional perspective there are

several simple intuitive representations of mismatch uncertainty. The arcsine distribution is related

to the most conservative statement of uncertainty for the problem.
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connection

 a    b

  

Γg Γs

■ Transmission along a line with imperfect terminations (Γ 6= 0)

■ The relative phase determines signal amplitude:

b =
a

1− ΓgΓs

Often, as part of a measurement set-up, non-zero reflection coefficients on each side of a connection

plane contribute to uncertainty. Such configurations lead to a series of reflected waves and we cannot

predict the incident signal amplitude without full information about the relative phases.

The product ΓgΓs is often considered to be an uncertain quantity, because the phase is unknown

(perhaps the phases of Γg and Γs are unknown but also there will generally be some unknown

phase associated with the connection). Hence we will treat the mismatch uncertainty associated

with product ΓgΓs as a single influence quantity. (This is important in practice, because otherwise

algorithms for uncertainty propagation will probably fail – see: B. D. Hall, Metrologia 44 (2007)

L62-L67.)
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1− |ΓgΓs| 1 + |ΓgΓs|

■ Without ‘knowledge’

about the relative phase,

assume equal likelihood

■ The ‘arcsine’ distribution

is the marginal distribution

in this case

■ The arcsine distribution

has a standard uncer-

tainty

u(x) = a/
√
2 ,

where a = |ΓgΓs|

The arcsine distribution has been used to represent mismatch uncertainty in real-valued uncertainty

calculations since the work of Harris and Warner (I A Harris and F L Warner, IEE Proc. H-128,

1981, 35-41).

The idea is that the projection of the distribution of a vector oriented with a uniformly random phase

yields a probability density function that is large at its limiting values (asymptotes) and small in the

centre of the range.

The arcsine distribution can be used to represent influence quantities if their uncertainty is due to an

inherently cyclic phenomenon. For example, a thermal cycle.
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imag

real

The uncertainty of a complex quantity is associated with a region in

the complex plane. An elliptical region is the conventional choice.

A complex quantity has two orthogonal components: the real and imaginary components, in rectan-

gular coordinates, or the magnitude and phase, in polar coordinates. Polar coordinates are problem-

atic for uncertainty calculations, so we prefer to work in rectangular coordinates.

A complex value is represented as a point in the complex plane. Uncertainty in that value as an

estimate of the quantity of interest is therefore a region in the plane consisting of points that could

reasonably be assigned to the quantity of interest.

A conventional shape for an uncertainty region is an ellipse centered on the estimate of the quantity.

If the major and minor axes of the ellipse align with the real and imaginary axes then there is no

correlation between the estimates of the real and imaginary components.



Covariance matrix characterises uncertainty

Introduction

Mismatch Uncertainty

– arcsine distribution

Complex uncertainty

– covariance matrix

– circular regions

Unknown phase

– covariances

– product distributions

– three combinations

Propagating uncertainty

Power measurement

Measurement Standards Laboratory of New Zealand

■ Three pieces of informa-

tion:

◆ real cpt: u(xre)

◆ imaginary cpt: u(xim)

◆ correlation: r(xre, xim)

■ The covariance matrix

contains all this:

Vx =

[

v11 v12

v21 v22

]

v11 = u2(xre)

v12 = u(xre) r(xre, xim) u(xim)

v21 = v12

v22 = u2(xim)

■ The contour of an uncer-
tainty region is defined by

(ξ − x)′V−1
x

(ξ − x) ≤ c2

real

imag ξ3

ξ2

ξ1

x

In real-valued uncertainty calculations it is common to evaluate uncertainty as a standard deviation

associated with the quantity of interest. In fact the important quantities in those calculations are the

variances and covariances.

In the complex problem, the importance of the variances and covariance associated with the two

components of the complex quantity is fundamental. A 2 × 2 variance-covariance matrix needs to

be associated with every influence quantity in a problem in order to evaluate the 2 × 2 variance-

covariance associated with the measurement result. The variance-covariance matrix also determines

the shape of the conventional uncertainty region.
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The simplest form of uncertainty

region is a circle

■ Uncertainty in the real and

imaginary components is

equal

u(xre) = u(xim) = u(x)

■ No correlation:

r(xre, xim) = 0

■ The covariance matrix is
[

u2(x) 0
0 u2(x)

]

real

imag

dia ∼ u(x)

We need to obtain a form of variance-covariance matrix that can represent mismatch uncertainty.

First we consider the simplest form of variance-covariance matrix and its representation as an un-

certainty region in the complex plane.

This statement of uncertainty essentially says:

■ real and imaginary components are independent

■ the uncertainty in the real and imaginary components is the same

Note, however, that the simple form of this covariance matrix is not associated with a uniform

circular distribution. The uncertainty region is circular, but the form of distribution is not determined

by just the covariance matrix.
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Sometimes, only the magnitude of a signal is measured: the phase

is unknown.

■ The central estimate of the quantity is 0, the origin!

■ The uncertainty depends on what is known about the magni-

tude

Magnitude is known

imag

real

Magnitude is bounded above

imag

real

When measured value is reported as a magnitude in polar coordinates (phase is not measured), the

‘best estimate’ (for the purpose of the uncertainty calculation) may not be a value that could be

attributed to the quantity of interest! For example, suppose that we estimate |Γ| = 0.1, the locus
of points associated with this information is a circle centered on the origin in the complex plane.

For the purposes of the uncertainty calculation, the origin should be used as the ‘best estimate’ of

the complex quantity (hence, the use of the terminology ‘best estimate’ becomes misleading in this

context).

It should also be remembered that the bivariate form of the LPU uses only covariance matrices.

There is an underlying assumption that a bivariate gaussian distribution can be associated with the

covariance matrix obtained for an estimate of the measurand. The same gaussian assumption is

made in the Guide to the Expression of Uncertainty in Measurement, for real-valued quantities.
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■ Magnitude is known so the

distribution is a uniform ring

of radius a

Vx =
1

2

[

a2 0
0 a2

]

imag

real

■ Magnitude is bounded so the

distribution is a uniform disk

of radius a

Vx =
1

4

[

a2 0
0 a2

]

imag

real

There is a physical analogy between the simple 2-D probability densities that are associated with

type-B uncertainties and the moments of inertia of uniform solid bodies. We are able to use well-

known results of classical mechanics for the case of a uniform solid ring and a uniform solid disk,

where the respective bodies have unit mass and a radius a. The 2-D moment of inertia tensor for a

thin disk, or ring, in the xy plane is equivalent to the variance-covariance matrix of the probability

distribution.

Alternatively, noting the radial symmetry of the problem, there is clearly only one covariance matrix

term to be calculated. That term is equal to the moment of inertia of a thin disk, or ring, of unit mass

and radius a about an axis along a diameter. The result is obtained in many standard mechanics

texts.

Note that the uncertainty associated with the disk distribution is less than that for the ring distribution.

This appears to be counter-intuitive, because knowing that values inside the ring are not to be con-

sidered is presumably informative. However, the ring distribution effectively selects the ‘worst-case’

magnitudes, giving greater weighting to extreme values and hence greater uncertainty.
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We are interested in the uncertainty associated with Γ = Γ1Γ2

■ The estimates Γ1 = 0 and Γ2 = 0, so Γ = 0.

■ The covariance matrices associated with Γ1 and Γ2 have equal

diagonal terms and zero off-diagonal terms:

VΓ1
=

[

σ2
1 0

0 σ2
1

]

and VΓ2
=

[

σ2
2 0

0 σ2
2

]

■ The covariance of the product is

VΓ = 2

[

σ2
1σ2

2 0

0 σ2
1σ

2
2

]

Consider two random variables associated with the complex

quantitiesa

Γ1 = x1 + iy1

Γ2 = x2 + iy2 .

The real and imaginary components of these random variables

have means of zero. The variances of the real and imaginary

components of z1 are both equal to σ2

1
, similarly the vari-

ances of the real and imaginary components of z2 are equal

to σ2

2
. The covariance between components is zero.

The expectation of the product is zero, i.e.,

z1z2 = (x1x2 − y1y2) + i(x1y2 + x2y1)

and the expectation

E(x1x2 − y1y2) = E(x1x2) − E(y1y2)

= E(x1)E(x2) − E(y1)E(y2)

= 0

similarly E(x1y2 + x2y1) = 0.

a
The author is grateful to R. Willink for this derivation.

The variances and covariance are then obtained as follows:

E

[

(x1x2 − y1y2)
2
]

= E

[

x
2

1
x
2

2
− 2x1x2y1y2 + y

2

1
y
2

2

]

= E(x
2

1
x
2

2
)− 0 + E(y

2

1
y
2

2
)

= σ
2

1
σ
2

2
+ σ

2

1
σ
2

2

= 2σ
2

1
σ
2

2
,

similarly

E

[

(x1y2 + x2y1)
2
]

= 2σ
2

1
σ
2

2

and

E [(x1x2 − y1y2)(x1y2 + x2y1)]

= E(x
2

1
x2y2)− E(y

2

2
x1y1) + E(x

2

2
x1y1)

− E(y
2

1
x2y2)

= 0
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■ Known magnitude × known magnitude⇒ a uniform ring distribution

Vx =
1

2

[

a2 0
0 a2

]

■ Known magnitude × unknown magnitude ⇒ a uniform disk distribu-

tion

Vx =
1

4

[

a2 0
0 a2

]

■ Unknown magnitude × unknown magnitude⇒ a non-uniform (linear

radial density) distribution

Vx =
1

8

[

a2 0
0 a2

]

There are three combinations of phase uncertainty that are of interest when considering

Γ = Γ1Γ2

■ |Γ1| and |Γ2| are known
In this case |Γ| is also known, so the ring distribution can be used to describe the uncertainty.
The standard deviation of the marginal distribution is a/

√
2, i.e. the arcsine distribution.

■ one of |Γ1| and |Γ2| is bounded and the other is known
In this case |Γ| is bounded, so the disk distribution can be used to describe the uncertainty.
Note that the standard deviation of the marginal distribution in this case is a/2, which is

slightly less than the standard deviation of a uniform distribution (a/
√

3).

A uniform distribution could be used as a slightly conservative alternative if necessary.

■ both |Γ1| and |Γ2| are bounded
In this case the joint density is no longer a uniform distribution in the complex plane (The

density is highest at the origin and decreases linearly towards the outer limit).

The standard deviation of the marginal distribution is a/
√

8, which is slightly less than the
standard deviation of a triangular distribution (a/

√
6).

A triangular distribution could be used as a slightly conservative alternative if necessary.



Propagating uncertainty

Introduction

Mismatch Uncertainty

– arcsine distribution

Complex uncertainty

– covariance matrix

– circular regions

Unknown phase

– covariances

– product distributions

– three combinations

Propagating uncertainty

Power measurement

Measurement Standards Laboratory of New Zealand

■ The Law of Propagation of Uncertainty (LPU) can be applied to

the real and imaginary components separately and correlation

between these components can also be evaluated.1

■ The LPU can be expressed in a matrix form for bivariate (com-

plex) problems that obtains the (2× 2) covariance matrix23

■ Bivariate LPU can be formulated in terms of sensitivity coeffi-

cients (partial derivatives), influence quantity uncertainties and

associated correlations using (2× 2) matrices4

Vy =
m

∑

i=1

m
∑

j=1

Uxi
(y)R(xi, xj)U

′

xj
(y)

1
Guide to the Expression of Uncertainty in Measurement, 1995

2
K. Weise, IEEE Trans. Instrum. Meas., 1987, 36, 642-645.

3
N. M. Ridler and M. J. Salter,Metrologia, 2002, 39, 295-302.

4
B. D. Hall, Metrologia, 2004, 41, 173-177.

It is not widely recognized that the method described in the Guide to Expression of Uncertainty

in Measurement (GUM) can be used to evaluate the uncertainty of a complex quantity. The GUM

method can treat the real and imaginary components as individual measurands and evaluate their

standard uncertainties, as well as the covariance associated with the two components. This informa-

tion can be used to construct the covariance matrix.

The LPU for real-valued quantities described in the GUM is only a particular case of a general

multivariate procedure that has been outlined by Weise. Ridler and Salter presented the bivariate

form of this and applied it to some RF measurement scenarios. Hall has described an alternative

formulation of the method that may be easier to apply. All three approaches are mathematically

equivalent.

Unlike the presentation in the GUM, the bivariate (and multivariate) form of the LPU has been

described using matrix notation. However, it is possible to define (2 × 2) matrix quantities, in the
bivariate case, that assume roles analogous to scalar quantities in the GUM’s LPU. In this way, it is

easier to identify steps in the data processing with actual quantities of interest in the experiment. It

is also possible to perform much of the analysis using complex calculus, rather than working with

the real and imaginary components of each quantity.
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Simple power measurement scenario:56

■ measurement at 2.4 GHz (Bluetooth and IEEE 802.11b wireless LAN

radio systems)

■ Agilent E4433A signal generator

■ Agilent E4418B power meter and 8481A power sensor

5
Numerical data from Fundamentals of RF and Microwave Power Measurement, (Agilent

Technologies Inc., AN 1449-3, USA, 2003).
6
Excel worksheet available at http://mst.irl.cri.nz

We have used the data available in the Agilent Technical Note to evaluate the measurement uncer-

tainty of a realistic power measurement using the ideas just presented.

The calculation turned out to be an interesting exercise. The details are explained in detail in the

downloadable example from mst.irl.cri.nz.

Here we present just a summary of the main results.
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Mismatch uncertainties (during the measurement and during meter

calibration are associated with ring distributions) can be treated as

arcsine distributions (this is done in the Note)

■ The relative combined standard uncertainty is 1.95%.

■ The mismatch uncertainty, during the measurement, is dominant

■ The most important contributions to the uncertainty are:

quantity relative size contribution (%)

x u(x)/uc u2(x)/u2
c

Mismatch 0.72 52.4

Calibration factor 0.44 18.9

Meter gain 0.51 26.5

Instrument noise 0.15 2.2

The ‘Meter Gain’ referred to is a proportionality constant between the meter reading and the ‘sub-

stituted power’, determined during meter ‘calibration’ with a known source. The ‘instrument noise’

is a multiplicative noise gain term associated with each reading.

The ‘Meter Gain’ is fixed during calibration, so it is a systematic error in subsequent measurements.

The ‘substituted power’ is a random error, which is independent for each reading. Calibration factor

is also a systematic error.

What we see here is that mismatch is the dominant uncertainty.
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The reflection coefficients of the internal (calibration) power source

and the generator are bounded above. So disk distributions are ap-

propriate representations of the uncertainty

■ The relative combined standard uncertainty is reduced to 1.66%.

■ The most important contributions to the uncertainty are:

quantity relative size contribution (%)

x u(x)/uc u2(x)/u2
c

Mismatch 0.60 36.2

Calibration factor 0.51 26.2

Meter gain 0.59 34.6

Instrument noise 0.17 3.2

An inferior uncertainty statement has improved the accuracy!

By using disk distributions instead of rings (arcsine), the uncertainty is reduced. Mismatch no longer

dominates. It now has equal importance with the ‘meter gain’ set during meter ‘calibration’.

Although the data do not suggest that a disk distribution could be associated with the sensor reflec-

tion coefficient, it is interesting to consider how the results would change if that were done. The

table shows that mismatch now comes third, after the calibration factor uncertainty and the meter

gain uncertainty. The relative combined standard uncertainty is now 1.49%.

quantity relative size contribution (%)

x u(x)/uc u2(x)/u2
c

Mismatch 0.47 22.4

Calibration factor 0.57 32.4

Meter gain 0.64 41.5

Instrument noise 0.19 3.7

It is also interesting to note that even if the full complex sensor reflection coefficient were measured,

without a corresponding complex measurement of the calibration source the information about the

product still lacks phase information. So the uncertainty of the product will still be a ring or disk.
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■ 2-D representation is better than 1-D

■ Unknown phase⇒ radially symmetric distribution at the origin

■ Unknown phase in one factor⇒ unknown phase in product

■ Distributions have simple diagonal covariance matrices

■ Three distributions for mismatch uncertainty

◆ Ring; disk; r-density

◆ Ring distribution (arcsine) is most conservative

◆ Is mismatch uncertainty being over-stated?


